INPEC

SELECTIVE ETCH REQUIREMENTS FOR THE NEXT GENERATION OF SEMICONDUCTOR DEVICES

FRANK HOLSTEYNS

ON BEHALF OF THE SURFACE AND INTERFACE PREPARATION GROUP OF THE UNIT PROCESS DEPARTMENT

10TH OF APRIL 2018

	I Mbp/s	10 Mbp/s	I/O BANDWITH I Gbp/s	100 Gbp/s	l Tbp/s		•
POWER 500 Watt (mains level)			l TByte				
100 Watt	IOT sensor no	odes				DATA	I TByte
l Watt (battery level)	IOT interface	,		 High-performance High performance Mass Storage 	mobile (low power) CPU/GPU	STORA	I 00 GByte
l00mWatt (battery level)				- Hi-speed commun	ication (Optical IO)	G	10 GByte
I 00μW (ambient level)	T	Ultra-low-power,Sensor and sensor	cost-sensitive design r integration				100 MByte
	10 Mop/s	10 Gop/s	100 Gop/s	I Top/s	l Pop/s		

PERFORMANCE

່ເກາຍເ

umec

AS SCALING CONTINUES, CHALLENGES ARISE IN WET PROCESSING

unec

STI oxide recess. SiNx compatible

200nm

KINETICS MAY VARY IN NANO-CONFINEMENT

Wetting	electrical double layers	water structuring		
(a) IPA concentration profile concentration and (b) the corresponding wetted area fraction as a function of time	microchannel nanochannel microchannel nanochannel microchannel nanochannel microcha	Incomplete tetrahedral Coordination Generation Gene		
Differentiation between Wenzel / Cassie- Baxter / Mixed wetting states	Overlap of electrical double layers (EDL) in nanochannel	Water confinement		
In-situ study of wetting stability and hysteresis on initially non-wetting substrate	Depletion of ions with same charge as surface in channel: no electroneutrality	Formation of ice-like water in nanoconfined volumes		
 Wetting hysteresis observed (Vrancken et al., Langmuir 2017). 	 pH shift expected (D.Bottenus et al., Lab on Chip, 2009, 9, 219.) Depletion etchants (A. Okuyama et al., Solid State Phenom. 2015, 219, 115.) 	 effect of water structuring on diffusivity of chemical species in nano-confined volumes expected 		

ເງຍ

CAPILLARY FORCE INDUCED PATTERN COLLAPSE IN SITU CHARACTERIZATION OF DEWETTING AT NANOSCALE

- Real-time visualization of pattern collapse with TEM in liquid cell.
- Polycrystalline Si nanopillars, height ≈ 450 nm.
- Formation of clusters due to capillary instabilities.

1: Liquid cell with nanopillars 2: PDMS gasket 3 & 4: Bottom and top pieces of custom brass retainer for TEM holder

 During drying the water film becomes unstable, and water is drained gradually towards bended nanopillars islands.

unec

PATTERN COLLAPSE/STICTION FREE DRYING

Replace water by low surface tension (γ) solvents to reduce capillary force;

IPA dry

- Improve evaporation rate (gas flow and heat)
- Improve on IPA quality

Si nanopillars with native oxide

DIW (γ=0.072 N/m)

Surface functionalizing chemistry (SFC)

- Reduce capillary force by increasing contact angles (*θ*) of rinsing liquids;
- Reduce surface adhesion force, more relevant when IPA dry is used after SFC;
- Further reduction capillary force: towards sublimation drying

Increase surface hydrophobicity reduces pattern collapse in **water** (not necessarily for other solvents!)

SELECTIVE ETCH REQUIREMENTS

SELECTIVE/ISOTROPIC ETCH OPPORTUNITIES (WET/DRY) FINFET \rightarrow GAA \rightarrow CFET

SEMICONDUCTOR ETCH: GAA SELECTIVE ETCH REQUIREMENTS

LINEC Mertens et al., *IEDM* (2017).

Mertens et al., VLSI (2016). ITF (2017)

Wostyn et al., ECS (2015).

Sebaai, UCPSS (2016), Witters, VLSI2017.

SEMICONDUCTOR ETCH: GAA SELECTIVE ETCH REQUIREMENTS

HCI (gas)

FORMULATED MIXTURE (wet)

For both HCI (g) and formulated mixture, selectivity increases strongly with increasing Ge%.

Anisotropic selective etch. Process time ~ hour

Isotropic selective etch. Process time ~ min

DIELECTRIC ETCH

Memory

Selective SiNx removal for 3D-NAND fabrication

3D SCM dummy gate recess

DIELECTRIC ETCH

METAL ETCH

Unitiet Oniki et al., SPCC (2018).

Veloso, ECS (2017); Murdoch, IEEE (2017).

CORE CMOS PARTNERS

EQUIPMENT & MATERIAL SUPPLIERS / OSAT / EDA / JDP PARTNERS

umec

embracing a better life