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A b s t r a c t .  We consider the use of B-spline nonparametric regression models esti- 
mated by the maximum penalized likelihood method for extracting information from 
data with complex nonlinear structure. Crucial points in B-spline smoothing are the 
choices of a smoothing parameter and the number of basis functions, for which sev- 
eral selectors have been proposed based on cross-validation and Akaike information 
criterion known as AIC. It might be however noticed that AIC is a criterion for 
evaluating models estimated by the maximum likelihood method, and it was derived 
under the assumption that the true distribution belongs to the specified parametric 
model. In this paper we derive information criteria for evaluating B-spline nonpara- 
metric regression models estimated by the maximum penalized likelihood method in 
the context of generalized linear models under model misspecification. We use Monte 
Carlo experiments and real data examples to examine the properties of our criteria 
including various selectors proposed previously. 

Key words and phrases: B-spline smoothing, generalized linear model, information 
criteria, smoothing parameter selection. 

1. Introduction 

Smoothing methods in nonparametric regression have drawn a large amount of at- 
tention in recent years. Many different methods such as kernel and spline smooth- 
ing have been proposed for nonparametric curve fitting (see, e.g., Silverman (1986), 
Eubank (1988), Hs (1990), Green and Silverman (1994), Kitagawa and Gersch 
(1996), Simonoff (1996)). In this paper we consider the problem of constructing B- 
spline nonparametric regression models estimated by the maximum penalized likelihood 
method in generalized linear models (McCullagh and Nelder (1989)). 

Crucial points of model construction are the choices of a smoothing parameter 
and the number of basis functions (or knots), for which several attempts have been 
made based on cross-validation (Stone (1974)), generalized cross-validation (Craven and 
Wahba (1979)) and Akaike's (1973, 1974) information criterion AIC. Eilers and Marx 
(1996) replaced the number of free parameters in AIC with the trace of a hat matrix, 
and introduced an information criterion for evaluating B-spline nonparametric regres- 
sion models with Gaussian noise. Recently Hurvich et al. (1998) proposed an improved 
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version of the AIC for smoothing parameter selection in the context of nonparametric 
regression. 

In the information criteria proposed in the literature, attention has been focused on 
the bias correction of log-likelihood for a model estimated by the maximum penalized 
likelihood method. AIC is however derived under the assumptions that the parametric 
model is estimated by the maximum likelihood and that the true distribution belongs to 
a parametric family of densities. Hence the problem still remains to be done in construct- 
ing an information-theoretic criterion for evaluating B-spline nonparametric regression 
models estimated by the maximum penalized likelihood method. We also noticed that 
in practice it is usually difficult to obtain precise information on distributional form 
and data structures from a finite number of observations. It is therefore of interest to 
construct a criterion-under model misspecification. 

The purpose of the present paper is to derive information criteria for evaluating B- 
spline nonparametric regression models estimated by the maximum penalized likelihood 
under model misspecification both for distributional and structural assumptions. Sec- 
tion 2 describes B-spline nonparametric regression models in the context of generalized 
linear models. Section 3 presents information criteria in model selection and evaluation. 

The information criteria proposed are applied to choose the smoothing parameter 
and the number of basis functions in nonparametric curve fitting. We also consider the 
use of Akaike's (1980a, 1980b) Bayesian information criterion as a smoothing parameter 
selector. In Section 4 Monte Carlo experiments are conducted to examine the perfor- 
mance of the proposed criteria and to compare various types of procedures. We use real 
data examples to investigate the properties of the proposed procedure in practice. 

2. B-spline nonparametric regression 

2.1 Model 
Suppose that we have n observations {(x~, y~); c~ = 1 , . . . ,  n} and that the responses 

y~ are generated from an unknown true distribution G(y I x) having probability density 
9(Y I x). To draw information from the data, we use the exponential family of densities 

(2.1) f ( y ~ , x ~ ; ~ , r  = e x p {  y ~  ~ u ( ~ ) + v ( y ~ , r  

where u(.) and v(., .) are specific functions and ~ and r are unknown parameters. Under 
the generalized linear model framework, the conditional expectation E[Y~ I xa] = #a 
(= u ' ( ~ ) )  is related to the predictor T/~ by h(#~) = 7/~, where h(-) is a link function. It 
is assumed that the predictor is 

m 

(2.2) h(u'(~,~)) = rl~ = y~',/jBj(x~), e~ = 1,.. .  ,n 
j = l  

where {By(x);j  = 1 , . . . , m }  (m < n) is a prescribed set of m basis functions. We 
consider basis functions as B-splines of degree 3, constructed from polynomial pieces. 
Figure 1 is an example of B-splines of degree 3 with equidistant knots t l , . . . ,  ts0. For 
B-splines we refer to de Boor (1978), Dierckx (1993) and Eilers and Marx (1996). 

Combining the random component (2.1) and the systematic component (2.2), we 
have a B-spline nonparametric regression model 

(2.3) f(y~ , x~;'7, r  exp {Y~r(~rTb(x~))-r -- s("lTb(x~)) + v(y~,r  , 
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Fig. 1. B-splines of degree 3 with knots t l , . . . ,  tlo. 

w h e r e  b(x~)  = ( B l ( x ~ ) , . . . , B m ( x ~ ) )  T, "7 = (~/1, . . .  ,')'m) T, r( . )  = U '-1 o h - l ( . )  a n d  
8 ( . )  ---- U o U ' - 1  o h - l ( . ) .  

2.2 Estimation 
The unknown parameters 7' and r in (2.3) are estimated by a suitable estimation 

procedure. If one uses the predictor ~?a with small number of basis functions, then the 
parameters may be estimated by maximum likelihood. In practical situations, however, 
it often happens that a model with a small number of parameters cannot satisfactorily 
approximate the data, and we employ a model with more parameters. 

One problem is that  the maximum likelihood method then yields unstable parameter 
estimates and leads to overfitting. In such a case the adopted model is estimated by 
maximizing the penalized log-likelihood function 

n A n (roughness penalty), /~(%r = E l o g f ( y ,  I x , ; " / , r  - 
c~=1 

where A is a smoothing parameter that controls the smoothness of a regression curve. 
The maximum penalized likelihood method was originally introduced by Good and 
Gaskins (1971) and has been investigated by Silverman (1985), Green (1987), Green 
and Silverman (1994) and references therein. 

For B-spline regression model, Eilers and Marx (1996) proposed a penalty based on 
finite differences of the coefficients of adjacent B-splines in the form 

s ~ (A~y) 2 = A-yTDTDk-y, 
j = k + l  

where A is the difference operator such as A'yj = ~/j - 7'j-1 and Dk is an (m - k) x m 
matrix representation given by 

D k  ---- 

(--1)ikCo "'" (--1)kkCk 
( - 1 ) % C o  . - -  

�9 ~  " . .  

�9 " �9 0 

. . o 

(-])%ok 

"'" " I ' (-1)~ (-- l ):kkCk 
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with ~Ck = n!/{k!(n - h)!}. We estimate the unknown parameters "y and ~ by maxi- 
mizing the penalized log-likelihood function 

(2.4) /~('y,r = L { y~r('YTb(x~))-s('YTb(x~)) + v(y~,r  
~=1 r 2 

The B-spline nonparametric regression model estimated by the penalized likelihood 
method was originally introduced by Eilers and Marx (1996) and they called it P-splines. 

The maximum penalized likelihood estimate "~ is a solution of the penalized like- 
lihood equation Ol~('y, r = 0. This equation is generally nonlinear in "y, so we 
use Fisher's scoring algorithm (Nelder and Wedderburn (1972), Green and Silverman 
(1994)). For fixed values of r A and the number of basis functions, the Fisher scoring 
iterations may be expressed as 

(2.5) ~[new = (BTWB + nAD[Dk)-IBTW~, 

where B = (b(xa) , . . . ,  b(x~)) T, W is an n • n diagonal matrix with i-th diagonal element 
w~i = {r -x and ~ an n dimensional vector with ~i -- (Yi - #i)h'(#i) + 
~,Tb(xi). In each Fisher scoring step ~' is updated to ~,ne~ by (2.5) until a suitable 
convergence criterion is satisfied. If h(.) is the canonical link, W and ~ are simplified to 
wi~ = u"(~i)/(b and ~i = (Yi - #,)/u"('yTb(xi)) + ~[Tb(xi). 

Suppose that the observations y~ are independently and normally distributed with 
mean #a and variance a2. Then the B-spline nonparametric regression model with 
Gaussian noise is 

1 [ {ya--'~Tb(x~)} 2] 
(2.6) fN(Ya I Xa;')', a2) -- ~ e x p  -- 2cr2 j ,  

and the maximum penalized likelihood estimates of ~ and c~ 2 are 

(2.7) ~ = (BTB + n/3DTDk)-IBTy, a 2 ---- l i l y  - B ~ l l  2, 
n 

where/3 = ~2/~ for a given value of )~ and y = (Yl,.-.  ,Yn) T. 

3. Information criteria for model evaluation 

3.1 Proposed criterion 
We recall that the independent responses Yl, �9 �9 �9 Yn are generated from an unknown 

true distribution G(y I x) having probability density g(y I x), and that the statistical 
model f (y I x; ~, q~) is constructed within the generalized linear model framework, using 

B-splines. We will assess the closeness of f (y I x; ~, r and the true model g(y I x) from 
a predictive point of view. 

Suppose that  zl, �9 �9 �9 z~ are future observations for the response variable Y drawn 
from g(y I x). Let f ( z  I X; O) = [I~=1 f(z~ I x~; ;y, q~) and g(z I X) = 1-In=l g(z~ I x~). 
Then we use as an overall measure of the divergence of f ( z  I X; O) from 9(z I X) the 
Kullback-Leibler information (Kullback and Leibler (1951)) 

IX) 
I{g, f}  = Ec(~lx) log f ( z  I X; O) 

(3.1) = Ea(z ,x)[ logg(z  I X ) ] -  Ea( , ,x)  [log f ( z  I X;0) ]  
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conditional on 0 .  The first term of (3.1) depends only on the true model and does 
not relate to model evaluation. So it is clear that  the second term of (3.1) is essential 
for model evaluation based on the Kullback-Leibler information. This implies that  the 
minimization of I{g, f}  is equivalent to the maximization of the expected log-likelihood 
EG(~Ix) [log f (z  [ X; 0)]. 

We estimate the expected log-likelihood Ea(zix)[log f (z  I X; ~))] by the (average) 

log-likelihood log f (y  ] X; O)/n. The log-likelihood generally provides an overestimation 
of the expected log-likelihood. We therefore consider the bias correction of the log- 
likelihood. By correcting a bias of the log-likelihood in the estimation of the expected 
log-likelihood, we have an information criterion 

n 

-2  log f(y  I 2s 
o ~ 1  

where ASB is in general an estimate of the asymptotic bias of 

Ea(ulx) [log f (y  I X; O) - Ec(zlx ) [log f (z  I X; 0)1]. 

Under the assumption that  the specified family of probability distributions does 
not contain the true model generating the data, Konishi and Kitagawa ((1996), p. 877) 
derived the asymptotic bias as a function of the empirical influence function of the 
estimator and the score function of the parametric model (see also Konishi (1999)). The 
result is given by 

O0 T 

where T 0) (z I x; G) is the influence function of the maximum penalized likelihood esti- 
mator t~ = T(G) and G is the empirical distribution. 

The influence function of the estimator t) = ( ~ T  ~)T in our model f (y  t X; O) is 
given as follows: Let T(.) be the p dimensional functional implicitly defined by 

"~ T T 
(3.3) f ~ {logf(ylx;O)-~.y DkDk-~} O=T(G) dG=O, 

where 0 = (~,T, r and G is the joint distribution of (y, x) constructed formally. By 
replacing G in (3.3) by the empirical distribution function G based on the observations, 
we have 

L ~ n  c~=l l~  DkDk'T~ O=T(d) --0" 

This implies that  the maximum penalized likelihood estimators ~) can be written as 
= T(G) for the flmctional T(G) implicitly defined by (3.3). 

Replacing G in (3.3) by Ge = (1 - e)G + e6(y,z) with 6(y,x) being a point of mass at 
(y, x) and differentiating with respect to c yields the influence function of the maximum 
penalized likelihood estimator 0 = T(G) in the form 

{ A T T } T(G ) (3.4) T(1) (Y I x; G) = Ja (G)- I  ~0  log f (y  I x; 0) - ~-'1, P k Dk"t , 
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where 

02 { I~  ' x;O) - ~'TTD~DK'/} dG. 

J~(c) : - f ~~176176 ~ 

The result may be obtained by an argument similar to that in Hampel et al. ((1986), 
p. 101) in which they derived the influence function of an M-estimator. 

Then substituting (3.4) in the asymptotic bias (3.2) and using Theorem 2.1 given 
in Konishi and Kitagawa ((1996), p. 876), we have the following theorem. 

THEOREM 3.1. Let f ( y ,  I x, ;  % r be the B-spline nonparametric regression model 
defined by (2.3), and let f ( y ,  Ix , ;  ~r r be the statistical model fitted by the maximum 
penalized likelihood method in (2.4). Suppose that the exponential family with the linear 
predictor replaced by B-splines does not necessarily contain the true model generating the 
data. Then an information criterion for evaluating the statistical model f ( y ,  x,;  ~r r 
is 

+ 2 t r{5 , (d )&(d) - l} ,  

where Ix(d) and J~(d) are the (m + 1) x (m + 1) matrices 

~ T T ) 0 logf(y ,  I x~;')',r - [~ '  DaDa'y ~ 
1~-~ 

;~(d) = n oo 
.=1 

Ologf(Y~o0 T] x,;~,,r  o=o 

(3.5) = 1---( B T A / ~ -  ADTDk~IT~(AB, Cp), 
n$ \ v r ] 

A TDTD _ ] _ 1  6 02 logf (y ,  Ix.;"/,(/)) - 3 7  k k"/f 
J:,(G) 

n .=1~ c~oooT 

1 ( BTFB + nCAD~Dk, BTAIn/~) 

(3.6) -- n~p ~ 1TABle,  --r ] "  

Here A and F are n • n diagonal matrices with i-th diagonal elements 

Yi -- fii 
~"(~)h'(:~) ' 

rii = (yi - fii){u'"(~i)h'(fii) + u"(~i)2h"(fii)} 1 
{u,,(di)h,(fii) }3 + u,,(~i)h,(fii)2 ' 

respectively, and in = (1, . . . ,  1) T, p and q are n dimensional vectors with i-th elements 

8(~/Tb(xi)) 

~=, ~=~ 
p~ = ~ : ( ~ % ( x , )  ~- + v(y~,r q, = ~-~ 

Opi 
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Canonical link functions relate the parameter ~ in the exponential family (2.1) 
rn 

directly to the predictor ~ = ~-]j=l "~jBj(xa) in (2.2), and lead to 

(3.7) fd(yalx~;~/ ,r  

Then we have the following theorem. 

THEOREM 3.2. Let h be the canonical link function, so h(.) = u ' - l ( - ) .  Then an 
information criterion for evaluating the statistical model fd(Ya I x~; ~, r given by (3.7) 
is 

+ 2tr{I(Cl)(G)j(co(d)- l} ,  

where I (CO (6) and j (co  (~) are defined by (3.5) and (3.6) with 

hii = Yi - u'(~[Tb(xi)), Fii : u"('yTb(xi)), 
yi~Tb(xi) 

2 Yi~[T b( xi ) --u 02 I qi---- ~ 3  ('~Tb(xi)) + 0--~v(yi,r . 
r 

We choose the value of a smoothing parameter )~ and the number of basis functions 
m which minimize the information criterion SPIC. 

Ordinarily, P-splines transfer the issue of the number and the position of knots into 
the choice of the smoothing parameter. Eilers and Marx (1996) employed a modest 
number of knots and concentrated on the choice of the smoothing parameter. In fact, 
P-spline procedure is a useful tool for fitting a curve to data with nonlinear structure. 
We consider the number of knots (or basis functions) as an unknown parameter, since 
it may relate to the stability of the estimated model. Also the information criteria 
are constructed as asymptotically unbiased estimators of the expected log-likelihood 
under model misspecification. Hence we consider the problem of choosing not only the 
smoothing parameter but also the number of basis functions. We illustrate the procedure 
in Section 4. 

Example 1. Suppose that the observations y~ are independently and normally dis- 
tributed with mean #~ and variance a2. Then the B-spline nonparametric regression 
model with Gaussian noise (2.6) estimated by the maximum penalized likelihood method 
can be expressed as fg(Y~ I x~;'Y, 02), where ~ and 02 are given by (2.7). Taking 
u(~)  = ~2/2, r = & 2 and v(y~, & 2) = - (y~ /&)2/2-  log(hv/2~)in Theorem 3.2, we have 
the following information criterion for evaluating the statistical model fg  (Y~ I xa;'~, 52), 

(3.8) SPICN = nlog02 + nlog(2~) + n + 2tr{I(N)(O)J(N)(G)-I}, 
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where I (N) (G)  and j ( g ) ( ~ )  are given by (3.5) and (3.6) with 

Aii = yi - ~ T b ( x i ) ,  Fii = 1, 

Pi = {Yi - ~ /Tb(x i )}2 / (2~4)  -- 1/(2a2), qi = --{Yi -- z t T b ( x i ) } 2 / a  6 + 1/(2a4) �9 

Example  2. Suppose that we have n observations { (x~ ,y~) ,a  = 1 , . . . , n } ,  where 
x~ are explanatory variables and y~ are independent random variables coded as either 
0 or 1. Consider the B-spline nonparametric logistic regression model 

fL(Y  I = 7r(xa)Y {1 - 71"(Xc~)} 1 - y ~ ,  

where Pr(Ya = 1 I = ~(x~), Pr(Ya = 0 I xa) = 1 - 7r(xa) and 7r(x~) = 1/{1 + 
exp( - -~ /Tb(x~) )} .  The m dimensional parameter vector "), is estimated by the maximum 
penalized likelihood method. Taking 

u(~a) = log{1 + exp(~a)}, v(ya ,  r = 0, h(/2~) = log /2------K--a and r = 1 
1 - D~ 

in Theorem 3.2, we have the following information criterion for evaluating the statistical 
model fL(Y~ I x~;#) ,  

(3.9) 
n 

SPIC5 = 2 E [log{1 + e x p ( ' ~ T b ( x . ) ) }  - ya~/Tb(x . )]  
o~:1 

+ 2 t r l I ( L ) ( G ) J ( L ) ( d ) - ' ) ,  

where 

I (L) (O)  : B T A 2 B  _ ADTDk~/1TnAB ' J(~n)(o) : B T F B  + n)~DTDk,  

with Aii = Yi - 1/{1 + exp( - -~ /Tb(x~) )}  and Fi~ = exp(~ tTb(xa) ) l {1  + exp(~yTb(x~))}  2. 

3.2 Other criteria 
The criteria proposed previously may be used as selectors in nonparametric curve 

fitting. This section describes the use of other criteria for the B-spline nonparametric 
regression model with Gaussian noise. 

(1) Akaike's (1980a, 1980b) Bayesian information criterion 
Akaike (1980a, 1980b) considered a smoothing problem in the Bayesian framework, 

and proposed the smoothness priors method based on the likelihood of a Bayesian model. 
Let 7r(~/ I )0 be a prior distribution of the m dimensional parameter vector "t in the 
B-spline nonparametric regression model given by (2.3), where /k (> 0) is a hyperpa- 
rameter. The hyperparameter corresponds to a smoothing parameter in the penalized 
log-likelihood function in (2.4). 

When the observations {(x~, y ~ ) ; a  = 1 , . . . ,  n} are given, the posterior distribution 
is 

(3.1o) 
c l=l  a = l  
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The integral defining the denominator of equation (3.10) 

n 

L(A,r -- / YI  I(Y" ] x~;-y,r [ A)d3' (3.11) 

is the likelihood for the unknown parameters )~ and r In order to determine the value of 
A, Akaike (1980a, 1980b) considered the maximization of the marginal likelihood (3.11) 
with respect to A and r (see also Good (1965)), or equivalently the minimization of 

Let A and r be the minimizers of ABIC. Then the estimator of the parameter ~, is chosen 
to maximize I]2--j I(Y~ I xc~;'~', r [ A) which corresponds to the maximizer of the 
posterior density (3.10) with respect to '~' for fixed A and q~. A number of successful 
applications of ABIC in statistical data  analysis have been reported (see, e.g., Bozdogan 
(1994), Kitagawa and Gersch (1996)). 

We now rewrite the penalized log-likelihood function (2.4) as 

(3.13) l~162 1 /2exp(-~ 'YTD[Dk' t )  i = l  

where r m - k is the rank of the m x m matrix T = D k Dk and d l , . . . ,  dT are the nonzero 
eigenvalues of nAD~Dk. Hence the maximum penalized likelihood method is related to 
a Bayes model with improper prior distribution ~r(9' I A). For fixed values of )~ and r 
the estimation problem of ~, by maximizing the penalized log-likelihood function (2.4) 
is equivalent to obtain the mode of the posterior distribution (3.10) (Wahba (1978), 
Silverman (1985), Ishiguro and Arahata (1982), Tanabe and Tanaka (1983)). 

Consider the B-spline nonparametric regression model with Gaussian noise given 
by (2.6). Then it follows from (3.12) and (3.13) that  ABIC can be expressed as 

A B I C N  = (n - k) log(27r) + (n - k) log ~2 _ ( m  - k) l og (n~)  - log r 

+ log [BTB + n/3DTDkl + (I[Y -- B'~ll 2 + n/3~TDTDk~)/a2, 

where ~y = (BTB + n/3D[Dk)-IBTy, /3 = a2)~ and ~b is a product  of the nonzero 
eigenvalues of D[Dk. For a given value of/3, the value of ~2 is chosen such that  ABIC is 
minimal, and is given by 5~ = (I[Y - B~[] 2 + n/3~yT DTDk~[)/( n -- k). The optimal value 
of/3 is obtained as the minimizer of ABICN(/3, &~). 

(2) Modified AIC (Eilers and Marx (1996)) 
Under the assumptions that  the model is estimated by maximum likelihood, and the 

true model belongs to the set of candidate models, Akaike's (1973) information criterion 
(AIC) is given by 

-2(log-likelihood of the estimated model) + 2(the number of estimated parameters). 
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Eilers and Marx (1996) proposed to use AIC for the problem of choosing the optimal 
amount of smoothing, and gave criteria for Gaussian, Poisson and binomial models. For 
a Gaussian model, Eilers and Marx (1996) gave 

n 

AICm = - 2  E log fN(Y~ ] X~; "~, ~02) + 2 tr S, 
c~=1 

where S is the hat matrix B(BTB + n/3D[Dk)-IB T and ~02 is the estimated error 
variance &g = ]IY- B(BTB)-IBTy]]2/TM The variance was estimated by using the fitted 
value ~) calculated at )~ = 0. 

When the number of basis functions is large compared with sample size, the inverse 
of the m x m matrix BTB tends to be unstable and is often not computable. In our 
Monte Carlo simulation, we estimated a 2 by ~2 = Ily - B~'I]2/n, where ~ = (BTB + 
n/3DTDk)-IBTy, and used instead the criterion 

AIC m = - 2  ~ logfN(y~ ] x ~ ; ~ , ~  2) + 2 ( t rS  + 1). 
oe~ l  

A problem may arise in theoretical justification for the use of the bias-correction term 
in AIC naturally, since AIC covers only models estimated by the maximum likelihood. 

(3) Improved AIC (Hurvich et el. (1998)) 
In parametric linear regression and autoregressive time series models, Hurvich and 

Tsai (1989) proposed an improved version of AIC given by 

2n(p + 1) 
-2(log-likelihood of the estimated model) + 

n - p - 2 '  

where p is the number of regression parameters in the model (see also Sugiura (1978) 
for a Gaussian linear regression model). Hurvich et al. (1998) replaced the number of 
parameters by the trace of the hat matrix S and introduced the criterion 

n 2n(tr S + 1) 
AICc = - 2  ~ log IN(Y~ ] x~; a/, &2) + 

n - t r S - 2 '  
c~=l  

being easy to apply in practical situations. 

(4) Cross-validation 
In cross-validation, the predictor for each observation is constructed based on the 

remaining data. Let ~(-~)  be a regression curve estimated by the observed data except 
(x~, y~). The cross-validation criterion is then 

(3.14) CV = _1 (ya _ ~(_a)(xa))2 = _1 y~_ -_ 
n n \ 1 - s ~  / ' 

c~=l  c~=l  

where s ~  is an c~-th diagonal element of the hat matrix S and ff~(-~)(x~) is a predictive 
value of E[Ya ] xa] = #~. 

Generalized cross-validation introduced by Craven and Wahba (1979) replaces s ~  
in (3.14) by the average }-in ~=1 s ~ / n  = tr S/n and is 

GCV = I ~--~ ( Y~ - tv(x~) ) \ -12-tr~/n 
0:~1  
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4. N u m e r i c a l  r esu l t s  

4.1 Analysis of real data 
�9 The motorcycle impact data 
We illustrate the proposed procedure to choose the smoothing parameter and the 

number of basis functions through the analysis of the motorcycle impact data  (Silverman 
(1985), Hs (1990), Eilers and Marx (1996)). The motorcycle impact data  were simu- 
lated to investigate the efficacy of crash helmets and comprise a series of measurements 
of head acceleration in units of gravity and times in milliseconds after impact. 

We fit the B-spline nonparametric regression model with Gaussian noise (2.6) to the 
motorcycle impact data. The maximum penalized likelihood estimates ~ and 52 are given 
by equation (2.7). Then we choose the number of basis functions m and the smoothing 
parameter /~ that  minimize the information criterion SPICN given by equation (3.8). 
For the analysis of the motorcycle impact data, we set the candidate values of m and fl 
to {10 , . . . ,  30} and {101~176176 i = 1 , . . . ,  100}, respectively and optimal values of/3 
and m could be chosen such that the criterion SPICN(~, m) is minimized. The roughness 
penalty in the penalized likelihood function (2.4) is taken as the second-order penalty 

T T defined by ~ D 2 D2V. We choose the optimal values ~h = 16 and ~ = 3.59 x 10 -4, and 
then SPICN = 1214.28. The corresponding fitted curve is shown in Fig. 2 (a) (solid 
curve). 

We implement our procedure against various types of criteria which introduced in 
Section 3.2. Table 1 gives the values of the nmnber of basis functions and the smoothing 
parameter chosen by each criterion. We observe that, except for ABICN, the criteria 
yield similar values for ~ and ~, and are not directly comparable. The agreement in the 
variance estimates ~2 is close for all of the criteria. 

We selected the optimal number of basis functions by SPICN. But we could not 
visually find difference among the fitted curves corresponding with m = 15 , . . . ,30 .  
One possible interpretation is that regarding the modest number of basis functions, 
the smoothing parameter can adjust the smoothness of B-spline curve fitting. Further 
research is needed for the effect of the number of basis function upon the B-spline 
smoothed estimate, making inference about its stability and reliability. 

�9 Kyphosis in laminectomy patients 
As our second example, we analyze the kyphosis data (Hastie and Tibshirani (1990)) 

by using B-spline nonparametric logistic regression model illustrated in Example 2. The 
data were collected from 83 patients undergoing corrective spinal surgery. The response 
y~ represents kyphosis after the operation and coded as either 0 (absence) or i (presence). 
We examined the relation between kyphosis and age in months at time of surgery. 

The parameter vector "), is estimated by maximizing the penalized log-likelihood 

Table 1. B-spline smoothed estimate for the motorcycle impact data. 

SPICN CV GCV ABICN AIC m AICc 

16 16 16 30 15 16 
X 10 4 3.59 3.68 5.86 59.9 3.68 5.86 
(~2t 464.0 464.2 468.0 461.9 470.8 468.0 

t~.~ = ~ : = I ( Y ' : '  - %Pin. 
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Fig. 2. Real data  examples: (a) The motorcycle impact data. (b) and (c) The kyphosis data. 
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Fig. 3. E x a m p l e s  of s i m u l a t e d  d a t a :  T h e  d a s h e d  curve  is t h e  t r u e  regress ion  curve ,  whi le  t h e  
solid cu rve  is B - s p l i n e  s m o o t h e d  e s t i m a t e  based  on  S P I C N .  w ( x )  = (a) 1 - 48x  + 218x  2 - 
315x 3 -F 145x 4, (b)  e x p ( - 2 x )  sin(57rx),  (c) s i n ( 2 ~ x a ) .  
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T T function with second order penalty 3' D2 D2~. The optimal values of A and m are 
selected by SPICL (3.10). Figure 2 (b) shows the fit for ~ = 0.0132 and rh = 10, and 
then SPICL = 83.125. We can infer from the results on Fig. 2 (b) that the operation 
risk has a peak around 100 months after birth. 

In a further research, we use the first, third and fourth order penalties and investi- 
gate the behaviors of SPICL. Figure 2 (c) represents the behaviors of SPICL with the 
differences order k = 1, 2, 3 and 4. We can find the optimal value of A which minimizes 
SPICL in the first and second order penalty. However, in the third and fourth order 
penalty, SPICL is a monotonous decreasing function and we cannot find the optimal 
value of A. Within our research, when we use the third order penalty and a very large 
value of ~, SPICL achieves the minimum (82.835). This implies that  effectively the fitted 
curve for r/is a second order polynomial (see Tanabe and Tanaka (1983), Eilers and Marx 
(]996)). 

4.2 Numerical comparisons 
In a Monte Carlo simulation repeated random samples {(xa, Ya); a = 1 , . . . ,  n} were 

generated from the true regression model Ya = w(xa) + ea for x~ = (2a - 1)/(2n). The 
errors e~ are assumed to be independently distributed according to a mixture of two 
normal distributions ca N eN(0, a 2) + (1 - e)N(O, 3a2), where the standard deviation is 
taken as cr = 0.05Ry or 0.1Ry with R v being the range of w(x) over x E [0, 1]. The true 
curve w(x) is assumed to be the following regression functions (see, e.g., Hurvich et al. 
(1998)). 

1 - 48x + 218x 2 - 315x 3 + 145x 4, 

w ( x ) =  sin(27rx3), 

exp( -2x)  sin(51rx). 

We fit B-spline nonparametric regression model with Gaussian noise defined by (2.6) 
to the simulated data. The model is estimated by the maximization of the penalized like- 
lihood function (2.4) with the second-order penalty and 10 basis functions, since Monte 
Carlo simulations require a considerable amount of computation. Figure 3 shows exam- 
ples of simulated data with B-spline smoothed estimates based on SPICN. In order to ex- 
amine the properties of various types of criteria, we use the average squared error (ASE) 
and predictive average squared error (PASE) defined by ASE = ~2=1  {w(xa) - l)a}2/n 

n . ^ 2 n . . . . ,  . and PASE = ~a= l (Ya  -Ya)  / , where Yl, Yn are future observations generated from 
the true model. The simulation results were obtained by averaging over 300 repeated 
Monte Carlo trials. Table 2 summarizes the simulation results for each true regression 
curve, in which the notation MEAN and SD refer to the average value of/~ chosen by 
each criteria and its standard deviation, respectively. 

Simulation results may be summarized as follows: Our proposed information crite- 
rion, SPICN, generally gives good estimates in the sense of ASE and PASE, and yields 
stable smoothing parameter estimates. The performance of ABICN depends on com- 
plexity of the regression function and the error variance. For the regression function 
(b), ABICN is the best selector and SPICN is an alternative. But for the regression 
functions (a) and (c), ABICN chooses unstable smoothing parameter estimate and gives 
larger ASE and PASE, whereas SPICN gives good performance. The smoothing param- 
eters chosen by CV have high variability, and lead to larger ASE and PASE compared 
with SPICN in most situations. 
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Table  2. M o n t e  Car lo  resul t s  (n  = 100). 

SPICN CV CCV ABICN AIC~ AICc 
w(x) = 1 - 48x  + 218x  2 - 315x  3 + 145x 4, a/Ry = 0.05 

e =  1.0 

M E A N x l 0 6  9.102 13.66 15.78 30.70 14.01 18.80 

S D x l 0 5  1.263 1.856 1.847 1.107 1.689 2.064 

A S E x l 0 3  3.523 3.577 3.581 3.721 3.559 3.614 

P A S E x l 0 2  3.819 3.826 3.824 3.838 3.821 3.826 

e =  0.9 

M E A N x l 0 5  1.095 1.558 1.964 3.807 1.746 2.439 

S D x l 0 5  1.268 1.838 2.175 1.415 1.929 2.730 

A S E x  10 a 4.085 4.136 4.138 4.297 4.117 4.184 

P A S E x l 0 2  4.498 4.503 4.503 4.523 4.500 4 .508 

w(x) = e x p ( - 2 x )  sin(57rx),  a / R y  = 0.1 

e =  1.0 

M E A N x l 0 5  1.681 2.335 2.272 2.573 2.087 2.664 

S D x l 0 5  1.399 1.852 1.629 0.718 1.558 1.830 

A S E x l 0 3  2.363 2.387 2.383 2.339 2.377 2.403 

P A S E x  102 2.120 2.122 2.122 2.117 2.121 2.123 

~ =  0.9 

M E A N x l 0 5  1.794 2.601 2.424 3.014 2.182 2.852 

S D x l 0 5  1.546 2.217 1.641 0.869 1.540 1.899 

A S E x  103 2.535 2.568 2.536 2.492 2.533 2.554 

P A S E •  2.530 2.533 2.529 2.524 2.530 2.531 

w(x) = sin(27rx3),  a/Ru = 0.2 

c =  1.0 

M E A N  x 104 1.309 

SD x 104 1.641 

A S E x l 0 2  1.491 

P A S E  x 10 1.753 

e = 0.9 

M E A N  x 104 1.968 

S D x l 0 4  2.771 

A S E x l 0 2  1.872 

P A S E x l 0  2.133 

1.682 1.961 5.774 1.772 2.363 

1.842 1.949 3.390 1.854 2.145 

1.497 1.505 1.605 1.502 1.513 

1.753 1.759 1.762 1.759 1.754 

2.591 2.910 7.992 2.495 3 .497 

3.225 3.141 5.652 2.729 3.461 

1.899 1.876 2.005 1.878 1.891 

2.139 2.133 2.150 2.133 2.145 

M E A N ,  A S E  a n d  P A S E  are averages .  
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We observed that the smoothness of an estimated curve is mainly controlled by 
the smoothing parameter. Hence, in practice, we may employ a modest number of basis 
functions and then determine the smoothing parameter as the minimizer of the criterion. 

ABICN and AICc work well when the error variances are relatively large (i.e. large 
smoothing parameter is appropriate) and have a tendency toward oversmoothing. GCV 
is better than CV in many situations. SPICN, GCV and AIC* work well in the cases 
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where the error variances are relatively small. But SPICN is better  than GCV and 
AIC~ in most cases. When the error variances are relatively large, SPICN still gives 
good performance. For large sample size of n = 200, all of the criteria stably choose the 
smoothing parameter and yield sufficiently small ASE and PASE. 

Similar comparisons were made for other combinations of sample sizes, the number 
of basis functions and mixing proportions. We found the results described above to be 
essentially unchanged. We conclude from the results of Monte Carlo simulations that 
SPICN generally works well in practical situations. 

We agree that AIC* and AICc are easy to apply in practice. Despite the simplicity 
of these criteria, the problem still remains in theoretical aspect. We derived SPIC as an 
estimator of the Kullback-Leibler information under model misspecification and it has a 
sounder theoretical basis than AIC* and AICc.  

5. Discussion 

In this article we derived information criteria for evaluating B-spline nonparametric 
regression models estimated by the maximum penalized likelihood method under model 
misspecification. We observed through Monte Carlo experiments and real data  examples 
that the proposed criteria generally perform well for B-spline smoothing. The criteria 
were given as estimators of the Kullback-Leibler measure of discriminatory information 
between two probability distributions. An advantage of the information-theoretic ap- 
proach is that it is not restricted to linear estimators of regression functions, but  may 
be applied to construct a criterion for evaluating other nonparametric models like neural 
networks. 

The bootstrap methods introduced by Efron (1979) offer an alternative approach 
to statistical model evaluation problems (Konishi and Kitagawa (1996), Ishiguro et al. 
(1997)). By bootstrapping the bias of a log-likelihood of estimated nonparametric model, 
we may construct a model evaluation criterion. However the bias estimate obtained 
numerically includes both the randomness of the observed data and simulation error 
which decreases as the number of bootstrap replication increases. Also Monte Carlo 
algorithm requires considerable amount of computations. Further work remains to be 
done in constructing a bootstrapping criterion. 
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