
Selenium

i

Selenium

i

About the Tutorial

Selenium is an open-source tool that is used for test automation. It is licensed

under Apache License 2.0. Selenium is a suite of tools that helps in automating

only web applications.

This tutorial will give you an in-depth understanding of Selenium and its related

tools and their usage.

Audience

This tutorial is designed for software testing professionals who would like to

learn the basics of Selenium through practical examples. The tutorial contains

enough ingredients to get you started with Selenium from where you can take

yourself to higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of

Java or any other object-oriented programming language. In addition, you

should be well-versed with the fundamentals of testing concepts.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Selenium

ii

Table of Contents

About the Tutorial ··i

Audience ··i

Prerequisites ··i

Copyright & Disclaimer ···i

Table of Contents ·· ii

1. OVERVIEW ··· 1

Introduction ··1

Advantages of Selenium ··2

Disadvantages of Selenium ···3

2. SELENIUM – IDE ·· 4

Selenium – IDE ··4

Download Selenium IDE ··5

Features of Selenium IDE ··7

Creating Selenium IDE Tests ··8

Script Debugging ··· 13

Inserting Verification Points ·· 17

Pattern Matching ·· 20

Selenium User Extensions ··· 22

Different Browser Execution ··· 25

3. ENVIRONMENT SETUP ··· 28

Download and Install Java ··· 28

Download and Configure Eclipse ··· 34

Configure FireBug and FirePath ··· 36

Configure Selenium RC ·· 40

Selenium

iii

Configure Selenium WebDriver ··· 42

4. SELENIUM RC ·· 44

What is Selenium RC?·· 44

Selenium RC Architecture ·· 44

RC – Scripting ·· 45

5. SELENESE COMMANDS ·· 54

Actions ·· 54

Accessors ·· 58

Assertions ··· 61

6. WEBDRIVER ··· 65

Architecture ·· 65

Selenium RC Vs WebDriver ·· 66

Scripting using WebDriver ··· 66

Most Used Commands ·· 74

7. LOCATORS ··· 76

Locators Usage ·· 77

8. INTERACTIONS ··· 84

User Interactions ··· 84

Text Box Interaction ·· 84

Radio Button Interaction ··· 87

Check Box Interaction ··· 89

Dropdown Interaction ··· 91

Synchronization ·· 93

Drag & Drop ·· 95

Keyboard Actions ·· 97

Selenium

iv

Mouse Actions ·· 97

Multi Select Action ·· 98

Find All Links ··· 101

9. TEST DESIGN TECHNIQUES ·· 103

Page Object Model ·· 103

POM Flow Diagram ··· 103

Data Driven using Excel ··· 107

Parameterization ·· 112

Log4j Logging··· 118

Exception Handling ··· 127

Multi Browser Testing ··· 128

Capture Screenshots ··· 135

Capturing Videos ··· 141

10. TESTNG ·· 148

What is TestNG? ·· 148

Installing TestNG for Eclipse ·· 148

Annotations in TestNG ·· 152

TestNG-Eclipse Setup ·· 155

First Test in TestNG ··· 162

11. SELENIUM GRID ··· 166

Architecture ·· 167

Working with Grid ··· 167

Configuring the Hub ·· 168

Configuring the Nodes ··· 169

Develop the Script and Prepare the XML File ·· 174

Test Execution ··· 181

Selenium

v

Result Analysis ·· 183

Selenium

1

Introduction

Selenium is an open-source and a portable automated software testing tool for

testing web applications. It has capabilities to operate across different browsers

and operating systems. Selenium is not just a single tool but a set of tools that

helps testers to automate web-based applications more efficiently.

Let us now understand each one of the tools available in the Selenium suite and

their usage.

Tool Description

Selenium IDE Selenium Integrated Development Environment
(IDE) is a Firefox plugin that lets testers to record

their actions as they follow the workflow that they
need to test.

Selenium RC Selenium Remote Control (RC) was the flagship
testing framework that allowed more than simple

browser actions and linear execution. It makes
use of the full power of programming languages
such as Java, C#, PHP, Python, Ruby, and PERL to

create more complex tests.

Selenium WebDriver Selenium WebDriver is the successor to Selenium

RC which sends commands directly to the browser
and retrieves results.

Selenium Grid Selenium Grid is a tool used to run parallel tests
across different machines and different browsers

simultaneously which results in minimized
execution time.

1. OVERVIEW

Selenium

2

Advantages of Selenium

QTP and Selenium are the most used tools in the market for software

automation testing. Hence it makes sense to compare the pros of Selenium over

QTP.

Selenium QTP

Selenium is an open-source tool. QTP is a commercial tool and there is a cost

involved in each one of the licenses.

Can be extended for various

technologies that expose DOM.

Limited add-ons and needs add-ons for

each one of the technologies.

Has capabilities to execute

scripts across different
browsers.

Can run tests in specific versions of Firefox,

IE, and Chrome.

Can execute scripts on various
operating systems.

Works only with Windows.

Supports mobile devices. Supports mobile devices with the help of
third-party tools.

Executes tests within the
browser, so focus is NOT

required while script execution is
in progress.

Needs Focus during script execution, as the
tool acts on the browser (mimics user

actions).

Can execute tests in parallel
with the use of Selenium Grids.

QTP cannot execute tests in parallel,
however integrating QTP with QC allows

testers to execute in parallel. QC is also a
commercial tool.

Selenium

3

Disadvantages of Selenium

Let us now discuss the pitfalls of Selenium over QTP.

Selenium QTP

Supports only web-based
applications.

Can test both web and desktop
applications.

No feature such as Object
Repository/Recovery Scenario

QTP has built-in object repositories and
recovery scenarios.

No IDE, so the script development
won't be as fast as QTP.

More intuitive IDE; automation can be
achieved faster.

Cannot access controls within the
browser.

Can access controls within the browser
such as favorites bar, backward, and

forward buttons.

No default test report generation. Default test result generation within the

tool.

For parameterization, users has to

rely on the programming language.

Parameterization is built-in and easy to

implement.

Selenium

4

Selenium – IDE

The Selenium-IDE (Integrated Development Environment) is an easy-to-use

Firefox plug-in to develop Selenium test cases. It provides a Graphical User

Interface for recording user actions using Firefox which is used to learn and use

Selenium, but it can only be used with Firefox browser as other browsers are not

supported.

However, the recorded scripts can be converted into various programming

languages supported by Selenium and the scripts can be executed on other

browsers as well.

The following table lists the sections that we are going to cover in this chapter. .

Title Description

Download Selenium

IDE

This section deals with how to download and configure

Selenium IDE.

Selenium IDE

Features

This section deals with the features available in

Selenium IDE.

Creating Selenium

IDE Tests

This section deals with how to create IDE tests using

recording feature.

Selenium IDE Script

Debugging

This section deals with debugging the Selenium IDE

script.

Inserting

Verification Points

This section describes how to insert verification points in

Selenium IDE.

2. SELENIUM – IDE

Selenium

5

Selenium Pattern

Matching

This section deals with how to work with regular

expressions using IDE.

Selenium User

Extensions

The Java script that allows users to customize or add

new functionality.

Different Browser

Execution

This section deals with how to execute Selenium IDE

scripts on different browsers.

Download Selenium IDE

Step 1 : Launch Firefox and navigate to the following URL –

http://seleniumhq.org/download/.

Under the Selenium IDE section, click on the link that shows the current version

number as shown below.

Step 2 : Firefox add-ons notifier pops up with allow and disallow options. User

has to allow the installation.

Selenium

6

Step 3 : The add-ons installer warns the user about untrusted add-ons. Click

'Install Now'.

Step 4 : The Selenium IDE can now be accessed by navigating to Tools >>

Selenium IDE.

Step 5 : The Selenium IDE can also be accessed directly from the quick access

menu bar as shown below.

Selenium

7

Features of Selenium IDE

The following image shows the features of Selenium IDE with the help of a

simple tooltip.

The features of the record tool bar are explained below.

Selenium

8

Creating Selenium IDE Tests

The following steps are involved in creating Selenium tests using IDE:

 Recording and adding commands in a test

 Saving the recorded test

 Saving the test suite

 Executing the recorded test

Recording and Adding Commands in a Test

We will use www.ncalculators.com to demonstrate the features of Selenium.

Step 1 : Launch the Firefox browser and navigate to the website –

http://www.ncalculators.com/

Step 2 : Open Selenium IDE from the Tools menu and press the record button

that is on the top-right corner.

Selenium

9

Step 3 : Navigate to "Math Calculator" >> "Percent Calculator >> enter "10" as

number1 and 50 as number2 and click "calculate".

Step 4 : User can then insert a checkpoint by right clicking on the webelement

and select "Show all available commands" >> select "assert text css=b 5"

Selenium

10

Step 5 : The recorded script is generated and the script is displayed as shown

below.

Saving the Recorded Test
Step 1 : Save the Test Case by navigating to "File" >> "Save Test" and save the

file in the location of your choice. The file is saved as .HTML as default.

The test can also be saved with an extension htm, shtml, and xhtml.

Selenium

11

Saving the Test Suite
A test suite is a collection of tests that can be executed as a single entity.

Step 1 : Create a test suite by navigating to "File" >> "New Test Suite" as

shown below.

Step 2 : The tests can be recorded one by one by choosing the option "New Test

Case" from the "File" Menu.

Step 3 : The individual tests are saved with a name along with saving a "Test

Suite".

Selenium

12

Executing the Recorded Test

The recorded scripts can then be executed either by clicking "Play entire suite"

or "Play current test" button in the toolbar.

Step 1 : The Run status can be seen in the status pane that displays the

number of tests passed and failed.

Step 2 : Once a step is executed, the user can see the result in the "Log" Pane.

Step 3 : After executing each step, the background of the test step turns

"Green" if passed and "Red" if failed as shown below.

Selenium

13

Script Debugging

Debugging is the process of finding and fixing errors in the test script. It is a

common step in any script development. To make the process more robust, we

can use a plugin "Power Debugger" for Selenium IDE.

Step 1 : To install Power Debugger for Selenium IDE, navigate to

https://addons.mozilla.org/en-US/firefox/addon/power-debugger-selenium-ide/

and click "Add to Firefox" as shown below.

Selenium

14

Step 2 : Now launch 'Selenium IDE' and you will notice a new icon, "Pause on

Fail" on the recording toolbar as shown below. Click it to turn it ON. Upon

clicking again, it would be turned "OFF".

Selenium

15

Step 3 : Users can turn "pause on fail" on or off any time even when the test is

running.

Step 4 : Once the test case pauses due to a failed step, you can use the

resume/step buttons to continue the test execution. The execution will NOT be

paused if the failure is on the last command of any test case.

Step 5 : We can also use breakpoints to understand what exactly happens

during the step. To insert a breakpoint on a particular step, "Right Click" and

select "Toggle Breakpoint" from the context-sensitive menu.

Selenium

16

Step 6 : Upon inserting the breakpoint, the particular step is displayed with a

pause icon as shown below.

Step 7 : When we execute the script, the script execution is paused where the

breakpoint is inserted. This will help the user to evaluate the value/presence of

an element when the execution is in progress.

Selenium

17

Inserting Verification Points

The test cases that we develop also need to check the properties of a web page.

It requires assert and verify commands. There are two ways to insert verification

points into the script.

To insert a verification point in recording mode, "Right click" on the element and

choose "Show all Available Commands" as shown below.

Selenium

18

We can also insert a command by performing a "Right-Click" and choosing

"Insert New Command".

Selenium

19

After inserting a new command, click 'Command' dropdown and select

appropriate verification point from the available list of commands as shown

below.

Given below are the mostly used verification commands that help us check if a

particular step has passed or failed.

 verifyElementPresent

 assertElementPresent

 verifyElementNotPresent

 assertElementNotPresent

 verifyText

 assertText

Selenium

20

 verifyAttribute

 assertAttribute

 verifyChecked

 assertChecked

 verifyAlert

 assertAlert

 verifyTitle

 assertTitle

Synchronization Points

During script execution, the application might respond based on server load,

hence it is required for the application and script to be in sync. Given below are

a few commands that we can use to ensure that the script and application are in

sync.

 waitForAlertNotPresent

 waitForAlertPresent

 waitForElementPresent

 waitForElementNotPresent

 waitForTextPresent

 waitForTextNotPresent

 waitForPageToLoad

 waitForFrameToLoad

Pattern Matching

Like locators, patterns are a type of parameter frequently used by Selenium. It

allows users to describe patterns with the help of special characters. Many a

time, the text that we would like to verify are dynamic; in that case, pattern

matching is very useful.

Pattern matching is used with all the verification point commands –

verifyTextPresent, verifyTitle, verifyAlert, assertConfirmation, verifyText, and

verifyPrompt.

Selenium

21

There are three ways to define a pattern:

 globbing,

 regular expressions, and

 exact patterns.

Globbing

Most techies who have used file matching patterns in Linux or Windows while

searching for a certain file type like *.doc or *.jpg would be familiar with term

"globbing".

Globbing in Selenium supports only three special characters: *, ?, and [].

 * - matches any number of characters.

 ? - matches a single character.

 [] - called a character class, lets you match any single character found

within the brackets. [0-9] matches any digit.

To specify a glob in a Selenium command, prefix the pattern with the keyword

'glob:'. For example, if you would like to search for the texts "tax year 2013" or

"tax year 2014", then you can use the glob "tax year *" as shown below.

However the usage of "glob:" is optional while specifying a text pattern because

globbing patterns are the default in Selenium.

Command Target Value

clickAndWait link=search

verifyTextPresent glob: tax year *

Exact Patterns

Patterns with the prefix 'exact:' will match the given text as it is. Let us say, the

user wants an exact match with the value string, i.e., without the glob operator

doing its work, one can use the 'exact' pattern as shown below. In this example,

the operator '*' will work as a normal character rather than a pattern-matching

wildcard character.

Selenium

22

Command Target Value

clickAndWait link=search

verifyValue exact: *.doc

Regular Expressions

Regular expressions are the most useful among the pattern matching techniques

available. Selenium supports the complete set of regular expression patterns

that Javascript supports. Hence the users are no longer limited by *, ?, and []

globbing patterns.

To use RegEx patterns, we need to prefix with either "regexp:" or "regexpi:".

The prefix "regexpi" is case-insensitive. The glob: and the exact: patterns are

the subsets of the Regular Expression patterns. Everything that is done with

glob: or exact: can be accomplished with the help of RegExp.

Example

For example, the following will test if an input field with the id 'name' contains

the string 'tax year', 'Tax Year', or 'tax Year'.

Command Target Value

clickAndWait link=search

verifyValue id=name regexp:[Tt]ax ([Yy]ear)

Selenium User Extensions

It is easy to extend Selenium IDE by adding customized actions, assertions, and

locator-strategies. It is done with the help of JavaScript by adding methods to

the Selenium object prototype. On startup, Selenium will automatically look

through the methods on these prototypes, using name patterns to recognize

which ones are actions, assertions, and locators.

Selenium

23

Let us add a 'while' Loop in Selenium IDE with the help of JavaScript.

Step 1 : To add the js file, first navigate to

https://github.com/darrenderidder/sideflow/blob/master/sideflow.js and copy

the script and place save it as 'sideflow.js' in your local folder as shown below.

Step 2 : Now launch 'Selenium IDE' and navigate to "Options" >> "Options" as

shown below.

Selenium

24

Step 3 : Click the 'Browse' button under 'Selenium Core Extensions' area and

point to the js file that we have saved in Step 1.

Step 4 : Restart Selenium IDE.

Step 5 : Now you will have access to a few more commands such as "Label",

"While", etc.

Step 6 : Now we will be able to create a While loop within Selenium IDE and it

will execute as shown below.

Selenium

25

Different Browser Execution

Selenium scripts can run tests only against Firefox as the tool IDE itself is a

plugin of Firefox. Tests developed using Selenium IDE can be executed against

other browsers by saving it as Selenium WebDriver or Selenium Remote Control

Script.

Step 1 : Open any saved Test in Selenium IDE.

Selenium

26

Step 2 : Navigate to "File" menu and select "Export Test Suite As" and the

options would be listed.

Step 3 : Now let us export the script to "WebDriver" and save it with a name.

Step 4 : The saved WebDriver file is displayed as shown below.

Selenium

27

Selenium

28

In order to develop Selenium RC or WebDriver scripts, users have to ensure that

they have the initial configuration done. Setting up the environment involves the

following steps.

 Download and Install Java

 Download and Configure Eclipse

 Configure FireBug and FirePath

 Configure Selenium RC

 Configure Selenium WebDriver

Download and Install Java

We need to have JDK (Java Development Kit) installed in order to work with

Selenium WebDriver/Selenium. Let us see how to download and install Java.

Step 1: Navigate to the URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Step 2: Go to "Downloads" section and select "JDK Download".

3. ENVIRONMENT SETUP

Selenium

29

Step 3: Select "Accept License Agreement" radio button.

Selenium

30

Step 4 : Select the appropriate installation. In this case, it is 'Windows 7-64' bit.

Click the appropriate link and save the .exe file to your disk.

Step 5 : Run the downloaded exe file to launch the Installer wizard. Click 'Next'

to continue.

Selenium

31

Step 6 : Select the features and click 'Next'.

Step 7 : The installer is extracted and its progress is shown in the wizard.

Selenium

32

Step 8 : The user can choose the install location and click 'Next'.

Step 9 : The installer installs the JDK and new files are copied across.

Selenium

33

Step 10 : The Installer installs successfully and displays the same to the user.

Step 11 : To verify if the installation was successful, go to the command prompt

and just type 'java' as a command. The output of the command is shown below.

If the Java installation is unsuccessful or if it had NOT been installed, it would

throw an "unknown command" error.

Selenium

34

Download and Configure Eclipse

Step 1 : Navigate to the URL: http://www.eclipse.org/downloads/ and download

the appropriate file based on your OS architecture.

Step 2 : Click the 'Download' button.

Selenium

35

Step 3 : The download would be in a Zipped format. Unzip the contents.

Step 4 : Locate Eclipse.exe and double click on the file.

Selenium

36

Step 5 : To configure the workspace, select the location where the development

has to take place.

Step 6 : The Eclipse window opens as shown below.

Configure FireBug and FirePath

To work with Selenium RC or WebDriver, we need to locate elements based on

their XPath or ID or name, etc. In order to locate an element, we need

tools/plugins.

Step 1 : Navigate to the URL: https://addons.mozilla.org/en-

US/firefox/addon/firebug/ and download plugin.

Selenium

37

Step 2 : The add-on installer is shown to the user and it is installed upon

clicking the 'Install' button.

Selenium

38

Step 3 : After installing, we can launch the plugin by navigating to "Web

Developer" >> "Firebug".

Step 4 : FirePath, a plugin that works within Firebug, helps users to grab the

'XPath' of an element. Install FirePath by navigating to

"https://addons.mozilla.org/en-US/firefox/addon/firepath/"

Selenium

39

Step 5 : The add-on installer is shown to the user and it is installed upon

clicking the 'Install' button.

Step 6 : Now launch "Firebug" by navigating to "Tools" >> "Webdeveloper" >>

"Firebug".

Example

Now let us understand how to use FireBug and FirePath with an example. For

demonstration, we will use www.google.com and capture the properties of the

text box of "google.com".

Step 1 : First click on the arrow icon as highlighted in the following screenshot

and drag it to the object for which we would like to capture the properties. The

HTML/DOM of the object would be displayed as shown below. We are able to

capture the 'ID' of the input text box with which we can interact.

Selenium

40

Step 2 : To fetch the XPath of the object, go to 'firepath' tab and perform the

following steps.

 Click the Spy icon.

 Select the Control for which we would like to capture the XPath.

 XPath of the selected control would be generated.

Configure Selenium RC

Now let us look at how to configure Selenium Remote control. We will

understand how to develop scripts with Selenium RC in later chapters, however

for now, we will understand just the configuration part of it.

Step 1 : Navigate to the Selenium downloads section

http://www.seleniumhq.org/download/ and download Selenium Server by

clicking on its version number as shown below.

Selenium

41

Step 2 : After downloading, we need to start the Selenium Server. To do so,

open command prompt and navigate to the folder where the downloaded JAR file

is kept as shown below.

Step 3 : To start the server, use the command 'java -jar <<downloaded jar

name >> and if java JDK is installed properly, you would get a success message

as shown below. Now we can start writing Selenium RC scripts.

Selenium

42

Configure Selenium WebDriver

Now let us look at how to configure Selenium WebDriver. We will understand

how to develop scripts with Selenium WebDriver in later chapters, however for

now, we will understand just the configuration part of it.

Step 1 : Navigate to the selenium downloads section

http://www.seleniumhq.org/download/ and download Selenium WebDriver by

clicking on its version number as shown below.

Selenium

43

Step 2 : The downloaded file is in Zipped format and one has to unzip the

contents to map it to the project folder.

Step 3 : The Unzipped contents would be displayed as shown below. How to

map it to the project folder and how to start scripting would be dealt in the

WebDriver chapter.

Selenium

44

What is Selenium RC?

Selenium Remote Control (RC) was the main Selenium project that sustained

for a long time before Selenium WebDriver (Selenium 2.0) came into existence.

Now Selenium RC is hardly in use, as WebDriver offers more powerful features,

however users can still continue to develop scripts using RC.

It allows us to write automated web application UI tests with the help of full

power of programming languages such as Java, C#, Perl, Python, and PHP to

create more complex tests such as reading and writing files, querying a

database, and emailing test results.

Selenium RC Architecture

Selenium RC works in such a way that the client libraries can communicate with

the Selenium RC Server passing each Selenium command for execution. Then

the server passes the Selenium command to the browser using Selenium-Core

JavaScript commands.

The browser executes the Selenium command using its JavaScript interpreter.

4. SELENIUM RC

Selenium

45

Selenium RC comes in two parts.

 The Selenium Server launches and kills browsers. In addition to that, it

interprets and executes the Selenese commands. It also acts as an HTTP

proxy by intercepting and verifying HTTP messages passed between the

browser and the application under test.

 Client libraries that provide an interface between each one of the

programming languages (Java, C#, Perl, Python, and PHP) and the

Selenium-RC Server.

RC – Scripting

Now let us write a sample script using Selenium Remote Control. Let us use

http://www.calculator.net/ for understanding Selenium RC. We will perform a

Percent calculation using 'Percent Calculator' that is present under the 'Math

Calculators' module.

Step 1 : Start Selenium Remote Control (with the help of command prompt).

Step 2 : After launching Selenium RC, open Eclipse and create a "New Project"

as shown below.

Selenium

46

Step 3 : Enter the project name and click 'Next' button.

Selenium

47

Step 4 : Verify the Source, Projects, Libraries, and Output folder and click

'Finish'.

Selenium

48

Step 5 : Right click on 'project' container and choose 'Configure Build Path'.

Step 6 : Properties for 'selrcdemo' opens up. Navigate to 'Libraries' tab and

select 'Add External JARs'. Choose the Selenium RC jar file that we have

downloaded and it would appear as shown below.

Selenium

49

Step 7 : The referenced Libraries are shown as displayed below.

Step 8 : Create a new class file by performing a right click on 'src' folder and

select 'New' >> 'class'.

Selenium

50

Step 9 : Enter a name of the class file and enable 'public static void main' as

shown below.

Step 10 : The Created Class is created under the folder structure as shown

below.

Selenium

51

Step 11 : Now it is time for coding. The following code has comments

embedded in it to make the readers understand what has been put forth.

package selrcdemo;

import com.thoughtworks.selenium.DefaultSelenium;

import com.thoughtworks.selenium.Selenium;

public class rcdemo

{

 public static void main(String[] args) throws InterruptedException

 {

 // Instatiate the RC Server

 Selenium selenium = new DefaultSelenium("localhost", 4444,

"firefox", "http://www.calculator.net");

 selenium.start(); // Start

 selenium.open("/"); // Open the URL

 selenium.windowMaximize();

 // Click on Link Math Calculator

 selenium.click("xpath=.//*[@id='menu']/div[3]/a");

 Thread.sleep(2500); // Wait for page load

 // Click on Link Percent Calculator

 selenium.click("xpath=.//*[@id='menu']/div[4]/div[3]/a");

 Thread.sleep(4000); // Wait for page load

 // Focus on text Box

 selenium.focus("name=cpar1");

// enter a value in Text box 1

 selenium.type("css=input[name=\"cpar1\"]", "10");

Selenium

52

// enter a value in Text box 2

 selenium.focus("name=cpar2");

 selenium.type("css=input[name=\"cpar2\"]", "50");

 // Click Calculate button

 selenium.click("xpath=.//*[@id='content']/table/tbody/tr/td[2]/input");

 // verify if the result is 5

 String result = selenium.getText(".//*[@id='content']/p[2]");

 if (result == "5")

 {

 System.out.println("Pass");

 }else

 {

 System.out.println("Fail");

 }

 }

}

Step 11 : Now, let us execute the script by clicking the 'Run' Button.

Selenium

53

Step 12 : The script would start executing and the user would be able to see

the command history under the 'Command History' Tab.

Step 13 : The final state of the application is shown as below. The percentage is

calculated and it displays the result on the screen as shown below.

Step 14 : The output of the test is printed on the Eclipse console as shown

below, as we have printed the output to the console. In real time, the output is

written to an HTML file or in a simple Text file.

Selenium

54

A command refers to what Selenium has to do and the commands in Selenium

are of three types:

 Actions

 Accessors

 Assertions

Actions

Actions are commands that manipulate the state of the application. Upon

execution, if an action fails, the execution of the current test is stopped. For

example, "click a link" and "select an option".

The following table lists the Selenium action commands that are used very

frequently, however the list is note exhaustive.

Command/Syntax Description

click (locator) Clicks on a link, button,

checkbox or radio button

clickAt (locator, coordString) Clicks on an element with
the help of locator and co-
ordinates

close () Simulates the user clicking
the "close" button in the title

bar of a popup window or
tab.

contextMenuAt (locator, coordString) Simulates opening the
context menu of the

specified element from a

5. SELENESE COMMANDS

Selenium

55

specified location

doubleClick (locator) Double clicks on a
webelement based on the

specified element.

dragAndDrop (locator, movementsString) Drags an element and then

drops it based on specified
distance.

dragAndDropToObject (Dragobject, dropobject) Drags an element and drops
it on another element.

Echo (message) Prints the specified message
on console which is used for

debugging.

fireEvent (locator,eventName) Explicitly simulate an event,

to trigger the corresponding
"onevent" handler

focus (locator) Move the focus to the
specified element

highlight (locator) Changes the background
color of the specified

element to yellow which is
useful for debugging

purposes.

mouseDown (locator) Simulates a user pressing

the left mouse button on the
specified element.

Selenium

56

mouseDownAt (locator, coordString) Simulates a user pressing

the left mouse button at the
specified location on the
specified element.

mouseUp (locator) Simulates the event that

occurs when the user
releases the mouse button

mouseUpAt (locator, coordString) Simulates the event that
occurs when the user
releases the mouse button

at the specified location.

open (url) Opens a URL in the specified

browser and it accepts both
relative and absolute URLs.

openWindow (url, windowID) Opens a popup window.
After opening the window,

user need to activate it
using the selectWindow

command.

pause (waitTime) Waits for the specified

amount of time (in
milliseconds)

refresh() Simulates the user clicking
the "Refresh" button on their
browser.

select (selectLocator, optionLocator) Select an option from a

drop-down using an option

Selenium

57

locator.

selectWindow (windowID) Selects a popup window
using a window locator;

once a popup window has
been selected, all focus

shifts to that window.

store (expression, variableName) The name of a variable in

which the result is to be
stored and expression is the
value to store.

type (locator, value) Sets the value of an input
field, similar to user typing

action.

typeKeys (locator, value) Simulates keystroke events
on the specified element, as
though you typed the value

key-by-key.

waitForCondition (script, timeout) Executes the specified

JavaScript snippet
repeatedly until it evaluates

to "true".

waitForPageToLoad (timeout) Waits for a new page to

load.

waitForPopUp (windowID, timeout) Waits for a popup window to

appear and load.

windowFocus() Gives focus to the currently

Selenium

58

selected window

windowMaximize() Resize the currently selected
window to take up the entire

screen

Accessors

Accessors evaluate the state of the application and store the results in a variable

which is used in assertions. For example, "storeTitle".

The following table lists the Selenium accessors that are used very frequently,

however the list is not exhaustive.

Command/Syntax Description

assertErrorOnNext (message) Pings Selenium to expect
an error on the next

command execution with
an expected message.

storeAllButtons (variableName) Returns the IDs of all
buttons on the page.

storeAllFields (variableName) Returns the IDs of all
input fields on the page.

storeAllLinks (variableName) Returns the IDs of all links
on the page.

storeAllWindowIds (variableName) Returns the IDs of all
windows that the browser

knows about in an array.

Selenium

59

storeAllWindowTitles (variableName) Returns the names of all

windows that the browser
knows about in an array.

storeAllWindowNames (variableName) Returns the titles of all
windows that the browser

knows about in an array.

storeAttribute (attributeLocator, variableName) Gets the value of an

element attribute. The
value of the attribute may
differ across browsers.

storeBodyText (variableName) Gets the entire text of the
page.

storeConfirmation (variableName) Retrieves the message of

a JavaScript confirmation
dialog generated during
the previous action.

storeElementIndex (locator, variableName) Get the relative index of
an element to its parent

(starting from 0).

storeLocation (variableName) Gets the absolute URL of

the current page.

storeSelectedIds (selectLocator, variableName) Gets all element IDs for
selected options in the
specified select or multi-

select element.

Selenium

60

storeSelectedIndex (selectLocator, variableName) Gets index (option

number, starting at 0) for
selected option in the
specified select element.

storeSelectedLabel (selectLocator, variableName) Gets label (visible text)

for selected option in the
specified select element..

storeSelectedValue (selectLocator, variableName) Gets value (value
attribute) for selected
option in the specified

select element.

storeSelectOptions (selectLocator, variableName) Gets all labels in the

specified select drop-
down.

storeTable (tableCellAddress, variableName) Gets the text from a cell
of a table. The cellAddress

syntax:
tableLocator.row.column,

where row and column
start at 0.

storeText (locator, variableName) Gets the text of an
element. This works for
any element that contains

text.

storeTitle (variableName) Gets the title of the

current page.

storeValue (locator, variableName) Gets the (whitespace-
trimmed) value of an

Selenium

61

input field.

storeChecked (locator, variableName) Gets whether a toggle-
button (checkbox/radio) is

checked.

storeElementPresent (locator, variableName) Verifies that the specified

element is somewhere on
the page.

storeTextPresent (pattern, variableName) Verifies that the specified
text pattern appears

somewhere on the
rendered page shown to
the user.

storeVisible (locator, variableName) Determines if the

specified element is
visible.

Assertions

Assertions enable us to verify the state of an application and compares against

the expected. It is used in 3 modes, viz. - "assert", "verify", and "waitfor". For

example, "verify if an item from the dropdown is selected".

The following table lists the Selenium assertions that are used very frequently,

however the list is not exhaustive.

Command/Syntax Description

waitForErrorOnNext (message) Waits for error; used with

the accessor
assertErrorOnNext.

Selenium

62

verifySelected (selectLocator, optionLocator) Verifies that the selected

option of a drop-down
satisfies the
optionSpecifier.

waitForSelected (selectLocator, optionLocator) Waits for getting the

option selected; used with
the accessor
assertSelected.

waitForNotSelected (selectLocator, optionLocator) Waits for not getting the
option selected; used with

the accessor
assertSelected.

verifyAlert (pattern) Verifies the alert text;
used with the accessor

storeAlert.

waitForAlert (pattern) Waits for the alert; used

with the accessor
storeAlert.

verifyAllButtons (pattern) Verifies the button; used
with the accessor

storeAllButtons.

waitForAllButtons (pattern) Waits for the button to

load; used with the
accessor storeAllButtons.

verifyAllLinks (pattern) Verifies all links; used with
the accessor storeAllLinks.

Selenium

63

waitForAllLinks (pattern) Waits for all links; used

with the accessor
storeAllLinks.

verifyAllWindowIds (pattern) Verifies the window id;
used with the accessor

storeAllWindowIds.

waitForAllWindowIds (pattern) Waits the window id; used

with the accessor
storeAllWindowIds.

verifyAttribute (attributeLocator, pattern) Verifies an attribute of an
element; used with the
accessor storeAttribute.

waitForAttribute (attributeLocator, pattern) Waits for an attribute of an

element; used with the
accessor storeAttribute.

verifyBodyText(pattern) Verifies the body text;
used with the accessor
storeBodyText.

waitForBodyText(pattern) Waits for the body text;
used with the accessor

storeBodyText.

waitForConfirmation(pattern) Waits for confirmation;
used with the accessor
storeConfirmationPresent

Selenium

64

Locators
Element Locators help Selenium to identify the HTML element the command

refers to. All these locators can be identified with the help of FirePath and

FireBug plugin of Mozilla. Please refer the Environment Setup chapter for details.

 identifier=id Select the element with the specified "id" attribute and

if there is no match, select the first element whose @name attribute is id.

 id=id Select the element with the specified "id" attribute.

 name=name Select the first element with the specified "name"

attribute

 dom=javascriptExpression Selenium finds an element by evaluating

the specified string that allows us to traverse through the HTML Document

Object Model using JavaScript. Users cannot return a value but can

evaluate as an expression in the block.

 xpath=xpathExpression Locate an element using an XPath

expression.

 link=textPattern Select the link element (within anchor tags)

which contains text matching the specified pattern.

 css=cssSelectorSyntax Select the element using css selector.

Selenium

65

WebDriver is a tool for automating testing web applications. It is popularly

known as Selenium 2.0. WebDriver uses a different underlying framework, while

Selenium RC uses JavaScript Selenium-Core embedded within the browser which

has got some limitations. WebDriver interacts directly with the browser without

any intermediary, unlike Selenium RC that depends on a server. It is used in the

following context:

 Multi-browser testing including improved functionality for browsers which

is not well-supported by Selenium RC (Selenium 1.0).

 Handling multiple frames, multiple browser windows, popups, and alerts.

 Complex page navigation.

 Advanced user navigation such as drag-and-drop.

 AJAX-based UI elements.

Architecture

WebDriver is best explained with a simple architecture diagram as shown below.

6. WEBDRIVER

Selenium

66

Selenium RC Vs WebDriver

Selenium RC Selenium WebDriver

The architecture of Selenium RC is
complicated, as the server needs to be

up and running before starting a test.

WebDriver's architecture is simpler
than Selenium RC, as it controls the

browser from the OS level.

Selenium server acts as a middleman

between the browser and Selenese
commands.

WebDriver interacts directly with

the browser and uses the browser's
engine to control it.

Selenium RC script execution is slower,
since it uses a Javascript to interact with

RC.

WebDriver is faster, as it interacts
directly with the browser.

Selenium RC cannot support headless

execution, as it needs a real browser to
work with.

WebDriver can support the headless

execution.

It’s a simple and small API. Complex and a bit large API as
compared to RC.

Less object-oriented API. Purely object-oriented API.

Cannot test mobile Applications. Can test iPhone/Android

applications.

Scripting using WebDriver

Let us understand how to work with WebDriver. For demonstration, we would

use http://www.calculator.net/. We will perform a "Percent Calculator" which is

Selenium

67

located under "Math Calculator". We have already downloaded the required

WebDriver JAR's. Refer the chapter "Environmental Setup" for details.

Step 1 : Launch "Eclipse" from the Extracted Eclipse folder.

Step 2 : Select the Workspace by clicking the 'Browse' button.

Selenium

68

Step 3 : Now create a 'New Project' from 'File' menu.

Step 4 : Enter the Project Name and Click 'Next'.

Selenium

69

Step 5 : Go to Libraries Tab and select all the JAR's that we have downloaded.

Add reference to all the JAR's of Selenium WebDriver Library folder and also

selenium-java-2.42.2.jar and selenium-java-2.42.2-srcs.jar.

Selenium

70

Step 6 : The Package is created as shown below.

Step 7 : Now right-click on the package and select 'New' >> 'Class' to create a

'Class'.

Selenium

71

Step 8 : Now name the class and make it the main function.

Selenium

72

Step 9 : The class outline is shown as below.

Step 10 : Now it is time to code. The following script is easier to understand, as

it has comments embedded in it to explain the steps clearly. Please take a look

at the chapter "Locators" to understand how to capture object properties.

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

public class webdriverdemo

{

 public static void main(String[] args)

 {

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net/");

 // Maximize the browser

 driver.manage().window().maximize();

 // Click on Math Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

Selenium

73

 // Click on Percent Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a")).click();

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 // Enter value 50 in the second number of the percent Calculator

 driver.findElement(By.id("cpar2")).sendKeys("50");

 // Click Calculate Button

driver.findElement(By.xpath(".//*[@id='content']/table/tbody

/tr/td[2]/input")).click();

 // Get the Result Text based on its xpath

 String result =

 driver.findElement(By.xpath(".//*[@id='content']/p[2]/span/font/b")

)

 .getText();

 //Print a Log In message to the screen

 System.out.println(" The Result is " + result);

 //Close the Browser.

 driver.close();

 }

}

Step 11 : The output of the above script would be printed in Console.

Selenium

74

Most Used Commands

The following table lists some of the most frequently used commands in

WebDriver along with their syntax.

Command Description

driver.get("URL") To navigate to an application.

element.sendKeys("inputtext") Enter some text into an input box.

element.clear() Clear the contents from the input

box.

select.deselectAll() Deselect all OPTIONs from the first

SELECT on the page.

select.selectByVisibleText("some text") Select the OPTION with the input

specified by the user.

driver.switchTo().window("windowName") Move the focus from one window
to another.

driver.switchTo().frame("frameName") Swing from frame to frame.

driver.switchTo().alert() Helps in handling alerts.

driver.navigate().to("URL") Navigate to the URL.

Selenium

75

driver.navigate().forward() To navigate forward.

driver.navigate().back() To navigate back.

driver.close() Closes the current browser
associated with the driver.

driver.quit() Quits the driver and closes all the
associated window of that driver.

driver.refresh() Refreshes the current page.

Selenium

76

Locating elements in Selenium WebDriver is performed with the help of

findElement() and findElements() methods provided by WebDriver and

WebElement class.

 findElement() returns a WebElement object based on a specified search

criteria or ends up throwing an exception if it does not find any element

matching the search criteria.

 findElements() returns a list of WebElements matching the search criteria.

If no elements are found, it returns an empty list.

The following table lists all the Java syntax for locating elements in Selenium

WebDriver.

Method Syntax Description

By ID driver.findElement(By.id(<element ID>)) Locates an
element

using the ID
attribute

By
name

driver.findElement(By.name(<element name>)) Locates an
element

using the
Name
attribute

By class
name

driver.findElement(By.className(<element class>)) Locates an
element

using the
Class

attribute

By tag

name

driver.findElement(By.tagName(<htmltagname>)) Locates an

element
using the

7. LOCATORS

Selenium

77

HTML tag

By link
text

driver.findElement(By.linkText(<linktext>)) Locates a
link using

link text

By

partial
link text

driver.findElement(By.partialLinkText(<linktext>)) Locates a

link using the
link's partial

text

By CSS driver.findElement(By.cssSelector(<css selector>)) Locates an

element
using the
CSS selector

By

XPath

driver.findElement(By.xpath(<xpath>)) Locates an

element
using XPath
query

Locators Usage

Now let us understand the practical usage of each of the locator methods with

the help of http://www.calculator.net

By ID

Here an object is accessed with the help of IDs. In this case, it is the ID of the

text box. Values are entered into the text box using the sendkeys method with

the help of ID(cdensity).

Selenium

78

driver.findElement(By.id("cdensity")).sendKeys("10");

Selenium

79

By Name

Here an object is accessed with the help of names. In this case, it is the name of

the text box. Values are entered into the text box using the sendkeys method

with the help of ID(cdensity).

driver.findElement(By.name("cdensity")).sendKeys("10");

Selenium

80

By Class Name

Here an object is accessed with the help of Class Names. In this case, it is the

Class name of the WebElement. The Value can be accessed with the help of the

gettext method.

List<WebElement> byclass = driver.findElements(By.className("smalltext

smtb"));

By Tag Name

The DOM Tag Name of an element can be used to locate that particular element

in the WebDriver. It is very easy to handle tables with the help of this method.

Take a look at the following code.

WebElement table = driver.findElement(By.id("calctable"));

List<WebElement> row = table.findElements(By.tagName("tr"));

int rowcount = row.size();

Selenium

81

By Link Text

This method helps to locate a link element with matching visible text.

driver.findElements(By.linkText("Volume")).click();

Selenium

82

By Partial Link Text

This method helps locate a link element with partial matching visible text.

driver.findElements(By.partialLinkText("Volume")).click();

By CSS

The CSS is used as a method to identify the webobject, however NOT all

browsers support CSS identification.

WebElement loginButton =

driver.findElement(By.cssSelector("input.login"));

By XPath

XPath stands for XML path language. It is a query language for selecting nodes

from an XML document. XPath is based on the tree representation of XML

Selenium

83

documents and provides the ability to navigate around the tree by selecting

nodes using a variety of criteria.

driver.findElement(By.xpath(".//*[@id='content']/table[1]/tbody/tr/td/ta

ble/tbody/tr[2]/td[1]/input")).sendkeys("100");

Selenium

84

User Interactions

Selenium WebDriver is the most frequently used tool among all the tools

available in the Selenium tool set. Therefore it is important to understand how to

use Selenium to interact with web apps. In this module, let us understand how

to interact with GUI objects using Selenium WebDriver.

We need to interact with the application using some basic actions or even some

advanced user action by developing user-defined functions for which there are

no predefined commands.

Listed below are the different kinds of actions against those GUI objects:

 Text Box Interaction

 Radio Button Selection

 Check Box Selection

 Drop Down Item Selection

 Synchronization

 Drag & Drop

 Keyboard Actions

 Mouse Actions

 Multi Select

 Find All Links

Text Box Interaction

In this section, we will understand how to interact with text boxes. We can put

values into a text box using the 'sendkeys' method. Similarly, we can also

retrieve text from a text box using the getattribute("value") command. Take a

look at the following example.

8. INTERACTIONS

Selenium

85

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

public class webdriverdemo

{

 public static void main(String[] args) throws InterruptedException

 {

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net

Selenium

86

 /percent-calculator.html");

 // Maximize the browser

 driver.manage().window().maximize();

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 Thread.sleep(5000);

 // Get the text box from the application

 String result =

 driver.findElement(By.id("cpar1")).getAttribute("value");

 // Print a Log In message to the screen

 System.out.println(" The Result is " + result);

 // Close the Browser

 driver.close();

 }

}

Output

The output of the above script is displayed as shown below.

Selenium

87

Radio Button Interaction

In this section, we will understand how to interact with Radio Buttons. We can

select a radio button option using the 'click' method and unselect using the same

'click' method.

Let us understand how to interact with radio buttons using

http://www.calculator.net/mortgage-payoff-calculator.html. We can also check if

a radio button is selected or enabled.

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

public class webdriverdemo

{

 public static void main(String[] args) throws InterruptedException

 {

Selenium

88

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net

 /mortgage-payoff-calculator.html");

 driver.manage().window().maximize();

 // Click on Radio Button

 driver.findElement(By.id("cpayoff1")).click();

 System.out.println("The Output of the IsSelected " +

 driver.findElement(By.id("cpayoff1")).isSelected());

 System.out.println("The Output of the IsEnabled " +

 driver.findElement(By.id("cpayoff1")).isEnabled());

 System.out.println("The Output of the IsDisplayed " +

 driver.findElement(By.id("cpayoff1")).isDisplayed());

 driver.close();

 // Close the Browser.

 driver.close();

 }

}

Output

Upon execution, the radio button is selected and the output of the commands

are displayed in the console.

Selenium

89

Check Box Interaction

In this section, we will understand how to interact with Check Box. We can select

a check box using the 'click' method and uncheck using the same 'click' method.

Let us understand how to interact with a check box using

http://www.calculator.net/mortgage-calculator.html. We can also check if a

check box is selected/enabled/visible.

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

Selenium

90

public class webdriverdemo

{

 public static void main(String[] args) throws InterruptedException

 {

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net

 /mortgage-calculator.html");

 driver.manage().window().maximize();

 // Click on check box

 driver.findElement(By.id("caddoptional")).click();

 System.out.println("The Output of the IsSelected " +

 driver.findElement(By.id("caddoptional")).isSelected());

 System.out.println("The Output of the IsEnabled " +

 driver.findElement(By.id("caddoptional")).isEnabled());

 System.out.println("The Output of the IsDisplayed " +

 driver.findElement(By.id("caddoptional")).isDisplayed());

 driver.close();

 }

}

Selenium

91

Output

Upon execution, the check box is unchecked after the click command (as it was

checked by default) and the output of the commands are displayed in the

console.

Dropdown Interaction

In this section, we will understand how to interact with Dropdown Boxes. We can

select an option using 'selectByVisibleText' or 'selectByIndex' or 'selectByValue'

methods.

Let us understand how to interact with a dropdown box using

http://www.calculator.net/interest-calculator.html. We can also check if a

dropdown box is selected/enabled/visible.

Selenium

92

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.openqa.selenium.support.ui.Select;

public class webdriverdemo

{

 public static void main(String[] args) throws InterruptedException

 {

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net

 /interest-calculator.html");

 driver.manage().window().maximize();

 // Selecting an item from Drop Down list Box

 Select dropdown =

 new Select(driver.findElement(By.id("ccompound")));

 dropdown.selectByVisibleText("continuously");

 // you can also use dropdown.selectByIndex(1) to

 // select second element as index starts with 0.

 // You can also use dropdown.selectByValue("annually");

 System.out.println("The Output of the IsSelected " +

Selenium

93

 driver.findElement(By.id("ccompound")).isSelected());

 System.out.println("The Output of the IsEnabled " +

 driver.findElement(By.id("ccompound")).isEnabled());

 System.out.println("The Output of the IsDisplayed " +

 driver.findElement(By.id("ccompound")).isDisplayed());

 driver.close();

 }

}

Output

Upon execution, the dropdown is set with the specified value and the output of

the commands are displayed in the console.

Synchronization

To synchronize between script execution and application, we need to wait after

performing appropriate actions. Let us look at the ways to achieve the same.

Thread.Sleep

Thread.Sleep is a static wait and it is not a good way to use in scripts, as it is

sleep without condition.

Thread.Sleep(1000); //Will wait for 1 second.

Explicit Waits

An 'explicit wait' waits for a certain condition to occur before proceeding further.

It is mainly used when we want to click or act on an object once it is visible.

Selenium

94

WebDriver driver = new FirefoxDriver();

driver.get("Enter an URL"S);

WebElement DynamicElement = (new WebDriverWait(driver,

10)).until(ExpectedConditions.presenceOfElementLocated(By.id("DynamicEle
ment")));

Implicit Wait

Implicit wait is used in cases where the WebDriver cannot locate an object

immediately because of its unavailability. The WebDriver will wait for a specified

implicit wait time and it will not try to find the element again during the specified

time period.

Once the specified time limit is crossed, the WebDriver will try to search the

element once again for one last time. Upon success, it proceeds with the

execution; upon failure, it throws an exception.

It is a kind of global wait which means the wait is applicable for the entire driver.

Hence, hardcoding this wait for longer time periods will hamper the execution

time.

WebDriver driver = new FirefoxDriver();

driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

driver.get("Enter an URL");

WebElement DynamicElement = driver.findElement(By.id("DynamicElement"));

Fluent Wait

A FluentWait instance defines the maximum amount of time to wait for a

condition to take place, as well as the frequency with which to check the

existence of the object condition.

Let us say we will 60 seconds for an element to be available on the page, but we

will check its availability once in every 10 seconds.

Wait wait = new FluentWait(driver)

 .withTimeout(60, SECONDS)

 .pollingEvery(10, SECONDS)

 .ignoring(NoSuchElementException.class);

WebElement dynamicelement = wait.until(new

Function<webdriver,webElement>()

{

Selenium

95

 public WebElement apply(WebDriver driver)

 {

 return driver.findElement(By.id("dynamicelement"));

 }

 }

);

Drag & Drop

As a tester, you might be in a situation to perform a 'Drag & drop' operation. We

will perform a drag and drop operation by picking up a tree grid that is available

for us on

http://www.keenthemes.com/preview/metronic/templates/admin/ui_tree.html.

In the example, we would like to drag an element 'Disable Node' from 'initially

open' folder to 'Parent Node' Folder.

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.openqa.selenium.interactions.Actions;

import org.openqa.selenium.interactions.Action;

Selenium

96

public class webdriverdemo

{

 public static void main(String[] args) throws InterruptedException

 {

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.keenthemes.com/preview/

 metronic/templates/admin/ui_tree.html");

 driver.manage().window().maximize();

 WebElement From =

 driver.findElement(By.xpath(".//*[@id='j3_7']/a"));

 WebElement To =

 driver.findElement(By.xpath(".//*[@id='j3_1']/a"));

 Actions builder = new Actions(driver);

 Action dragAndDrop = builder.clickAndHold(From)

 .moveToElement(To)

 .release(To)

 .build();

 dragAndDrop.perform();

 driver.close();

 }

}

Selenium

97

Output

After performing the drag-drop operation, the output would be as shown below.

Keyboard Actions

Given below are the methods to perform keyboard actions:

 sendKeys - Sends keys to the keyboard representation in the browser.

Special keys that are not text, represented as Keys are recognized both as

part of sequences of characters, or individually.

 pressKey - Press a key on the keyboard that is NOT text. The keys such

as function keys "F1", "F2", "Tab", "Control", etc. If keyToPress is a

sequence of characters, different driver implementations may choose to

throw an exception or to read only the first character in the sequence.

 releaseKey - Release a key on the keyboard after executing the keypress

event. It usually holds good for non-text characters.

Here are the syntax to call keyboard functions using Selenium WebDriver.

void sendKeys(java.lang.CharSequence keysToSend)

void pressKey(java.lang.CharSequence keyToPress)

void releaseKey(java.lang.CharSequence keyToRelease)

Mouse Actions

Listed below are some of the key mouse actions that one would come across in

most of the applications:

Selenium

98

 Click - Performs a Click. We can also perform a click based on

coordinates.

 contextClick - Performs a context click/right-click on an element or

based on the coordinates.

 doubleClick - Performs a double-click on the webelement or based on the

coordinates. If left empty, it performs double-click on the current location.

 mouseDown - Performs a mouse-down action on an element or based on

coordinates.

 mouseMove - Performs a mouse-move action on an element or based on

coordinates.

 mouseUp - Releases the mouse usually followed by mouse-down and

acts based on coordinates.

Here are the syntax to call mouse actions using Selenium WebDriver:

void click(WebElement onElement)

void contextClick(WebElement onElement)

void doubleClick(WebElement onElement)

void mouseDown(WebElement onElement)

void mouseUp(WebElement onElement)

void mouseMove(WebElement toElement)

void mouseMove(WebElement toElement, long xOffset, long yOffset)

Multi Select Action

Sometimes we would be in a situation to select two or more items in a list box or

text area. To understand the same, we would demonstrate multiple selection

from the list using

'http://demos.devexpress.com/aspxeditorsdemos/ListEditors/MultiSelect.aspx'.

Example

Let us say, we want to select 3 items from this list as shown below:

Selenium

99

Let us see how to code for this functionality:

import java.util.List;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.openqa.selenium.interactions.Actions;

import org.openqa.selenium.interactions.Action;

public class webdriverdemo

{

 public static void main(String[] args) throws InterruptedException

 {

 WebDriver driver = new FirefoxDriver();

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 driver.navigate().to("http://demos.devexpress.com

 /aspxeditorsdemos/ListEditors/MultiSelect.aspx");

 //driver.manage().window().maximize();

 driver.findElement(By.id("ContentHolder_lbSelectionMode_I")).click();

 driver.findElement(By.id("ContentHolder_lbSelectionMode

Selenium

100

 _DDD_L_LBI1T0")).click();

 Thread.sleep(5000);

 // Perform Multiple Select

 Actions builder = new Actions(driver);

 WebElement select =

 driver.findElement(By.id("ContentHolder_lbFeatures_LBT"));

 List<WebElement> options = select.findElements(By.tagName("td"));

 System.out.println(options.size());

 Action multipleSelect = builder.keyDown(Keys.CONTROL)

 .click(options.get(2))

 .click(options.get(4))

 .click(options.get(6))

 .build();

 multipleSelect.perform();

 driver.close();

 }

}

Output

Upon executing the script, the items would be selected as displayed above and

the size of the list box would also be printed in the console.

Selenium

101

Find All Links

Testers might be in a situation to find all the links on a website. We can easily

do so by finding all elements with the Tag Name "a", as we know that for any

link reference in HTML, we need to use "a" (anchor) tag.

Example

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

public class getalllinks

{

 public static void main(String[] args)

 {

 WebDriver driver = new FirefoxDriver();

 driver.navigate().to("http://www.calculator.net");

 java.util.List<WebElement> links =

 driver.findElements(By.tagName("a"));

 System.out.println("Number of Links in the Page is " +

 links.size());

 for (int i = 1; i<=links.size(); i=i+1)

 {

 System.out.println("Name of Link# " + i - +

 links.get(i).getText());

 }

 }

}

Output

The output of the script would be thrown to the console as shown below. Though

there are 65 links, only partial output is shown below.

Selenium

102

Selenium

103

There are various components involved in designing the tests. Let us understand

some of the important components involved in designing a framework as well.

We will learn the following topics in this chapter:

 Page Object Model

 Parameterizing using Excel

 Log4j Logging

 Exception Handling

 Multi Browser Testing

 Capture Screenshots

 Capture Videos

Page Object Model

Selenium acts on webelements with the help of their properties such ID, name,

XPath, etc. Unlike QTP which has an inbuilt object repository (OR), Selenium has

no inbuilt ORs.

Hence we need to build an OR which should also be maintainable and accessible

on demand. Page Object Model (POM) is a popular design pattern to create an

Object Repository in which each one of those webelements properties are

created using a class file.

Advantages

 POM is an implementation where test objects and functions are separated

from each other, thereby keeping the code clean.

 The objects are kept independent of test scripts. An object can be

accessed by one or more test scripts, hence POM helps us to create

objects once and use them multiple times.

 Since objects are created once, it is easy to access as well as update a

particular property of an object.

POM Flow Diagram

Objects are created for each one of the pages and methods are developed

exclusively to access to those objects. Let us use http://calculator.net for

understanding the same.

9. TEST DESIGN TECHNIQUES

Selenium

104

There are various calculators associated with it and each one of those objects in

a particular page is created in a separate class file as static methods and they all

are accessed through the 'tests' class file in which a static method would be

accessing the objects.

Example

Let us understand it by implementing POM for percent calculator test.

Step 1 : Create a simple class (page_objects_perc_calc.java) file within a

package and create methods for each one of those object identifiers as shown

below.

package PageObject;

import org.openqa.selenium.*;

public class page_objects_perc_calc

{

 private static WebElement element = null;

 // Math Calc Link

 public static WebElement lnk_math_calc(WebDriver driver)

 {

 element =

 driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a"));

 return element;

 }

Selenium

105

 // Percentage Calc Link

 public static WebElement lnk_percent_calc(WebDriver driver)

 {

 element =

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a"));

 return element;

 }

 // Number 1 Text Box

 public static WebElement txt_num_1(WebDriver driver)

 {

 element = driver.findElement(By.id("cpar1"));

 return element;

 }

 // Number 2 Text Box

 public static WebElement txt_num_2(WebDriver driver)

 {

 element = driver.findElement(By.id("cpar2"));

 return element;

 }

 // Calculate Button

 public static WebElement btn_calc(WebDriver driver)

 {

 element =

 driver.findElement(By.xpath(".//*[@id='content']/table/tbody

 /tr/td[2]/input"));

 return element;

 }

 // Result

 public static WebElement web_result(WebDriver driver)

Selenium

106

 {

 element =

 driver.findElement(By.xpath(".//*[@id='content']/p[2]/span/font/b"));

 return element;

 }

}

Step 2 : Create a class with main and import the package and create methods

for each one of those object identifiers as shown below.

package PageObject;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.firefox.FirefoxDriver;

public class percent_calculator

{

 private static WebDriver driver = null;

 public static void main(String[] args)

 {

 driver = new FirefoxDriver();

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 driver.get("http://www.calculator.net");

 // Use page Object library now

 page_objects_perc_calc.lnk_math_calc(driver).click();

 page_objects_perc_calc.lnk_percent_calc(driver).click();

 page_objects_perc_calc.txt_num_1(driver).clear();

 page_objects_perc_calc.txt_num_1(driver).sendKeys("10");

 page_objects_perc_calc.txt_num_2(driver).clear();

 page_objects_perc_calc.txt_num_2(driver).sendKeys("50");

Selenium

107

 page_objects_perc_calc.btn_calc(driver).click();

 String result =

 page_objects_perc_calc.web_result(driver).getText();

 if(result.equals("5"))

 {

 System.out.println(" The Result is Pass");

 }

 else

 {

 System.out.println(" The Result is Fail");

 }

 driver.close();

 }

}

Output

The test is executed and the result is printed in the console. Given below is the

snapshot of the same.

Data Driven using Excel

While designing a test, parameterizing the tests is inevitable. We will make use

of Apache POI - Excel JAR's to achieve the same. It helps us read and write into

Excel.

Download JAR

Selenium

108

Step 1 : Navigate to the URL – http://poi.apache.org/download.html and

download the ZIP format.

Step 2 : Click on the Mirror Link to download the JAR's.

Step 3 : Unzip the contents to a folder.

Step 4 : Unzipped contents would be displayed as shown below.

Selenium

109

Step 5 : Now create a new project and add all the 'External JARs' under 'poi-

3.10.FINAL' folder.

Step 6 : Now add all the 'External JARs' under the 'ooxml-lib' folder.

Selenium

110

Step 7 : Now add all the 'External JARs' under the 'lib' folder.

Selenium

111

Step 8 : The Added JAR is displayed as shown below.

Step 9 : The Package Explorer is displayed as shown below. Apart from that,

add 'WebDriver' related JAR's

Selenium

112

Parameterization

For demonstration, we will parameterize the percent calculator test.

Step 1 : We will parameterize all the inputs required for percent calculator using

Excel. The designed Excel is shown below.

Step 2 : Execute all the percent calculator functions for all the specified

parameters.

Selenium

113

Step 3 : Let us create generic methods to access the Excel file using the

imported JARs. These methods help us get a particular cell data or to set a

particular cell data, etc.

import java.io.*;

import org.apache.poi.xssf.usermodel.*;

public class excelutils

{

 private XSSFSheet ExcelWSheet;

 private XSSFWorkbook ExcelWBook;

 //Constructor to connect to the Excel with sheetname and Path

 public excelutils(String Path, String SheetName) throws Exception

 {

 try

 {

 // Open the Excel file

 FileInputStream ExcelFile = new FileInputStream(Path);

 // Access the required test data sheet

 ExcelWBook = new XSSFWorkbook(ExcelFile);

 ExcelWSheet = ExcelWBook.getSheet(SheetName);

 }

 catch (Exception e)

 {

 throw (e);

 }

 }

 // This method is to set the rowcount of the excel.

 public int excel_get_rows() throws Exception

 {

 try

 {

Selenium

114

 return ExcelWSheet.getPhysicalNumberOfRows();

 }

 catch (Exception e)

 {

 throw (e);

 }

 }

 // This method to get the data and get the value as strings.

 public String getCellDataasstring(int RowNum, int ColNum) throws Exception

 {

 try

 {

 String CellData =

 ExcelWSheet.getRow(RowNum).getCell(ColNum).getStringCellValue();

 System.out.println("The value of CellData " + CellData);

 return CellData;

 }

 catch (Exception e)

 {

 return "Errors in Getting Cell Data";

 }

 }

 // This method to get the data and get the value as number.

 public double getCellDataasnumber(int RowNum, int ColNum) throws Exception

 {

 try

 {

 double CellData =

 ExcelWSheet.getRow(RowNum).getCell(ColNum).getNumericCellValue();

Selenium

115

 System.out.println("The value of CellData " + CellData);

 return CellData;

 }

 catch (Exception e)

 {

 return 000.00;

 }

 }

}

Step 4 : Now add a main method which will access the Excel methods that we

have developed.

import java.io.*;

import org.apache.poi.xssf.usermodel.*;

public class excelutils

{

 private XSSFSheet ExcelWSheet;

 private XSSFWorkbook ExcelWBook;

 //Constructor to connect to the Excel with sheetname and Path

 public excelutils(String Path, String SheetName) throws Exception

 {

 try

 {

 // Open the Excel file

 FileInputStream ExcelFile = new FileInputStream(Path);

 // Access the required test data sheet

 ExcelWBook = new XSSFWorkbook(ExcelFile);

 ExcelWSheet = ExcelWBook.getSheet(SheetName);

 }

 catch (Exception e)

Selenium

116

 {

 throw (e);

 }

 }

 // This method is to set the rowcount of the excel.

 public int excel_get_rows() throws Exception

 {

 try

 {

 return ExcelWSheet.getPhysicalNumberOfRows();

 }

 catch (Exception e)

 {

 throw (e);

 }

 }

 // This method to get the data and get the value as strings.

 public String getCellDataasstring(int RowNum, int ColNum) throws Exception

 {

 try

 {

 String CellData =

 ExcelWSheet.getRow(RowNum).getCell(ColNum).getStringCellValue();

 // Cell = ExcelWSheet.getRow(RowNum).getCell(ColNum);

 // String CellData = Cell.getStringCellValue();

 System.out.println("The value of CellData " + CellData);

 return CellData;

 }

 catch (Exception e)

 {

Selenium

117

 return "Errors in Getting Cell Data";

 }

 }

 // This method to get the data and get the value as number.

 public double getCellDataasnumber(int RowNum, int ColNum) throws Exception

 {

 try

 {

 double CellData =

 ExcelWSheet.getRow(RowNum).getCell(ColNum).getNumericCellValue();

 // Cell = ExcelWSheet.getRow(RowNum).getCell(ColNum);

 // String CellData = Cell.getStringCellValue();

 System.out.println("The value of CellData " + CellData);

 return CellData;

 }

 catch (Exception e)

 {

 return 000.00;

 }

 }

}

Output

Upon executing the script, the output is displayed in the console as shown

below.

Selenium

118

Log4j Logging

Log4j is an audit logging framework that gives information about what has

happened during execution. It offers the following advantages:

 Enables us to understand the application run.

 Log output can be saved that can be analyzed later.

 Helps in debugging, in case of test automation failures.

 Can also be used for auditing purposes to look at the application's health.

Components

1. Instance of Logger class.

2. Log level methods used for logging the messages as one of the following:

 error

 warn

 info

 debug

 log

Example

Let us use the same percent calculator for this demo.

Selenium

119

Step 1 : Download log4j JAR file from

https://logging.apache.org/log4j/1.2/download.html and download the Zipped

format of the JAR file.

Step 2 : Create 'New Java Project' by navigating to the File menu.

Selenium

120

Step 3 : Enter the name of the project as 'log4j_demo' and click 'Next'.

Step 4 : Click Add External Jar and add 'Log4j-1.2.17.jar'.

Selenium

121

Step 5 : Click Add External Jar and add Selenium WebDriver Libraries.

Step 6 : Click Add External Jar and add Selenium WebDriver JAR's located in the

Libs folder.

Selenium

122

Step 7 : Add a New XML file using which we can specify the Log4j properties.

Step 8 : Enter the Logfile name as 'Log4j.xml'.

Selenium

123

Step 9 : The final folder structure is shown below.

Step 10 : Now add the properties of Log4j which would be picked up during

execution.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/"

debug="false">

 <appender name="fileAppender"

class="org.apache.log4j.FileAppender">

 <param name="Threshold" value="INFO" />

 <param name="File" value="percent_calculator.log"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d{yyyy-MM-dd

 HH:mm:ss} [%c] (%t:%x) %m%n" />

 </layout>

 </appender>

 <root>

 <level value="INFO"/>

 <appender-ref ref="fileAppender"/>

 </root>

</log4j:configuration>

Step 11 : Now for demonstration purpose, we will incorporate log4j in the same

test that we have been performing (percent calculator). Add a class file in the

'Main' function.

package log4j_demo;

import org.apache.log4j.LogManager;

import org.apache.log4j.Logger;

import org.apache.log4j.xml.DOMConfigurator;

Selenium

124

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

public class log4j_demo

{

 static final Logger logger =

 LogManager.getLogger(log4j_demo.class.getName());

 public static void main(String[] args)

 {

 DOMConfigurator.configure("log4j.xml");

 logger.info("# ");

 logger.info("TEST Has Started");

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net/");

 logger.info("Open Calc Application");

 // Maximize the browser

 driver.manage().window().maximize();

 // Click on Math Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

Selenium

125

 logger.info("Clicked Math Calculator Link");

 // Click on Percent Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a"))

 .click(); logger.info("Clicked Percent Calculator Link");

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 logger.info("Entered Value into First Text Box");

 // Enter value 50 in the second number of the percent Calculator

 driver.findElement(By.id("cpar2")).sendKeys("50");

 logger.info("Entered Value into Second Text Box");

 // Click Calculate Button

 driver.findElement(By.xpath(".//*[@id='content']/table

 /tbody/tr/td[2]/input")).click();

 logger.info("Click Calculate Button");

 // Get the Result Text based on its xpath

 String result =

 driver.findElement(By.xpath(".//*[@id='content']

 /p[2]/span/font/b")).getText();

 logger.info("Get Text Value");

 // Print a Log In message to the screen

 logger.info(" The Result is " + result);

 if(result.equals("5"))

 {

 logger.info("The Result is Pass");

Selenium

126

 }

 else

 {

 logger.error("TEST FAILED. NEEDS INVESTIGATION");

 }

 logger.info("# ");

 // Close the Browser.

 driver.close();

 }

}

Execution

Upon execution, the log file is created on the root folder as shown below. You

CANNOT locate the file in Eclipse. You should open 'Windows Explorer' to show

the same.

The contents of the file is shown below.

Selenium

127

Exception Handling

When we are developing tests, we should ensure that the scripts can continue

their execution even if the test fails. An unexpected exception would be thrown if

the worst case scenarios are not handled properly.

If an exception occurs due to an element not found or if the expected result

doesn't match with actuals, we should catch that exception and end the test in a

logical way rather than terminating the script abruptly.

Syntax

The actual code should be placed in the try block and the action after exception

should be placed in the catch block. Note that the 'finally' block executes

regardless of whether the script had thrown an exception or NOT.

try

{

 // Perform Action

}

catch(ExceptionType1 exp1)

{

 // Catch block 1

}

catch(ExceptionType2 exp2)

{

 // Catch block 2

}

catch(ExceptionType3 exp3)

{

 // Catch block 3

}

finally

{

 // The finally block always executes.

}

Selenium

128

Example

If an element is not found (due to some reason), we should step out of the

function smoothly. So we always need to have a try-catch block if we want to

exit smoothly from a function.

public static WebElement lnk_percent_calc(WebDriver driver)throws Exception

{

 try

 {

 element =

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a"));

 return element;

 }

 catch (Exception e1)

 {

 // Add a message to your Log File to capture the error

 Logger.error("Link is not found.");

 // Take a screenshot which will be helpful for analysis.

 File screenshot =

 ((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);

 FileUtils.copyFile(screenshot, new

 File("D:\\framework\\screenshots.jpg"));

 throw(e1);

 }

}

Multi Browser Testing

Users can execute scripts in multiple browsers simultaneously. For

demonstration, we will use the same scenario that we had taken for Selenium

Grid. In the Selenium Grid example, we had executed the scripts remotely; here

we will execute the scripts locally.

Selenium

129

First of all, ensure that you have appropriate drivers downloaded. Please refer

the chapter "Selenium Grid" for downloading IE and Chrome drivers.

Example

For demonstration, we will perform percent calculator in all the browsers

simultaneously.

package TestNG;

import org.openqa.selenium.chrome.ChromeDriver;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.openqa.selenium.ie.InternetExplorerDriver;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.testng.annotations.*;

public class TestNGClass

{

 private WebDriver driver;

 private String URL = "http://www.calculator.net";

 @Parameters("browser")

 @BeforeTest

 public void launchapp(String browser)

 {

 if (browser.equalsIgnoreCase("firefox"))

 {

 System.out.println(" Executing on FireFox");

 driver = new FirefoxDriver();

 driver.get(URL);

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 driver.manage().window().maximize();

 }

 else if (browser.equalsIgnoreCase("chrome"))

Selenium

130

 {

 System.out.println(" Executing on CHROME");

 System.out.println("Executing on IE");

 System.setProperty("webdriver.chrome.driver",

 "D:\\chromedriver.exe");

 driver = new ChromeDriver();

 driver.get(URL);

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 driver.manage().window().maximize();

 }

 else if (browser.equalsIgnoreCase("ie"))

 {

 System.out.println("Executing on IE");

 System.setProperty("webdriver.ie.driver",

 "D:\\IEDriverServer.exe");

 driver = new InternetExplorerDriver();

 driver.get(URL);

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 driver.manage().window().maximize();

 }

 else

 {

 throw new IllegalArgumentException("The Browser Type is Undefined");

 }

 }

 @Test

 public void calculatepercent()

 {

 // Click on Math Calculators

driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

 // Click on Percent Calculators

driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a")).click();

Selenium

131

 // Enter value 10 in the first number of the percent Calculator

driver.findElement(By.id("cpar1")).sendKeys("10");

 // Enter value 50 in the second number of the percent Calculator

driver.findElement(By.id("cpar2")).sendKeys("50");

 // Click Calculate Button

driver.findElement(By.xpath(".//*[@id='content']/table/tbody/

tr/td[2]/input")).click();

 // Get the Result Text based on its xpath

String result =

driver.findElement(By.xpath(".//*[@id='content']/p[2]/span

/font/b")).getText();

 // Print a Log In message to the screen

System.out.println(" The Result is " + result);

 if(result.equals("5"))

 {

 System.out.println(" The Result is Pass");

 }

 else

 {

 System.out.println(" The Result is Fail");

 }

 }

 @AfterTest

 public void closeBrowser()

 {

 driver.close();

Selenium

132

 }

}

Create an XML which will help us in parameterizing the browser name and don't

forget to mention parallel="tests" in order to execute in all the browsers

simultaneously.

Selenium

133

Execute the script by performing right-click on the XML file and select 'Run As'

>> 'TestNG' Suite as shown below.

Output

All the browsers would be launched simultaneously and the result would be

printed in the console.

Note : To execute on IE successfully, ensure that the check box 'Enable

Protected Mode' under the security tab of 'IE Option' is either checked or

unchecked across all zones.

Selenium

134

TestNG results can be viewed in HTML format for detailed analysis.

Selenium

135

Capture Screenshots

This functionality helps to grab screenshots at runtime when required, in

particularly when a failure happens. With the help of screenshots and log

messages, we will be able to analyze the results better.

Screenshots are configured differently for local executions and Selenium Grid

(remote) executions. Let us take a look at each one them with an example.

Localhost Execution

In the following example, we will take a screenshot after calculating the

percentage. Ensure that you give a valid path to save the screenshot.

import java.io.File;

import java.io.IOException;

import java.util.concurrent.TimeUnit;

import org.apache.commons.io.FileUtils;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

public class webdriverdemo

{

 public static void main(String[] args) throws IOException

 {

 WebDriver driver = new FirefoxDriver();

 // Puts an Implicit wait, Will wait for 10 seconds

// before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net/");

 // Maximize the browser

 driver.manage().window().maximize();

Selenium

136

 // Click on Math Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

 // Click on Percent Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a")).click();

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 // Enter value 50 in the second number of the percent Calculator

 driver.findElement(By.id("cpar2")).sendKeys("50");

 // Click Calculate Button

driver.findElement(By.xpath(".//*[@id='content']/table

/tbody/tr/td[2]/input")).click();

 // Get the Result Text based on its xpath

 String result =

driver.findElement(By.xpath(".//*[@id='content']/p[2]

/span/font/b")).getText();

 File screenshot =

((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);

 FileUtils.copyFile(screenshot, new

File("D:\\screenshots\\screenshots1.jpg"));

 // Print a Log In message to the screen

 System.out.println(" The Result is " + result);

 // Close the Browser.

 driver.close();

 }

Selenium

137

}

Output

Upon executing the script, the screenshot is saved in the 'D:\screenshots' folder

with the name 'screenshots1.jpg' as shown below.

Selenium Grid – Screenshot Capture

While working with Selenium Grids, we should ensure that we are taking the

screenshots correctly from the remote system. We will use augmented driver.

Example

We will execute the script on a Firefox node attached to a hub. For more on

configuring hub and nodes, please refer the Selenium Grids chapter.

package TestNG;

import org.openqa.selenium.remote.Augmenter;

import org.openqa.selenium.remote.DesiredCapabilities;

import org.openqa.selenium.TakesScreenshot;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.testng.annotations.AfterTest;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.Parameters;

import org.testng.annotations.Test;

import java.io.File;

import java.net.URL;

import java.net.MalformedURLException;

import org.apache.commons.io.FileUtils;

Selenium

138

import org.openqa.selenium.remote.RemoteWebDriver;

import java.io.IOException;

public class TestNGClass

{

 public WebDriver driver;

 public String URL, Node;

 protected ThreadLocal<RemoteWebDriver> threadDriver = null;

 @Parameters("browser")

 @BeforeTest

 public void launchapp(String browser) throws MalformedURLException

 {

 String URL = "http://www.calculator.net";

 if (browser.equalsIgnoreCase("firefox"))

 {

 System.out.println(" Executing on FireFox");

 String Node = "http://10.112.66.52:5555/wd/hub";

 DesiredCapabilities cap = DesiredCapabilities.firefox();

 cap.setBrowserName("firefox");

 driver = new RemoteWebDriver(new URL(Node), cap);

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to(URL);

 driver.manage().window().maximize();

 }

 else

 {

 throw new IllegalArgumentException("The Browser Type is

Selenium

139

Undefined");

 }

 }

 @Test

 public void calculatepercent() throws IOException

 {

 // Click on Math Calculators

driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

 // Click on Percent Calculators

driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a")).click();

 // Make use of augmented Driver to capture Screenshots.

 WebDriver augmentedDriver = new Augmenter().augment(driver);

 File screenshot =

 ((TakesScreenshot)augmentedDriver).getScreenshotAs(OutputType.FILE);

FileUtils.copyFile(screenshot, new

File("D:\\screenshots\\remotescreenshot1.jpg"));

 // Screenshot would be saved on the system where the script is

// executed and NOT on remote machine.

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 // Enter value 50 in the second number of the percent Calculator

driver.findElement(By.id("cpar2")).sendKeys("50");

// Click Calculate Button

driver.findElement(By.xpath(".//*[@id='content']/table/tbody

/tr/td[2]/input")).click();

Selenium

140

// Get the Result Text based on its xpath

String result =

driver.findElement(By.xpath(".//*[@id='content']/p[2]

/span/font/b")).getText();

 // Print a Log In message to the screen

System.out.println(" The Result is " + result);

 if(result.equals("5"))

 {

 System.out.println(" The Result is Pass");

 }

 else

 {

 System.out.println(" The Result is Fail");

 }

 }

 @AfterTest

 public void closeBrowser()

 {

driver.quit();

 }

}

Output

Upon executing the script, the screenshot is captured and saved in the specified

location as shown below.

Selenium

141

Capturing Videos

Sometimes we may not be able to analyze the failures just with the help of a log

file or a screenshot. At times, it helps to capture the complete execution as a

video. Let us understand how to capture videos.

We will make use of Monte Media Library to perform this operation.

Configuration

Step 1 : Navigate to the URL - http://www.randelshofer.ch/monte/index.html

and download the screen recorder JAR as shown below.

Selenium

142

Selenium

143

Step 2 : After downloading, add the JAR file to the Libraries of the current

project.

Step 3 : We will use Java's AWT package to initialize the graphics configuration.

GraphicsConfiguration gc = GraphicsEnvironment

 .getLocalGraphicsEnvironment()

 .getDefaultScreenDevice()

 .getDefaultConfiguration();

Step 4 : An instance of ScreenRecorder is created which takes the following

parameters.

Parameter Description

GraphicsConfiguration Provides information about the display

screen such as size and resolution.

Selenium

144

Video and compression format The output format (AVI) of the movie with

number of frames/sec.

Color of the mouse cursor and

refresh rate

Specifies the mouse cursor color and

refresh rate.

Audio format If 'NULL', audio will NOT be recorded.

Example

We will capture a video of the simple test execution - percent calculation.

import java.io.File;

import java.io.IOException;

import java.util.concurrent.TimeUnit;

import org.apache.commons.io.FileUtils;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.By;

import org.monte.media.math.Rational;

import org.monte.media.Format;

import org.monte.screenrecorder.ScreenRecorder;

import static org.monte.media.AudioFormatKeys.*;

import static org.monte.media.VideoFormatKeys.*;

import java.awt.*;

public class webdriverdemo

{

Selenium

145

 private static ScreenRecorder screenRecorder;

 public static void main(String[] args) throws IOException, AWTException

 {

 GraphicsConfiguration gconfig = GraphicsEnvironment

 .getLocalGraphicsEnvironment()

 .getDefaultScreenDevice()

 .getDefaultConfiguration();

 screenRecorder = new ScreenRecorder(gconfig,

 new Format(MediaTypeKey, MediaType.FILE, MimeTypeKey,

 MIME_AVI),

 new Format(MediaTypeKey, MediaType.VIDEO, EncodingKey,

 ENCODING_AVI_TECHSMITH_SCREEN_CAPTURE,

 CompressorNameKey, ENCODING_AVI_TECHSMITH_SCREEN_CAPTURE,

 DepthKey, (int)24, FrameRateKey, Rational.valueOf(15),

 QualityKey, 1.0f,

 KeyFrameIntervalKey, (int) (15 * 60)),

 new Format(MediaTypeKey, MediaType.VIDEO,

 EncodingKey,"black",

 FrameRateKey, Rational.valueOf(30)), null);

 WebDriver driver = new FirefoxDriver();

 // Start Capturing the Video

 screenRecorder.start();

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to("http://www.calculator.net/");

Selenium

146

 // Maximize the browser

 driver.manage().window().maximize();

 // Click on Math Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

 // Click on Percent Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a"))

 .Click();

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 // Enter value 50 in the second number of the percent Calculator

 driver.findElement(By.id("cpar2")).sendKeys("50");

 // Click Calculate Button

 driver.findElement(By.xpath(".//*[@id='content']/table

 /tbody/tr/td[2]/input")).click();

 // Get the Result Text based on its xpath

 String result =

 driver.findElement(By.xpath(".//*[@id='content']

 /p[2]/span/font/b")).getText();

 File screenshot =

 ((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);

 FileUtils.copyFile(screenshot, new

 File("D:\\screenshots\\screenshots1.jpg"));

Selenium

147

 // Print a Log In message to the screen

 System.out.println(" The Result is " + result);

 // Close the Browser.

 driver.close();

 // Stop the ScreenRecorder

 screenRecorder.stop();

 }

}

Output

The recorded video is saved in the "C:\users\<<UserName>>\Videos" folder as

shown below.

Selenium

148

What is TestNG?

TestNG is a powerful testing framework, an enhanced version of JUnit which was

in use for a long time before TestNG came into existence. NG stands for 'Next

Generation'.

TestNG framework provides the following features:

 Annotations help us organize the tests easily.

 Flexible test configuration.

 Test cases can be grouped more easily.

 Parallelization of tests can be achieved using TestNG.

 Support for data-driven testing.

 Inbuilt reporting

Installing TestNG for Eclipse

Step 1 : Launch Eclipse and select 'Install New Software'.

10. TestNG

Selenium

149

Step 2 : Enter the URL as 'http://beust.com/eclipse' and click 'Add'.

Step 3 : The dialog box 'Add Repository' opens. Enter the name as 'TestNG' and

click 'OK'

Selenium

150

Step 4 : Click 'Select All' and 'TestNG' would be selected as shown in the figure.

Step 5 : Click 'Next' to continue.

Selenium

151

Step 6 : Review the items that are selected and click 'Next'.

Step 7 : "Accept the License Agreement" and click 'Finish'.

Selenium

152

Step 8 : TestNG starts installing and the progress would be shown follows.

Step 9 : Security Warning pops up as the validity of the software cannot be

established. Click 'Ok'.

Step 10 : The Installer prompts to restart Eclipse for the changes to take effect.

Click 'Yes'.

Annotations in TestNG

Annotations were formally added to the Java language in JDK 5 and TestNG

made the choice to use annotations to annotate test classes. Following are some

of the benefits of using annotations. More about TestNG can be found here.

 TestNG identifies the methods it is interested in by looking up

annotations. Hence, method names are not restricted to any pattern or

format.

http://www.tutorialspoint.com/testng/index.htm

Selenium

153

 We can pass additional parameters to annotations.

 Annotations are strongly typed, so the compiler will flag any mistakes

right away.

 Test classes no longer need to extend anything (such as TestCase, for

JUnit 3).

Annotation Description

@BeforeSuite The annotated method will be run only once before all the
tests in this suite have run.

@AfterSuite The annotated method will be run only once after all the
tests in this suite have run.

@BeforeClass The annotated method will be run only once before the first

test method in the current class is invoked.

@AfterClass The annotated method will be run only once after all the test

methods in the current class have run.

@BeforeTest The annotated method will be run before any test method

belonging to the classes inside the <test> tag is run.

@AfterTest The annotated method will be run after all the test methods

belonging to the classes inside the <test> tag have run.

@BeforeGroups The list of groups that this configuration method will run

before. This method is guaranteed to run shortly before the
first test method that belongs to any of these groups is

invoked.

@AfterGroups The list of groups that this configuration method will run

Selenium

154

after. This method is guaranteed to run shortly after the last

test method that belongs to any of these groups is invoked.

@BeforeMethod The annotated method will be run before each test method.

@AfterMethod The annotated method will be run after each test method.

@DataProvider Marks a method as supplying data for a test method. The
annotated method must return an Object[][] where each
Object[] can be assigned the parameter list of the test

method. The @Test method that wants to receive data from
this DataProvider needs to use a dataProvider name equals

to the name of this annotation.

@Factory Marks a method as a factory that returns objects that will be

used by TestNG as Test classes. The method must return
Object[].

@Listeners Defines listeners on a test class.

@Parameters Describes how to pass parameters to a @Test method.

@Test Marks a class or a method as part of the test.

Selenium

155

TestNG-Eclipse Setup

Step 1 : Launch Eclipse and create a 'New Java Project' as shown below.

Step 2 : Enter the project name and click 'Next'.

Selenium

156

Step 3 : Navigate to "Libraries" Tab and add the Selenium Remote Control

Server JAR file by clicking on "Add External JAR's" as shown below.

Step 4 : The added JAR file is shown here. Click 'Add Library'.

Selenium

157

Step 5 : The 'Add Library' dialog opens. Select 'TestNG' and click 'Next' in the

'Add Library' dialog box.

Selenium

158

Step 6 : The added 'TestNG' Library is added and it is displayed as shown

below.

Step 7 : Upon creating the project, the structure of the project would be as

shown below.

Selenium

159

Step 8 : Right-click on 'src' folder and select New >> Other.

Selenium

160

Step 9 : Select 'TestNG' and click 'Next'.

Step 10 : Select the 'Source Folder' name and click 'Ok'.

Selenium

161

Step 11 : Select the 'Package name', the 'class name', and click 'Finish'.

Step 12 : The Package explorer and the created class would be displayed.

Selenium

162

First Test in TestNG

Now let us start scripting using TestNG. Let us script for the same example that

we used for understanding the WebDriver. We will use the demo application,

www.calculator.net, and perform percent calculator.

In the following test, you will notice that there is NO main method, as testNG will drive the

program execution flow. After initializing the driver, it will execute the '@BeforeTest' method

followed by '@Test' and then '@AfterTest'. Please note that there can be any number of '@Test'

annotation in a class but '@BeforeTest' and '@AfterTest' can appear only once.

package TestNG;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.openqa.selenium.firefox.FirefoxDriver;

import org.testng.annotations.AfterTest;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

public class TestNGClass

{

 WebDriver driver = new FirefoxDriver();

 @BeforeTest

 public void launchapp()

 {

 //Puts an Implicit wait, Will wait for 10 seconds

// before throwing exception

 driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

 //Launch website

 driver.navigate().to("http://www.calculator.net");

 driver.manage().window().maximize();

 }

 @Test

 public void calculatepercent()

Selenium

163

 {

 // Click on Math Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

 // Click on Percent Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a")).click();

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 // Enter value 50 in the second number of the percent Calculator

 driver.findElement(By.id("cpar2")).sendKeys("50");

 // Click Calculate Button

 driver.findElement(By.xpath(".//*[@id='content']/table

/tbody/tr/td[2]/input")).click();

 // Get the Result Text based on its xpath

 String result =

driver.findElement(By.xpath(".//*[@id='content']/p[2]

/span/font/b")).getText();

 // Print a Log In message to the screen

 System.out.println(" The Result is " + result);

 if(result.equals("5"))

 {

 System.out.println(" The Result is Pass");

 }

 else

 {

 System.out.println(" The Result is Fail");

Selenium

164

 }

 }

 @AfterTest

 public void terminatetest()

 {

 driver.close();

 }

}

Execution

To execute, right-click on the created XML and select "Run As" >> "TestNG

Suite"

Selenium

165

Result Analysis

The output is thrown to the console and it would appear as shown below. The

console output also has an execution summary.

The result of TestNG can also be seen in a different tab. Click on 'HTML Report

View' button as shown below.

The HTML result would be displayed as shown below.

Selenium

166

Selenium Grid is a tool that distributes the tests across multiple physical or

virtual machines so that we can execute scripts in parallel (simultaneously). It

dramatically accelerates the testing process across browsers and across

platforms by giving us quick and accurate feedback.

Selenium Grid allows us to execute multiple instances of WebDriver or Selenium

Remote Control tests in parallel which uses the same code base, hence the code

need NOT be present on the system they execute. The selenium-server-

standalone package includes Hub, WebDriver, and Selenium RC to execute the

scripts in grid.

Selenium Grid has a Hub and a Node.

 Hub - The hub can also be understood as a server which acts as the

central point where the tests would be triggered. A Selenium Grid has

only one Hub and it is launched on a single machine once.

 Node - Nodes are the Selenium instances that are attached to the Hub

which execute the tests. There can be one or more nodes in a grid which

can be of any OS and can contain any of the Selenium supported

browsers.

11. SELENIUM GRID

Selenium

167

Architecture

The following diagram shows the architecture of Selenium Grid.

Working with Grid

In order to work with the Grid, we need to follow certain protocols. Listed below

are the major steps involved in this process:

 Configuring the Hub

 Configuring the Nodes

 Develop the Script and Prepare the XML File

 Test Execution

 Result Analysis

Let us discuss each of these steps in detail.

Selenium

168

Configuring the Hub

Step 1 : Download the latest Selenium Server standalone JAR file from

http://docs.seleniumhq.org/download/. Download it by clicking on the version as

shown below.

Step 2 : Start the Hub by launching the Selenium Server using the following

command. Now we will use the port '4444' to start the hub.

Note : Ensure that there are no other applications that are running on port#

4444.

java -jar selenium-server-standalone-2.25.0.jar -port 4444 -role hub -

nodeTimeout 1000

Selenium

169

Step 3 : Now open the browser and navigate to the URL http//localhost:4444

from the Hub (The system where you have executed Step#2).

Step 4 : Now click on the 'console' link and click 'view config'. The config of the

hub would be displayed as follows. As of now, we haven't got any nodes, hence

we will not be able to see the details.

Configuring the Nodes

Step 1 : Logon to the node (where you would like to execute the scripts) and

place the 'selenium-server-standalone-2.42.2' in a folder. We need to point to

the selenium-server-standalone JAR while launching the nodes.

Selenium

170

Step 2 : Launch FireFox Node using the following command.

java -jar D:\JAR\selenium-server-standalone-2.42.2.jar -role node -hub

http://10.30.217.157:4444/grid/register -browser browserName=firefox -

port 5555

Where,

D:\JAR\selenium-server-standalone-2.42.2.jar = Location of the Selenium

Server Standalone Jar File(on the Node Machine)

http://10.30.217.157:4444 = IP Address of the Hub and 4444 is the port

of the Hub

browserName = firefox (Parameter to specify the Browser name on Nodes)

5555 = Port on which Firefox Node would be up and running.

Step 3 : After executing the command, come back to the Hub. Navigate to the

URL - http://10.30.217.157:4444 and the Hub would now display the node

attached to it.

Selenium

171

Step 4 : Now let us launch the Internet Explorer Node. For launching the IE

Node, we need to have the Internet Explorer driver downloaded on the node

machine.

Step 5 : To download the Internet Explorer driver, navigate to

http://docs.seleniumhq.org/download/ and download the appropriate file based

on the architecture of your OS. After you have downloaded, unzip the exe file

and place it in a folder which has to be referred while launching IE nodes.

Step 6 : Launch IE using the following command.

C:\>java -Dwebdriver.ie.driver=D:\IEDriverServer.exe -jar

D:\JAR\selenium-server-standalone-2.42.2.jar -role webdriver -hub

http://10.30.217.157:4444/grid/register -browser

browserName=ie,platform=WINDOWS -port 5558

Where,

D:\IEDriverServer.exe = The location of the downloaded the IE Driver(on
the Node Machine)

D:\JAR\selenium-server-standalone-2.42.2.jar = Location of the Selenium

Server Standalone Jar File(on the Node Machine)

http://10.30.217.157:4444 = IP Address of the Hub and 4444 is the port

of the Hub

browserName = ie (Parameter to specify the Browser name on Nodes)

5558 = Port on which IE Node would be up and running.

Selenium

172

Step 7 : After executing the command, come back to the Hub. Navigate to the

URL - http://10.30.217.157:4444 and the Hub would now display the IE node

attached to it.

Step 8 : Let us now launch the Chrome Node. For launching the Chrome Node,

we need to have the Chrome driver downloaded on the node machine.

Step 9 : To download the Chrome Driver, navigate to

http://docs.seleniumhq.org/download/ and then navigate to Third Party Browser

Drivers area and click on the version number '2.10' as shown below.

Selenium

173

Step 10 : Download the driver based on the type of your OS. We will execute it

on Windows environment, hence we will download the Windows Chrome Driver.

After you have downloaded, unzip the exe file and place it in a folder which has

to be referred while launching chrome nodes.

Step 11 : Launch Chrome using the following command.

C:\>java -Dwebdriver.chrome.driver=D:\chromedriver.exe -jar

D:\JAR\selenium-server-standalone-2.42.2.jar -role webdriver -hub

http://10.30.217.157:4444/grid/register -browser

browserName=chrome,platform=WINDOWS -port 5557

Selenium

174

Where,

D:\chromedriver.exe = The location of the downloaded the chrome

Driver(on the Node Machine)

D:\JAR\selenium-server-standalone-2.42.2.jar = Location of the Selenium
Server Standalone Jar File(on the Node Machine)

http://10.30.217.157:4444 = IP Address of the Hub and 4444 is the port

of the Hub

browserName = chrome (Parameter to specify the Browser name on Nodes)

5557 = Port on which chrome Node would be up and running.

Step 12 : After executing the command, come back to the Hub. Navigate to the

URL - http://10.30.217.157:4444 and the Hub would now display the chrome

node attached to it.

Develop the Script and Prepare the XML File

Step 1 : We will develop a test using TestNG. In the following example, we will

launch each one of those browsers using remote WebDriver. It can pass on their

capabilities to the driver so that the driver has all the information to execute on

Nodes.

Selenium

175

The Browser Parameter would be passed from the "XML" file.

package TestNG;

import org.openqa.selenium.remote.DesiredCapabilities;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.*;

import org.testng.annotations.AfterTest;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.Parameters;

import org.testng.annotations.Test;

import java.net.URL;

import java.net.MalformedURLException;

import org.openqa.selenium.remote.RemoteWebDriver;

public class TestNGClass

{

 public WebDriver driver;

 public String URL, Node;

 protected ThreadLocal<RemoteWebDriver> threadDriver = null;

 @Parameters("browser")

 @BeforeTest

 public void launchapp(String browser) throws MalformedURLException

 {

 String URL = "http://www.calculator.net";

 if (browser.equalsIgnoreCase("firefox"))

 {

 System.out.println(" Executing on FireFox");

 String Node = "http://10.112.66.52:5555/wd/hub";

 DesiredCapabilities cap = DesiredCapabilities.firefox();

 cap.setBrowserName("firefox");

Selenium

176

 driver = new RemoteWebDriver(new URL(Node), cap);

 // Puts an Implicit wait, Will wait for 10 seconds

 // before throwing exception

 driver.manage().timeouts()

 .implicitlyWait(10, TimeUnit.SECONDS);

 // Launch website

 driver.navigate().to(URL);

 driver.manage().window().maximize();

 }

 else if (browser.equalsIgnoreCase("chrome"))

 {

 System.out.println(" Executing on CHROME");

 DesiredCapabilities cap = DesiredCapabilities.chrome();

 cap.setBrowserName("chrome");

 String Node = "http://10.112.66.52:5557/wd/hub";

 driver = new RemoteWebDriver(new URL(Node), cap);

 driver.manage().timeouts()

 .implicitlyWait(10, TimeUnit.SECONDS);

 //Launch website

 driver.navigate().to(URL);

 driver.manage().window().maximize();

 }

 else if (browser.equalsIgnoreCase("ie"))

 {

 System.out.println(" Executing on IE");

 DesiredCapabilities cap = DesiredCapabilities.chrome();

 cap.setBrowserName("ie");

 String Node = "http://10.112.66.52:5558/wd/hub";

 driver = new RemoteWebDriver(new URL(Node), cap);

 driver.manage().timeouts()

 .implicitlyWait(10, TimeUnit.SECONDS);

Selenium

177

 //Launch website

 driver.navigate().to(URL);

 driver.manage().window().maximize();

 }

 else

 {

 throw new IllegalArgumentException

 ("The Browser Type is Undefined");

 }

 }

 @Test

 public void calculatepercent()

 {

 // Click on Math Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[3]/a")).click();

 // Click on Percent Calculators

 driver.findElement(By.xpath(".//*[@id='menu']/div[4]/div[3]/a")).click();

 // Enter value 10 in the first number of the percent Calculator

 driver.findElement(By.id("cpar1")).sendKeys("10");

 // Enter value 50 in the second number of the percent Calculator

 driver.findElement(By.id("cpar2")).sendKeys("50");

 // Click Calculate Button

 driver.findElement(By.xpath(".//*[@id='content']/table/tbody

 /tr/td[2]/input")).click();

 // Get the Result Text based on its xpath

 String result =

 driver.findElement(By.xpath(".//*[@id='content']/p[2]

Selenium

178

 /span/font/b")).getText();

 // Print a Log In message to the screen

 System.out.println(" The Result is " + result);

 if(result.equals("5"))

 {

 System.out.println(" The Result is Pass");

 }

 else

 {

 System.out.println(" The Result is Fail");

 }

 }

 @AfterTest

 public void closeBrowser()

 {

 driver.quit();

 }

}

Step 2 : The Browser parameter will be passed using XML. Create an XML under

the project folder.

Selenium

179

Step 3 : Select 'File' from 'General' and click 'Next'.

Step 4 : Enter the name of the file and click 'Finish'.

Selenium

180

Step 5 : TestNg.XML is created under the project folder as shown below.

Step 6 : The contents of the XML file are shown below. We create 3 tests and

put them in a suite and mention parallel="tests" so that all the tests would be

executed in parallel.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="Suite" parallel="tests">

 <test name="FirefoxTest">

 <parameter name="browser" value="firefox" />

 <classes>

 <class name="TestNG.TestNGClass" />

Selenium

181

 </classes>

 </test>

 <test name="ChromeTest">

 <parameter name="browser" value="chrome" />

 <classes>

 <class name="TestNG.TestNGClass" />

 </classes>

 </test>

 <test name="IETest">

 <parameter name="browser" value="ie" />

 <classes>

 <class name="TestNG.TestNGClass" />

 </classes>

 </test>

</suite>

Test Execution

Step 1 : Select the created XML; right-click and choose 'Run As' >> 'TestNG

Suite'.

Selenium

182

Selenium

183

Step 2 : Now open the Node, where we have launched all the browser nodes.

You will see all the three browsers in execution simultaneously.

Result Analysis

Step 1 : Upon completing the execution, we can analyze the result like any

other execution. The result summary is printed in the console as shown in the

following snapshot.

Selenium

184

Step 2 : Navigate to the 'Results of Running Suite' Tab and TestNG would

display the result summary as shown below.

Step 3 : Upon generating the HTML, we will be able to see the test results in

HTML format.

