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Introduction

Cauliflower (Brassica oleracea L. var. botrytis), an 
annual herbaceous crop belonging to the cruciferous 
vegetables, is an important and widely-grown vegetable 
worldwide (Giuffrida et al. 2018). It is an excellent 
source of phenolics, ascorbic acid, vitamins B1, B2, and 
B3, folic acid, tocopherols, and dietary fibre (Mashabela 
et al. 2018, Nerdy 2018, Sun et al. 2018, Thorwarth et al. 

2018). Medical research has revealed that a diet rich in 
cauliflower can lower the risk of cancer (Bergès et al. 2018, 
Kalisz et al. 2018). Cauliflower contains glucosinolates, 
a class of secondary plant metabolites; their hydrolyzed 
products have anti-carcinogenic properties (Oda et al. 
2019). The findings of multiple studies have indicated that 
environmental stresses can increase the accumulation of 
glucosinolates (Jousef et al. 2018, Oda et al. 2019), but 
the glucosinolate content in most cauliflower plants is very 
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Abstract

Cauliflower is one of the most important popular vegetables in China. Cauliflower (Brassica oleracea L. var. botrytis) 
produces glucosinolates, which are secondary metabolites that have anti-cancer properties. The choice of suitable 
reference genes (RGs) for gene expression studies has a significant effect on experimental outcomes. In this study, we 
selected 15 candidates as RGs and analyzed them under heat, cold, drought, and salt stresses and methyl jasmonate 
(MeJA) treatment. The precision of the real‐time quantitative polymerase chain reaction data was assessed using four 
methods (geNorm, NormFinder, BestKeeper, and ΔCt). The results revealed that EF1-β and ACT7; ACT1, EF1-β, and 
TUB6; TUA2 and EF1-β; HIS and ACT7; and ACT7 and ACT3 were the most stable combinations of genes for heat 
stress, cold stress, drought stress, salt stress, and MeJA treatment, respectively. The expression stability of the RGs 
fluctuated under different experimental conditions. Choosing the optimal RG for the specific experiment is therefore 
essential. This work provides relevant information for further gene expression studies on cauliflower and other closely 
related species.

Keywords: Brassica oleracea var. botrytis, cold, drought, gene expression, heat, methyl jasmonate, salinity.
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low. Exploring the biosynthesis pathway of glucosinolates 
in cauliflower under different stress conditions such as 
heat, cold, and drought may provide further insights into 
increasing glucosinolate content. Analyzing the expression 
of key functional genes may help us to understand the 
metabolic pathways and regulatory mechanisms of 
cauliflower under various stresses.

The real‐time quantitative polymerase chain reaction 
(qPCR) method is an effective experimental method for 
analyzing the expression of functional genes under abiotic 
stresses in cauliflower on account of its high sensitivity, 
specificity, good repeatability, and high throughput to 
target genes (Zhang et al. 2017, Nguyen et al. 2018, Sun 
et al. 2019, Wang et al. 2019). To obtain accurate gene 
expression data, it is important to limit the deviation of 
expression due to factors such as primer design, cDNA 
transcription, and PCR amplification (Huggett et al. 
2005, Nolan et al. 2006, Expósito-Rodríguez et al. 2008, 
Liu et al. 2018). Using internal control reference genes 
(RGs) for the normalization of target gene expression is 
a method commonly used to correct deviations (Bustin 
et al. 2010). The ideal RG is expressed consistently among 
various cells, tissues, organs, developmental stages, and 
environmental stresses.

For the most part, highly conserved housekeeping genes 
(HKGs) are stably expressed to maintain basic cellular 
activities under various conditions and stresses in plants (Li 
et al. 2016b). Therefore, HKGs, or the genes that are stably 
expressed in cells, for instance, GAPDH (glyceraldehyde-
3-phosphate dehydrogenase), UBQ (polyubiquitin), TUB 
(tubulin-β), TUA (tubulin-α), EF1-α (elongation factor 
1-alpha), EF1-β (elongation factor 1-beta), eIF4A-1 
(eukaryotic initiation factor 4A-1), and ACT (actin), are 
widely used for gene expression analysis under different 
abiotic and biotic stresses in different plant species (Xu 
et al. 2014, Wang et al. 2016, Duan et al. 2017, Li et al. 
2020a, Yu et al. 2020). The same HKGs cannot be used in 
all studies. Among monocotyledons, for example, GAPDH 
has the most stable expression for hormone ethylene 
treatment in Stellera chamaejasme (Liu et al. 2018b) but 
is not appropriate for studies on Brachypodium distachyon 
(Hong et al. 2008). In dicotyledons, UBQ10 is the most 
suitable gene in Populus ussuriensis under drought, cold, 
and salt stress, and abscisic acid (ABA) treatment (Wei 
et al. 2020). However, UBQ10 has the lowest stability in 
Glehnia littoralis treated with salt stress, drought stress, 
ABA, and MeJA (Li et al. 2020a). In herbaceous plants, 
TUB is not a suitable gene for studies on Moringa oleifera 
under drought stress (Deng et al. 2016), but in Brassica 
rapa ssp. pekinensis, TUB is the most stable gene during 
flower bud development (Xu et al. 2014). In studies on 
cruciferous vegetables, TUA exhibits the most stable 
expression in different tissues of radish hybrids (Duan 
et al. 2017), while in Isatis indigotica, TUA is the most 
unstable gene under nitrogen treatment (Qu et al. 2019). In 
a study of Brassica, during the development of the stigma 
for non-heading Chinese cabbage SI plants in non-heading 
Chinese cabbage, ACT gene expression is the most stable 
(Wang et al. 2016), whereas, during the various stages of 
stem enlargement in mustard stems, ACT is thought to be 

the least reliable RG (Li et al. 2020b). Since no RGs are 
stably expressed among different plants, there is a need to 
screen for suitable internal RGs in different plant species.

There has been some preliminary progress in the 
selection of RGs in cauliflower (Sheng et al. 2016, 
Randhawa et al. 2008). However, many studies have 
noted that the expressions of RGs are not stable under 
different experimental conditions (Huang et al. 2014, Arya 
et al. 2017, De Andrade et al. 2017, Zhang et al. 2017). 
For example, TUA6 shows the most stable expression in 
ABA experiments on Stellera chamaejasme, but TUA6 is 
the most unstable gene under ethylene treatment (Liu et 
al. 2018b). GAPDH is the most suitable RG during the 
pistil development of radish, while ubiqutin-conjugating 
enzyme (UBC) expression is more stable under various 
biotic and abiotic stresses (Duan et al. 2017). Therefore, 
under specific conditions, it is important to use suitable 
internal RGs to guarantee accurate results in gene 
expression analyses. To obtain more accurate results, two 
or more internal RGs are often used to calibrate target 
genes (Nguyen et al. 2018, Wang et al. 2019). In this 
study, it was necessary to validate the best combination 
of internal parameters for the accuracy of the real-time 
qPCR findings. Our findings will promote studies on 
the involvement of cauliflower genes in glucosinolate 
biosynthesis and metabolic pathways under abiotic stress 
and hormone treatments.

In this work, 15 candidate RGs, including ACT1 
(actin-1-like), ACT2 (actin-2-like), ACT3 (actin-like 
protein), ACT7 (actin 7), TUA2 (alpha-tubulin 2), TUB6 
(tubulin beta-6), EF1-α, EF1-β, GAPDH, HIS (histone 
H1-like), KIN (protein kinase), eIF4A-1, FBA5 (fructose- 
bisphosphate aldolase 5), SAMDC (S-adenosyl-L-
methionine decarboxylase), and UBQ were selected based 
on the cauliflower transcriptome database to detect suitable 
internal control genes for normalizing gene expression 
under a set of different experimental factors, such as heat, 
cold, drought, and salt stresses and MeJA treatment. The 
stability of the candidate RGs was evaluated by means 
of four algorithms: GeNorm (Vandesompele et al. 2002), 
NormFinder (Andersen et al. 2004), BestKeeper (Pfaffl 
et al. 2004), and the ΔCt method (Schmittgen and Livak 
2008). To further verify the stability of the selected genes, 
the expression of the target gene, WRKY3, was measured. 
Finally, the most accurate RGs for each factor can be 
useful for further research in gene expression analysis in 
cauliflower and other closely-related species.

Materials and methods

Plants and experiments: This experimental work 
used the seeds of Brassica oleracea L. var. botrytis cv. 
Qingnong 65. Like many vegetables, cauliflower prefers a 
mild climate. Its optimum growth temperature is 8 - 24 °C, 
and the suitable temperature for flower ball growth is 
15 - 18 °C. It grows slower when the temperature is below 
8 °C, and when the temperature is over 25 °C, the flower 
ball is small and the quality is poor (Wang 2012). The 
seeds were washed three times with distilled water and 
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placed in a flask containing (1/3 the volume) of water. The 
flask was then shaken in a shaker at 150 rpm at a constant 
temperature of 25 °C. The water was changed every day. 
When the seeds germinated, they were sown to soil in an 
incubator under a 12-h photoperiod, day/night temperatures 
of 25/20 °C, an irradiance of 300 μmol(photons) m-2 s-1, 
and relative humidity of 60 %. When the seedlings were 
six weeks old, we conducted different treatments.

Five experiments were set up: 1) for the heat stress, 
plants were transferred to an incubator set at 38 °C; 2) for the 
cold stress, plants were kept in an incubator at 4 °C (Zeng 
et al. 2021); 3) for the drought stress, plants were watered 
with 20 % polyethylene glycol (PEG) 6000 solution; 4) for 
the salt stress, 200 mM of NaCl was added to the soil; and 
5) for the hormone treatment, 100 μM MeJA was sprayed 
onto the treated plants. Leaf samples were collected after 
0, 3, 6, 12, and 24 h of each treatment (Liu et al. 2018). 
Triplicate samples were collected in different treatments, 
frozen in liquid nitrogen, and stored at -80 °C for further 
testing.

RNA extraction and cDNA synthesis: The RNA 
extraction was conducted according to the manual in 
the general plant RNA extraction kit (Bio-Tek, Beijing, 
China). The integrity of the proposed RNA was detected by 
1 % (m/v) agarose gel electrophoresis. The concentration 
and purity of the RNA were measured by a Nanodrop ND-
1000 spectrophotometer (Thermo Scientific Company, 
Wilmington, CA, USA). The cDNA was synthesized using 
PrimeScriptTM II 1st Strand cDNA Synthesis kit according 
to the manufacturer's instructions (TaKaRa, Kusatsu, 
Japan). The amount of RNA per sample was determined 
according to the extracted RNA concentration for ensuring 
a consistent mRNA content in each sample. The cDNA 
concentrations of all of the samples were examined using 
the Nanodrop ND-1000 spectrophotometer for further 
experiments.

Candidate reference gene selection and primer design: 
We selected 15 RGs according to research performed in 
other plants, especially research on related species (Liu 
et al. 2013, Xu et al. 2014, Nadai et al. 2015, Martins 
et al. 2016, Wang et al. 2016, Liu et al. 2018b, Li et al. 
2020b, Zeng et al. 2021). The sequences of the 15 genes 
ACT1, ACT2, ACT3, ACT7, TUA2, TUB6, EF1-α, EF1-β, 
GAPDH, HIS, KIN, eIF4A-1, FBA5, SAMDC, and UBQ 
were obtained from the genome sequencing database 
of cauliflower (unpublished database). We cloned the 
15 candidate genes and verified them by sequencing. 
Using a BLAST search in NCBI, cauliflower homologs of 
RGs were obtained (Table 1 Suppl.). Based on the criterion 
of the primer design, we designed primers for real-time 
qPCR using Premier 5.0 software (Table 1 Suppl.). 
Primers were used in the following procedure: 94 °C 
for 3 min; 35 cycles of 94 °C for 30 s, 52 °C for 30 s, 
72 °C for 30 s; 72 °C extension for 7 min. The 20 mm3 
of reaction system included: 2 mm3 of 10× PCR buffer 
(including Mg2+), 1 mm3 of primer F (10 μM), 1 mm3 of 
primer R (10 μM), 1 mm3 of dNTP (10 μM), 0.2 mm3 of 
Taq polymerase (5 U), 2 mm3 of cDNA, and 12.8 mm3 of 

ddH2O. Their gene description, GenBank ID, sequences, 
amplicon length, amplicon characteristics, and the 
correlation coefficient (R2) are presented in Table 1 Suppl.

Reverse transcription RT-qPCR: The RT-qPCR was 
conducted using the SYBR Green Premix Ex TaqTM kit 
(TaKaRa) and the 7500 Real Time System instrument 
according to the manufacturer’s instructions (ABI, Foster 
City, CA, USA). Each sample was tested three times. The 
10 mm3 of reaction system included 5 mm3 of 2×SYBR 
Premix Ex TaqTM, 0.4 mm3 of Primer F (10 μM), 0.4 mm3 
of Primer R (10 μM), 0.2 mm3 of ROX Reference Dye 
(10 μM), 2 mm3 of cDNA, and 2 mm3 of ddH2O. The PCR 
amplification reaction procedure was as follows: 95 °C for 
30 s; followed by 40 cycles of 95 °C for 5 s, and 60 °C for 
34 s. After amplification, the melting curve was analyzed. 
The dissociation curve program was as follows: 95 °C for 
15 s, 60 °C for 1 min, and 95 °C for 15 s.

Validation of reference gene stability: The WRKY3 
gene is a transcription factor involved in the physiological 
activities of cauliflower during different experimental 
conditions. The WRKY3 plays an important regulatory 
role in plant tolerance to various stress conditions 
(Tang et al. 2018). The WRKY3 gene GenBank 
ID was MN 315265, the upstream sequence was 
5’-CTCTGTCACGGTCCTATTTG-3’, and the downstream 
sequence was 5’-TAGCGAGGAAGTTGGTAATG-3’. 
The expression patterns of WRKY3 in samples of 
cauliflower under five stress conditions were tested using 
the best-chosen combination of RGs and the most unstable 
RGs. Each test was repeated three times.

Data analysis: The stability of the 15 candidate internal 
RGs was evaluated using geNorm, NormFinder, 
BestKeeper, and ΔCt. The RT-qPCR findings were exported 
to Microsoft Excel 2003, and the cycle threshold (Ct) was 
converted according to the software requirements. Each 
software produced a value of the stability for candidate 
RGs that could be ranked. The final ranking table was 
generated using the geomean value for the four methods.

Results

The primers for the 15 RGs were confirmed using common 
PCR. The results suggested that the primers were suitable 
for real-time qPCR study because the amplified products 
were between 100 and 250 bp, the primers produced a single 
band that was the same size as their amplified products, 
were highly specific and produced no primer dimer (Fig. 1 
Suppl.). The melting curves of the 15 candidate RGs were 
acquired by real-time qPCR amplification. As shown in 
Fig. 2 Suppl., the results were credible due to their high 
specificity and the single primer peaks. Hence, the primers 
were suitable for qPCR.

The cycle threshold values (Ct) confirmed the transcript 
abundances of the 15 RGs. Higher gene expression was 
indicated by lower Ct values. The Ct values of the 15 RGs 
are presented in Table 2 Suppl. and varied from 22.86 to 
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28.85 (Fig. 1). Apparently, ACT3 exhibited the lowest 
expression with a transcript level of 28.85 ± 0.59, whereas 
ACT7 possessed the lowest cycle number (22.86 ± 0.53). 
Most transcript abundances were spread between 23 and 
27. Among them, TUA2, GAPDH, EF1-β, ACT2, TUB6, 
had low mean Ct values, while FBA5, eIF4A-1, ACT1, 
EF1-α, KIN, and SAMDC had worse Ct value. More 
gene expression variation was displayed by the standard 
deviation (SD) in Fig. 1. The ACT7 exhibited a narrow 
variable gene expression range from 21.84 to 23.95 (22.86 
± 0.53), while FBA5 revealed the greatest variation in 
expression.

Four different programs, geNorm, NormFinder, 
BestKeeper, and ΔCt, were used to rank and assess the 
expression stability of these candidate RGs. The RGs were 
examined by each computational algorithm and ranked 
from the best to the worst stably-expressed gene.

The tool geNorm was utilized to obtain the mean of the 
expression stability by creating a value M. According to 
the manual, genes with M values under 1.5 are appropriate 
RGs, thus the gene with the lowest M value was considered 
to be the most stable candidate and vice versa. As shown 
in Table 3 Suppl. for heat stress, ACT3 and EF1-β with the 
lowest geNorm M values of 0.273 could be chosen as the 
most stable RGs, whereas FBA5 with the highest M value 
of 1.126 was recognized as the most variably expressed 
gene. For the cold stress set (Fig. 2), ACT1 and TUB6 were 
ranked as the top-two most stable RGs due to their M values 
of 0.473, and UBQ had the most unstable expression with 
an M value of 1.105 (Table 3 Suppl.). EF1-β and UBQ 
possessed the most stable expression, and FBA5 had the 
lowest stability for normalization under drought stress. In 
the set of samples under salt stress, ACT7 and HIS had the 
lowest M values, while FBA5 had the highest M value, 
indicating that ACT7 and HIS were the top-two most stable 
genes and FBA5 was the least stable gene. Under MeJA 
treatment, ACT3 and ACT7 presented optimal expression 
stability, while FBA5 was the most unstable. 

The geNorm program also provided the average 
pairwise variation (Vn/n+1) to acquire the best quantity of 
RGs for the most reliable findings. When the cutoff value 
of Vn/n+1 was lower than 0.15, n RGs were sufficient for 
real-time qPCR normalization. For treatments subjected 
to heat, drought, salt, and MeJA, the values of V2/3 were 

below 0.15, which indicated that the two most stable RG 
candidates could be used for the best expression stability 
(Table 4 Suppl., Fig. 3). Unfortunately, under cold stress, 
the pairwise value of V2/3 was greater than 0.15, and V3/4 
was 0.119. Based on the above analysis, more than two 
reference genes should be used to obtain accurate data in 
the cold stress experiments.

NormFinder determined the best normalization 
candidates based on the stability values, which are shown 
in Table 5 Suppl. A lower stability value indicates more 
reliable gene expression. The ACT1 was ranked as the 
optimal reference gene with the lowest stability value for 
drought stress among all samples, whereas EF1-β was 
considered to be the most stable gene in the heat stress and 
the cold stress treatments. The HIS and ACT3 exhibited 
the most stable expression due to their low stability 
values under salt stress and MeJA treatment. Except for 
cold stress, FBA5 exhibited the most variable expression 
in all samples. UBQ was the least stable gene in the cold 
treatment.

BestKeeper constructed coefficients of variance 
(CV) and the standard deviation (SD) for calculating the 
stability of the 15 candidate genes. More stable expression 
was indicated by lower CV ± SD values. SDs of more 
than 1 were not in the suitable range for normalization. As 
shown in Table 6 Suppl., ACT3 was the best RG with the 
minimum (CV ± SD) of 0.62 ± 0.18 under heat stress. The 
ACT1 was the best RG under cold stress, TUA2 was best 
under drought stress, TUB6 was best under salt stress, and 
ACT2 was best under MeJA treatment. 

To obtain the precise expression stability of the 
15 genes, their ranking by the ΔCt program is listed in 
Table 7 Suppl. ACT7 was suggested to be the most suitable 
candidate for heat, drought, and salt stress. The GAPDH 
was the most stable for the cold stress group, whereas 
TUA2 ranked first for the MeJA treatment. The results, as 
assessed using the ΔCt tool, indicated that ACT7, GAPDH, 
and TUA2 would be stably-expressed RGs.

According to the results of the four methods (geNorm, 
NormFinder, BestKeeper, and ΔCt), the geomean value of 
each candidate was obtained and used to assess the final 
rankings of the most stable reference genes. Based on the 
geNorm analysis, two candidate genes were enough for 
normalization under heat stress, drought stress, salt stress, 

Fig. 1. Ct values of 15 internal control genes in cauliflower under all treatment factors. The line in the box indicates the median values, 
with the lower and upper sections revealing the first and third quartile. The whiskers represent the value ranges.
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and MeJA treatment, whereas three suitable reference 
genes were sufficient for gene expression analysis in the 
cold treatment group and overall sample group. Through 
analysis of the comprehensive results, EF1-β and ACT7 
were ranked as the most stable genes for heat stress 
(Table 8 Suppl.), TUA2 and EF1-β for drought stress, HIS 
and ACT7 for salt stress, and ACT7 and ACT3 for MeJA 
treatment. Finally, ACT1, EF1-β, and TUB6 were chosen 
for expression normalization under cold treatment. The 
results confirmed that, except for cold stress, FBA5 was 
the most unstable expressed gene.

To validate the stability of the RGs, the expression 
profiles of the WRKY3 gene were normalized by the 

genes selected by the four models under the five abiotic 
treatment sets. The WRKY3 gene was differently expressed 
when the plant suffered from abiotic stresses (Chen et al. 
2015, Tang et al. 2018). As shown in Fig. 4, the best RGs 
alone or a combination of the most and least stable genes 
were used to measure the relative expression of WRKY3 
under the tested stresses. The WRKY3 had similar patterns 
of expression during the different experimental conditions 
when a single gene or combination of the best internal 
RGs was used, while the results presented completely 
different expression patterns or were overestimated in 
similar expression patterns when UBQ or FBA5 were 
applied as calibrators. For example, when the optimal 

Fig. 2. M-values of the 15 RGs detected by geNorm. M: expression stability value. A - heat stress (38 ℃), B - cold stress (4  ℃),  
C - drought stress (20 % PEG 6000), D - salt stress (200 mM NaCl), E - MeJA stress (100 μM) and F - all samples. 
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genes were used in normalization, the WRKY3 expression 
was found to reach the highest upregulation at 6 h under 
the cold stress, whereas the top expression of WRKY3 was 
reached at 24 h when the least stable gene, UBQ, was used 
as a calibrator (Fig. 4B). For the salt stress group, similar 
WRKY3 expression patterns were observed when the most 
stable genes and the least stable gene UBQ were used for 
normalization. However, in the salt treatment, abnormal 
upregulation was presented at 3 h when the least stable 
gene, FBA5 was used (Fig. 4D). Therefore, under given 
experimental conditions, screening for suitable RGs is 
essential.

Discussion

Cauliflower is of great research interest due to its ability 
to synthesize glucosinolates. The qPCR technology is an 
ideal means to study functional gene expression analysis. 
However, the reliability of qPCR data depends on the 
stability of the internal RGs used. It is important to select 
suitable RGs for different developmental stages, different 
tissues, different organs, and different experimental 
conditions (Randhawa et al. 2008). To date, there have 
been few studies on how to choose, use, and verify these 
genes in cauliflower, which hampers the development of 
its genetic research. Much research has confirmed that no 
internal RGs are stably expressed under all experimental 
conditions (Yu et al. 2020, Zeng et al. 2021, Zhang et al. 
2020). The RGs collected from the previous reports were 
not used arbitrarily for gene expression analysis (Liu et al. 
2018). The most accurate experimental results can be 
obtained only by using the most suitable internal reference 
genes for real-time data.

Traditional HKGs play an important role in the whole 
life of cells and are therefore considered to be reliable 

genes. ACT genes have often been used as internal RGs in 
previous studies to reduce experimental deviation. In this 
study, 15 candidate RGs including ACT1, ACT2, ACT3, 
ACT7, TUA2, TUB6, EF1-α, EF1-β, GAPDH, HIS, KIN, 
eIF4A-1, FBA5, SAMDC, and UBQ were selected from the 
cauliflower transcriptome database to identify the stable 
genes. The stability of these genes was examined using 
four statistical tools (geNorm, NormFinder, BestKeeper, 
and ΔCt). The ACT7 was the best RG for the MeJA 
treatment. However, under the heat, cold, drought, and 
salt stress, ACT7 was not the most stably expressed gene. 
Considering previous findings (Deng et al. 2016, Li et al. 
2020a), it was not unexpected that the gene expression 
indicated discrepancies and fluctuations under different 
conditions. The ACT1 was found to be the most suitable 
gene under cold stress conditions. Though ACT2 and ACT3 
exhibited stable expressions in the different experiments, 
they were not as stable as the internal RGs to verify the 
results of the real-time qPCR. Actin is an important protein 
in cytoskeleton formation and plays a significant role in 
plant cell development (Cai et al. 2020). In the model plant 
Arabidopsis thaliana, the ACT gene family is divided into 
two categories: one group that encodes for reproductive 
function genes, which are often expressed in pollen tubes 
and ovules and contain genes including ACT1 and ACT3, 
and another group that encodes for vegetative function 
genes which are mostly expressed in vegetative organs 
such as leaves, and contains ACT2, ACT7, and ACT8 
(Kim et al. 2003, Borges et al. 2012). Despite ACT genes 
being common RGs in cauliflower studies, the stability 
of different ACT genes varies among the sample sets. 
Stable internal RGs are needed for studying the expression 
of genes related to glucosinolate biosynthesis under 
different environmental stresses in cauliflower. Our results 
revealed that the stability of the RGs was not constant 
under different treatments. To obtain reliable data with 

Fig. 3. The most suitable number of RGs in the various tests by geNorm.
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different experimental factors, it is essential to choose the 
appropriate stable reference genes.

To evaluate the expressions of the RGs, we used four 
statistical algorithms (geNorm, NormFinder, BestKeeper 
software and the ΔCT calculations). The rankings yielded 

by each method were different. The results of this study 
were in line with the findings in other plants (Xu et al. 
2014). As different calculation methods were used in each 
analysis, the calculated best genes and the RG rankings 
were slightly different. A slight discrepancy in the results 

Fig. 4. Gene expression of the WRKY3 gene in cauliflower for various abiotic factors. A - heat stress (38 ℃), B - cold stress (4 ℃),  
C - drought stress (20 % PEG 6000), D - salt stress (200 mM NaCl), E - MeJA stress (100 μM).
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was acceptable and consistent with previous studies (Li 
et al. 2016a, Shivhare and Lata 2016, You et al. 2016). 
Finally, the outcomes of the four analyses were combined 
to ascertain the most stable RGs and enhance the reliability 
of our experimental data by the geomean.

The results showed that none of the genes maintained 
a constant expression under all experimental conditions. 
Therefore, two or more internal RGs should be used 
to attain credible results (Xu et al. 2015, Ye et al. 2015, 
Li et al. 2017). Using a sufficient quantity of RGs is of 
particular importance when the aim is to normalize 
numerous genes and samples. However, using more RGs 
results in more work that must be tested. Therefore, it is 
crucial to determine the appropriate number of internal 
RGs to use in a particular study. Previous studies have 
indicated that the coefficient of variation (Vn/n+1) in 
geNorm software can confirm the optimal number of RGs. 
According to the results of this research, we found that 
2 - 3 reference genes were sufficient to obtain accurate 
experimental data. In this study, EF1-β and ACT7 were 
combined to improve the reliability of test data under heat 
stress; ACT1, EF1-β, and TUB6 were used for cold stress; 
TUA2 and EF1-β were used for drought stress; HIS and 
ACT7 were used for salt stress; and ACT7 and ACT3 were 
used for MeJA treatment. Xu et al. (2020) also found that 
2 - 3 combinations of internal RGs could ensure more 
accurate results.

Although ACT genes can be used as RGs, they cannot 
be blindly used for credible experimental results under all 
experimental conditions. In specific experimental samples, 
screening for appropriate RGs is the key for the study of 
cauliflower genes. While the RGs we selected may not be 
the most suitable for other experimental conditions or in 
different environments, they can be used as a reference in 
selected cauliflower studies.
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