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Abstract

The process of obtaining high quality seismic images is very challenging
when exploring new areas that have high complexities. The to be processed
seismic data comes from the field noisy and commonly incomplete. Recently,
major advances were accomplished in the area of coherent noise removal, for
example, Surface Related Multiple Elimination (SRME).(Verschuur et al.,
1992).

Predictive multiple elimination methods, such as SRME, consist of two
steps: The first step is the prediction step, in this step multiples are pre-
dicted from the seismic data. The second step is the separation step in
which primary reflection and surface related multiples are separated, this
involves predicted multiples from the first step to be ”matched” with the
true multiples in the data and eventually removed (Verschuur, 2006; Wang
et al., 2008). Wang et al.,2008 have introduced a robust Bayesian wavefield
separation method to improve on the separation by matching methods. This
method utilizes the effectiveness of using the multi scale and multi angular
curvelet transform (Candès et al., 2006; Ying et al., 2005) in processing seis-
mic images. The method produced excellent results and improved multiple
removal. A considerable problem in the seismic processing field is the fact
that seismic data are large and require a correspondingly large memory size
and processing time. The fact that curvelets are redundant also increases
the need for large memory to process seismic data.

In this thesis we propose a parallel aproach based windowing operator
that divides large seismic data into smaller more managable datasets that
can fit in memory so that it is possible to apply the Bayesian separation pro-
cess in parallel with minimal harm to the image quality and data integrity.
However, by dividing the data, we introduce discontinuities. We take these
discontinuities into account and compare two ways that different windows
may communicate. The first method is to communicate edge information
at only two steps, namely, data scattering and gathering processes while
applying the multiple separation on each window separately. The second
method is to define our windowing operator as a global operator, which
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Abstract

exchanges window edge information at each forward and inverse curvelet
transform. We discuss the trade off between the two methods trying to
minimize complexity and I/O time spent in the process.

We test our windowing operator on a seismic denoising problem and
then apply the windowing operator on our sparse-domain Bayesian primary-
multiple seperation.
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Preface

This thesis was prepared with Madagascar, a reproducible research soft-
ware package available at rsf.sf.net.

A large amount of code was developed in the Seismic Laboratory for
Imaging and Modeling (SLIM). The numerical algorithms and applications
are mainly written in Python. with a few experiments written in Matlab.
Early experiments were conducted using SLIMpy (slim.eos.ubc.ca/SLIMpy)
a Python interface that exploits functionalities of seismic data processing
packages, such as MADAGASCAR, through operator overloading.
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Chapter 1

Introduction

In the early days of oil discovery, petroleum exploration was simply a
matter of predicting the subsurface geology based on simple surface obser-
vations of signs such as seeps of oil or land formations related to salt domes
and other basic observations. Not every prediction was accurate enough but
it was a good start. Then, seismology came into the picture and improved
the discovery in areas with less surface observations. The discovery was rel-
atively easy and most of the simple structural traps have been discovered.
Since then, geophysicists spent a considerable effort in developing and im-
proving scientific methods of processing seismic data that gave huge success
in targeting even more complex reservoirs.

Today, as we explore new regions, we face even more complex reservoirs
to be discovered that consist of extremely thin strata or are very conformable
to the surrounding strata. Such reservoirs may not be able to show on basic
seismic data, they require the highest resolution possible. An added com-
plexity to the problem is the fact that seismic data contain noise, ghosting,
multiples and other kinds of events that obscure thin layers and complex
structures in a seismic image. Such added noise and other undesired events
do not completely destroy main features in images of basic structures. But
a small amount of interfering coherent events can make a difference between
finding an oil reservoir in a very complex subsurface structure and making
profit, and, missing the target and losing millions of dollars. This is one of
the major motivations in the oil industry to denoise complex seismic data
and attenuate multiples (demultiple) or eliminate them (Ikelle and Amund-
sen, 2005).

Two major seismic events will be discussed in the coming chapters that
are involved in the process of obtaining higher quality seismic images, specif-
ically, in the process of surface-related multiple elimination. These events
are primaries and multiples. Primaries are seismic events that have been
reflected once before arriving at the receivers (or geophones). Primaries
represent information about reflectors we are interested in that show the
structure of subsurface. Since we are sending sound waves, any discontinu-
ity (boundary, reflector...) in the path of these waves causes the wave to be
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transmitted and reflected, which means that the recorded seismic data not
only contain events that are reflected once but it contains events generated
by waves traveling many possible paths before being recorded at seismic re-
ceivers. We call events that has been reflected more than once between the
energy source and the receivers, multiples. Figure 1.1 shows a synthetic
example of primaries and surface-related multiples. On the top a diagram
showing the waves’ paths and below is the seismic data.

 

(a)

Figure 1.1: Synthetic data consisting of three primaries and six surface
related multiples. Top: the waves paths. Bottom: seismic data of the
waves above. Notice that primaries reflect once while multiples reflect more
than once resulting in some false horizons or reflectors on the seismic image.
Adapted from Ikelle and Amundsen, 2005

As mentioned earlier, multiple attenuation or elimination (Verschuur
et al., 1992) is an important part of seismic data processing and the process
becomes complex with the presence of noise and other events. There is also
the fact that seismic data can be incomplete due to physical or economical
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factors. Many algorithms have been developed in the past, and still are, that
aim to enhance seismic images with the available data by removing noise
and filling in missing traces.

Seismic data is well known to be extremely large, and when this data
is pre-processed data, the size becomes especially enormous and exceeds
today’s single computer memory (can easily exceed terabytes) which places
a challenge on processing the data. To address this issue, it has always been
part of seismic data processing to find the most efficient algorithm to deal
with such huge amount of data without losing quality. In addition to finding
efficient algorithms, parallelism is an obvious choice for handling huge data
in any problem requiring more memory than a single computer can handle.

1.1 Theme

The main theme of this thesis is to utilize a robust technique for mul-
tiple elimination based on well-established sparsity-promoting methods and
to make this method scalable to realistically sized data. The multiple elimi-
nation technique uses the redundant curvelet transform as a sparsifying do-
main. This redundancy , in conjunction with the large size of seismic data
makes it impossible to fit seismic data in a single processing unit memory.
To overcome these limitations, we design windowing schemes that distribute
the data to multiple computing nodes such that it can fit in memory and run
the algorithm with minimal quality loss. The trade-off between the image
quality and running time is investigated.

1.2 Objectives

We have two main objectives: First, to allow a memory demanding
iterative multiple elimination method to be applied to a large data set by
dividing the data into smaller windows that fit in memory without losing
data quality. Second, to compare two scenarios of using our windowing
scheme in which, neighbor windows communicate and exchange information.
The two scenarios are:

• Scenario A: Communication between windows occur at the window-
ing stage and in the final gathering stage only. After creating the
windows and scattering the windowed data to different nodes, we run
our primary-multiple separation on each window separately. This sce-
nario has the advantages of simple implementation and fast running
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time. But since we process each window separately we may lose data
continuity and accuracy.

• Scenario B: Communication between windows occurs whenever there
is a transform of the data to and from a sparse domain that assumes
continuous data. In this scenario, we try to minimize the effect of
partitioning our data by defining the sparsifying operator for each
window such that they form an overlapping block diagonal operator.
This scenario has the advantage of accuracy, but is more complex to
implement and consumes a considerable amount of processing time in
I/O to exchange information between windows.

Table 1.1 summarizes the advantages and disadvantages of the above
scenarios.

We will test our windowing methods by applying the above scenarios
to a seismic denoising problem. Then, we will apply the scenarios on our
primary-multiple separation method.

Advantages Disadvantages
Scenario A - speed - less accurate

- ease of implementation
Scenario B - accuracy - complex to implement

- slow runtime (I/O between windows)

Table 1.1: Advantages and disadvantages of Scenario A: windowing data and
applying separation seperatly, Scenario B: windowing data with overlapping
operators.

1.3 Outline

The first chapter introduces the subject of high quality seismic imaging
and the need to devise robust techniques to eliminate multiples. It contains a
brief discussion on the concept of sparse data representation and introduces
the curvelet transform used to represent seismic data sparsely.

In Chapter 2, we describe the denoising problem that we will use to test
our technique. Then, we discuss a new development in wavefield separation
by sparsity promotion (Saab et al., 2007; Wang et al., 2008) and explain the
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basic idea behind the use of curvelets in our Bayesian formulation for the
primary-multiple separation problem.

Chapter 3 introduces our windowing method to resolve the issue of scal-
ability that makes it hard to process large seismic data in the redundant
curvelet domain. Such windowing also allows us to process data in parallel.
We compare two scenarios where we apply windowing and try to highlight
trade-off between these two scenarios. Finally, we conduct several experi-
ments on synthetic data starting with solving a seismic denoising problem,
then, applying our windowing methods to our primary-multiple seperation
method. The results are discussed in Chapter 4.

1.4 Theoretical background

In the world of seismic data processing, we are faced with many different
challenges, one major challenge is the fact that we are trying to obtain a high
quality image of the subsurface of the earth from a set of data that is noisy
and incomplete due to physical and economical restrictions. There is also
the fact that seismic data has bandwidth-limited wavefronts that come in
many shapes, vary in frequency and directions and may contain conflicting
dips and caustics (Herrmann and Hennenfent, 2008).

One of the most effective ways to face the above challenges is to work
with seismic data in a sparse domain, which means that we transform the
data to a domain that decomposes data into a form where most of the energy
is concentrated in a small number of significant coefficients. This makes the
denoising and primary-multiple separation problems simpler as we can work
with a small set of coefficients that carry the most important energy from
the data. In the case of data contaminated with white Gaussian noise, a
good choice of transform will distribute the random noise into smaller less
significant coefficients (Herrmann and Hennenfent, 2008; Hennenfent and
Herrmann, 2008; Starck et al., 2002).

For a long time, seismologists have focused on exploiting the Fourier
transform, which decomposes the seismic data into the sum of harmonic
waves that have different frequencies. But the Fourier transform still has
some shortcomings, it assumes that the wave fronts it is representing are
plane monochromatic waves and it requires a large number of Fourier co-
efficients to represent wavefronts in seismic data. One way to over come
the problem of representing wavefronts, is the use of the wavelet transform,
which is a multi scale transform that produces localized coefficients. But
wavelets do not have the sense of direction when it comes to two or higher
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dimensional data, which means it cannot detect directional information on
the wavefronts (Herrmann and Hennenfent, 2008).

Recently, the curvelet transform (Candès et al., 2006; Ying et al., 2005)
was introduced and have successfully resolved the shortcomings mentioned
above in the Fourier and wavelet transforms (Herrmann and Hennenfent,
2008). What makes the curvelet transform successful is the fact that curvelets
are localized multi scale and multi-directional, they look like localized plane
waves that are oscillating in one direction and smoothly varying in the per-
pendicular direction. Figure 1.2 shows four curvelets in the spatial and
frequency domain, all of these curvelets have the same angle but different
scales. They are arranged from coarsest to finest scale from left to right.
notice that they are localized in the frequency domain. Curvelets follow a
parabolic scaling principle, i.e. a curvelet’s length and width are related ac-
cording to length = width2. The number of angles in the transform doubles
every other scale. Without prior information, curvelets can find the location
and direction of a wave front when a wave front and a curvelet that have the
same direction and frequency content produce a large inner product between
them (Herrmann and Hennenfent, 2008), this is illustrated in Figure 1.3.

One way to show how efficiently a sparse transform represent data is
to take the data into the transform’s domain and sort the coefficients in a
descending order. This shows how rapid the coefficients decay. The rapid
decay means that we can represent our data with few large coefficients.
Fig. 1.4(b) shows a set of sorted coefficients of a synthetic seismic data in
the Fourier, wavelet and curvelet domains. The x-axis represent the per-
centage of the number of coefficients and the y-axis shows the coefficients
amplitude. We can see clearly that the curvelet domain has the fastet decay-
ing rate. This means that the same seismic data can be represented with a
smaller percentage of curvelet coefficients compared to wavelets and Fourier
coefficients.

The fact that the curvelet transform represent seismic data in a small
number of large coefficients that are parameterized by location, scale and
angle, makes it unlikely for primaries and multiples to overlap. This makes
it possible to successfully attempt to develop robust multiples attenuation
algorithms. The computational complexity of the curvelet transform for
a data of size M is O(M log M) and is not a major issue. However, the
curvelet transform is an overcomplete signal representation and is 8 times
redundant in 2D and 24 times redundant in 3D. This, in conjunction with
the large size of seismic data, are the motivation for processing in parallel
(Thomson et al., 2006).
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(a)

(b)

Figure 1.2: Four curvelets with the same angle but different scales starting
from coarsest scale to finest scale left to right in the a) spatial domain b)
Fourier or frequency domain
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Figure 1.3: Principle of alignment. Curvelets and wavefronts that locally
have the same frequency content and direction produce large inner products
(significant coefficients). Adapted from Herrmann and Hennenfent, 2008.
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Figure 1.4: a) synthetic seismic data b) coefficients of transforms sorted in
a descending order. The x-axis represents the percentage of coefficients and
the y-axis represents the amplitudes normalized to 1. This plot shows how
the curvelet coefficients, shown in red, decay more rapidly than FFT and
wavelet coefficients, shown in black and blue respectively 8
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Chapter 2

Curvelet based seismic data
processing

2.1 Curvelet based denoising

Seismic data come from the field contaminated with various types of noise
that effect the final processed seismic image.

The problem of incoherent noise elimination can be cast into the follow-
ing optimization problem:

min ‖x‖1 subject to ‖Ax− b‖2 ≤ σ, (2.1)

where A is sparsifying operator that we choose to be the curvelet synthesis
operator. The vector b is our data with added white Gaussian noise, and the
positive parameter σ is an estimate of the noise level in the data. (van den
Berg and Friedlander, 2008).

Figure 2.1 shows a synthetic data set that we will use to illustrate the
denoising problem. Figure 2.1a shows the noise free synthetic data and
Figure 2.1b shows the data after adding white Gaussian noise with standard
deviation 1.4.

We solved the above denoising problem using SPGL1 (Berg and Fried-
lander, 2007), a solver for large-scale one-norm regularized least squares
problems. Figure 2.1c shows our denoised output, which has an SNR value
of 9.5. This was obtained after running for only 14 iterations.

We will use the above denoising problem later in this thesis to test op-
erators that will be introduced in the next chapter.

2.2 Curvelet based primary-multiple separation

2.2.1 Introduction

Removal of multiples from seismic data is a vital part of producing high-
quality seismic images. In this thesis our goal is to successfully eliminate
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Chapter 2. Curvelet based seismic data processing

multiples from large seismic data in the presence of noise and possibly incom-
plete data. Major advances were accomplished in the multiples elimination
area, e.g., Surface Related Multiple Elimination (SRME) (Verschuur et al.,
1992) Predictive multiple elimination methods, such as SRME, consist of
two steps: The first step is the prediction step, in this step multiples are
predicted from the seismic data. The second step is the separation step
in which primary reflection and noise are separated, this involves predicted
multiples from the first step to be ”matched” with the true multiples in the
data and eventually removed (Verschuur, 2006; Wang et al., 2008).

In some situations, the subsurface produces three dimensional complex-
ity on two dimensional data, which causes multiple predictions to be inaccu-
rate. An added complication is the possibility of having ghosts, unbalanced
amplitudes in multiple predictions (Herrmann et al., 2007a) and incomplete
data (Herrmann et al., 2007c). Many attempts have been made to improve
the process of multiple elimination by either producing more accurate predic-
tions of the multiples (Herrmann, 2008; Herrmann et al., 2007c; Verschuur
and Berkhout, 1997) or by developing more robust separation techniques
(Herrmann et al., 2007a).

2.2.2 Bayesian primary-multiple separation by sparsity
promotion

In a recent development, Wang et al., (2008) have introduced a robust
Bayesian wavefield separation method to improve on the separation by
matching methods. We will use this method as our main multiple elimi-
nation technique.

The separation problem is set up as a probabilistic framework. Seismic
data come from the field as a mixture of primaries, multiples, noise and other
recorded signals. Our main goal is to recover primaries from a mixture of
primaries and multiples. The following will be our forward model:

b = s1 + s2 + n, (2.2)

where vector b is our total data and s1 and s2 denote the primaries and
multiples respectively. The vector n is white Gaussian noise with each com-
ponent being zero-mean Gaussian with standard deviation σ (Wang et al.,
2008). We define the SRME predicted multiples as:

b2 = s2 + n2, (2.3)

where n2 is the error in the SRME prediction, which we also assume to be
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white Gaussian. The primaries can then be written as

b1 = b− b2 (2.4)
= s1 + n− n2

= s1 + n1,

We assume that n and n2 are independent (Wang et al., 2008). We can
rewrite the unknown signals s1 and s2 as follows

s1 = Ax1 and (2.5)
s2 = Ax2,

where A is a sparse domain synthesis matrix, We choose A to be the curvelet
synthesis matrix (Candès et al., 2006; Herrmann, 2006; Herrmann et al.,
2007b). This gives us the following system:

b1 = Ax1 + n1 (2.6)
b2 = Ax2 + n2.

Now, given the SRME predictions b1 and b2, we want to maximize the
conditional probability:

P (x1,x2|b1,b2) = P (x1,x2)P (n)P (n2)/P (b1,b2), (2.7)

this is reformulated into the minimization function:

min
x1,x2

f(x1,x2) (2.8)

f(x1,x2) = λ1‖x1‖1,w1 + λ2‖x2‖1,w2 + ‖Ax2 − b2‖2
2 + η‖A(x1 + x2)− b‖2

2,

where x1 and x2 are curvelet coefficients of the primaries and multiples re-
spectively. The parameters λ1 and λ2 allow us to input priori information
related to the expected sparsity of the estimated primaries and multiples
respectively. The vectors w1 and w2 are the weights chosen based on em-
pirical findings (Herrmann et al., 2007a) to be w1 = max {|ATb2|, ε} and
w2 = max {|ATb1|, ε}, where ε is a noise dependant constant. The param-
eter η controls the trade-off between coefficients vectors’ sparsity and the
misfit between the total data and the sum of the primaries and multiples.
Reducing η increases the thresholding operators’ aggressiveness, and increas-
ing η reduces the thresholding operators’ aggressiveness. To solve the above
minimization problem, an iterative thresholding algorithm was derived from
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Algorithm: Bayesian iterative method for wavefield separation

input: b1,b2,λ1, λ2, η, niter
x̃1 = 0 ,x̃2 = 0

threshold w1 =
λ1|AT b2|

2η

threshold w2 =
λ2|AT b1|

2(η+1)

b̂1 = ATb1

b̂2 = ATb2

for i = 1 : niter

x1 = b̂2 −ATAx̃n
2 + b̂1 −ATAx̃n

1 + x̃n
1

x2 = b̂2 −ATAx̃n
2 + η

η+1

(
b̂1 −ATAx̃n

1

)
x̃1 = x1

|x1| ·max (0, |x1| − |w1|)
x̃2 = x2

|x2| ·max (0, |x2| − |w2|)

end

Table 2.1: The iterative Bayesian wavefield separation algorithm introduced
in Wang et al., 2008; Saab, 2008

the work of Daubechies et al. (2004) and so starting from initial estimates
x0

1 and x0
2 for several iterations, the nth iteration becomes

xn+1
1 = Tλ1w1

2η

[
ATb2 −ATAxn

2 + ATb1 −ATAxn
1 + xn

1

]
(2.9)

xn+1
2 = T λ2w2

2(1+η)

[
ATb2 −ATAxn

2 + xn
2 +

η

η + 1
(
ATb1 −ATAxn

1

)]
,

where Tu is the element wise soft thresholding defined as

Tui (vi) :=
vi

|vi|
·max (0, |vi| − |ui|) , (2.10)
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The above algorithm, shown in Table 2.1, have proved to be a robust
method for separating coherent sparse signal components. Using an initial
prediction with moderate errors as input, the algorithm produces improved
estimates of these predictions. Because the algorithm takes advantage of
the curvelet domain, the algorithm has fast convergence and gives excellent
quality output data(Wang et al., 2008). Figure 2.3 shows an example of
running our Bayesian separation on a 2D data set. We ran the separation
for 10 iterations using the parameters {λ∗

1 = 0.8, λ∗
2 = 1.2, η∗ = 1.2}. These

parameters values were found empirically. Notice the improvement in the
estimated primaries, where we can see less multiples residual.

Table 2.2 shows sensitivity analysis for our Bayesian separation method.
The table shows SNR values calculated against the “multiple-free” ground
truth data, which is generated using the same simulation of the total data,
only an energy absorbing boundary condition is enforced to prevent the gen-
eration of multiples. We can see from these SNR values that our separation
technique is robust against changes in the control parameters. Parameters
combinations that aggressively over threshold or under threshold are not
included, since they produce extremely low SNR values.

SNR (dB) {λ∗
1, λ

∗
2} {2 · λ∗

1, λ
∗
2} {λ∗

1, 2 · λ∗
2} 100 · {λ∗

1, λ
∗
2}

η∗ 11.49 11.11 11.40 -
1
2 · η

∗ 11.29 10.38 11.15 -
2 · η∗ 10.90 11.38 10.81 -

100 · η∗ - - - 10.99

Table 2.2: Calculated SNR of estimated primaries using the Bayesian sep-
aration. SNR was calculated against the ground truth “multiple-free” pri-
maries.
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Figure 2.1: a) Noise free data b) same data from a with added Gaussian
noise with σ = 1.4 c) data after noise removal using SPGL1 and the curvelet
domain
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(a) (b)

(c) (d)

Figure 2.2: 2D synthetic data a) total data b) ground truth primaries c)
SRME predicted multiples d) SRME predicted primaries
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(a) (b)

(c) (d)

Figure 2.3: 2D synthetic data a) total data b) ground truth primaries c)
SRME predicted primaries d) Our bayesian estimated primaries
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Chapter 3

Parallel windowed seismic
data processing

3.1 Parallel windowed curvelet transform

It is well known that seismic data sets are extremely large and can easily
reach the size of several terabytes. Also, the two dimensional curvelet trans-
form is 8 times redundant and the three dimensional transform is 24 times
redundant; this means we will be dealing with 8 times the size of 2D data
and 24 times the size of 3D data. This, in conjunction with the large size of
seismic field data, makes it impossible to directly apply the curvelet trans-
form to the full data into memory on a single processing unit. Currently,
users are forced to work out of core to process relatively small 3D data sets.

Even though an MPI implementation of the curvelet transform exists
(Ying et al., 2005), it has limitations in scalability since the curvelet trans-
form is based on the Fast Fourier Transform, which requires large amounts
of communication when the data set is distributed on different processing
nodes (Thomson et al., 2006). Our sparsity promoting methods require
repeated evaluation of matrix-vector multiplications, which multiplies the
amount of communication required between processing nodes.

A possible scalable solution is to define a windowing operator that di-
vides data into smaller manageable windows. Each window is dealt with
separately, and when all windows are processed and ready, they are joined
(gathered) to form the final output. This is a practical solution that min-
imizes communication between nodes. But it is likely to have problems at
the borders of these windows, such as artifacts, dimming and/or other types
of problems. For instance, problems arise from the fact that we may divide
the data near a point where a curvelet coefficient would be located and so
when we take the forward curvelet transform, the curvelet wraps around
to the opposite border of the transformed data block, see Figure 3.1. This
reduces the quality of our process and may introduce artifacts . Another
issue is the fact that the curvelet transform is based on the fast Fourier
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transform, which produces spectral leakage from aperiodic data. Spectral
leakage is basically the spreading of the to-be-transformed signal’s energy
into other frequencies. A well known solution is the use of tapering which
is basically multiplying the data by some function that smoothly reduces
the edges’ amplitudes to zero which minimizes discontinuity. This means
we can improve our windowing operator by adding a tapering operator that
affects the edges of each of the resulting windows. Figure 3.2 demonstrates
spectral leakage from a monochromatic sinusoidal wave and shows the effect
of a window function and how it limits the leakage.

(a) (b)

Figure 3.1: a) a centered wrapping curvelet b) the same wrapping curvelet
located near the border. Notice how the curvelet wraps to the opposite
border.
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Figure 3.2: Spectral leakage a) a periodic function on the left and its Fourier
transform on the right. b) an aperiodic function on the left and its Fourier
transform on the right. c) different window functions d) The aperiodic
function from (b) after multiplying by the second window function from c),
and its Fourier transform on the right. We can see that applying the window
function reduces spectral leakage

22



Chapter 3. Parallel windowed seismic data processing

We can define our windowing operator to contain controllable overlap-
ping regions at the windows’ edges. This means that our forward windowing
will contain information from adjacent windows. These windows will overlap
in a region of total width of 2ε. The overlapping regions communicate via
the way our tapering is defined and a suitable way of defining the tapering
operator is by making sure it satisfies the following relation

T2
1 + T2

2 = 1, (3.1)

where T1 and T2 are overlapping tapering functions applied to adjacent
windows. This relation guarantees that we have partition of unity, where all
windows add up quadratically to one, preserving the system’s energy. This
allows us to define our windowing operator as a linear operator. Figure 3.3
illustrates how our tapering function looks like.

0

0.5

1

1.5

2

εε

(a)

Figure 3.3: Three tapering windows with two overlapping regions. The
overlapping region is 2ε wide. We can see the tapering functions being 1
everywhere except at the overlapping region where the sum of their square
produces 1. The red dashed line represent that quadratic sum.
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Figure 3.4: A simplified illustration of how overlapping and tapering would
look like in 3D.

There are many functions that are suitable for tapering and satisfy the
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above property (Mallat, 1998). We chose the following simple tapering op-
erator:

Tn = sin(
(N − n)π
2(2ε− 1)

), n = {N,N − 1, ..., N − 2ε + 1}. (3.2)

Here, N is the total width of the overlapping windows. Now we have set up
our windowing operator with overlapping regions and a tapering operator
applied to these windows’ edges such that perfect reconstruction is ensured
and energy of the system is preserved since our windowing and tapering
operators satisfy

W*T*TW = I, (3.3)

where W is our windowing operator that divides our data into overlapping
regions, and W* is the adjoint windowing operator, which gathers the win-
dowed data into one data set, adding the overlapping regions during the
process. The operators T and T* are our forward and adjoint tapering op-
erators respectively. Finally, the matrix I represents the identity matrix.
Figure 3.5 illustrates the way our combination of windowing and tapering
works in 2D.

Now we have a windowing operator that permits us to fit a large data set
in a distributed memory and perform operations in parallel to speed up our
separation algorithm. We can define our parallel forward curvelet transform
as:

AT = [C]TW. (3.4)

The block diagonal matrix [C] is our forward curvelet transform matrix.
Similarly, the parallel inverse curvelet transform can be defined as:

A = W*T*[C*], (3.5)

where the block diagonal matrix [C*] is our inverse curvelet transform ma-
trix.

3.2 Parallel windowed curvelet transform usage

We consider two options to incorporate the windowing operator with our
sparsity promoting techniques. The first option, we will call scenario A, is to
apply the forward windowing operator with overlaps and tapering and then
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Figure 3.5: Windowing and tapering operators illustrated. Solid lines are
windows boundaries. Dotted lines are overlapping regions. The overlapping
region is of width 2ε.
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process each window independently for the required number of iterations
and once all windows have been processed, we simply apply the adjoint
windowing operator.

The second option, we will call scenario B, is to apply the forward win-
dowing operator with overlaps and tapering just like in scenario A, only this
time we allow the overlapping edges of the windows to communicate at each
iteration in our process.

In both scenarios we solve a set of nonlinear minimization problems. For
instance, instead of solving the denoising problem from the previous chapter
(Eqn 2.1) as a single system we solve the following set of problems seperatly:

min ‖x1‖1 subject to ‖Ax1 − b1‖2 ≤ σ (3.6)

min ‖x2‖1 subject to ‖Ax2 − b2‖2 ≤ σ (3.7)

min ‖x3‖1 subject to ‖Ax3 − b3‖2 ≤ σ

...
min ‖xn−1‖1 subject to ‖Axn−1 − bn−1‖2 ≤ σ

min ‖xn‖1 subject to ‖Axn − bn‖2 ≤ σ

where n is the number of windows. The vectors b1, b2, · · · , bn represent
our windowed data, where each vector is a window of our n windows. The
vectors x1, x2, · · · , xn represent our denoised outputs. In scenario A, each
instance of the above problems is solved without communicating with any
other instances, while in scenario B, each instance is solved independently
but communicates and updates the edges of neighboring windows.

Each of the above two scenarios have advantages and disadvantages. The
first scenario has the advantages of simple implementation and reduced I/O
time between nodes. But it only exchanges window edge information at
the very end and might affect the accuracy of our estimation during the
separation iterations. The second scenario insures that the edges have up-
to-date information about the region it is overlapping at each iteration. But
this scenario is complex to implement and requires a considerable amount of
communication between nodes. Some of this time is spent by each window
waiting for all of its edges to be ready before going to the next step in the
algorithm. So for a 2D data set, a central window will be waiting for four
other windows to update edge information and in 3D, a window will wait
for 12 other windows, unlike Scenario A, where all windows work in parallel
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until the end. Another area time is spent on in Scenario B is the time spent
to exchange data between windows which involves plenty of I/O operations.

3.3 Scalability

To test the scalability of our approach, we applied the forward curvelet
transform on a 3D cube of size 128X128X128 (shots X traces X time sam-
ples). We then compared the time it takes to transform this block with
the time it takes to apply our parallel curvelet transform on a bigger block
windowed into several 128X128X128 blocks. This ensures a fair comparison,
since applying the curvelet transform to different block sizes requires differ-
ent processing time. Our testing blocks contained 24, 48, 64 and 96 blocks
of size 128X128X128. For instance the 96 blocks composed a bigger block of
size 1536X512X256. Figure 3.6 shows the results of our experiments. The
x-axis represent the number of blocks transformed in parallel. The y-axis is
the time it takes to apply the forward transform in seconds, including the
time it takes to window and taper the blocks. The red stars are the actual
times for our experiments. We can see that as we increase the number of
blocks the time it takes to perform the transform naturally increases. We
can see that it takes 96 blocks about three times the time it takes a single
block to be transformed which is a very good ratio.

Part of the processing time increase is due to the fact that we have more
windows to extract and more windows to apply tapering on. Also, we need
more I/O operations and file management. The processing time can be fur-
ther optimized by optimizing the windowing and tapering implementation,
and enhancing I/O and file management techniques.

We also applied a single forward curvelet transform to the largest data
set in our experiments (1536X512X256) without parallelization. It took
422 seconds to complete, compared to 123 seconds when using our parallel
curvelet transform on the same data set. This gives a perspective on how
much speed we can gain with parallelism. Considering the time complexity
of O(M log M) for the curvelet transform, Figure 3.7 Compares the time
complexity for applying the forward transform on a single block of data of
size M=1536X512X256 with the time complexity of applying the forward
transform on 96 blocks of size N=128X128X128.
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Figure 3.6: Scalability plot showing timing of a single forward curvelet trans-
form. The x-axis represents the number of blocks transformed in parallel.
The y-axis is the time it takes to apply the forward transform including the
time it takes to window and taper the blocks. The red stars are the actual
times for our experiments.
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Figure 3.7: The Forward curvelet transform complexity. Comparing the
time complexity for applying the forward transform on a single block of data
of size M (in blue, M=1536X512X256)with the time complexity of applying
the forward transform on n blocks of size N (in red, N=128X128X128 and
n=96) where N < M.
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Figure 3.8: The two compared scenarios, the dashed red line represent the
Bayesian solver. Scenario A) Applying the Bayesian separation at each
window separately. Scenario B) Emulating the separation as if the data was
not windowed by exchanging edge information between windows.
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Chapter 4

Parallel seismic data
processing with the parallel
windowed curvelet
transform.

In this chapter, we put our windowing method in action, compare the two
scenarios defined in the previous chapter and present some findings. First,
we tested our windowing technique with a denoising problem and observed
our windows edges effect on the solution. Then, we applied our windowing
operators in combination with our Bayesian separation method on 2D and
3D data sets. In every experiment, we calculated SNR and compared results.

4.1 Parallel windowed seismic data denoising

We ran multiple experiments using SPGL1 (Berg and Friedlander, 2007)
to solve the denoising problem introduced in Chapter 2 using our parallel
windowed curvelet transform, in each experiment, we change a set of pa-
rameters, namely, the sparsifying operators, window sizes and overlap sizes.
We then calculated the SNR against the noise free data according to :

SNR = 20 log
‖ d
‖d‖2

‖2

‖ dn
‖dn‖2

− d
‖d‖2

‖2

, (4.1)

where d denotes our noise free data and dn is our denoised solution.
Table 4.1 shows the SNR values from our experiments. The first column
specifies which scenario was used. Scenario A: solving each window inde-
pendently with no edge information update during separation. Scenario B:
solving each window independently with edge information updates occur-
ring at each iteration. Each pair of rows share the same parameters first
for Scenario A and second for scenario B. The second column shows the
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number of windows in each dimension. So for example 2X4 is interpreted as
dividing the data into 2 windows along the time axis and 4 windows along
the receiver axis. We can see that we have three groups based on overlap
values of 6,10 and 16.

Figure 4.1 shows the noise free data and the data after adding noise on
the top. On the bottom, we can see the two results from scenario A on the
left and scenario B on the right. Both were windowed into 16 equal windows.

Looking at the SNR values in Table 4.1, we notice several points. First,
we notice that in each of the scenarios the different window sizes result in
different SNR values with considerable variations. For example, running sce-
nario A with overlap value ε = 16 resulted in SNR values that range between
6.89 and 8.11. Another example is the SNR values resulting from scenario
B with ε = 16 that range from 7.26 to 10.34. These variations in SNR are
due to the fact that each time, we are solving a different non-linear problem
and when we change the windows’ sizes, we also change the location where
we divide the data, and hence, the likelihood that significant coefficients are
located near the edges of the windows or in the overlapping region. Com-
paring SNR values from scenario A and B, we notice that scenario B results
in higher SNR values compared to corresponding values from scenario A.
This is due to the overlap in our curvelet transform which minimizes the
effect of dividing the data. The improvement in SNR reached a difference
of up to 2.23 dB, which is a considerable amount of improvement. Some
results showed more improvement than others, because the combinations of
window sizes and overlaps affects the data differently in terms of the amount
of significant curvelet coefficients near the borders. But in general, scenario
B produced higher SNR values throughout our experiments.

4.2 Parallel windowed primary-multiple
separation

Our set of primary-multiple separation experiments were conducted on syn-
thetic data that contained 361 shots, 361 traces/shot, 501 time samples/-
trace with sample intervals ∆t = 4ms.

We started by applying our code on shot record number 181 for our 2D
experiment. Then, applied the code on the 3D dataset using the 3D curvelet
transform (Ying et al., 2005). Our input dataset consisted of predicted
(SRME) primaries s1 and predicted multiples s2 = d − s1, where d is our
total data, and ”multiple free” data sp, which is generated using the same
simulation of the total data, only an energy absorbing boundary condition
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Scenario Window SNR
ε = 6

A 1X2 7.30
B 1X2 7.70
A 2X2 7.39
B 2X2 7.90
A 1X4 7.80
B 1X4 8.16
A 4X4 8.06
B 4X4 8.27

ε = 10
A 1X2 7.90
B 1X2 9.35
A 2X2 7.73
B 2X2 7.91
A 1X4 7.04
B 1X4 8.05
A 4X4 7.94
B 4X4 8.12

ε = 16
A 1X2 6.89
B 1X2 7.26
A 2X2 6.97
B 2X2 7.38
A 1X4 8.11
B 1X4 10.34
A 4X4 7.02
B 4X4 7.50

Table 4.1: Calculated SNR for the denoise problem. The first column speci-
fies which scenario was used. Scenario A: no edge information update during
separation. Scenario B: edge information update occurs at each transform
call. each pair of rows share the same parameters used in scenario A and B.
The window column shows the number of windows at each dimension, these
windows have identical sizes.
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is enforced to prevent the generation of multiples. The ”multiple free” data
were used as a reference to calculate SNR according to Eqn 4.1.

Figure 4.2 shows the total data, predicted multiples, predicted SRME
primaries and estimated primaries after applying the Bayesian separation.

4.2.1 2D data experiments

Table 4.3 shows SNR calculated against the true primaries with different
parameters. The first column specifies which scenario was used. The second
column shows the number of windows in each dimension. We can see that we
have three groups based on overlap values of 10,15 and 20. For comparison it
is important to mention that the SNR value of the SRME predicted primaries
is 9.82, and the SNR of the estimated primaries after applying the Bayesian
separation without any windowing is 11.49.

Looking at Table 4.3 we notice the following: First, we notice that all
SNR values in the table are extremely close and unlike the case with the
denoising problem the changes in window sizes for each of the scenarios does
not have considerable variations in the output SNR values. The differences
between the lowest and highest SNR values in scenario A and scenario B are
0.07 and 0.079 respectively. This is a major advantage of our Bayesian sepa-
ration technique where we threshold the primaries against a fixed threshold
based on the multiples, and threshold the multiples with a fixed threshold
based on the primaries. In both cases, the primaries and multiples are win-
dowed and tapered. Another reason that explains these results, is the fact
that in the denoising problem, the solver uses a cooling method where it
starts with a very sparse solution, this sparseness is translated into a small
number of curvelets, if some of this small number is located near windows
edges, they will have distingushable presense and create artifacts. But the
Bayesian separation works with a large number of coefficients such that they
contribute in reducing the possibility of having artifacts near the window
edges because we have enough curvelets to diminish the effect of wrpping
around the window edges.

We also notice that the more windows we have the lower SNR values
we get, one reason for this is the fact that we increase the discontinuities
introduced in the data and hence the probability of a curvelet being located
near the borders. Also, notice that as we increase the overlap, we get higher
SNR. Because large overlaps allow windows to have more information and
be tapered more smoothly than smaller overlaps.

Our goal is to compare the two scenarios we have. And looking at the
SNR values we can see that, as expected, in general Scenario B, which
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updates windows’ edges, has higher values. But the difference between the
two scenarios is in the hundredth decimal place, with a maximum of 0.0276,
which is considered small.

Figure 4.4 shows one of our worst cases where we divide the data into
16 equal windows. Figure 4.4b shows the estimated primaries from our
Bayesian method after windowing into 16 windows without applying any ta-
pering or overlap, we can clearly see introduced artifacts along the windows’
edges. Figure 4.4c shows the estimated primaries after applying Scenario
A. We can clearly see that the artifacts are gone now and the data looks
cleaner. Same applies to Figure 4.4d, which shows the estimated primaries
after applying Scenario B. Comparing Figure 4.4c and Figure 4.4d we can
see that both results are extremely close and differentiating between them
is difficult. This is consistant with the SNR results in Table 4.3. Looking
at different scenarios we get the same observation, i.e. Scenario A performs
very well with very close output to the one from Scenario B. Figuers 4.5
and 4.6 also show the same outcome using different windows’ sizes. This
means that in terms of SNR and image quality, we can use Scenario A and
save a considerable amount of processing time that is consumed as I/O time
between processing nodes.

Our experiments with 2D data show that Scenario A produces excellent
results compared to the more complex but relatively more accurate Sce-
nario B in the context of our Bayesian separation technique. We further
investigate the two scenarios using 3D data and the 3D curvelet transform.
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Scenario Window Overlap ε SNR Difference
A 2X2 10 11.41
B 2X2 10 11.43 0.02
A 2X3 10 11.46
B 2X3 10 11.48 0.02
A 3X2 10 11.37
B 3X2 10 11.38 0.01
A 4X4 10 11.39
B 4X4 10 11.41 0.02
A 1X4 10 11.40
B 1X4 10 11.41 0.01
A 4X1 10 11.38
B 4X1 10 11.39 0.01

A 2X2 15 11.44
B 2X2 15 11.46 0.02
A 2X3 15 11.43
B 2X3 15 11.46 0.03
A 3X2 15 11.39
B 3X2 15 11.40 0.01
A 4X4 15 11.41
B 4X4 15 11.43 0.02
A 1X4 15 11.42
B 1X4 15 11.43 0.01
A 4X1 15 11.40
B 4X1 15 11.41 0.01

A 2X2 20 11.44
B 2X2 20 11.46 0.02
A 4X4 20 11.41
B 4X4 20 11.42 0.01

Table 4.2: Calculated SNR for the 2D synthetic data set. The first column
specifies which scenario was used. Scenario A: no edge information up-
date during separation. Scenario B: edge information update occurs at each
transform call. each pair of rows share the same parameters used in scenario
A and B. The difference column carry the difference between the SNRs of
scenario A and B for each pair. The window column shows the number
of windows at each dimension, these windows have identical sizes. Notice
that the more windows we have the more discontinuities in the data which
lowers the SNR. Also, notice that increasing the overlap amount improves
the SNR. All results were achieved after 10 iterations of the solver.

37



Chapter 4. Parallel seismic data processing with the parallel windowed curvelet transform.

4.2.2 3D data experiments

The scalability issue we are attempting to solve is more crucial with 3D data
since it requires more memory. We applied the Bayesian separation on our
synthetic 3D data and calculated the SNR for each experiment the same way
we did for 2D data. The SNR value of the predicted SRME primaries is 9.928
and the SNR after applying the Bayesian separation without windowing is
11.466.

Table 4.3 shows calculated SNR values from our experiments. Just like in
the 2D case we can see that the variations between SNR values are extremely
small. Scenario B showed relatively higher SNR values than scenario A, yet
the difference is negligible.

Figure 4.9 shows a slice taken from the 3D cube at shot point 181. Fig-
ure 4.9a shows the estimated primaries after applying Bayesian separation
without any windowing. Figure 4.9b shows the estimated primaries after
windowing, with 4X4X2 windows, without any overlapping nor tapering.
Notice the large amount of introduced artifacts, especially around the win-
dows’ edges. Figuers 4.9c and 4.9d show the estimated primaries using
scenarios A and B, respectively. Notice that there are almost no artifacts
around windows’ edges. Note that this is one of the worst cases in Table 4.3.

Scenario Window Overlap ε SNR Difference
A 2X2X2 15 11.50
B 2X2X2 15 11.51 0.01
A 2X4X4 15 11.50
B 2X4X4 15 11.51 0.01
A 4X4X2 15 11.46
B 4X4X2 15 11.47 0.01

Table 4.3: Calculated SNR for the 3D synthetic data set. The first col-
umn specifies which scenario was used. Scenario A: no edge information
update during separation. Scenario B: edge information update occurs at
each transform call. each pair of rows share the same parameters used in
scenario A and B. The difference column carry the difference between the
SNRs of scenario A and B for each pair. The window column shows the
number of windows at each dimension, these windows have identical sizes.
Notice that the more windows we have the more discontinuities in the data
which lowers the SNR.
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Figure 4.1: a) Noise free data b) same data from a with added Gaussian
noise with σ = 1.4 c) Denoised data using Scenario A d) Denoised data
using Scenario B
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(a) (b)

(c) (d)

Figure 4.2: 2D synthetic data a) total data b) SRME predicted multiples c)
SRME predicted primaries d) estimated primaries using Bayesian separation
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(a) (b)

(c) (d)

Figure 4.3: 2D synthetic data a) total data b) true ’multiple-free’ primaries
c) SRME predicted primaries d) estimated primaries using Bayesian sepa-
ration.
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(a) (b)

(c) (d)

Figure 4.4: Estimated primaries a) illustration of how data will be divided,
red lines are window edges. b) applying the Bayesian separation without
any overlapping, tapering or edge updates. Notice the introduced artifacts
along the edges indicated by the pointer. c) Scenario A (no edge updates)
with overlap ε = 15 d) Scenario B (edge updates) with overlap ε = 15
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(a) (b)

(c) (d)

Figure 4.5: Estimated primaries a) illustration of how data will be divided,
red lines are window edges. b) applying the Bayesian separation without
any overlapping or tapering. Notice the introduced artifacts along the edges
indicated by the pointer. c) Scenario A (no edge updates) with overlap
ε = 15 d) Scenario B (edge updates) with overlap ε = 15
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(a) (b)

(c) (d)

Figure 4.6: Estimated primaries a) illustration of how data will be divided,
red lines are window edges. b) applying the Bayesian separation without
any overlapping or tapering. Notice the introduced artifacts along the edges
indicated by the pointer. c) Scenario A (no edge updates) with overlap
ε = 15 d) Scenario B (edge updates) with overlap ε = 15

44



Chapter 4. Parallel seismic data processing with the parallel windowed curvelet transform.

(a)

(b)

Figure 4.7: Wide vs tall windows. a) tall windows without overlap and
tapering b) wide windows without overlap and tapering. The red ovals
highlight some artifacts.
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(a)

(b)

(c)

Figure 4.8: A closer look of the estimated primaries generated using 16
windows and a) no overlap nor tapering b) applying Scenario A c) applying
Scenario B. The images were clipped to 0.8 to make comparision easier.
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(a) (b)

(c) (d)

Figure 4.9: A slice from our synthetic 3D data cube. a) Estimated primaries
using Bayesian separation without windowing. b) Estimated primaries after
windowing into 4X4X2 windows without overlaps or tapering. c) Estimated
primaries using Scenario A (no edge update) d) Estimated primaries using
Scenario B (window edges exchange information)
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Chapter 5

Conclusion

5.1 Parallel curvelet domain seismic data
processing

Our goal in this thesis is to solve the problem of scalability of the curvelet
transform in iterative seismic processing techniques such as the combina-
tion of SRME (Verschuur et al., 1992) and Bayesian separation used in
(Verschuur, 2006; Wang et al., 2008). We have introduced a windowing
technique that allows us to divide large seismic data into smaller data sets
that make it possible to fit the huge data and redundant curvelet coefficients
into memory. Since we divide the data, we introduce discontinuities at the
windows’ edges, hence, we need to address the issue of curvelet coefficients
located at the boundaries of these windows. We applied a window tapering
function to our windowing operator. We designed the windows to overlap
such that the sum of the tapered overlapping regions preserve the system’s
energy. Once we had a windowing operator we compared two scenarios of
applying it on our denoising and multiple elimination problems. The first
scenario divides the data with our windowing operator and then process
each window independently. Finally, when each window is processed, the
adjoint windowing is applied and the final data set is gathered. The second
scenario redefines the sparsifying operator such that it allows the windows
to be independently processed but update their overlapping edges.

The advantages of using the first scenario are simplicity in implemen-
tation and speed. There is minimum I/O time between the windows. The
main advantage of the second scenario is accuracy. But this scenario spends
a considerable amount of time in I/O. Not only does the edge information
exchange consume time, but each window has to wait for all neighboring
windows to finish before updating.

From our experiments, the second scenario showed a considerable advan-
tage when solving the denoising problem. Our Bayesian separation showed
extremely small differences between the two scenarios and showed the ad-
vantage of allowing us to use the faster and simpler windowing technique
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without losing considerable degree of accuracy.

5.2 Open and future research

The use of curvelets (Candès et al., 2006) as a sparsifying domain in seismic
imaging has opened great opportunities in geophysical applications such
as seismic image regularization, ground roll removal and primary multiple
separation (Yarham et al., 2007; Herrmann, 2008; Yan, 2008; Hennenfent
and Herrmann, 2005, 2006).

Our application of curvelets on primary-multiple separation is based on
general sparsity concepts. This gives the chance to experiment with differ-
ent sparsifying domains that might come up in the future. Another possible
research area would be to develop an automated way to choose parameters
in our algorithms, such as curvelet parameters (e.g. scale, angle) and win-
dowing parameters such as window dimensions and the amount of overlap.
Also, the protocols, by which our method manages data and I/O can be
considered as a good area for improvement.
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