CURRENT

Special Studies

Seriesp.23. No. 119/
U.S.Department

BUREAU OF THECENSUS, \boxed{L}

Selected
 Characteristics of Persons in

 Environmental Science:

Selected
 Characteristics of Persons in

 EnvironmentalScience:
1978

U.S. Department of Commerce

Malcolm Baldrige, Secretary Guy W. Fiske, Deputy Secretary
Robert G. Dederick, Under Secretary for
Economic Affairs-Designate

BUREAU OF THE CENSUS

Bruce Chapman, Director
C. L. Kincannon, Deputy Director

- James R. Wetzel, Acting Associate Director
for Demographic Fields
POPULATION DIVISION
Roger A. Herriot, Chief

ACKNOWLEDGMENTS

The 1978 National Surveý of Natural and Social Scientists and Engineers was sponsored by the National Science Foundation, as part of the Manpower Characteristics System, and con* ducted by the Bureau of the Census.

The principal participants for the National Science Foundation in developing and coordinating the survey were J. James Brown, Study Director, Demographic Studies Group, and Alan Fechter, Head, Scientific and Technical Personnel Studies Section, both members of the Division of Science Resources Studies. Assistance was provided by Nancy M. Conlon, Analyst, Manpower Characteristics Studies Group. .

At the Bureau of the Census, Anita Chiera and Jane Ingold, both of Labor Force Statistics Branch, Population Division, had primary responsibility in planning and conducting the survey. This report was prepared by Thomas J. Palumbo. The systems and processing procedures and programs were developed by Ann M. Gifford and Patricia L. Marks, of Population Division. Statistical assistance was provided' by Sharon A. Phipps. Overall direction was provided by Gördon Green, Assistant Division Chief (Socioeconomic Statistics Programs), Population Division, and Paula J. Schneider, then Chief, Lábor Force Statistics Brạnch, Population Division.

SUGGESTED CITATION

'U.S. Bureau of the Census, Current Population Reports, Series $\mathrm{A}-23$, No. 119 , Selected Characteristics of Persons in Environmental Science: 1978, U.S. Government Printing Office, Washingt on, D.C., 1982.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Postage stamps not acceptable; currency submitted at sender's risk. Remittances from foreign countries must be by international money grder or by a draft on a U.S. bank. Current Population Reports are sold in two subscription packages: Series P-20, P-23, P-27, and P-60 are available for $\$ 75$ per year $\mathbf{~} \$ 18.75$ additional for foreign mailing); Series P.25, P.26, and P. 28 are available for $\$ 100$ per year ($\$ 25$ additional for foreign mailing), The single-copy-price of this report-is-\$4:50.

Contents

Page
Introduction 1
Composition 1
Education and training 1
Professional experience and growth of the field. 2
Labor force participation 2
Income 4
TEXT TABLES
A. Field of science or engineering in 1978, by field of science or engineering in 1976 3
B. Employment status of environmental scientists in February 1978. 3
C. Full-and part-time work status of environmental scientists in 1978 employed in February 1978 -4
CHART
Region of residence of environmental scientists and the U.S. population 25 years and over: 1978. 2
DETAILED TABLES

1. Occupation, professional identification, and selected characteristics of environmental scientists: 1978 5
2. Selected educational characteristics of environmental scientists: 1978 8
3. Years of professional experience, field of science or engineering in 1976, and job mobility of environmental scientists in 1978 9
4. Employment status and selected job-related characteristics of environmental scientists: 1978 10
5. Basic annual salary rate of full-time employed environmental scientists: 1978. 14
APPENDIXES
A. Definitions and Explanations. 15
B. Reliability of the Estimates and Standard Errors of Totals and Percentages. 18
Sampling errors. 18
Nonsampling errors 21
C. Questionnaire and Reference Lists 22
D. Source of Data 28
E. Response Rates. 29
APPENDIX TABLES
B-1 Standard errors of totals 18
B-2 Standard errors of percentages for environmental scientists, total 19
B-3 Standard errors of percentages for earth scientists 19
B-4 Standard errors of percentages for atmospheric scientists and oceanographers 20
E. 1 National sample, by field of science or engineering in 1976, 1974, and 1972, age in 1978, and sex, by response in the 1978 survey (unweighted) 30
E-2. Respondents and nonrespondents in the 1978 National Survey, by field of science or engineering in 1976, 1974, and 1972, by age in 1978, and sex (unweighted) 31

Selected Characteristics of Persons in Environmental Science: 1978

INTRODUCTION

The statistics in this report are based on the 1978 survey in a series of biennial surveys known as the National Sample of Scientists and Engineers. The series was sponsored by the National Science Foundation and was conducted by the Bureau of the Census. The series began with the 1972 Professional, Technical, and Scientific Manpower Survey, with followup surveys of persons from the 1972 survey conducted in 1974, 1976 and 1978. All persons in the national sample were experienced workers who either had jobs in 1970 or were looking for jobs; new entrants into the labor force since 1970 were not included. Thus, almost none of the sample persons were less than 30 years old in 1978. In addition, the fields of science and engineering in the national sample were limited to persons who met strict educational, occupational, and professional qualifications. For these reasons, persons in the 1978 national sample represented approximately 1.5 million scientists and engineers, only a part of the Nation's total scientific and engineering work force. (The Department of Labor estimated that, based on occupational qualifications alone, there were 2.4 million scientists and engineers in the United States in 1978.) ${ }^{1}$

This report is the third in a series of reports based on data collected in the 1978 survey. Profiled here are the characteristics of the 29,775 persons represented in the national sample's field of environmental scientists in 1978: 24,615 earth scientists, 3,481 atmospheric scientists, and 1,678 oceanographers.

COMPOSITION (TABLE 1)

The environmental scientists represented in the national sample were predominantly male (96 percent). Men made up 100 percent of the oceanographers, 97 percent of the atmospheric scientists, and 96 percent of the earth scientists.

The median age in 1978 of the environmental scientists in the national sample was 47 years.

The regional distribution in 1978 of environmental scientists throughout the United States was more concentrated in the South and West and less concentrated in the Northeast and North Central than the general population of the United States 25 years old and over. About 45 percent of the environmental scientists resided in the South, 32 percent in the West, 12 percent in the North Central, and

[^0]10 percent in the Northeast. In contrast, estimates from the Current Population Survey indicated that, in March 1978, 32 percent of the general population of the United States 25 years old and over lived in the South, 18 percent in the West, 26 percent in the North Central, and 24 percent in the Northeast (figure). ${ }^{2}$

The racial distribution in 1978 of environmental scientists throughout the United States was predominantly White (98 percent). However, Asian Americans made up 8 percent of the oceanographers. About 1 percent of the environmental scientists indicated that their ethnic heritage was Hispanic.

The fields of science or engineering (S/E) in the national sample are much more strictly defined categories than occupations. In general, to be classified into a specific field, a person had to have at least two of the following three characteristics: (1) employment in one of a set of specified occupations, (2) an academic degree among a set of specified academic disciplines, and (3) self-identification within a set of specified professions. Because of this criterion, it was possible for persons in each field to be distributed among a spectrum of occupations. In fact, most members of the environmental scientists group were in environmental science occupations (89 percent); about 73 percent were in earth science. About 9 percent were administrators, managers, or engineers.

EDUCATION AND TRAINING (TABLE 2)

About 41 percent of the environmental scientists held their highest degree at the bachelor's level, 29 percent held theirs at the master's level, and 30 percent held doctorate degrees. About two-thirds of the oceanographers held doctorate degrees. About 80 percent of the environmental scientists held their highest degree in the earth, space and marine sciences, about 6 percent majored in the physical sciences (chemistry, physics, and astronomy), and 4 percent majored in engineering.

Supplementary training programs (such as on-the-job training and employer training programs) gave environmental scientists the opportunity to maintain or improve their academic skills. About 42 percent of this group of scientists took advantage of these programs in 1977. ${ }^{3}$

[^1]

PROFESSIONAL EXPERIENCE AND GROWTH OF THE FIELD (TABLE 3)

Most of these environmental scientists have been involved in professional work, though not necessarily as environmental scientists, for a number of years. About 94 percent of the environmental scientists had more than 5 years of professional experience, 83 percent had over 10 years, and 49 percent had more than 20 years. The median number of years of professional experience for the group was 21 years. Oceanographers had the lowest median years of professional experience (15 years); a large proportion of them, 35 percent, had between 11 and 15 years.

The upper percent distribution of table A shows the 1978 fields in terms of their 1976 components. Column 3 shows how the stock of environmental scientists in 1978 was generated from the flow of persons from each component of the 1976 National Sample of Scientists and Engineers. About 87 percent of the 1978 environmental scientists were also environmental scientists in 1976; 7 percent entered the 1978 group from other S/E fields in 1976, while the remainder came from outside S/E altogether or from among persons who did not report their S/E status in 1976. The figures in the lower percent distribution of table A illuminate the interfield mobility between 1976 and 1978 of persons in the national sample. Among persons who were in the environmental science field in 1976, almost 90 percent were environmental scientists in 1978; 7.0 percent were in other S/E
fields, such as engineering (3.4 percent), and 3.4 percent were outside S/E fields.

About 32 percent of the environmental scientists employed in both February 1978 and February 1976 changed jobs ${ }^{4}$ during the 2 -year period; among these job changers, 20 percent changed their detailed occupation at the time that they changed jobs. Of those employed in February 1978 and January 1974, 48 percent changed jobs during the 4 -year period; of these, 23 percent changed detailed occupations as well. Finally, of those employed in February 1978 and January 1972, 58 percent had a different job at the end of the $6 \cdot$ year period than at the beginning; of these, 31 percent changed detailed occupations. ${ }^{5}$

LABOR FORCE PARTICIPATION (TABLE 4)

In February 1978, 93 percent of the environmental scientists were in the labor force. Of those not in the labor force, 86 percent were retired.

The unemployment rate the number unemployed as a percent of those in the labor force) for environmental scientists was a very low one-half of 1 percent in February

[^2]1978. By comparison, the national unemployment rate of male professional, technical, and kindred workers 25 years and older in February 1978 (not seasonally adjusted) was 1.5 percent 6 (table B).

About 3 percent of the environmental scientists experienced unemployment in 1977. The median number of weeks in which unemployed environmental scientists searched for a job was 13; 37 percent of the unemployed searched for 27 weeks or more.
${ }^{\bullet}$ U.S. Department of Labor, Bureau of Labor Statistics, unpublished Current Population Survey data.

Approximately 2 percent of the environmental scientists were employed part time in 1978. About 87 percent of the environmental scientists who worked part time in February 1978 were not seeking full-time work (table C). About 97 percent of the environmental scientists employed full time in February 1978 were working in scientific or engineering positions.

About 71 percent of the employed environmental scientists were in four industry groups in 1978: mining and petroleum extraction (29 percent); educational institutions (18 percent), with heavy concentration in college or univer-

Table A. Field of Science or Engineering in 1978 by Field of Science or Engineering in 1976

(Numbers in thousands)

Field of science or engineering in 1976	$\begin{array}{r} \text { Total } \\ \text { national } \\ \text { sample } \\ \text { in } 1978 \end{array}$	In field of science or engineering in 1978				$\begin{array}{r} \text { Not in } \\ \text { S/E } \\ \text { field } \\ \text { in } 1978 \end{array}$
		Total	$\begin{array}{r} \text { Environ- } \\ \text { mental } \\ \text { scientists } \end{array}$	Other S/E field		
				Total	Engineers	
Total national sample in 1976.....	1,350	1,138	30	1,108	721	211
In S/E field in 1976.......................	1,119	1,029	28	1,001	660	90
Environmental scientists	29	28	26	2	1	1
Other S/E field..........................	1,090	1,001	2	999	659	89
Engineers. .	707	660	1	659	649	47
Not in S/E field in 1976..................	173	64	1	63	32	109
Did not report in 1976..	57	45	1	44	30	12
PERCENT DISTRIBUTION						
Total national sample in 1976.....	100.0	100.0	100.0	100.0	100.0	100.0
In S/E field in l976......................	82.9	90.4	93.3	90.3	91.5	42.7
Environmental scientists................	2.1	2.5	86.7	0.2	0.1	0.5
Other S/E field..	80.7	88.0	6.7	90.2	91.4	42.2
Engineers................................. .	52.4	58.0	3.3	59.5	90.0	22.3
Not in S/E field in 1976..................	12.8	5.6	3.3	5.7	4.4	51.7
Did not report in 1976....................	4.2	4.0	3.3	4.0	4.2	5.7
Total national sample in 1976.....	100.0	84.3	2.2	82.1	53.4	15.6
In S/E field in l976......................	100.0	92.0	2.5	89.5	59.0	3.0
Environmental scientists.	100.0	96.6	89.7	6.9	3.4	3.4
Other S/E field..	100.0	91.8	0.2	91.7	60.5	8.2
Engineers..................................	100.0	93.4	0.1	93.2	91.8	6.6
Not in S/E field in 1976..................	100.0	37.0	0.6	36.4	18.5	63.0
Did not report in 1976.....................	100.0	78.9	1.8	77.2	52.6	21.1

Source: Unpublished data from the 1978 National Sample of Scientists and Engineers.

Table B. Employment Status of Environmental Scientists in February 1978

Employment status	Total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Total in labor force in Pebruary 1978....	27,690	100.0	23,080	100.0	3,052	100.0	1,558	100.0
Employed.	27,543	99.5	22,960	99.5	3,025	99.1	1,558	100.0
Unemployed.	147	0.5	120	0.5	27	0.8	-	-

[^3]Source: Table 4.

Table C. Full-and Part-Time Work Status of Environmental Scientists in 1978 Employed in February 1978

Full or part-time work status	Total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Total employed in February 1978	27,543	100.0	22,960	100.0	3,025	100.0	1,558	100.0
Full time................	26,795	97.3	22,428	97.7	2,949	97.5	1,417	90.9
Part time.	723	2.6	506	2.2	76	2.5	140	9.0
Seeking full-time work..	77	0.3	61	0.3	-	-	16	1.0
Not seeking full-time work...	632	2.3	432	1.9	76	2.5	124	8.0
Seeking not reported..........	13	-	13	0.1	-	-	-	-
Full or part time not reported.	26	0.1	26	0.1	-	-	-	-

- Represents zero.

Source: Table 4.
sity (17 percent); research institutions (11 percent); and public administration (13 percent).

The major employers of environmental scientists in February 1978 were business or industry (51 percent), educational institutions (19 percent), and U.S. Government (19 percent).

Research and development (R/D) or management and administration were the primary work activities of the largest proportion of employed environmental scientists (59 percent). About 33 percent were primarily involved in R/D itself, and another 10 percent were primarily involved in the management or administration of R/D. About 16 percent were primarily involved in other kinds of management or administration.

The environmental scientists in the national sample were asked to choose, from among a list of topics of critical national interest, the problem to which they devoted the most professional time. About 44 percent selected energy and fuel, 11 percent environmental protection and pollution control, and 10 percent education (mainly teaching). About 14 percent of the environmental scientists either did not report a national interest topic or indicated that this inquiry was not applicable to them.

The Federal Government supported or sponsored at least some of the work of 40 percent of the environmental scientists. Notably, the Department of Interior funded 12 percent; the Department of Defense, 8 percent; and the National Science Foundation, 7 percent; and the Department of Commerce, 7 percent.

INCOME (TABLE 5)

The median basic annual salary rate of environmental scientists employed full time in February 1978 was $\$ 30,234$. The median for earth scientists was $\$ 30,456$, that for atmospheric scientists was $\$ 29,506$, and that for oceanographers
was $\$ 26,740 .{ }^{7}$ The median earnings in 1977, as estimated from the CPS, ${ }^{8}$ for male professional, technical, and kindred workers 14 years old and over who worked year round full time was $\$ 18,224$; the comparable figure for women was $\$ 11,995$. Male year-round, full-time workers 25 years old and over with 4 or more years of college (regardless of occupation) had mean earnings in 1977 of $\$ 21,441$; those with 5 or more years of college had mean earnings of $\$ 25,782$. It should be noted that the CPS figures are not strictly comparable with those for environmental scientists in the national sample. ${ }^{9}$

Results from the 1976 survey of the National Sample of Scientists and Engineers showed a median basic annual salary in February 1976 of environmental scientists employed full time of $\$ 25,289$. Thus, the median basic annual salary of full-time environmental scientists rose by $\$ 4,945$ between February 1976 and February 1978. However, when the 1976 and 1978 basic annual salaries are expressed in constant 1977 dollars, the increase is approximately $\$ 1,761$ or about 3 percent per year. ${ }^{10}$

[^4]Table 1. Occupation, Professional Identification, and Selected Characteristics of Environmental Scientists: 1978
(Detail may not add to total because of rounding. For meaning of symbols, see text)

Occupation, professional identification, and selected characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Total. .	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
Male.	28,654	96.2	23,587	95.8	3,388	97.3	1,678	100.0
Female.	1,121	3.8	1,028	4.2	93	2.7	-	-
Under 30 years. .	108	0.4	108	0.4	-	-	-	-
30 to 34 years.	3,152	10.6	2,560	10.4	246	7.1	346	20.6
35 to 39 year	4,066	13.7	3,171	12.9	419	12.0	476	28.3
40 to 44 year	5,189	17.4	4,310	17.5	507	14.6	372	22.2
45 to 49 years...............................	5,514	18.5	4,632	18.8	751	21.6	131	7.8
50 to 54 years.	4,807	16.1	4,389	17.8	284	8.2	134	8.0
55 to 59 years................................	3,305	11.1	2,474	10.0	719	20.7	112	6.7
60 to 64 years................................	1,967	6.6	1,478	6.0	456	13.1	33	2.0
65 to 69 years...............................	1,238	4.2	1,127	4.6	74	2.1	37	2.2
70 years and over...........................	430	1.4	367	1.5	25	0.7	38	2.2
Nedian age. .	47	(X)	47	(X)	49	(X)	40	(X)
RES IDENCE IN 1978								
Total.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
United States................................ . .	29,206	98.1	24,090	97.9	3,481	100.0	1,635	97.5
Northeast. .	2,858	9.6	1,874	7.6	698	20.1	286	17.0
Neu England.	1,246	4.2	699	2.8	320	9.2	227	13.6
Middle Atlantic..........................	1,612	5.4	1,174	4.8	379	10.9	58	3.5
North Central..	3,688	12.4	3,159	12.8	508	14.6	20	1.2
East North Central.	2,191	7.4	1,901	7.7	270	7.8	20	1.2
West North Central.....................	1,496	5.0	1,258	5.1	238	6.8	-	-
South....	13,280	44.6	11,054	44.9	1,297	37.3	928	55.3
South Atlantic	3,861	13.0	2,358	9.6	788	22.6	714	42.6
East South Central.....................	839	2.8	618	2.5	142	4.1	79	4.7
West South Central	8,580	28.8	8,078	32.8	368	10.6	135	8.0
West. .	9,381	31.5	8,002	32.5	977	28.1	401	23.9
Mountain	5,016	16.8	4,616	18.8	400	11.5	-	-
Pacific.	4,365	14.7	3,386	13.8	577	16.6	401	23.9
Outlying areas.	14	(Z)	-	-	-	-	14	0.8
Foreign countries.....	554	1.9	526	2.1	-	-	29	1.7
Not reported.....................	-	-	-	-	-	-	-	-
RACE.								
Total. .	29.775	100.0	24.615	100.0	3.481	100.0	1.678	100.0
White.	29.277	98.3	24.303	98.7	3.436	98.7	1.537	91.6
Black..	26	(z)	-	-	14	0.4	12	0.7
American Indian......	90	0.3	90	0.4	-	-	-	-
Chinese, Japanese, Korean..................	365	1.2	205	0.8	31	0.9	128	7.6
All other races.	16	(Z)	16	(Z)	-	-	-	-
hispanic heritage								
Total. .	29.775	100.0	24.615	100.0	3.481	100.0	1.678	100.0
Hispanic. .	247	0.8	173	0.7	57	1.6	18	1.1
Not Hispanic... .	28.349	95.2	23.598	95.9	3.168	91.0	1.583	94.3
Not reported..	1.178	4.0	844	3.4	257	7.4	78	4.6

Table 1. Occupation, Professional Identification, and Selected Characteristics of Environmental Scientists: 1978-Continued

(Detail may not add to total because of rounding. For meaning of symbols, see text)

Occupation, professional identification, and selected characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
OCCUPATION IN 1978								
Total employed in February 1978....	27,543	100.0	22,960	100.0	3,025	100.0	1,558	100.0
Computer specialists, total.	57	0.2	44	0.2	14	0.5	-	-
Computer systems analysts..............	-	-	-	-	-	-	-	-
Computer scientists......................	27	(Z)	27	0.1	-	-	-	-
Computer programmers	14	(Z)	-	-	14	0.5	-	-
Other computer fields....................	17	(\%)	-	-	-	-	-	-
Engineers, total........................... .	194	0.7	180	0.8	14	0.5	-	-
Aeronautical and astronautical.	-	-	-	-	-	-	-	-
Agricultural................................	-	-	-	-	-	-	-	-
Chemical.....................................	-	-	-	-	-	-	-	-
Civil and architectural.	41	0.1	41	0.2	-	-	-	-
Electrical and electronic...............	14	(Z)	-	-	14	0.5	-	-
Industrial................................	-	-	-	-	-	-	-	-
Mechanical................................	-	-	-	-	-	-	-	-
Metallurgical and materials.............	-	-	-	-	-	-	-	-
Mining, petroleum, and geological......	126	0.5	126	0.5	-	-	-	-
Nuclear. .	-	-	-	-	-	-	-	-
Environmental and sanitary.............	-	-	-	-	-	-	-	-
Operations research/systems.............	14	(Z)	14	(7)	-	-	-	-
Other engineering pields................	-	-	-	-	-	-	-	-
Mathematicians and statisticians, total..	14	(7)	14	(\%)	-	-	-	-
Mathematicians........................... .	-	-	-	-	-	-	-	-
Statisticians.	-	-	-	-	-	-	-	-
Actuaries.	-	-	-	-	-	-	-	-
Operations research......................	14	(Z)	14	(\%)	-	-	-	-
Life scientists.............................	-	-	-	-	-	-	-	-
Agricultural scientists..................	-	-	-	-	-	-	-	-
Biological scientists....................	-	-	-	-	-	-	-	-
Biochemists..............................	-	-	-	-	-	-	-	-
Biophysicists............................	-	-	-	-	-	-	-	-
Medical scientists........................	-	-	-	-	-	-	-	-
Other life scientists.....	-	-	-	-	-	-	-	-
Physical scientists, total................	61	0.2	45	0.2	-	-	16	1.0
Chemists...................................	29	0.1	29	0.1	-	-	-	-
Physicists and astronomers..............	-	-	-	-	-	-	-	-
Other physical scientists...............	32	0.1	16	(Z)	, ${ }^{-}$	-	16	1.0
Environmental scientists, total..........	24,437	88.7	20,209	88.0	2,733	90.4	1,495	95.9
Earth scientists..........................	20,197	73.3	20,197	88.0	,	-	-	-
Atmospheric scientists..................	2,733	9.9	-	-	2,733	90.4	-	-
Oceanographers............................	1,507	5.5	13	(7)	-	-	1,495	95.9
Psychologists...............................	-	-	-	-	-	-	-	-
Social scientists, total..................	-	-	-	-	-	-	-	-
Economists................................	-	-	-	-	-	-	-	-
Sociologists and anthropologists.......	-	-	-	-	-	-	-	-
Other social scientists.................	-	-	-	-	-	-	-	-
Health occupations........................	-	-	-	-	-	-	-	-
Physician or surgeon.....................	-	-	-	-	-	-	-	-
Dental technician.........................	-	-	-	-	-	-	-	-
Medical technician........................	-	-	-	-	-	-	-	-
Other health occupations................	-	-	-	-	-	-	-	-
```Technicians and technologists, except medical```	31	0.1	31	0.1	-	-	-	-
	117	0.4	105	0.5	12	0.4	-	-
Administrators and managers...............	2,414	8.8	2,128	9.3	239	7.9	47	3.0
Other occupations........................... .	192	0.7	178	0.8	14	0.5	-	-
Not reported.......................... . . . . . .	$2 t$	(Z)	26	0.1	-	-	-	-

## Table 1. Occupation, Professional Identification, and Selected Characteristics of Environmental Scientists: 1978-Continued

(Detail may not add to total because of rounding. For meaning of symbols, see text)

Occupation, professional identification. and selected characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
PROFESSIONAL IDENTIFICATION IN 1978								
Total.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
Computer specialists.......................	70	0.2	14	( 2 )	56	1.6	-	-
Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . .	296	1.0	282	1.1	14	0.4	-	-
Mathematicians and statisticians.........	-	-	-	-	-	-	-	-
Life scientists.	27	(Z)	27	0.1	-	-	-	-
Physical scientists	397	1.3	219	0.9	67	1.9	111	6.6
Environmental scientists	26,852	90.2	22,328	90.7	3,110	89.3	1,414	84.3
Psychologists................. . . . . . . . . . . .	-	-	-	-	-	-	-	-
Social scientists.	-	-	-	-	-	-	-	-
Health occupations........................	-	-	-	-	-	-	-	-
Technicians, except medical...............	-	-	-	-	-	-	-	-
Teachers..	31	0.1	31	0.1	-	-	-	-
Administrators and managers..............	1,701	5.7	1,516	6.2	144	4.1	41	2.5
All other occupations.....................	26	( 2.	13	(Z)	13	0.4	-	-

${ }^{1}$ College or university teachers of science or engineering are excluded from teachers and included in occupation corresponding to subject taught.

Table 2. Selected Educational Characteristics of Environmental Scientists: 1978
(Detail may not add to total because of rounding. For meaning of symbols, see text)

Selected educational characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
HIGHEST DEGREE HELD								
Total	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
With a degrec.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
Associate.		-	-	-	-	-	-	-
Bachelor's.	12,276	41.2	10,756	43.7	1,316	37.8	205	12.2
Master's.	8,515	28.6	7,062	28.7	1,103	31.7	350	20.8
Doctorate.	8,927	30.0	6,756	27.4	1,048	30.1	1,123	66.9
Professional/medical	56	0.2	42	0.2	15	0.4	-	-
Other.	-	-	-	-	-	-	-	-
No degree.....................................	-	-	-	-	-	-	-	-
Not reported. . . . . . . . . . . . . . . . . . . . . . . . . .	-	-	-	-	-	-	-	-
MAJOR FIELD OF STUDY FOR HIGHEST DEGREE HELD								
Total.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
Computer science and systems analysis....	14	(7.)	14	(\%)	-	-	-	-
Engineering. . . . . . . . . . . . . . . . . . . . . . . . .	1,305	4.4	909	3.7	173	5.0	222	13.2
Mathematical science	440	1.5	266	1.1	163	4.7	12	0.7
Agricultural sciences	573	1.9	573	2.3	-	-	-	-
Biological sciences.	292	1.0	173	0.7	-	-	118	7.0
Medical sciences	27	(\%)	-	-	-	-	27	1.6
Chemistry...	301	1.0	116	0.5	144	4.1	41	2.5
Physics and astronomy	1,584	5.3	959	3.9	562	16.1	63	3.8
Farth, space, and marine science	23,577	79.2	20,298	82.5	2,158	62.0	1,121	66.8
Psychology.	14	(\%)	14	(\%)	-	-	-	-
Economics.	95	0.3	95	0.4	-	-	-	-
Sociology and anthropology.	-	-	-	-	-	-	-	-
Other social sciences.	647	2.2	549	2.2	83	2.4	16	0.9
Business and commerce	103	0.3	28	0.1	75	2.2	-	-
All other fields.	468	1.6	286	1.2	124	3.5	58	3.5
All fields below BA.	14	(Z)	14	(7)	-	-	-	-
Field not reported.	321	1.1	321	1.3	-	-	-	-
SUPPLEMENTAL TRAINING IN $1977^{1}$								
Total.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
With supplemental training in 1977.......	12,381	41.6	10,439	42.4	1,282	36.8	660	39.3
On-the-job training......................	6,845	23.0	5,800	23.6	664	19.1	382	22.7
Military training applicable to civilian occupations......................	191	0.6	128	0.5	63	1.8	-	-
Extension or correspondence courses....	1,271	4.3	1,002	4.1	253	7.3	16	1.0
Employer training programs..............	4,964	16.7	4,328	17.2	413	11.9	313	18.7
Adult education center...................	931	3.1	873	3.5	58	1.7	-	-
Other training...........	3,086	10.4	2,544	10.3	437	12.6	105	6.2
No supplemental training in 1977.........	14,212	47.7	11,487	46.7	1,905	54.7	820	48.9
Not reported. . . . . . . . . . . . . . . . . . . . . . . .	3,182	10.7	2,690	10.9	294	8.5	198	11.8

[^5]Table 3. Years of Professional Experience, Field of Science or Engineering in 1976, and Job Mobility of Environmental Scientists in 1978
(Detail may not add to total because of rounding. For meaning of symbols, see text)

Professional experience, ficld in 1976, and job mobility	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
years of proftss ional experience								
Total.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
With years of professional experience reported.	29,139	97.9	24,135	98.0	3,364	96.6	1,640	97.8
Less than 1 year..............	116	0.4	116	0.5	-	-	-	
1 to 5 years...	1,065	3.6	833	3.4	58	1.7	174	10.4
6 to 10 years	3,267	11.0	2,699	11.0	306	8.8	261	15.6
11 to 15 years.	4,717	15.8	3,723	15.1	406	11.7	589	35.1
16 to 20 years.	5,479	18.4	4,622	18.8	662	19.0	196	11.7
21 to 25 years	4,596	15.4	3,991	16.2	484	13.9	121	7.2
26 to 30 years.	5,632	18.9	4,823	19.6	664	19.1	145	8.6
31 to 35 years.	1,948	6.5	1,469	6.0	457	13.1	22	1.3
36 to 40 years.	1,429	4.8	1,115	4.5	289	8.3	25	1.5
41 years or more.	891	3.0	745	3.0	38	1.1	108	6.5
Median years of professional experience	21	(X)	21	(x)	23	(X)	15	(X)
Years of professional experience not reported.	636	2.1	480	2.0	117	3.4	38	2.3
field of science or exgineering in 1976								
Total..	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
Computer specialists.......................	72	0.2	34	0.1	38	1.1	-	
Engineers................................... .	704	2.4	579	2.4	43	1.2	82	4.9
Mathematical specialists..................	17	0.1	17	0.1	-	-	-	
Mathematicians. . . . . . . . . . . . . . . . . . . . . .	17	0.1	17	0.1	-	-	-	
Statisticians.	-	-	-	-	-	-	-	
Life scientists............................	269	0.9	207	0.8	-	-	62	3.7
Agricultural scientists.................	207	0.7	207	0.8	-	-	-	
Biologists................................	62	0.2	-	-	-	-	62	3.7
Medical scientists.......................	-	-	-	-	-	-	-	
Physical scientists.	747	2.5	538	2.2	196	5.6	13	0.8
Chemists.	70	0.2	29	0.1	41	1.2	-	
Physicists and astronomers	232	0.8	111	0.5	121	3.5	-	
Other physical scientists...............	445	1.5	398	1.6	34	1.0	13	0.8
Environmental scientists..................	25,927	87.1	21,454	87.2	3,121	89.7	1,352	80.6
Earth scientists..	21,429	72.0	21,368	86.8	31	0.9	30	1.8
Atmospheric scientists	3,186	10.7	28	0.1	3,090	88.8	68	4.1
Oceanographers.......................... .	1,312	4.4	58	0.2	-	-	1,254	74.7
Psychologists.	-	-	-	-	-	-	-	
Social scientists	102	0.3	102	0.4	-	-	-	
Economists.	-	-	-	-	-	-	-	
Sociologists and anthropologists.......	-	-	-	-	-	-	-	
Other social scientists.	102	0.3	102	0.4	-	-	-	
Not in a field in 1976.....................	868	2.9	733	3.0	12	0.3	123	7.3
Did not report in 1976.....................	1,071	3.6	951	3.9	72	2.1	48	2.9
JOB MOBILITY								
Total employed in February 1978....	27,543	100.0	22,960	100.0	3,025	100.0	1,558	100.0
Employed in February 1976..................	25,951	94.2	21,698	94.5	2,824	93.4	1,429	91.7
Job change since 1976....................	8,231	29.9	7,013	30.5	696	23.0	522	33.5
Occupation change......................	1,645	6.0	1,428	6.2	61	2.0	155	10.0
No occupation change..................	6,496	23.6	5,494	23.9	635	21.0	367	23.6
Occupation change not reported.......	91	0.3	91	0.4	-	-	-	
Same Job in 1976 and 1978...............	15,193	55.2	12,373	53.9	1,957	64.7	863	55.4
Not reported. . . . . . . . . . . . . . . . . . . . . . .	2,527	9.2	2,312	10.1	171	5.7	44	2.8
Not employed or employment status not reported in February 1976...................	1,592	5.8	1,262	5.5	200	6.6	129	8.3
Employed in January 1974..................	26,533	96.3	22,186	96.6	2,960	97.8	1,387	89.0
Job change between 1974 and 1978.......	12,792	46.4	10,877	47.4	1,363	45.0	552	35.4
Occupation change.....................	2,959	10.7	2,491	10.9	299	9.9	169	10.8
No occupation change..................	9,833	35.7	8,386	36.5	1,064	35.2	383	24.6
Occupation change not reported.......	,	-		-	-	-	-	
Same job in 1974 and 1978...............	11,174	40.6	9,025	39.3	1,426	47.1	723	46.4
Not reported. . . . . . . . . . . . . . . . . . . . . . .	2,567	9.3	2,283	9.9	171	5.7	113	7.2
Not employed or employment status not reported in February 1974..................	1,010	3.7	774	3.4	65	2.2	171	11.0
Employed in 1972...........................	26,209	95.2	21,829	95.1	3,025	100.0	1,355	87.5
Job change between 1972 and 1978.......	15,155	55.0	12,622	55.0	1,731	57.2	802	51.5
Occupation change.................... .	4,646	16.9	3,200	13.9	1,295	42.8	151	9.7
No occupation change	10,509	38.2	9,421	41.0	436	14.4	651	41.8
Occupation change not reported.......		-		-	-	-	-	
Same job in 1972 and 1978..............	8,583	31.2	6,951	30.3	1,123	37.1	509	32.7
Not reported. . . . . . . . . . . . . . . . . . . . . . .	2,471	9.0	2,256	9.8	171	5.7	44	2.8
Not employed or employment status not reported in 1972................................	1,334	4.8	1,131	4.9	-	-	203	

## Table 4. Employment Status and Selected Job-Related Characteristics of Environmental Scientists: 1978

(Detail may not add to total because of rounding. For meaning of symbols, see text)

Employment status and selected job-related characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Emploiment status in february 1978								
total.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
In labor force.	27,690	93.0	23,080	93.8	3,052	87.7	1,558	92.8
Employed....	27,543	92.5	22,960	93.3	3,025	86.9	1,558	92.8
Full time.	26,795	90.0	22,428	91.1	2,949	84.7	1,417	84.5
Part time..	723	2.4	506	2.1	76	2.2	140	8.4
Seeking full-time work.	77	0.3	61	0.2	-	-	16	1.0
Not sceking full-time work..	632	2.1	432	1.8	76	2.2	124	7.4
Not reported...........	13	(z)	13	(z)	-	-	-	-
Full or part time not reported.	26	(2)	26	0.1	57	-	-	-
Unemployed......	147	0.5	120	0.5	27	0.8	-	-
Not in labor force........................	2,084	7.0	1,535	6.2	430	12.3	120	7.2
Retired..................................	1,773	6.0	1,280	5.2	430	12.3	63	3.7
Student..........	29	(z)	29	0.1	-	-	-	-
Family responsibilitie	37	0.1	37	0.1	-	-	-	-
Could not find work.	-		-	-	-	-	57	3.4
Other..	246	0.8	189	0.8	-	-	57	3.4
FULL-TIME EMPLOYMENT IN SCIENCE OR eng ineer ing in 1978								
Total employed full time in February 1978.	26,795	100.0	22,428	100.0	2,949	100.0	1,417	100.0
In science or engineering...............	26,086	97.4	21,741	96.9	2,927	99.3	1,417	100.0
Not in science or engineering............	655	2.4	633	2.8	22	0.7	-	
Preferred nonscience or nonengineering.	151	0.6	151	0.7	2	-	-	-
Promoted out of science or engineering. Pay better in nonscience or	49	0.2	27	0.1	22	0.7	-	-
nonengineering. . . . . . . . . . . .	129	0.5	129	0.6	-	-	-	-
Locational preference...................	-	-	-	-	-	-	-	-
Science or engincering position not available.	133	0.5	133	0.6	-	-	-	-
Other reason......	176	0.7	176	0.8	-	-	-	-
Reason not reported..............	17	(z)	17	(z)	-	-	-	-
Unemployment in calendar year 1977								
Total.	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
Unemployed in calendar year 1977.........	989	3.3	936	3.8	53	1.5	-	-
1 to 4 weeks.............................	158	0.5	158	0.6	-	-	-	-
5 to 10 wecks...........................	267	0.9	267	1.1	-	-	-	-
11 to 14 weeks.	171	0.6	158	0.6	13	0.4	-	-
15 to 26 weeks............................	27	(2)	27	0.1	-	-	-	-
27 weeks or more.........................	366	1.2	326	1.3	40	1.2	-	-
Median weeks of unemployment...........	13	(X)	12	(x)	*27+	(X)	-	-
Weeks of unemployment not reported.....	-	-	-	-	-	-	-	-
Not unemployed in calendar year 1977	28,094	94.4	23,115	93.9	3,350	96.2	1,628	97.0
Not reported..............................	692	2.3	564	2.3	78	2.2	50	3.0

Table 4. Employment Status and Selected Job-Related Characteristics of Environmental Scientists: 1978-Continued
(Detail may not add to total because of rounding. For meaning of symbols, see text)

Employment status and selected job-related characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
PRIMARY WORK ACTIVITY IN 1978								
Total employed in February 1978....	27,543	100.0	22,960	100.0	3,025	100.0	1,558	100.0
Research and development..................	9,138	33.2	7,265	31.6	937	31.0	936	60.1
Basic research. . . . . . . . . . . . . . . . . . . . .	2,021	7.3	1,173	5.1	191	6.3	656	42.1
Applied research.	4,865	17.7	4,146	18.1	548	18.1	171	11.0
Development...... .......................	2,161	7.8	1,900	8.3	168	5.6	92	5.9
Design. . . . . . . . . . . . . . . . . . . . . . . . . . .	92	0.3	46	0.2	29	1.0	16	1.0
Management or administration, total.	7,031	25.5	6,086	26.5	581	19.2	364	23.4
Research and development................	2,761	10.0	2,221	9.7	316	10.4	225	14.4
Other	4,269	15.5	3,864	16.8	265	8.8	140	9.0
Teaching and training.	3,380	12.3	2,914	12.7	325	10.8	141	9.1
Production and inspection	2,177	7.9	1,742	7.6	375	12.4	60	3.8
Quality control.	358	1.3	302	1.3	13	0.4	44	2.8
Operations.....	1,614	5.9	1,270	5.5	345	11.4	-	-
Distribution-sales	204	0.7	170	0.7	18	0.6	16	1.0
Consulting..	1,665	6.0	1,509	6.6	156	5.2	-	-
Clinical diagnosis		,		.	-	-	-	-
Consulting........	1,665	6.0	1,509	6.6	156	5.2	-	-
Keport $\begin{gathered}\text { riting, statistical work and }\end{gathered}$ computer applications. $\qquad$	1,972	7.2	1,522	6.6	406	13.4	44	2.8
Report writing. ...........................	1,179	4.3	1,077	4.7	74	2.4	29	1.8
Statistical work.	596	2.2	314	1.4	266	8.8	16	1.0
Computer applications.	197	0.7	131	0.6	66	2.2	-	-
Other activities..............................	1,809	6.6	1,564	6.8	245	8.1	-	-
Not reported.................................	373	1.4	360	1.6	-	-	12	0.8
NATIONAL INTEREST TOPICS ${ }^{1}$								
Total................................	29,775	100.0	24,615	100.0	3,481	100.0	1,678	100.0
Health.	74	0.2	29	0.1	13	0.4	32	1.9
Education, total.	3,040	10.2	2,388	9.7	413	11.9	239	14.2
Teaching.	2,931	9.8	2,278	9.3	413	11.9	239	14.2
Other. . . . . . . . . . . . . . . . . . $9 .$. . . . . . . . . .	109	0.4	109	0.4	-	-	-	-
Environmental protection, pollution control	3,326	11.2	2,149	8.7	577	16.6	600	35.8
Space............	429	1.4	251	1.0	178	5.1	-	-
National defense.	1,252	4.2	743	3.0	208	6.0	302	18.0
Crime prevention and control.	-	-	-	,	-	4	-	-
Food production and technology...........	396	1.3	313	1.3	83	2.4	-	-
Energy and fuel..	13,003	43.7	12,714	51.7	246	7.1	43	2.5
Other mineral resources.	2,021	6.8	2,007	8.2	13	0.4	-	-
Community development and services.	256	0.9	194	0.8	45	1.3	17	1.0
Housing.	63	0.2	63	0.3	-	-	-	-
Other.	1,833	6.2	1,124	4.6	504	14.5	205	12.2
Not applicable.	2,303	7.7	1,412	5.7	740	21.3	150	9.0
Not reported. . . . . . . . . . . . . . . . . . . . . . . . .	1,778	6.0	1,228	5.0	459	13.2	91	5.4

See footnote at end of table.

Table 4. Employment Status and Selected Job-Related Characteristics of Environmental Scientists: 1978-Continued
(Detail may not add to total because of rounding. For meaning of symbols, see text)

Employment status and selected job-related characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Occanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
INLUSTRY IN 1978								
Total employed in 1978.............	27,543	100.0	22,960	100.0	3,025	100.0	1,558	100.0
Agriculture, forestry, and pisheries.....	472	1.7	433	1.9	39	1.3	-	-
Mining and petroleum extraction..........	7,870	28.6	7,870	34.3	-	-	-	
Construction. . . . . . . . . . . . . . . . . . . . . . . .	102	0.4	102	0.4	-	-	-	-
Manufacturing, total......................	2,842	10.3	2,655	11.6	83	2.7	105	6.7
Primary metal industries.	63	0.2	63	0.3	-	-	-	-
Fabricated metal industries.	41	0.1	41	0.2	-	-	-	-
Machinery, except electrical...........	19	(Z)	19	( 2 )	-	-	-	
Electrical machinery equipment and supplies. $\qquad$	29	0.1	-	-	29	1.0	-	-
Electronic machinery and computing equipment	31	0.1	31	0.1	-	-	-	-
Aircraft and aircraft parts............	15	(Z)	15	(z)	-	-	-	-
Motor vehicles and motor vehicle equipment $\qquad$	-	-	-	-	-	-	-	-
Ordnance..................................	-	-	-	-	-	-	-	-
Chemicals and allied products.	53	0.2	-	-	53	1.8	-	-
Petroleum refining and related industries. $\qquad$	2,074	7.5	2,074	9.0	-	-	-	-
Other manufacturing.	517	1.9	412	1.8	-	-	10.5	6.7
Transportation, communications, and other public utilities..............	361	1.3	316	1.4	44	1.5	-	
Wholesale and retail trade ...............	20	( 2 )	20	(Z)	-	-	-	
Finance, insurance, and real estate......	-	-	-	-	-	-	-	
Educational institutions, total...........	5,054	18.4	3,966	17.3	558	18.4	531	34.1
College or university....................	4,632	16.8	3,557	15.5	558	18.4	517	33.2
Other.......	422	1.5	409	1.8	-	-	14	0.9
Health services.............................	17	(Z)	17	( 2 )	-	-	-	-
Services except education and health, total.	5,105	18.5	3,348	14.6	1,094	36.2	663	42.6
Engincering and architectural services.	632	2.3	569	2.5	31	1.0	32	2.1
Research institutions.	3,127	11.4	1,955	8.5	541	- 17.9	631	40.5
Other.	1,345	4.9	824	3.6	521	17.2	-	-
Public administration.	3,588	13.0	2,374	10.3	983	32.5	231	14.8
Federal.	1,982	7.2	1,136	4.9	721	23.8	125	8.0
Other	1,564	5.7	1,209	5.3	248	8.2	106	6.8
Military.	42	0.2	28	0.1	13	0.4	-	-
Other industrie	1,989	7.2	1,750	7.6	211	7.0	28	1.8
Not reported.	123	0.4	110	0.5	13	0.4	-	-
TYPE OF EMPLOYER IN 1978								
Total employed in February 1978....	27,543	100.0	22,960	100.0	3,025	100.0	1,558	100.0
Business or industry.......................	14,040	51.0	13,390	58.3	584	19.3	66	4.3
Educational institutions, total..........	5,205	18.9	4,070	17.7	588	19.4	547	35.1
```Junior or 2-year college, technical institute.....................```	418	1.5	405	1.8	-	-	14	0.9
Medical school...........................	-	-	-	-	-	-	-	-
4-year college or university except medical school...............................	4,759	17.3	3,638	15.8	588	19.4	533	34.2
Elementary or secondary school system..	27	(Z)	27	0.1	-	-	-	-
Hospital or clinic..........................	-	-	-	-	-	-	-	-
Nonprofit organization.....................	518	1.9	221	1.0	272	9.0	25	1.6
U.S. military service/commissioned groups	56	0.2	28	0.1	28	0.9	-	-
Government, total...........................	7,383	26.8	4,991	21.7	1,553	51.3	839	53.8
	5,163	18.7	3,257	14.2	1,278	42.2	628	40.3
State...	963	3.5	865	3.8	40	1.3	59	3.8
Local or other............................	1,257	4.6	870	3.8	235	7.8	152	9.8
International agency........................	9	(Z)	9	(7)	-	-	-	-
Other.	82	0.3	-	-	-	-	82	5.2
Not reported.................................	251	0.9	251	1.1	-	-	-	

Table 4. Employment Status and Selected Job-Related Characteristics of Environmental Scientists: 1978—Continued
(Detail may not add to total because of rounding. For meaning of symbols, see text)

Employment status and selected job-related characteristics	Environmental scientists, total		Earth scientists		Atmospheric scientists		Oceanographers	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
FEDERAL SUPPORT IN $1978{ }^{2}$								
Total employed in February 1978..	27,543	100.0	22,960	100.0	3,025	100.0	1,558	100.0
With Federal support.	10,930	39.7	7,073	30.8	2,379	78.6	1,477	94.8
Department of Agriculture	748	2.7	650	2.8	98	3.2	-	-
Department of Commerce..	1,828	6.6	389	1.7	1,113	36.8	326	20.9
Department of Defense.	2,201	8.0	1,200	5.2	308	10.2	693	44.5
Department of Energy.	1,315	4.8	946	4.1	308	10.2	61	3.9
Department of Health, Education, and Welfare \qquad	173	0.6	158	0.7	15	0.5	-	-
Department of Housing and Urban Development \qquad	118	0.4	118	0.5	-		-	-
Department of the Interior..............	3,176	11.5	2,892	12.6	144	4.8	139	8.9
Department of Justice.....................	-	(2)	,	-	-	-	-	-
Department of Labor......................	13	(2)	13	(Z)	-	-	-	-
Department of Transportation............	351	1.3	243	1.1	96	3.2	12	0.8
Agency for International Development...	112	0.4	96	0.4	-	-	16	1.0
Environmental Protection Agency........	865	3.1	318	1.4	262	8.7	285	18.3
NASA. .	1,151	4.2	732	3.2	320	10.6	99	6.4
National Science Foundation.	2,030	7.4	1,175	5.1	465	15.4	389	25.0
Nuclear Regulatory Commission..........	137	0.5	83	0.4	42	1.4	13	0.8
Other Department or agency..............	608	2.2	375	1.6	50	1.7	183	11.8
Agency not known...........................	28	0.1	15	(2)	13	0.4	-	-
Agency not reported.......................	132	0.5	115	0.5	-	-	17	1.1
No Federal support...........................	15,476	56.2	14,823	64.6	597	19.7	56	3.6
Federal support not known...................	633	2.3	589	2.6	32	1.0	12	0.8
Not reported. .	506	1.8	475	2.1	18	0.6	12	0.8

[^6]Table 5. Basic Annual Salary Rate of Full-Time Employed Environmental Scientists: 1978
(Detail may not add to total because of rounding. For meaning of symbols, see text)

[^7]
Appendix A. Definitions and Explanations

The 1978 National Survey of Natural and Social Scientists and Engineers was the fourth survey based on the 1970 population of scientists and engineers. It was conducted by the Bureau of the Census for the National Science Foundation. The first survey, the 1972 Professional, Technical, and Scientific Manpower Survey, ${ }^{1}$ was conducted among a nationwide sample of approximately 150,000 persons who were recorded in the 1970 Census of Population as being in the experienced civilian labor force in 1 of 63 engineering, scientific, or related occupations. The survey also included a small sample of persons who had completed 4 or more years of college, but were not in any of the specified occupations. Based on responses in the 1972 survey and on criteria established by the National Science Foundation, approximately 50,000 persons from the 1972 survey sample (excluding the small sample of college graduates) were chosen as the sample for the series of longitudinal surveys known as the National Sample of Scientists and Engineers. The 1978 National Survey of Natural and Social Scientists and Engineers was the third survey in this longitudinal series; it was preceded by surveys in 1976 and $1974 .{ }^{2}$

Questionnaires for the 1978 survey were mailed in February 1978. After all data collection activities, 81 percent of the sample (approximately 40,800 persons) completed their questionnaires. The 19 percent who did not complete their questionnaires included persons who refused to participate, the deceased, and persons who returned questionnaires with insufficient information to permit processing. For an analysis of response, see appendix E .

The estimates derived for this survey were prepared by using a ratio estimation procedure and an adjustment for nonresponse in 1978. For each sample case for which a completed questionnaire was obtained, the information from the 1978 survey was matched with the 1972 survey data and the 1970 census data for the same person. Weights applied to samples cases in the 1972 survey were then used to weight the resultant matched data file. The weighting procedure for the 1972 survey involved first the preparation of a preliminary estimate by weighting the results for each sample person by the reciprocal of the probability of selection. As a second

[^8]step, these weights were adjusted by applying a factor for certain age-sex-race cells within each occupation category. Within each of the cells, the factor was computed as the ratio of the 1970 census count to the preliminary estimate. The final 1972 weight was this factor multiplied by the inverse of the probability of selection for each person. To the extent that the data being tabulated and the estimated count of persons in the cells are positively correlated, the ratio estimate procedure will improve the reliability of the estimate. A discussion of the reliability of the estimates, including a description of the standard errors of totals and percentages, is presented in appendix B.

A nonresponse adjustment was done in 1978 to reduce the bias in the survey estimates due to the high nonresponse rate in 1978. This adjustment was done separately for inscope ${ }^{3}$ and out-of-scope ${ }^{4}$ persons, and included an adjustment for the mortality in the longitudinal sample from 1972 to 1978. The first step in the nonresponse adjustment was to adjust the nonrespondents for mortality from 1972 to 1978 by means of mortality tables for age-race-sex groups. The second step was to determine the estimated proportion of nonrespondents that were in-scope and out-of-scope. To estimate these proportions, an intensive follow-up was conducted to obtain interviews for a subsample of the 1978 nonrespondents. This follow-up showed that approximately 80 percent of the nonrespondents were in-scope and the remaining 20 percent were out-of-scope. The final step was to determine a nonresponse adjustment factor for different age-race-sex cells. Within each of the cells, the factor was computed as the ratio of the weighted count, using the 1972 weights, of the estimated total (i.e., respondent and nonrespondent) in-scope or out-of-scope persons, divided by the weighted count of the respondent in-scope or out-of-scope persons.

The final weight for the 1978 survey was the product of the 1972 weight and the appropriate 1978 nonresponse adjustment factor.

The definitions for many of the characteristics shown in this report are self-explanatory or can best be understood by referring to the appropriate 1978 questionnaire items or reference lists (appendixes C and D). An explanation of the other subjects is provided below.

Age in 1978. The reference period for age in 1978 was April 1978. The age classification is based on the age of the person at his or her last birthday. The median age is that age that

[^9]divides the distribution into two equal parts, one-half being older than the median age and one-half younger. Median ages were divided from an estimation process that distributed the subject populations into 5-year age groups.

Race. The data on race are based on responses in the 1970 Census of Population. The "other races" category includes all races not included in the specific categories listed.

Divisions of the United States. The divisions of the United States comprise the following States:

New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont

Middle Atlantic: New York, New Jersey, Pennsylvania
East North Central: Illinois, Indiana, Michigan, Ohio, Wisconsin.

West North Central: lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota.

South Atlantic: Delaware, District of Columbia, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia.

East South Central: Alabama, Kentucky, Mississippi, Tennessee.

West South Central: Arkansas, Louisiana, Oklahoma, Texas.

Mountain: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming.

Pacific: Alaska, California, Hawaii, Oregon, Washington.
Outlying areas of the United States include Puerto Rico, Guam, Virgin Islands, American Samoa, and Canal Zone.

Fields of science and engineering. Science or engineering (S/E) fields are categories established by the survey sponsor, the National Science Foundation, to identify persons who could be classified as engineers or scientists under most definitions. In general, to be classified into one of the fields, a person had to have at least two of the following three characteristics: (1) employment in the field, (2) attainment of a specified educational level in an academic discipline related to the field, or (3) self-identification, based upon total education and experience, as being in the field. More detailed information on the criteria for membership in a scientific and technical field is given in U.S. Bureau of the Census, Current Population Reports, Series P-23, No. 76, Selected Characteristics of Persons in Fields of Science or Engineering: 1976, U.S. Government Printing Office, Washington, D.C., 1978.

Highest degree held. Highest degree held in 1978 refers to the highest academic degree awarded to the respondent in 1978
or earlier. Data on highest degree held were derived as follows: The level and the year of award of the highest degree received by the respondent between January 1972 and 1978 surveys (this degree will be referred to as degree " A ") were compared with the level and year of award, determined from the 1976, 1974, and 1972 surveys, of the previously-designated highest degree held by the respondent (this is referred to as degree " B "). If degree A was at the same level or at a higher level than degree B, and if its date of award was later than that of degree B, degree A was designated as the highest degree held in 1978; otherwise, degree B was designated as the highest degree held in 1978.

The "other degree" category includes persons whose highest academic degree was one of the following: RN, LLB, MD, and academic degrees other than those shown in the tables.

Major field of study for highest degree held. The data on major field of study refer to the major subject associated with the highest degree held in 1978 determined by the method described above. For persons who received their highest degree held in 1978 after January 1972, the data are derived from question 3 of the 1978 questionnaire (see appendix C), or question 1, part b of the 1976 questionnaire or from question 2, part b5 of the 1974 questionnaire. For persons who received their highest degree in 1971 or earlier, the data on major subject are based on the 1972 survey.

Employment status. Employed persons are those who reported that they were employed, either full time or part time, on vacation, or otherwise temporarily absent from a job for health or personal reasons during the reference week (February 12-18, 1978). The unemployed are persons who marked the "unemployed and seeking work" category (box 3) of item 5a of the 1978 questionnaire (see appendix C), or who indicated in item 7 that they were on layoff from a job. All other persons were classified as "not in the labor force."

Unemployment in 1977. The data on unemployment in 1977 relate to the occurrence of unemployment during the entire calendar year rather than just during a reference week. Medians are based on the intervals shown in the tables.

Primary work activity in 1978. The data on primary work activity in 1978 were derived, in general, from answers to question 11b of the 1978 questionnaire. In certain instances of nonresponse to question 11b, however, the data were derived from an imputation procedure that used responses to question 11a.

Type of employer. The data on type of employer in 1978 are based entirely on responses to question 12 of the 1978 questionnaire.

Basic annual salary rate. The statistics on salary refer to the basic annual salary associated with the job held in February 1978. The figures relate to salary before deductions for income tax, Social Security, retirement, etc., but do not include bonuses, overtime pay, or earnings from secondary
jobs. For employees of educational institutions whose salary was for 9 or 10 months, the salary rate was adjusted to a 12-month basis. Median salaries were derived by an estimation process that distributed the subject population into $\$ 1,000$ intervals.

Job and occupational mobility in 1976 and 1978. The data on mobility between 1976 and 1978 were derived from answers on both the 1976 and 1978 questionnaires. Persons were classified as with a "job change between 1976 and 1978" if they were employed in both 1976 and 1978 and reported in the 1978 survey that their current job began in 1976 or later. Persons were classified as "same job in 1976 and 1978" if the beginning date of their most recent job was in 1975 or earlier, and as "not reported" if they did not report the beginning date of the most recent job. For persons with a job change, the detailed occupation of the 1978 job was compared with that of the 1976 job, and persons were
classified as with the same or a different occupation or as "occupation change not reported."

Job and occupational mobility in 1974 and 1978 and in 1972 and 1978. The data on mobility between 1974 and 1978 and between 1972 and 1978 were derived from answers on the 1974 and 1978 questionnaires and 1972 and 1978 questionnaires, respectively. The procedure was analogous to that described for the data on job and occupational mobility in 1976 and 1978.
Years of professional experience. Median years of professional experience are based on 1-year intervals.
Symbols. A dash (-) represents zero, and " X " means "not applicable." The symbol " Z " means less than 0.05 percent. The symbol """ means based on fewer than $\mathbf{2 0}$ sample cases. For the characteristic "Unemployment in Calendar Year 1977," the symbol " $27+$ " means that the median fell in the category " 27 weeks or more."

Appendix B. Reliability of the Estimates and Standard Errors of Totals and Percentages

There are two types of possible errors associated with estimates based on data from a sample survey: sampling and nonsampling error. The following is a description of the sampling and nonsampling errors associated with the 1978 Survey of Scientists and Engineers.

SAMPLING ERRORS

The particular sample used for this survey is one of a large number of possible samples of the same size that could have been selected using the same sample design. Even if the same schedules and instructions were used, estimates from each of the different samples would differ from each other. The deviation of a sample estimate from the average of all possible samples is defined as the sampling error. The standard error of a survey estimate attempts to provide a measure of this variation among the estimates from the possible samples, and thus, is a measure of the precision with which an estimate from the sample approximates the average result of all possible samples.

As calculated for this survey, the standard error also partially measures the variation in the estimates due to response errors (nonsampling errors), but it does not measure, as such, any systematic biases in the data. Therefore, the accuracy of the estimates depends on both the sampling and nonsampling errors, measured by the standard error, and biases and some additional nonsampling errors not measured by the standard error.
T.ie figures presented in tables B-1 to B-4 are approximations to the standard errors of the various estimates for this survey. A number of approximations and generalizations have been used so that the standard errors would be applicable to a wide variety of characteristics and still be prepared at a moderate cost. Thus, the standard errors in the following tables provide an indication of the order of magnitude, rather than precise measurements of the standard errors.

Standard errors on totals. Table B-1 presents the standard errors applicable to estimated totals for characteristics of environmental scientists. Standard errors for estimated totals not specifically shown in table B-1 can be found by linear interpolation or by computing them directly from the following standard error formula:

$$
\text { standard error of } x=\sqrt{a x^{2}+b x}
$$

The " a " and " b " parameters for each environmental scientist group are:

Field	"a" parameter	" $\mathrm{b} "$ parameter
Environmental scientists,		
total000140	27.1
Earth scientists	-.000125	32.1
Atmospheric scientists . .	.00168	21.8
Oceanographers.00836	21.1

For example, there are an estimated 1,773 environmental scientists, total, who were retired in 1978. The above table shows that $a=.000140$ and $b=27.1$ for environmental scientists, total. Thus, the estimated standard error of 1773 is

$$
\sqrt{(.000140)(1773)^{2}+(27.1)(1773)=220.2}
$$

Table B-1. Standard Errors of Totals
(68 chances out of 100)

Size of estimate	Environ- mental scien- tists, total	Earth scien- tists	Atmos- pheric scien- tists	Oceanog- raphers
$100 \ldots \ldots \ldots \ldots$	50	60	50	50
$200 \ldots \ldots \ldots \ldots$	70	80	70	70
$500 \ldots \ldots \ldots \ldots$	120	130	110	110
$700 \ldots \ldots \ldots \ldots$	140	160	130	140
$1,000 \ldots \ldots \ldots$	170	190	160	170
$2,500 \ldots \ldots \ldots$	260	290	270	320
$5,000 \ldots \ldots \ldots$	370	410	410	-
$10,000 \ldots \ldots \ldots$	530	570	670	-
$25,000 \ldots \ldots \ldots$	8,310	870	-	-
$50,000 \ldots \ldots \ldots$	1,120	-	-	
$75,000 \ldots \ldots \ldots$	-	-	-	-

Standarderrors on percentages. The reliability of an estimated percentage, computed by using sample data for both the numerator and the denominator, depends upon both the size of the percentage and the size of the total upon which the percentage is based. Estimated percentages are relatively more reliable than the corresponding estimates of the numerators of the percentage, particularly if the percentages are 50 percent or more.

Tables B-2 and B-3 present the standard errors of estimated percentages for environmental scientists. Standard errors for estimated percentages not specifically shown in tables B-2 and B-4 can be found by using two-way interpolation or by computing them directly from the following formula: ${ }^{1}$
standard error of the percentage p on a base of y

$$
=\sqrt{(p)(100-p) \frac{b}{y}}
$$

For example, an estimated 2.4 percent of the 29,775 environmental scientists, total, worked part time in 1978. The above table shows that $b=27.1$ for environmental scientists, total. Thus, the standard error for the 2.4 percent on a base of 29,775 is

$$
\sqrt{\frac{(2.4)(100-2.4)(27.1)}{29.775}}=.46 \text { percent }
$$

Standard error intervals. The sample estimate and its estimated standard error enable one to construct interval

[^10]estimates that include the average result of all possible samples with a known probability. For example, if all possible samples were selected, each of these surveyed under identical conditions and an estimate and its estimated standard error were calculated from each sample, then:

1. Approximately 68 percent of the intervals from one standard error below the estimate to one standard error above the estimate would include the average result of all possible samples;
2. Approximately 90 percent of the intervals from 1.6 standard errors below the estimate to 1.6 standard errors above the estimate would include the average result of all possible samples;
3. Approximately 95 percent of the intervals from two standard errors below the estimate to two standard errors above the estimate would include the average result of all possible samples.

The average result of all possible samples either is or is not contained in any particular computed interval. However, for a particular sample one can say with specified confidence that the average result of all possible samples is included within the constructed interval.

Table B-2. Standard Errors of Percentages for Environmental Scientists, Total
(68 chances out of 100)

Base of percentage	1 or 99	2 or 98	5 or 95	10 or 90	15 or 85	25 or 75	50
100.......	5.3	7.5	11.7	16.0	19.1	23.2	26.7
200.	3.8	5.3	8.2	11.3	13.5	16.4	18.9
500..	2.4	3.3	5.2	7.2	8.5	10.4	12.0
700...	2.0	2.8	4.4	6.1	7.2	8.8	10.1
1,000..............	1.7	2.4	3.7	5.1	6.0	7.3	8.5
2,500....	1.1	1.5	2.3	3.2	3.8	4.6	5.3
5,000...	0.8	1.1	1.6	2.3	2.7	3.3	3.8
10,000..	0.5	0.7	1.2	1.6	1.9	2.3	2.7
25,000...	0.3	0.5	0.7	1.0	1.2	1.5	1.7
50,000...........	0.2	0.3	0.5	0.7	0.9	1.0	1.2

Table B-3. Standard Errors of Percentages for Earth Scientists

(68 chances out of 100)

Base of percentage	1 or 99	2 or 98	5 or 95	10 or 90	15 or 85	25 or 75	50
100...	5.7	8.0	12.5	17.2	20.5	24.8	28.7
200.	4.0	5.7	8.8	12.2	14.5	17.6	20.3
500...	2.6	3.6	5.6	7.7	9.2	11.1	12.8
700.	2.2	3.0	4.7	6.5	7.7	9.4	10.8
1,000..	1.8	2.5	4.0	5.4	6.5	7.9	9.1
2,500...........	1.1	1.6	2.5	3.4	4.1	5.0	5.7
5,000............	0.8	1.1	1.8	2.4	2.9	3.5	4.1
10,000..	0.6	0.8	1.3	1.7	2.0	2.5	2.9
25,000....	0.4	0.5	0.8	1.1	1.3	1.6	1.8
50,000....	0.3	0.4	0.6	0.8	0.9	1.1	1.3
75,000...	0.2	0.3	0.5	0.6	0.7	0.9	1.0
100,000..	0.2	0.3	0.4	0.5	0.6	0.8	0.9
150,000...........	0.1	0.2	0.3	0.4	0.5	0.6	0.7

Table B-4. Standard Errors of Percentages for Atmospheric Scientists and Oceanographers
(68 chances out of 100)

Base of percentage	1 or 99	2 or 98	5 or 95	10 or 90	15 or 85	25 or 75	50
100...............	4.8	6.8	10.6	14.5	17.3	21.0	24.2
200.	3.4	4.8	7.5	10.3	12.2	14.8	17.1
500.	2.2	3.0	4.7	6.5	7.7	9.4	10.8
700.	1.8	2.6	4.0	5.5	6.5	7.9	9.2
1,000.	1.5	2.1	3.3	4.6	5.5	6.6	7.7
2,500.	1.0	1.4	2.1	2.9	3.5	4.2	4.8
5,000.	0.7	1.0	1.5	2.1	2.4	3.0	3.4
10,000..	0.5	0.7	1.1	1.5	1.7	2.1	2.4

For example, of the 29,775 environmental scientists, total, in 1978, 28.6 percent have the master's degree as the highest degree held in 1978. The standard error of this percent as computed from table B-2 is 1.4 percentage points. Based on these data, we may conclude that the percentage of environmental scientists, total, with the master's degree as the highest degree held in 1978 lies between 25.8 percent and 31.4 percent with 95 -percent confidence, i.e., within 2 standard errors.

Standard errors of differences between estimates. The figures

 in these tables are not directly applicable to standard errors of differences between two sample estimates. The standard error of the estimated difference between two figures may be approximated by the square root of the sum of the squares of the standard error of each estimate. This approximation will yield an exact result when the two characteristics are uncorrelated. If the two characteristics are positively (negatively) correlated, the approximation will overestimate (underestimate) the standard error of the difference. For a difference between two sample estimates, one of which represents a subclass of the other, the table can be used with the difference considered as the sample estimate.For example, of the 29,775 environmental scientists, total, in 1978, 41.2 percent have bachelor's degrees as the highest degree held in 1978. The standard error of this percent as computed from table B-2 is 1.53 percentage points. The standard error of the difference between the percentage of those with bachelor's degrees and the percentage of those with masters (i.e., $41.2-28.6=12.6$ percent) is then approximately

$$
\sqrt{(1.4)^{2}+(1.5)^{2}}=2.1 \text { percentage points }
$$

Based on these data, we may conclude with 95 percent confidence that the average estimate of the difference of the percentages derived from all possible sample lies within the interval 8.4 percentage points to 16.8 percentage points.

Standard errors of medians. The figures in these tables are not directly applicable to standard errors of estimated medians. The sampling variability of an estimated median depends upon the size of the base as well as on the distribution from which the median is determined. An approximate method for measuring the reliability of a median is to determine an interval about the estimated median, such that there
is a stated degree of confidence that the median based on all possible samples lies with the interval. The following procedure may be used to estimate confidence limits of a median based on sample data:

1. Determine the standard error of a $\mathbf{5 0}$ percent characteristic from the appropriate standard error table (tables B-2 to B-4) using the appropriate base;
2. Add this standard error to 50 percent to obtain an upper boundary percentage and subtract this standard error from 50 percent to obtain a lower boundary percentage;
3. Using the cumulative distribution from which the median is derived, read off the numbers corresponding to the boundary percentages. The interval between these two numbers (i.e., the confidence limits) will be the 68 -percent confidence interval. A 95 -percent confidence interval may be determined by finding the values corresponding to 50 percent plus or minus twice the standard error in step 1.
For example, the data for 1978 indicate that the estimate of the median age for environmental scientists is 47.0 years. The distribution of environmental scientists by age is shown in the table below:

Age (years)	Percentage	Cumulative distribution
Under 30	0.4	0.4
30 to 34	10.6	11.0
35 to 39	13.7	24.7
40 to 44	17.4	42.1
45 to 49	18.5	60.6
50 to 54	16.1	76.7
55 to 59	11.1	87.8
60 to 64	6.6	94.4
65 to 69	4.2	98.6
70 and over	1.4	100.0

From standard error table B-2, the standard error of a 50 percent characteristic with a base of 29,775 is 1.6 percentage points. From the table of cumulative age distribution, the percentage point that corresponds to 45 years is 42.1 percent and to 50 years is 60.6 percent. The lower confidence limit corresponding to 48.4 percent (50 percent minus
1.6 percent) is found by linear irrterpolation between 45 years and 50 years to be 46.7 years, i.e.,

$$
45+\left[(50-45)\left(\frac{48.4-42.1}{60.6-42.1}\right)\right]=46.7
$$

Similarly, the upper confidence limit corresponding to 51.6 percent (50 percent plus 1.6 percent) is found to be 47.6 years:

$$
45+\left[(50-45)\left(\frac{51.6-42.1}{60.6-42.1}\right)\right]=47.6
$$

Consequently the 68 -percent confidence interval, as shown by the data, is from 46.7 years to 47.6 years. Likewise, we could conclude that the 95 -percent confidence interval is from 46.2 years (the distribution point corresponding to 46.8 percent) to 48.0 years (corresponding to 53.2 percent).

In the text of this report, an unqualified statement which is either a comparison or could be reasonably interpreted as one has passed a statistical significance test at the 5 percent level; there is only a 1 in 20 chance that this statement will be made when it is actually not true. A statement which is footnoted to be not statistically significant has failed this test and any apparent differences are not supported by the data. In some instances, a statement which has failed the significance test at the 5 percent level but could have passed it at the 10 percent level is footnoted by the qualifications of "some evidence." The chance that this statement being included in the report incorrectly could be as high as 1 in 10.

NONSAMPLING ERRORS

In general, nonsampling errors can be attributed to many sources: Inability to obtain information about all cases, definitional difficulties, differences in the interpretation of questions, inability or unwillingness to provide correct information on the part of the respondents, mistakes in recording or coding the data, and other errors of collection, response, processing, coverage, and estimation for missing data. As the above list indicates, nonsampling errors are not unique to sample surveys, since they can, and do, occur in complete censuses as well.

The primary source of nonsampling error in the 1978 national sample survey is probably the high nonresponse rate. An adjustment in the estimation procedure for the 23 percent noninterview rate in the 1972 survey and the additional 19 percent nonresponse rate in 1978 was made, but there still remains some unknown bias in the estimates due to differences in the characteristics of those who were interviewed in 1978 and those who were not.

It should also be pointed out that estimates for this survey do not represent those who have entered the labor force in scientific and engineering fields since 1970. In particular, this survey does not include the large numbers of graduates produced since 1970. This causes significant biases for such items as the relative distributions of sex, age, and race and the unemployment figures if the results are assumed to be indicative of the current scientific and engineering fields including new entrants since 1970.

Appendix C. Questionnaire and Reference Lists

O.M.B. No. 99-S77003: Approval Expires December 31, 1978

```FOQM PMS.26D U.S. DEPARTMENT OF COMMERCEE BUAEAUOFTMECENSUS 1978 NATIONAL SURVEY OF NATURAL AND SOCIAL SCIENTISTS AND ENGINEERS```	NOTICE - Your report to the Census Bureau is confidential. If may be seen only by sworn Census employees and may be used only for statistical purposes.
	Please read instructions carefully before answering questions.   Answer as accurately as you can by printing yout reply clearly or by entering an " X " in the box next to the appropriate reply.   When the instructions for a question direct you to enter a code and description from a list, please refer to the reference list attached to this questionnaire.
	PLEASE Bureau of the Census   COMPLETE   AND 1201 East Tenth Street   RETURN TO Jeffersonville, Indiana 47132
A. Do you currently live in the State (or foreign country) printed in the above mailing label?	
, -- Yes. same State for forergn count,	
2 - No, different State (or foreign country) - Please enter vour current State for foreign country) of resigence	

## FROM THE DIRECTOR <br> BUREAU OF THE CENSUS

This is the final questionnaire for the series of surveys known as the National Sample of Scientists and Engineers. The National Science Foundation, the project sponsor, and the Bureau of the Census wish to thank you for your invaluable contribution to this program. Each of the biennial surveys has given policymakers and planners an increasingly clearer view of the dynamics of the educational system and the job market for one of the Nation's central resources-highly trained persons. The goal of this final survey is to complete the picture for the decade of the 1970's.

Thus, we are asking you to provide one final report on your employment and related topics. The quesionnnaire is much shorter than previous ones. Please note that the sample includes many kinds of highly trained persons in addition to scientists and engineers. For the survey to be successful and yield truly representative information. it is important that each person fill out and return the questionnaire.

Please complete the questions which follow on pages 2 through 4 and return your questionnaire in the enclosed preaddressed envelope. For some questions you are instructed to enter a code and description from Reference List A, B, or C. These lists are attached to the questionnaire.

This information is being collected under the authority of the National Science Foundation Act of 1950, as amended. The information you provide is confidential and may be seen only by sworn employees of the Bureau of the Census. The information cannot be used for anything but statistical purposes and cannot be given to any other Government agency, private concern, or individual. The data will be released only in the form of statistical summaries from which it will be impossible to identify information about any particular person. Your response is entirely voluntary, and your failure to provide some or all of the requested information will in no way adversely affect you.

Thank you for your cooperation.
Sincerely,


MANUEL D. PLOTKIN

## Enclosure





## REFERENCE LIST A - MAJOR FIELDS OF STUDY

This list is to be used in answering question 3 about the field in which you have obtained study or training. It is divided into two sections: section is a list of fields of academic study generally

Please scan the entire list. choose the appropriate answel for the question and then enter the code and description in the appropitale section of question 3. If none of the categoiles listed below adequately descibes what you wele studying of being tiained in, use the "Other' ' category (code 600 or 625 ) and enter a brief description of what you were studying in the space provided on the questionnalre.

Section I - FIELDS OF ACADEMIC STUDY LEADING TO BACHELOR'S OR HIGHER DEGREES
Code
Description
Blelogical and Agricultual Sciences and Related Fiolds
Agiculture, business
Agriculture, genetal
Agionomy, field ciops
Anatomy and histolod
Animal physiolog:
Animal science
Bacteriology, virology, mycology, parasitology
Biochemistry
Biophysics
Botany, zenera
Dairy science (dariy husbandiy)
Entomolory
Farm management
Fish and game of wildite management
Food science (food technology and processing, daily
fanufacturing and technology. food industiy
Forestry
Genetics
Horticulture
Immunolozy
Plant patholos
Plant physiology
Soil science (soll management, soil conservation)
Zooloy, general
Biological and agricultural sciences, other fields
Edreation
Biological sciences education
Mathematics education
Physical sciences education
Tiade and industrial tiaining
Education, other fields
Engineering
532 Aerospace, aeronautical, astronautical, and related fields
Agricultural
Architectural
Chemical, petroleum refining
Civil, construction, transportation
Electical, electronics
Engineeting sciences, mechanics, physics
Engineering technology
Environmental/sanitary engineering
General or unified
Industrial
Mechanical
Metallurgical, materials, ceramics
Mining, mineral, seological
Naval architecture and marine engineering
Nuclear
Operations research/systems engineering
Petroleum
Engineering, other fields
Health Fields
551 Medicine of premedicine, and clinical medical sciences
Nursing (4 year or longer program)
Pharmacol
Pharmacology
Pharmacy
Health professions, othei fields (4 year of longet program)

Code
Mathematical Seiences
Mathematics
358 Statistics and actuaxial sciences
559 Computer sciences and systems analysis
Operations research/management science

Physical Scionces
560 Astronomy
51 Chemistry
593 Geofiaphy
563 Meteorology
Physics
Physical sciences, general
Geology and reophysics
Physical sciences, other fieids

## Paycinology

569 Clinical

570 Educationa
571 General psychology
Psychology, other fields

Secial Sciences
573 Anthropoloty
574 Alea studies, regional studies
Economics, agricultural
Economics, except agricultura
rorerg service programs
Geopaphy
Mistory
Industrial relations
International relations
Political science or sovernment
Public administiation
Social sciences, zeneral
Social work, social administiation, social welfare Sociology
Social sciences, other fields

Arts, Mumonities, ent Other sececiatiles
585 Aits, general
Business and commerce, including accounting, hotel and restaulant administration, and secretarial studies
English and journalism
Fine and applied arts, all fields
Foreign Ianguage and literature, all fields
Geography
Home economics, all fields
Law or prelaw
59 Library science
597 Military science, including merchant marime deck officet Philosophy, all fields
Religion and theology, all fields
Other (Descrioe briefly under the applicable item on Other (Describe briefiy
the questionnaire.)

Section II - FIELDS OF ACADEMIC STUDY AND OCCUPATIONAL TRAINING RELATED TO PROGRAMS BELOW THE BACCALAUREATE

Code	Description	Code	Description
	Data Pracessing-related flelds of study er tralning		Other fliolds of stwdy er training
601 602 602	Computer programming   Computer operating	616	Business and commerce-related fields of study or tiaining
603	All other data processing fields of study or training Eagineering-related fields of atudy er tralalag	617	Ciaft (skilled) occupations-related fields of study or training (such as carpentry, bricklaying, tool and die making, otc.)
		618	Educational-related fields of study or training
604	Drafting and design, all fields	619	Home economics
C05 605	Astonautical technology	620	Nursing and other health service-related fields of study or tuaining
607 ces 605	Chemical technology   Civil technology   Electucal and electionics technoloey	622	Operative occupations-related fields of study or training (such as machine operation, driving, inspecting, etc.)
610	Industrial technoloyy	622	Police technolory or law enforcement
611	Mechanical technology	623	Sales and marketing-related fields of study or tratning
612	All other engineering-related fields of study or training	624	Service occupations-related fields of study or training (such as cook, beautician, firefighter, etc.)
	Scionce-rolated fields of study er tralaing	625	NI other fields of study or training (Describe briefly under the applicable item on the questionntire.)

[^11]| REFERENCE LIST B - KINDS OF BUSNESSES |  |  |  |
| :---: | :---: | :---: | :---: |
| This list is to be used in answering question 9 about the kind of business or industry for which you worked. Please scan the entire list, choose the appropriate answer for the quastion and enter the code and description from this list. If none of the catagories listed below adequately describes the kind of business for which you worked, use the "Other" calagery (code 731). |  |  |  |
| Code | Description | Code | Description |
|  | memelecturing |  | Other Kimets of Buslopss |
| 701 | Arciaft, aricraft engimes, zircratt parts | 720 | Aefriculture, forestry, and fisheries |
| 202 | Chemicals and allied products | 721 | Business, personal, and professional servi |
| 703 | Electrical machinery, equipment and supplies for the | 722 723 | Construction |
|  | utilization of eioctical enervy, | 724 | Finance, insurance, or real estate |
| 74 | Electionic appaatus, 2 dio, television and communication | 725 | Mining and pettoleum extrection |
| 705 | equipment and parts | 725 | Private, nonpiotit organizations other than educational institutions and hospitals |
|  | office machinery and equipment | 127 | Professional and technical societies |
| 706 | Fabicred metal products (except ordnance, machinery | 728 | Reseatch institutions |
|  | and umsportation equipment) | 739 | Retand and wholesale urade |
| 707 | Machinery (except electical) including engines and turbines, faming and construction machinery, mining. metalworking and other manufacturing and service industiy machines | ${ }_{731}$ | Tiansportation, communication, or other public utilities Other (Descrioe orbetly under the appliceste item on the questionnaire.) |
|  | Motor vehiclos and motor vehicle equipment including trucks, buses, automobiles, railiosd engines and cars |  |  |
| 709 | Ordnance, including manufacture of arms, ammunition. tanks, and complete guided missiles, space vehicles |  | Public Admiaistratien (Include only uniquely eovernmental |
| 710 |  |  | activities, such as the U.S. Postal Service. U.S. AuI |
| 711 | Pimary metal industries, including smelting, refining. rolling, drawing, alloying, and manufacture of castings, |  | Force, State court, Department of Motor Vehicies, city building inspection, or city public welfare. For example, If you work for the U.S. Postal Service use code 733, |
| 712 | Professional and scientific equipment and supplies |  | Federal public administiation; on the othel hand, if you |
| 713 | Other manufacturing including printing and publishing |  | Hospital or clinic; if you work at a State university, use code 714. College or university; if you work for a county |
|  | Esecational last |  | 1020 buiding agency, use code 722 , Constiuction; if you |
| 714 715 | Colloge or university (offering at least a bacheler's degree) Junior college or technical institute |  | work in a Defense Department research laboratory, use code 728. Reseanch institution.) |
| 716 | Medical school |  |  |
| 717 | Other educational institutions | 733 | Uniformed militay service |
|  | Mealth Sowless | 734 | State public administiation |
| 718 | Hospital or clinic Other medical and health services | 737 | Regional government <br> Other government |
| REFERENCE LIST C - OCCUPATIONS |  |  |  |
| This list is to be used in answering questions 10 and 18 about your occupational classification. Please scan the entire list, choose the appropriate entry and enter the code and description from ithis list. If you cannot find exactly the fight entry, please choose the one that comes nearest to it. If none of the entics is at all appropiate, use the "Other" category (code 475) and enter a bief description in the space provided on the questionnaite. |  |  |  |
| Code | Description | Code | Description |
|  | Engimeers, including coilege professors and instructors | Mealth Ocewaticas, including persons who are primarily practitioners. Persons engaged primarily in medical research, teaching, and similar activities use code 432, Medical scientist. |  |
| 401 | Engineet, aronautical and astronsutical |  |  |
| 403 | Engineet, agticultulal |  |  |
| 404 | Engineet, civil and achitoctural | 438 | Physician or surgeon Technician, dental Technician, medical$\qquad$ |
| 405 | Engineer, electucal and electionic | 439 |  |
| 406 | Engineer, industial | 40 |  |
| 400 | Engineel, mechanical ${ }^{\text {Engineer, metalurgical and materials }}$ | 41 | Other health occupation (Descrioe briefly under the applicaote item on the questionna/io.). |
| 409 | Engineer, mining, petroleum, and geological |  |  |
| 410 |  | 42 | Tectinleisas end Tocmmolegists, except medical |
| 411 | Engineei, environmental and sanitay |  | Designer, electionic patts and machine tools |
| 413 |  | 44 |  |
|  | Engineer, other fields (Descrioe oriefly under the applicable item on the questionnaire.) | 444 | Designer, other Draftsman Surveyor |
|  | Computer spocialist, including college professors and instructors | 46 |  |
| 414 |  | 448 | Technician, biologicar and agricultuial Technician, electical and electionic |
|  | Computer progizmmer |  | Tectinician, construction, histway s, and achitectural |
|  |  | 450 | Technician, mechanical |
| 4 | Other computer specialist (Describe oriefly under the applicable item on the questionnaire.) | 452 | Technician, other engineering <br> Technician, physical science <br> Technician, other fields (Descrite briefly under the applicable item on the questionneire.) |
|  | Matmomaticians and Statiaticians, including college professors and instructors |  |  |
| 418 | Actuary | 454 | Teacher, elementary school |
| 419 | Mathematician |  | Teacher, secondary school <br> Teacher, college and university, exclullag eagdaceriag and sciewee (Engimeering and science roechers see codes 401-437 above.) |
| $\begin{aligned} & 420 \\ & 421 \end{aligned}$ | Statistician | 456 |  |
|  | Physical Sclentists, including college professors and instructors |  | Acmialstraters, Menagws, end Orficials, excluding farm |
| 4422 | ChemistEath scientists including ecologists, | 485 | Urban and retional planner <br> College president or deen |
|  |  | 456 | Administrator or manager, scientific and technical research and development |
| 424 | Physicisit, astronomer | 459 | research and development <br> Administrator ol managew, production and operations |
| 425 | Oceanographel <br> Other physical scientist (Describe) | 46 | Administrator, managew, ot official, all other, excluding self-employed <br> Self-employed proprietor |
| 427 |  | 461 |  |
|  | Eiological Scientists, including college professors and instivctors |  | All Other Oceupations |
| 428 | Agricultural scientists, including foresters and conservationists | $4{ }_{4}^{46}$ | Accountant <br> Attorney or judge Sales worker |
| 429 | Biological scientist | 45 | Clerical worker (such as bookkeeper, secretary, etc.) |
| 431 | Biochemist <br> Biophysicist | 46 | Ciaftworker (such as opker, capenter, electucion, |
| 432 | Medical scientist, excluding persons who me |  | Craft worker (such as oaker, carpenter, electrician, mechanic, lepait worker) |
| 433 | Other biological scientist (Describe) <br> Secial selemiste, including coliege professors and instructors | 469 | Farmer (owner, manager, tenant, or famm laborer) Fire figter or police |
|  |  | 478 | Leborel exccpt farm |
| $\begin{aligned} & 434 \\ & 435 \\ & 436 \\ & 437 \end{aligned}$ | Economist <br> Psychologist <br> Sociologist or anthropologist <br> Other social scientist (Describe briefly under the applicabie itom on ithe questionneire.) | 472 | Merchant or shopkceper, selt-employed |
|  |  | 473 | Operative (such as assembler, factory worker, m |
|  |  |  | welder, truck drivec, etc.) |
|  |  | $474$ | Postal worker <br> Other occupations, not specified above fDescribe oriofly under the applicebte itom on the quastionnaire.) |

## Appendix D. Source of Data

Characteristic	Table number	Item number on 1978 questionnaire
Age in 1978*.................. . . . . . . . . . . . . . . . . . . . . . .	1	(From the 1970 census response)
Sex........................................................... .	1	(From the 1972 survey response, if available; otherwise from the 1970 census response)
Race*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	1	(From the 1970 census response)
Residence in 1978...........................................	1	A, page 1
Professional identification............................ .	1	Part IV, 18
Hispanic heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	1	Part IV, 21
Occupation in 1978............. . . . . . . . . . . . . . . . . . . . .	1	Part III, 10
Highest degree held*. . . . . . . . . . . . . . . . . . . . . . . . . . .	2	2a; otherwise from 1976, 1974, or 1972 survey response
Major field of study for highest degree held*......	2	3; otherwise from 1976, 1974, or 1972 survey response
Type of supplementary training: 1977...............	2	Part I, 4b
Job and occupational mobility: 1976, 1978*........	3	1976 survey response and Part III, 10,14
Job and occupational mobility: 1974, 1978*........	3	1974 survey response and Part III, 10, 14
Job and occupational mobility: 1972, 1978*........	3	1972 survey response and Part III, 10, 14
Years of professional experience*....................	3	Part IV, 17
Type of employer..........................................	4	Part III, 12
Federal support.......................................... .	4	Part III, 15a, 15b
Unemployment status: 1977............................	4	Part IV, 16a, 16b
Employment status: February 1978*. . . . . . . . . . . . . . . .	4	Part II, 5a, 5b, 7
Full-time employment in science or engineering:   February 1978..................................................	4	Part II, 6a, 6b
National interest topics................................	4	Part IV, 19
	4	Part III, 9
	4	Part III, 11b
Annual salary rate: 1978.............................. .	5	Part III, 13

*For more information, see appropriate subject in appendix A.

## Appendix E. Response Rates

Table E-1 presents response rates of various components of the sample for the 1978 National Survey of Natural and Social Scientists and Engineers. The characteristics presented here are based on the 1970 census or on the 1978, 1976, 1974, or 1972 surveys. Since the percentages in table E-1 are based on a complete count of the sample cases, no reference to the standard error tables is necessary.

Table E-2 presents distributions of respondents and nonrespondents by the set of characteristics shown in table E-1.

Table E-1 is the counterpart of table E-1 of appendix E of the first report in this series Selected Characteristics of Persons in Physical Science: 1978. Table E-1 of that report, however, contajned data for 362 respondents whose data were not represented in the tables and text of the report. Table E-1 of this report for mathematical specialists excludes data for these 362 respondents.

Table E-1. National Sample, by Field of Science or Engineering in 1976, 1974, and 1972, Age in 1978, and Sex, by Response in the 1978 Survey (Unweighted)


Table E-2. Respondents and Nonrespondents in the 1978 National Survey, by Field of Science or Engineering in 1976, 1974, and 1972; by Age in 1978, and Sex (Unweighted)

Sex, age in 1978, and field of science or engineering in 1976, 1974, 1972	Responded in 1978		Did not respond in 1978	
	Number	Percent	Number	Percent
Total.	40,771	100.0	9,322	100.0
SEX				
Male..	38,245	93.8	8,632	92.6
Penale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	2,526	6.2	690	7.4
AGE IN 1978				
Under 30 years.	218	0.5	69	0.7
30 to 34 years.	4,739	11.6	1,525	16.4
35 to 39 years.	7,208	17.7	2,018	21.6
40 to 44 years.	6,565	16.1	1,510	16.2
45 to 49 years.	6,354	15.6	1,290	13.8
50 to 54 years.	5,939	14.6	1,055	11.3
55 to 59 years..	4,445	10.9	738	7.9
60 to 64 years.	2,729	6.7	464	5.0
65 to 69 years..	1,586	3.9	344	3.7
70 years and over...	988	2.4	309	3.3
Median age..	45	(X)	43	(x)
Fibld of science or enginekring in 1976				
Responded in 1976.	39,137	96.0	3,507	37.6
In scope in 1976......	34,609	84.9	2,993	32.1
Computer specialists.	1,875	4.6	189	2.0
Engineers............	18,206	44.7	1,716	18.4
Matheatical specialists.	1,376	3.4	110	1.2
Mathematicians.	992	2.4	89	1.0
Statisticians..	384	0.9	21	0.2
Life scientists...........	3,568	8.8	232	2.5
Agricultural scientists.	1,446	3.5	94	1.0
Biologists........	1,720	4.2	112	1.2
Medical scientists..	402	1.0	26	0.3
Physical scientists.	4,384	10.8	311	3.3
Cheaista.............	2,692	6.6	171	1.8
Physicists and astronomers.	1,443	3.5	124	1.3
Other physical scientists..	249	0.6	16	0.2
Environmental scientists...	1,615	4.0	134	1.4
Earth scientists..	1,357	3.3	114	1.2
Atmospheric scientists.	187	0.5	13	0.1
Oceanographers.......	71	0.2	7	0.1
Psychologists.............	1,784	4.4	152	1.6
Social scientists.	1,801	4.4	149	1.6
Economists. . . . . . . . . . . .	750	1.8	70	0.8
Sociologists and anthropologists.	484	1.2	38	0.4
Other social scientists..	567 4.528	1.4	41	0.4
Out of scope.....	4,528	11.1	514	5.5
Did not respond in 1976....	1,634	4.0	5,815	62.4

Table E-2. Respondents and Nonrespondents in the 1978 National Survey, by Field of Science or Engineering in 1976, 1974, and 1972, by Age in 1978, and Sex (Unweighted)-Continued

Sex, age in 1978, and field in science or engineering in 1976, 1974, 1972	Responded in 1978		Did not respond in 1978	
	Number	Percent	Number	Percent
FIELD OF SCIENCE OR ENGINEERING IN 1974				
Responded in 1974.	39,252	96.3	4,906	52.6
In scope in 1974........................................	35,212	86.4	4,261	45.7
Computer specialists.. . . . . . . . . . . . . . . . . . . . . . .	2,003	4.9	288	3.1
Engineers...........	18,450	45.3	2,364	25.4
Matheatical specialists	1,440	3.5	172	1.8
Mathematicians.	1,041	2.6	131	1.4
Statisticians.	399	1.0	41	0.4
Life scientists.	3,663	9.0	363	3.9
Agricultural scientists..........................	1,491	3.7	159	1.7
Biologists............................................ . . .	1,755	4.3	160	1.7
Medical scientists..................................	417	1.0	44	0.5
Physical scientists.................................	4,402	10.8	422	4.5
Chemists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	2,713	6.7	251	2.7
Physicists and astronomers.....................	1,409	3.5	145	1.6
Other physical scientists........................	280	0.7	26	0.3
Environmental scientists...........................	1,655	4.1	212	2.3
Earth scientists.	1,399	3.4	176	1.9
Atmospheric scientists...........................	186	0.5	22	0.2
Oceanographers. . . . . . . . . . . . . . . . . . . . . . . . . . . . .	70	0.2	14	0.2
Psychologists........................................	1,771	4.3	218	2.3
Social scientists.....................................	1,828	4.5	222	2.4
Economists	787	1.9	109	1.2
Sociologists and anthropologists...............	490	1.2	54	0.6
Other social scientists..........................	551	1.4	59	0.6
Out of scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	4,040	9.9	645	6.9
Did not respond in 1974......................	1,519	3.7	4,416	47.4
Responded in 1972.	40,771	100.0	9,322	100.0
In scope in 1972.....	40,771	100.0	9,322	100.0
Computer specialists...................... . . . . . . . .	2,600	6.4	791	8.5
Engineers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	20,927	51.3	4,870	52.2
Mathematical specialists...........................	1,790	4.4	395	4.2
Mathematicians	1,315	3.2	289	3.1
Statisticians....................................	475	1.2	106	1.1
Life scientists.......................................	4,113	10.1	778	8.3
Agricultural scientists..........................	1,720	4.2	305	3.3
Biologists.........................................	1,798	4.4	341	3.7
Medical scientists...............................	. 595	1.5	132	1.4
Physical scientists................................	5,249	12.9	999	10.7
Chenists	3,061	7.5	583	6.3
Physicists and astronomers...................... .	1,791	4.4	337	3.6
Other physical scientists......................	397	1.0	79	0.8
Environmental scientists...........................	1,723	4.2	372	4.0
Earth scientists......................................	1,553	3.8	345	3.7
Atmospheric scientists.........................	132	0.3	18	0.2
Oceanographers. . . . . . . . . . . . . . . . . . . . . . . . . . . . .	38	0.1	9	0.1
Psychologists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	1,988	4.9	500	5.4
Social scientists....................................	2,381	5.8	617	6.6
Economists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	954	2.3	262	2.8
Sociologists and anthropologists...............	554	1.4	142	1.5
Other social scientists..........................	873	2.1	213	2.3
Out of scope in 1972..................................	-	-	-	-
D1d not respond in 1972.......................	-	-	-	-


[^0]:    ${ }^{1}$ U.S. Department of Labor, Bureau of Labor Statistics, Employment and Earnings, Vol. 26, No. 1, January 1979.

[^1]:    ${ }^{2}$ Current Population Reports, Series P-20, No. 331, Geographical Mobility: March 1975 to March 1978.
    ${ }^{3}$ Note that the categories of supplemental training are not mutally exclusive: the same persons may have received more than one kind of supplemental training.

[^2]:    ${ }^{4}$ That is, changed emplovers or remained with the same employer, but had a significant change in their duties, level of responsibility, or occupation.
    s The apparent difference between the 20 percent for those who changed detailed occupations between 1976 and 1978 and the 23 percent for those who changed detailed occupations between 1974 and 1978 is not statistically significant.

[^3]:    - Represents zero.

[^4]:    ${ }^{7}$ Except for the difference between the median for environmental scientists and that for oceanographers, the apparent differences among the medians for environmental scientists, earth scientists, atmospheric scientists, and oceanographers are not statistically significant.
    ${ }^{8}$ U.S. Department of Commerce, Bureau of the Census, Current Population Reports, Money Income in 1977 of Families and Persons in the United States, Series P-60, No. 118.
    ' The CPS concept of "earnings" includes more sources of remuneration than does the national sample concept of "basic annual salary"; there were also other differences between the national sample's basic annual salary concept and the CPS earnings concept, including differences in reference periods and data collection procedures. CPS figures for 1977 are cited because 1977 is the full year most nearly comparable with the reference year for the 1978 national sample question on basic annual salary.
    ${ }^{10}$ The 1976-78 comparisons in terms of constant 1977 dollars must be approached cautiously. Problems are introduced into the comparisons by, among other things, the way the basic annual salary data are defined and collected, the differences between the nonresponse adjustment procedures of the 1976 and 1978 surveys, and the difficulty of establishing appropriate time periods for the constant dollar computations.

[^5]:    ${ }^{1}$ Sum of types of training may exceed total uith training because of multiple response.

[^6]:    ${ }^{1}$ Area of national concern in which persons devoted the largest proportion of professional time.
    ${ }^{2}$ Sum of individual agencies support may exceed total with Federal support because of multiple response.

[^7]:    ${ }^{1}$ Refers to salary for job held during the week of February 12-18, 1978.

[^8]:    ${ }^{1}$ For a description of the 1972 survey and related matters, see U.S. Burbau of the Census, Characteristics of Persons in Engineering and Scientific Occupations: 1972, Technical Paper No. 33, U.S. Government Printing Office, Washington, D.C., 1974.
    ${ }^{2}$ Results from the 1974 survey were published in U.S. Bureau of the Census, Current Population Reports, Series P-23, No. 53, Selected Characteristics of Persons in Fields of Ścience or Engineering: 1974, U.S. Government Printing Office, Washington, D.C., 1975; results from the 1976 survey were published in U.S. Bureau of the Census, Current Population Reports, Series P-23, No. 76, Selected Characteristics of Persons in Fields of Science or Engineering: 1976, U.S. Government Printing Office, Washington, D.C., 1978.

[^9]:    3 "'In-scope" means "in a field of science or engineering."
    4"Out-of-scope" refers to the category "not in a field of science or engineering."

[^10]:    ' The tables for the standard errors of percentages for most scientific and engineering fields (SEF's) were combined. The tables of standard errors given for such collapsed groups are always conservative, i.e., the table for the SEF with the largest standard errors was chosen to represent all the SEF's in the group. Because of this, the standard orrors calculated directly from the formula may differ slightly from those found in the tebles.

[^11]:    FORM ons-200 (e.20.77

