
SELECTING PERFORMANCE TEST 
TOOLING – PART 3 

 

This post became a bit longer than I initially intended so here are some links to jump directly to the specific 

content: 

· Some challenges in the PoC 

· Sikuli 

· SilkTest 

Some challenges in the PoC… 
Following up on my previous posts (here and here) on this topic while executing the Proof of Concept I have 

run into some interesting challenges. 

For starters, I am convinced I started the PoC the wrong way around; I started off with implementing some 

things in Sikuli rather than in SilkTest. Since SilkTest is, to me, less intuitive than Sikuli, since SilkTest tries 

to encapsulate a lot of different automation approaches in one tool, whereas Sikuli is focussed on one 

methodology only, I should have started with that one. However, I didn’t and there is nothing I can do about 

that anymore now. 

Secondly, the application we are about to put to the test is an application served from a Citrix platform, in 

other words, it is a remote application. The charter for this project is simple: Measure the performance of the 

application as the user would experience it. In other words, measure its performance via the RDP tunnel and 

not directly on the Citrix machine. 

The setup is basically as shown in this image (simplified of course) 

http://martijndevrieze.net/2013/05/02/selecting-performance-test-tooling-part-3/#challenges
http://martijndevrieze.net/2013/05/02/selecting-performance-test-tooling-part-3/#sikuli
http://martijndevrieze.net/2013/05/02/selecting-performance-test-tooling-part-3/#silktest
http://martijndevrieze.net/2013/04/11/selecting-performance-test-tooling-part-1/
http://martijndevrieze.net/2013/04/29/selecting-performance-test-tooling-part-2/


 

Simplified picture of the Citrix application setup 

Sikuli  
For those not farmiliar with Sikuli, here’s what they say about themselves: 

Sikuli Script automates anything you see on the screen. It uses image recognition to identify and 

control GUI components. It is useful when there is no easy access to a GUI’s internal or source 

code. 

In other words, Sikuli is fully based on image recognition and pattern recognition rather than following the 

industry standard Object Model. 

The good, the bad and the ugly. 

http://www.sikuli.org/
http://selenium.polteq.com/en/category/page-object-model/
http://martijndevrieze.files.wordpress.com/2013/05/citrix-base-idea.png


Stepping away from the Object Model has some advantages, especially in this application setup, but I will get 

to that when discussing the Borland setup. 

The good 
Considering this is a Proof of Concept I have simply taken Sikuli out of the box, using Sikuli-IDE. The IDE 

works nice, simple and intuitive. It was very easy to start the RDP application and login without using any 

screenshots. The basic use of Sikuli is very simple and intuitive. Scripting in it is simple and logica, at least if 

you have a basic understanding of other scripting languages and/or programming. 

Functionally stepping through the application was easy, just a few small screenshots were needed to load 

reports and verify that the report indeed is loaded successfully. In other words, the ease of use is excellent! 

The bad and the ugly 
I am mashing the bad and the ugly into one big pile since they are closely connected. 

The first thing I disliked a lot is that Sikuli is 100% 

depending on Java 6, try running it on 7 and you have a problem (as in, it simply doesn’t work). 

Another bad part of Sikuli is that even if I wanted to, I cannot add Object ID’s. This means that if I want to 

verify the existence of something, it needs to be done with screencaps and recognition thereof. Which leads me 

to the ugly. Screencaps are not the nicest way to identify objects, in fact they are ugly and not friendly to use, 

http://martijndevrieze.files.wordpress.com/2013/05/sikuli-code-snippet.png


since objects can occur, in a similar look and feel, several times on one screen. This results so now and again 

in the wrong button being clicked. It may look the same to Sikuli, but it is not the same functionally. 

On top of that, I am now saving images in source-control (GIT) which I am not in favor of. Why would I want 

binary files in source control? I cannot do a diff on them anyway. 

SilkTest  
I have known Borland as a company for a long time yet in the past 10 years have not really worked with any of 

their tools. A short summary of how they see themselves: 

With Silk Test, there’s no need to understand coding so even non-technical people like your 

business analysts can build tests and get fully involved. This 13.5 release also breaks new ground 

by working with all the latest browsers, so a single script is all you need. 

Well, there are some issues with that statement of course, cause a single script is always doomed to fail in the 

most horrid ways imaginable, but still, SilkTest is a nice tool to work with. 

The good 
The reason for looking at SilkTest was because I would like to have a tool now which is future proof for the 

organisatio. In other words, will this tool support further test automation on the end-to-end chains within this 

large organisation. One really important qualifier for that is solid SAP support. My Proof of concept on 

SilkTest started off looking into SAP support. The way Silk handles SAP I can simply summarize with one 

word: good. Out of the box it managed to select the correct SAP instance from the system selection popup, 

login without issues and after a few attempts execute a bunch of transactions. In other words, I was happily 

surprised! Most test automation applications I had on the longlist have serious issues in dealing with SAP. 

The bad and the ugly 



The not so nice side of SilkTest in my opinion is that the 

recorded code is somewhat ugly, if not really ugly and not very friendly to read and through that probably also 

to maintain. This however is just a minor nuisance compared to the next issue. 

Since the application under test is being served through an RDP tunnel I have no access to the object ID’s. In 

other words, it is difficult to recognize objects on the application. In SilkTest it is not merely difficult, it is 

close to impossible. The only runnable way to do so I found is to record the tests based on the screen 

coordinates and then manually add assertions all over the place. However since SilkTest doesn’t see what it is 

trying to test, getting the assertions in is really hard. What do you put the assertion on? There is no object to 

verify. 

In other words, this is a disqualifier for SilkTest in this context. 

http://martijndevrieze.files.wordpress.com/2013/05/uispy.png
Parithy
Typewritten Text
Source : http://martijndevrieze.net/2013/05/02/selecting-performance-test-tooling-part-3/


	SELECTING PERFORMANCE TEST TOOLING – PART 3
	Some challenges in the PoC…
	Sikuli
	The good, the bad and the ugly.
	The good
	The bad and the ugly


	SilkTest
	The good
	The bad and the ugly





