
Selenium IDE

Steve Kwon, Raphael Huang, Amad Hussain, Mubasil Shamim

Introduction
● Selenium is a portable software-testing framework for web applications

● Selenium IDE is a complete integrated development environment

● Implemented as a Firefox extension

● Selenium IDE includes the entire Selenium Core, can allow

○ recording

○ Editing

○ and debugging tests

● You can choose to use its recording capability,

● or you may edit your scripts by hand

Benefits
● Selenium IDE is very easy to use

● Convert the test to different programming languages

● User is not required to need any programming knowledge

● User can debug and set breakpoints

Disadvantages
● Selenium IDE is Firefox plugin, thus its support is limited to

Firefox only

● Selenium IDE doesn't support error handling

● Selenium IDE doesn't support test script grouping

● Selenium IDE doesn't support Database testing

Download and Install Selenium IDE
● Launch Mozilla Firefox Browser.

● Type URL: https://addons.mozilla.org/en-us/firefox/addon/selenium-ide/

Download and Install Selenium IDE
● Firefox will show do you want to

allow Mozilla Firefox to install

Selenium IDE Add-ons or not.

● Click on Install button as Shown

this image.

Download and Install Selenium IDE (continued)
● Firefox will automatically install

Selenium IDE software.

● After the installation is

completed, restart the Firefox.

● Click on the “Restart Now”

button to reflect the Selenium

IDE installation.

Download and Install Selenium IDE (continued)
● Once the Firefox is booted and

started again, we can see

selenium IDE under the tools

menu list.

● Click on Tools menu list,

Selenium IDE will be displayed

in the list.

Download and Install Selenium IDE (continued)

● Click on Selenium IDE, it will

launch Selenium IDE

Opening the IDE

● To run the Selenium IDE, simply select it

from the Firefox Tool menu.

● It opens with an empty script-editing

window and a menu for loading, or

creating new test cases.

Toolbar

● The toolbar contains buttons for controlling the execution of your test

cases, including a step features for debugging your test cases.

● The right-most button, the one with the red dot, is the record button.

Toolbar Elements
● Speed Control: controls how fast your test case runs.

● Run All: Runs the entire test suite when a test suite

with multiple test cases is loaded.

● Run: Runs the currently selected test. When only a single

test is loaded, this button and the Run All button have the

same effect.

● Pause/Resume: Allows stopping and re-starting of a

running test case.

Toolbar Elements (continued)
● Step: Allows you to “step” through a test case by

running it one command at a time. It is useful for

debugging test cases.

● Apply Rollup Rules: This advanced feature allows

repetitive sequences of Selenium commands to be

grouped into a single action. Detailed documentation

on rollup rules can be found in the UI-Element

Documentation on the Help menu.

● Record: Records the user’s browser actions.

Toolbar Element in Selenium IDE v2.9 (the most recent ver.)

● The Selenium IDE Scheduler works with jobs. A job

contains information about what the scheduler

should do. It contains a title, it contains the test suite

that should be automatically run or played and it

contains the schedule information, which is the time

when the test suite should be run.

Commands (Selenese)
● Test Script: Sequence of commands used to test an application

● Can test:

○ Existence of UI elements based on HTML tags

○ Specific content

○ Broken Links

○ Input Fields

○ Selection list options

○ Submitting forms

○ Table Data

○ Etc…

● 3 Command Types:

○ Actions

○ Accessor

○ Assertion

Actions
● Manipulate the state of the application

○ Type this box / Click this link / Select option

● Test is stopped on failure

● Used with the “AndWait” suffix

○ clickAndWait / typeAndWait

○ Notifies the browser that the action calls the server and Selenium should wait for the response

Accessors
● Examine the state of the application and store the result in variables

○ storeTitle

● Also used to automatically generate assertions

Assertions
● Verify that the state of the application matches expectation

● Types

○ Assert: Aborted on failure

○ Verify: Continues on failure and logs the error

○ WaitFor: Succeed when a condition becomes true or immediately if already true. Fail and halt if the

condition does not become true within the timeout setting

Common Commands
● type - Sets value of an input field as if typed in

● open - Opens a page using a url

● click - Clicks a link, button checkbox, or radio button

● select - Selects an option from a drop-down using an option locator

● selectFrame - Selects a frame within a current window

Common Commands
● verifyTitle/assertTitle - Verifies an expected page title

● verifyTextPresent - Verifies that a specified string appears somewhere on the

rendered page

● waitForPageToLoad - Waits for new page to load

○ Use instead of the “andWait” suffix like with “clickAndWait” or “typeAndWait”

● pause - Wait for specified amount of time

Common Commands
● highlight - Briefly changes the backgroundColor of the specified element.

○ Useful for debugging

● store/storeExpression - sets a variable with some value to be used with other

commands

● echo - prints specified message into the log area

○ Useful for debugging

● refresh - simulates user clicking the “refresh” button

Locators - ID/Name
● Uses ID or Name html property to locate elements

● Defaults to first instance in the document if multiple matches

Locators - Link Text
● Finds the first instance of a hyperlink with specified text

Locators - CSS
● Generalized way to select using HTML tags

● Uses the following levels of granularity for syntax:

Find By Target Syntax Example

Tag and ID css=tag#id css=input#email

Tag and Class css=tag.class css=input.inputtext

Tag and Attribute css=tag[attribute=value] css=input[name=lastName]

Tag, Class, and Attribute css=tag.class[attribute=value] css=input.inputtext[tabindex=1]

Inner Text css=tag:contains(“inner text”) css=span:contains(“Help”)

Locators - CSS
Tag, Class, and Attribute css=tag.class[attribute=value] css=input.inputtext[tabindex=1]

Locators - DOM
● Use the Javascript document object to find elements/text on the page

● Useful for dynamically generated content

Locators - XPath
● If we represent the HTML as an XML Tree, XPath is the path to a specific

element node.

● Easy to implement as long as your page structure does not change.

● Can use plugins such as Firebug (Firefox) or XPath Helper (Chrome) to generate

Converting to Other Programming Languages
● Test cases can be exported to Python, Java, etc, for use in integrated unit tests.

● Be sure to install the required Selenium dependencies using pip/maven

● WebDriver is generally more concise and better supported than Remote Control

Sources/More info
● http://toolsqa.com/selenium-ide-tutorial/

● https://www.guru99.com/selenium-tutorial.html

● http://www.softwaretestinghelp.com/selenium-ide-script-selenium-tutorial-3/

http://toolsqa.com/selenium-ide-tutorial/
https://www.guru99.com/selenium-tutorial.html
http://www.softwaretestinghelp.com/selenium-ide-script-selenium-tutorial-3/

