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1 Abstract
The nonlinear index of refraction is responsible for many effects in optical beam prop-
agation, including self-focusing. We will review self-focusing and related phenomena
and discuss physical mechanisms which give rise to the refractive index nonlinearity.

2 Introduction
Optical self-action effects occur when an electromagnetic �eld induces a refractive
index change in the medium through which the �eld propagates. The change in index
then exhibits a back-action on the �eld so as to in�uence its propagation characteristics.
The principal effects are shown in the following table.

Spatial Temporal
Instabilities Light-by-Light Scattering Modulational Instability

Spatial self-phase modulation Temporal self-phase modulation -
self-chirping

Envelope
Effects Self-focusing - Self-Compression

whole-beam and multimode Self-decompression - self-dispersion
Self-steepening

Self-trapping - spatial solitons Temporal solitons

Combined Light Bullets

The consequences of these nonlinear effects can be signi�cant. In beam propaga-
tion, self-focusing and self trapping lead to lowering of thresholds for other nonlinear
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processes, such as stimulated Raman and Brillouin scattering, self-phase modulation,
and optical damage. Nonlinear index effects impact the design of very high energy
laser systems such as those required for laser fusion and the implementation of long
distance �ber optical communication systems.

3 Early history

Two years after self-focusing in plasmas was proposed in 1962 [1], the theory of self-
trapping was developed [2, 3]. In reference [2], a numerical solution was given for
a two transverse dimension beam, the critical power was calculated, mechanisms for
the nonlinearity were discussed, and the effect was used to explain anomalous Raman
gain and optical damage. In both 1964 references the one-transverse-dimension hyper-
bolic secant soliton solution was given. The theory of self-focusing was developed in
1965 [4, 5]. Reference [5] estimates the self-focusing distance, derives the nonlinear
Schrödinger equation (NLSE), and uses this equation to obtain numerical results on
self-focusing. That same year the �rst observation of self-focusing was made [6] and
it was experimentally related to anomalous stimulated Raman gain [7, 8]. In 1966, the
theory of nonlinear instability was given [9, 10] and the effect observed experimentally
[11]. In this same year, multi�lament structure in multimode beams was observed and
the in�uence on spectral broadening was considered [12]; this was followed several
years later by experiments in which regular �lament structure was seen on carefully
prepared beams [13].

Since this initial work a number of important contributions have been made. As of
2006, when this article was written, there were about 1000 papers with self-focusing in
the title and more than 500 papers with self-trapping or spatial solitons in the title. The
early work on self-focusing has been reviewed [14, 15, 16, 17] and considerable atten-
tion has been given to mathematical methods for dealing with blow-up of solutions to
the NLSE and related equations in physics (see references [18] and [19] for a discus-
sion of these problems). Modi�cation of self-focusing theory due to the �nite duration
of pulses has also been considered [20, 21, 22, 23, 24, 25]. For a recent source of ref-
erences on self-focusing and self-trapping, see [26]. A uni�ed approach to self-action
effects is given in [27].

In our review, we take an approach which is opposite to much of the historical
sequence. We will �rst discuss instabilities, then beam self-focusing, and �nally self-
trapping.

4 Nonlinear polarization and the nonlinear refractive index

Self-action effects arise from the third order nonlinear polarization. Slow molecular
motions can contribute to the nonlinear response because the nonlinear polarization
includes terms for which the slowly varying part of the square of the �eld amplitude
drives the material system. This can lead to very strong nonlinearities.
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In most cases, the refractive index increases with increasing light intensity. A very
simple example occurs for ensembles of anisotropic molecules. Since the molecules
have lowest energy when they are aligned in the direction(s) of highest polarizabil-
ity, they experience a torque that increases the fractional alignment and the index of
refraction. Increasing density of an initially uniform �uid in the region of the beam
(electrostriction) or moving molecules of higher polarizability than a surrounding �uid
into a beam also lowers the energy and results in a positive nonlinear refractive index.

Neglecting dispersion, the polarization can be written,

P = ε0χE (1)

where E is the electric �eld, and χ is the electric susceptibility including nonlinear
terms. For simplicity, we assume the various frequency and wavevector components of
the �eld are all polarized in the same direction. We write the susceptibility

χ = χ(1) + χ(3)〈E2〉, (2)

where 〈E2〉 is the average of E2 over a few optical cycles. We have assumed there are
no contributions to the polarization in even powers of the �eld and have neglected any
contributions by odd powers beyond the third order term. We can replace χ(1) and χ(3)

by the linear and nonlinear refractive index, n0 and n2, where

n = n0 + 2n2〈E2〉, (3)

The linear refractive index is given by

n0 =
√

1 + χ(1) (4)

while the nonlinear refractive index is given by

n2 =
χ(3)

4n0
, (5)

assuming the nonlinear term is much smaller than the linear term. We can then write
the polarization as

P = P L + P NL (6)
where

P L = ε0(n2
0 − 1)E (7)

and
P NL = 4ε0n0n2〈E2〉E. (8)

Eqn. 8 is the induced polarization to third power in the electric �eld. We have neglected
polarization terms that occur at the sum of three optical frequencies and have kept
terms that are close to at least one of the driving frequencies. This neglect of �third
harmonic� terms can be justi�ed by assuming they are small or not phase matched.
However, we do not assume contributions due to material resonances at the sum of
two driving frequencies are negligible; these terms do contribute to n2.
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5 The non-linear Schrödinger equation

To facilitate our understanding of the self-focusing problem we use an approximation
to the scalar nonlinear wave equation which has the familiar form of a Schrödinger
equation [5]. We assume a single frequency and use the slowly varying amplitude
approximation. We �rst write the �eld in terms of its positive and negative frequency
components

E = 1
2 (E+ + E−), (9)

where E− = E+∗. The positive frequency component is given by

E+ (r, t) = E (r) ei(kz−ωt) (10)

where k = ωn0(ω)/c and we have assumed the wave is traveling in the +z direc-
tion. In the slowly varying amplitude approximation, it is assumed that

∣∣∂2E/∂z2
∣∣ ¿

k |∂E/∂z|. This leads to the following approximation to the wave equation

i
∂E
∂z

+
1
2k
∇2
⊥E + k

n2

n0
|E|2 E = 0. (11)

6 Four-wave mixing, weak-wave retardation, instability

In this section, we discuss the coupling of waves through the nonlinear index. This
will lead to a discussion of spatial instabilities in monochromatic plane waves. From
a Fourier component point of view, the nonlinear interaction involves the coupling of
three �eld components to produce a nonlinear polarization which drives a fourth �eld
component. The basic process can be described as light-by-light scattering four-wave
mixing.

We separate the �eld into weak and strong parts. This is convenient as it allows us
to linearize the problem in the weak �eld. It is appropriate when a strong optical beam
from a laser initially enters the nonlinear medium and the weak �eld is assumed to be
much smaller than the strong �eld. In fact, the initial weak �eld can be the zero point
�eld so that the weak wave is initiated by spontaneous emission. We can write

E = Es + Ew, (12)

where s and w stand for strong and weak, respectively. Neglecting terms in the weak
�eld beyond the linear term we have for the strong �eld nonlinear polarization.

PNL
s = 2ε0n0n2 |Es|2 Es (13)

and for the weak �eld nonlinear polarization

PNL
w = 2ε0n0n2

(
2 |Es|2 Ew + E2

s E∗w
)

(14)

This result has two interesting aspects. First, the weak wave experiences twice the
nonlinear polarization and index of refraction change (the �rst term in Eqn. 14) as the
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strong �eld induces on itself (Eqn. 13). The weak wave retardation can compensate
for the breaking of phase matching by diffraction [10]. Second, the positive and neg-
ative parts of the weak �eld are coupled to each other (the second term in Eqn. 14).
Because of the cross coupling, phase conjugation occurs and coupled frequency and
propagation vector sidebands grow on the strong �eld.

To calculate the instability gain, we assume a strong plane-wave together with two
weak components traveling very nearly parallel to the strong wave as shown in Fig. 1.
The weak-wave retardation effect is also shown in the �gure.

Fig. 1. Light-by-light scattering. Strong forward wave (ks) interacting with two weak waves
(kw,k′w) whose magnitudes are increased by weak-wave retardation.

From the NLSE (Eqn. 11) the exponential growth and decay constants for the
weak-wave power are found to be[9]

g = ±k⊥

(
4n2

n0
|Es|2 − k2

⊥
k2

)1/2

(15)

where k⊥ is the component of the scattered wave that is perpendicular to the strong
wave. Since k⊥ ¿ k, for all the cases of interest, k⊥ can be replaced by kθ where θ
is the angle between the strong wave and the weak waves. A plot of g vs. θ is given
in Fig. 2. Note that the maximum value of g is gmax = 2kn2 |Es|2 /n0 and the angle
at which this occurs is θopt = 2

√
2n2 |Es|2 /n0. Because of the cross-coupling, the

normal Fourier components of the scattered waves grow (or decay) in pairs, one at θ
and the other at −θ. As we shall see from the discussion of self-focusing given below,
the instability gain is related to the beam self-focusing distance.

An example of light-by-light scattering is shown in Fig. 2. A strong forward beam
is sent into a short cell containing nitrobenzene, a medium with large n2. To obtain the
strong beam, a Q-switched ruby laser with 240 MW power was focused to an area of
20 mm2. This is the central peak in the �gure. When a weak beam was sent in at an
angle +θ to the strong beam, a second weak beam at −θ appeared.

7 Spatial self-phase modulation and estimating the beam
self-focusing distance
In order to understand the nonlinear propagation of spatially �nite beams, we �rst con-
sider the effect on a beam of the nonlinear polarization alone. If diffraction is neglected
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Fig. 2. (a) Typical data for a 3 mm cell length where no self-focusing occurs. Due to overex-
posure, the actual intensity ratios are not faithfully reproduced. (b) Simultaneous 1.5 cm spacer
Fabry-Perot interferometer analysis of all three beams from the 3 mm cell.

in the wave equation, Eqn. 11, the solution for the nonlinear phase build-up from an
input boundary at z = 0 is

ΦNL(r, z) = kz
n2

n0
|E(r, 0)|2 (16)

where r is the coordinate vector transverse to z. We can de�ne the nonlinear distance
by setting the phase deviation across the beam ∆ΦNL equal to 1, so that

zNL =
n0

kn2|E(0, 0)|2 =
2

gmax
(17)

From the wave equation we see that there is also a characteristic distance for diffrac-
tion. We take this to be

zDIF = kr0
2 (18)

where r0 is a distance characteristic of the beam radius. Note that zDIF is the Rayleigh
range or the Fresnel length of the beam.

The transverse component of the wave-vector at a transverse point r in a beam is

k⊥(r, z) = ∇⊥ΦNL(r, z) = kz
n2

n0
∇⊥|E(r, 0)|2 (19)

The variation of k⊥ with r can be viewed as a spatial chirp. A plot of k⊥ is shown in
Fig. 3

For a beam that is symmetric with either circular or slab symmetry, the angle the
wave-vector makes with the z-axis for small angles is
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Fig. 3. k⊥ versus r for a Gaussian beam. r0 is the 1/e intensity half-width and k⊥,max =

−kzn2|E(0, 0)|2√2e
1
2 /n0r0. Near r = 0, the spatial chirp is linear as it is for a conventional

lens.

θ(r, z) = z
n2

n0

∂|E(r, 0)|2
∂r

(20)

a result which is independent of wavelength. Assuming the beam is most intense at
the center, θ is negative and the beam will focus when we include the diffraction term.
An estimate of the focusing distance can be found by setting θ(r, z) = r/z, the angle
that a ray starting at r will reach the beam axis at z. When zDIF À zNL this gives a
self-focusing distance [5]

zSF =
√ −n0r

n2∂|E|2/∂r

∣∣∣∣
r→0

(21)

Assuming a Gaussian beam with r0 equal to the intensity 1/e halfwidth and using Eqs.
17 and 18, we �nd

zSF =
√

zNLzDIF

2
. (22)

A similar result for the self-focusing distance can be found by simply inserting the
angle corresponding to the Fourier inverse of the beam radius into Eq. 15 for the insta-
bility gain.

8 Self-focusing intensity singularity and beam collapse

If a beam is has circular symmetry, it will nonlinearly focus without limit to an inten-
sity singularity. On the other hand, slab beams that are con�ned in only one transverse
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dimension will not focus to a singularity. This difference between one and two dimen-
sional focusing is easy to understand by simple scaling arguments. From the NLSE,
Eqn. 11, we see that in both cases the diffraction term scales as the inverse of the beam
width squared. In the two dimensional transverse con�nement case, the nonlinear term
also scales as the reciprocal of the beamwidth squared since this term is proportional
to intensity and power is conserved. Because the scaling of the two terms is the same,
the dominant term will remain dominant and in this situation the beam will come to a
catastrophic focus when the nonlinear term dominates.

For con�nement in one transverse dimension, the nonlinear term scales as the in-
verse of the beamwidth because the power per unit distance in the uncon�ned direction
is conserved. Since the nonlinear term is only proportional to the inverse �rst power of
the beamwidth, the nonlinear term will grow more slowly with decreasing radius than
the diffraction term. The diffraction term comes into balance with the focusing term
and there is self focusing without an intensity singularity.

We will examine the two-transverse-dimensions case in further detail. Although
there are a number of ways to analyze the problem, we will numerically solve the
NLSE for cylindrical symmetry using a �nite difference method. In reference [5], the
�nite difference solution involved directly calculating the transverse derivatives. Here
we will use the split-step method where the transverse diffraction term in the NLSE
is calculated in Fourier space and the nonlinear term in the NLSE is calculated in
coordinate space. To ef�ciently solve the cylindrically symmetric problem we use a
version of the fast Hankel transform given in reference [28]. The method can be used
to come close to the initial singularity in a very computationally ef�cient fashion.
With the split-step method we can also avoid the paraxial approximation by using the
nonlinear Helmholtz equation to directly calculate the contribution of the transverse
diffraction term to the axial phase factor in Fourier space.

The result of a typical calculation for an initially Gaussian beam is shown as the
outer curve in Fig. 4. The estimated self-focusing distance, as given by Eqn. 21, is
found to be smaller than the numerically calculated distance in part because the esti-
mated distance does not take into account the effect of diffraction in lengthening the
self-focusing distance. Comparing the present split-step Hankel with the early calcu-
lation [5], there is a least order of magnitude decrease in computation time and about
a factor of one hundred increase in intensity near the focus. This improvement can be
attributed to both the ef�ciency of the present algorithm and the increase in computer
speed.

In addition to the intensity singularity, it is possible to show that beams undergoing
self-focusing collapse in the NLSE approximation. Collapse occurs when the entire
beam shrinks to a point. Reference [29] obtained a second order differential equation
for the RMS beam radius which in the two-transverse-dimension case can be written in
terms of the ratio of two invariants. Because of the Schrödinger character of Eqn. 11,
the two invariants correspond to the expectation value of the Hamiltonian and the ex-
pectation value of the unnormalized probability density. In the cylindrically symmetric
case, the equation for the average beam radius is:
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Fig. 4. Numerical calculations of the approach to the self-focus. For the outer curve, the self-
focusing distance is found to be ≈ 7.8 mm. The initially Gaussian beam at λ = 1 µm with
r0 = 70.7 mm has zDIF = 31.4 mm, zNL = 3.14 mm, and from Eqn. 21 zSF = 7.02 mm. The
inset shows an early numerical calculation of self-focusing [5].

d
〈
r2

〉

dz2
= 2

∫ (
1
k2 |∇⊥E|2 − 2n2

n0
|E|4

)
rdr

∣∣∣
z=0∫ |E|2 rdr

∣∣∣
z=0

, (23)

where the numerator is the Hamiltonian term and the denominator is the unnormalized
probability density. On carrying out the integrations for an initially Gaussian beam we
�nd,

〈r(z)2〉 = r2
0 +

(
1

k2r2
0

− n2|E(0, 0)|2
2n0

)
z2. (24)

When n2|E(0, 0)|2/2n0 > 1/k2r2
0 the beam will collapse. From this equation, we can

obtain the collapse distance

zCOL =

√
2zNLzDIF

1− 2zNL
zDIF

(25)



10 R. Y. Chiao, T. K. Gustafson, and P. L. Kelley

When zDIF À zNL, we �nd that zCOL =
√

2zNLzDIF, a factor of 2 greater than the self-
focusing distance given in Eqn. 22. For the case of Fig. 4, where zDIF = 31.4 and
zNL = 3.14, we �nd from Eqn. 25 that zCOL = 15.7 which is also about a factor of two
larger than the distance where blow-up is observed in the numerical calculation.

9 Limitations on blow-up and collapse

It should be apparent that much of the analysis given here is of mathematical signif-
icance rather than representing actual physics since the NLSE involves several limi-
tations, including the use of the scalar wave equation, the slowly varying amplitude
assumption, the absence of saturation of the nonlinear index, and the neglect of other
nonlinearities. These nonlinearities include stimulated light scattering, optical damage,
and breakdown. That these other nonlinear effects become important is evidenced by
the orders of magnitude increase in intensity due to self-focusing as shown, for exam-
ple, in Fig. 4. In addition, beams with small scale structure exhibit a complex breakup
process as discussed in the next section.

The stabilization of self-focusing resulting in self-trapping requires consideration
of processes not included in the simple expression (Eqn. 3) for the nonlinear dielectric
response. For liquids, observed focal spots can vary from a few microns in size to a
few tens of microns depending upon the liquid. The stabilizing process either limits the
nonlinear increase in the index of refraction or depletes the forward beam in a strongly
nonlinear fashion. The former includes saturation of the nonlinear index [30, 31, 32]
and the latter stimulated light scattering [33] or a negative contribution to the index
due to the production of electrons on ionization of the liquid in the intense light �eld
[34].

In air, in particular, the critical power is approximately 2 GW for a diffraction lim-
ited Gaussian beam [35]. When the intensity approaches 1013 to 1014 W/cm2, multi-
photon ionization occurs. The resultant intensity dependent reduction of the refractive
index arising from the consequent underdense plasma can stabilize the beam. Thin
intense �laments over tens (and up to hundreds) of meters has been observed. A the-
oretical description has been given by generalizing Eqn. 11 to include both ionization
and a Kerr effect which has both a non-dispersive and a dispersive contribution [36].

An understanding and control of the nonlinear optical interaction resulting in self-
focussing and self-trapping as well as the associated phenomena in the Table has re-
sulted in the ability to nonlinearly shape optical beams in a controlled manner.

10 Beam breakup and multiple �lament formation

Small scale beam structure can play an important role in self-focusing [12, 13]. Fig. 5
shows small scale �lament formation during self focusing of a beam. This effect is par-
ticularly signi�cant when the beams have structure at angles near θopt. For most beams
where self-focusing is signi�cant, θopt À θav = 1/kr0 so that gmaxzSF À 1. It then
becomes a question of whether a beam is suf�ciently smooth initially that whole beam
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Fig. 5. (a) Image of a laser beam emerging from a 50-cm cell of CS2 and exhibiting large- and
small-scale trapping. Magni�cation is 30x. The bright central portion is the large-scale trapped
beam; the many small bright �laments demonstrate the small-scale trapping. The broad disk
and ring of light are the untrapped beam diffracting from the initial pinhole. (b) Raman Stokes
radiation under conditions similar to (a). Magni�cation 50x. From [12].

focusing can dominate beam breakup into multiple small scale �laments. To further
understand this, we return to the instability analysis discussed earlier. Figure 6 gives a
rough schematic of the different contributions to the self-focusing of a typical beam:
the small box on the left includes the angular region corresponding to the transverse
Fourier components for a smooth beam, the middle box encompasses the region where
beam �ne structure contributes, and the right box corresponds to Fourier components
that must grow from noise including zero point oscillations. The height of each box
corresponds to the typical gain in each of the three regions. Increasing gain with angle
is offset by decreasing initial Fourier amplitude.

11 Self-focusing of pulses - light bullets

When an optical pulse transverses the nonlinear medium, the focusing distance be-
comes time dependent as well as radially dependent. The most obvious consequence
of this is that the most intense portions are focused at a shorter distance than the weaker
leading and trailing edges. References [20] and [21] �rst considered the motion of the
focal regions for temporal pulses. Reference [22] included retardation and theoretically
deduced the trajectories of the moving focal regions for a Gaussian temporal amplitude
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Fig. 6. Weak-wave gain, g, versus angle, θ, between the weak and strong waves as calculated
from Eqn. 15. The contributions of the three shaded regions are described in the text.

pro�le with a 1/e halfwidth of tp at the entrance boundary. Due to the retardation, the
distance at which the focal region �rst appears exceeds zSF, the focussing distance for
the peak of the pulse. This emanates from a portion of the pulse shifted to the leading
edge by an amount dependent upon the initial pulse width. This shift is tp(ctp/2n0zSF)
for a pulse whose length tp/n0 is much less than zSF. For such a pulse the initial fo-
cussing distance exceeds zSF by a distance equal to [(c/n0tp)2/4zSF]. The focal region
subsequently expands forward, and also expands backwards to the minimum focussing
distance, zSF, at time zSFn0/c corresponding to the peak. Subsequently the focal region
continues to expand as it propagates through the medium. The details of this time de-
pendent behavior has been investigated both experimentally [23, 24] and theoretically
[25].

When anomalous group velocity dispersion is included in the NLSE then a balance
can occur between the dispersion and the phase buildup due to the nonlinearity and a
three dimensional trapped pulse - or �light bullet� can propagate [37] . There has been
an extensive investigation of such temporally and spatially trapped light .

12 Self-trapping, spatial solitons

If a beam has circular symmetry it will focus to an intense singularity. When zDIF ≈ zNL,
a solution to the wave equation for a beam can be found whose transverse intensity
pro�le does not vary in z. Since both of these parameters (zDIF and zNL) are proportional
to the reciprocal of the radius, the self-trapped solution in two transverse dimensions
occurs at a critical power independent of the beam radius. Using the values of zNL and
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zDIF given in Eqs. 17 and 18 the critical power can be estimated by setting these two
characteristic parameters equal obtaining

PCR =
n0cλ

2

8πn2
(26)

This can be compared with numerical results [2].
In case of con�nement in one transverse direction, the following constraint applies

dP

dy
r0 ≈ ε0cλ

2

(2π)2n2
(27)

where dP/dy is the power per unit distance in the transverse direction perpendicular
to the con�nement direction. In this case, there is no critical power per unit distance.
Whatever value dP/dy of one chooses there is an r0 such that Eqn. 27 is satis�ed. The
lowest order hyperbolic secant solution has been known since 1964 [2, 3]. and inverse
scattering theory has been used to �nd higher order analytic solutions [38].
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