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Abstract

The most often cited technological roadblock of nanoscale electronics is the ”power prob-

lem,” i.e. power densities and device temperatures reaching levels that will prevent their

reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more

heat dissipation problems, especially with the transition towards geometrically confined de-

vice structures (SOI, FinFET, nanowires), and new materials with poor thermal properties.

This work examines the physics of heat generation in silicon, and in the context of

nanoscale CMOS transistors. A new Monte Carlo code (MONET) is introduced which uses

analytic descriptions of both the electron bands and the phonon dispersion. Detailed heat

generation statistics are computed in bulk and strained silicon, and within simple device

geometries. It is shown that non-stationary transport affects heat generation near strongly

peaked electric fields, and that self-heating occurs almost entirely in the drain end of short,

quasi-ballistic devices. The dissipated power is spectrally distributed between the (slow)

optical and (fast) acoustic phonon modes approximately by a ratio of two to one.

In addition, this work explores the limits of device design and scaling from an electrical

and thermal point of view. A self-consistent electro-thermal compact model for thin-body

(SOI, GOI) devices is introduced for calculating operating temperature, saturation current

and intrinsic gate delay. Self-heating is sensitive to several device parameters, such as raised

source/drain height and material boundary thermal resistance. An experimental method is

developed for extracting via/contact thermal resistance from electrical measurements. The

analysis suggests it is possible to optimize device geometry in order to simultaneously min-

imize operating temperature and intrinsic gate delay. Electro-thermal contact and device

design are expected to become more important with continued scaling.
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Chapter 1

Introduction

The technological revolution that started with the introduction of the transistor just over

half a century ago is without parallel in the way it has shaped our economy and our daily

lives. The current trend toward nanoscale electronics is expected to have a similar impact

into the third millennium. Commercial integrated circuits are currently available with

transistors whose smallest lateral feature size is less than 100 nm and the thinnest material

films are below 2 nm, or only a few atomic layers thick. Such miniaturization has led to

tremendous integration levels, with a hundred million transistors assembled together on a

chip area no larger than a few square centimeters. Integration levels are projected to reach

the gigascale as the smallest lateral device feature sizes approach 10 nm.

The most often cited technological roadblock of this scaling trend is the “power prob-

lem,” i.e. power densities, heat generation and chip temperatures reaching levels that will

prevent the reliable operation of the integrated circuits. Chip-level power densities are

currently on the order of 100 W/cm2, and if the rates of integration and miniaturization

continue to follow the ITRS (International Technology Roadmap for Semiconductors) guide-

lines [1], the chip-level power density is likely to increase even further [2], as illustrated in

Fig. 1.1. Higher power densities will quickly drain the batteries of portable devices and

render most advanced, future electronics unusable without significant cooling technology,

or fundamental shifts in design. The situation is compounded by millimeter-scale hot spots

1
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Material κth (Wm−1K−1)

Si (bulk) 148
Ge (bulk) 60
Silicides 40

Si (10 nm) 13
Si0.7Ge0.3 8

SiO2 1.4

Table 1.1: Thermal conductivities (κth) of a few materials used in semiconductor device fabrication.
Phonon boundary scattering significantly reduces the thermal conductivity of a 10 nm thin silicon
film. Note that phonons (lattice vibrations) are responsible for heat conduction in all dielectric
materials listed, but electrons are the heat carriers in silicides (e.g. NiSi), which are metals.

on the chip, i.e. localized regions of higher heat generation rate per unit area, hence higher

temperatures (e.g. near the clock drivers) [3]. The power problem has recently been ad-

dressed in several ways, mainly from a system design point of view [4]. A radical way to cool

integrated circuits by running water microchannels on the backside of the chip was origi-

nally proposed [5], and has recently re-emerged in a sealed, compact package [6]. Circuit

designers can selectively turn off different parts of the chip to save power, and clock frequen-

cies can be adjusted on the fly, depending on the task at hand. Similarly, one can wonder if

perhaps the circuit building blocks, i.e. the transistors themselves could be designed to be

more power efficient, or less affected by their own self-heating. This dissertation has been

geared toward answering the latter question, as well as obtaining a detailed physical picture

of the origins of self-heating in silicon.

While the total heating rate of microprocessor chips has received much attention, a

different thermal management challenge faces device and circuit designers at nanometer

length scales, within individual transistors. Novel, complicated device geometries tend to

make heat removal more difficult (Fig. 1.2) and most new materials being introduced in

device processing have lower thermal conductivities than bulk silicon (Table 1.1). Modern

device technologies already operate at length scales on the order of the electron and phonon1

1Phonons are discrete quanta of lattice vibrations, responsible for thermal energy transport in crystalline
dielectrics. A good introduction to phonons can be found, e.g., in C. Kittel’s classic text Introduction to
Solid State Physics (Wiley) [7].



3

Figure 1.1: Trends of on-chip transistor count (top) and on-chip power density (bottom) for three
of the main industry players, over the past 10+ years. Note the vertical axes are logarithmic and
the horizontal ones (years) are linear. If the same trend is followed, impractical power densities
could be reached in the near future, unless significant shifts in transistor and/or circuit design are
implemented. (Figure data compiled by F. Labonte.)
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Figure 1.2: Evolution of transistor designs, from bulk FETs, toward transport-enhanced (strain,
Ge channel) and thin body (SOI, FinFET) devices. Thin body devices all exhibit poorer thermal
properties than bulk devices, owing to the confined geometry and oxide insulator.

mean free paths (approximately 5–10 and 200–300 nm in bulk silicon at room temperature,

respectively [8, 9]), and future technologies are going to forge deeper into this sub-continuum

regime. Ballistic conditions dominate both electron (current) and phonon (heat) transport

at such length scales, leading to a non-equilibrium condition between the energy carriers.

The electron-phonon interaction is neither energetically nor spatially uniform [10] and the

generated phonons have widely varying contributions to heat transport: optical phonons

make virtually no contribution to the thermal conductivity of silicon, which is dominated

by acoustic phonon transport [9, 11].

In the context of a transistor, the applied voltage leads to a lateral electric field which

peaks near the device drain. This field accelerates the free charge carriers (e.g. conduction

band electrons in a n-MOSFET) which gain energy, therefore “heating up.” Electrons can

scatter with each other, with lattice vibrations (phonons), interfaces, imperfections or im-

purity atoms. Of these, electrons only lose energy by scattering with phonons, consequently

heating up the lattice through the mechanism known as Joule heating. Other scattering

mechanisms only affect the electron momentum [8]. The lattice absorbs the extra electron

energy, heats up to a higher temperature (T ), and in return affects the electronic trans-

port properties of the material: the electron mobility in bulk (undoped) silicon decreases

approximately as T−2.4 around room temperature, approximately as T−1.7 in highly doped

bulk silicon, and T−1.4 in nanometer-thin silicon layers [12, 13].
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In silicon, as in most semiconductors, high field Joule heating is typically dominated by

optical phonon emission. Optical phonons are slow and they make virtually no contribution

to heat transport. Rather, they decay into the faster acoustic modes, which carry the

energy away from the hottest regions. Optical-to-acoustic decay times are relatively long

(on the order of picoseconds) compared to the electron-phonon scattering time (tenths of

picoseconds) [14]. If the generation rate of optical modes due to Joule heating from current

flow is higher than their rate of decay into acoustic modes, a phonon energy bottleneck is

created and the optical mode density can build up, directly affecting electron transport.

1.1 Thermal Implications of Device Design

As devices are scaled to dimensions comparable to, or less than the mean free path of the

thermal energy carriers (phonons), a number of new considerations come into play. The

bulk properties of materials are modified at nanometer length scales, and the continuum

classical model of heat conduction (Fourier law) must be replaced by a more sophisticated

formulation which takes into account the “granularity” of heat transport via phonons. In

addition, heat transfer through device boundaries and contacts, especially in the case of

confined-geometry designs (e.g. ultra-thin body or FinFET devices) is expected to play an

important, and possibly limiting role.

1.1.1 Bulk Silicon Transistors

Traditional, bulk transistor designs (first diagram in Fig. 1.2) typically incorporate only

a few materials, most notably silicon, silicon dioxide and nitride insulators, and silicided

(e.g. NiSi) contacts. The high thermal conductivity of bulk silicon facilitates heat transport

from the transistor channel down to the backside of the chip, where it is usually removed

with a heat sink. Thermal transport in bulk transistors has traditionally been modeled in

the classical limit, as sub-continuum thermal effects can be neglected for device dimensions

larger than the phonon mean free path. As devices are scaled below 100 nm, two sub-

continuum effects are expected to play a role in bulk transistor thermal transport. The
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small region of high electric field near the drain gives rise to a strongly localized hot spot,

only a few tens of nanometers across, and hence much smaller than the bulk phonon mean

free path [15]. This leads to ballistic phonon transport in the vicinity of the heat source,

and higher temperatures than those predicted by classical diffusion theory [16]. In this

situation, a solution of the phonon Boltzmann Transport Equation is more accurate than

the classical heat diffusion equation [17].

The second sub-continuum thermal effect to be expected in ultra-scaled bulk FETs

has to do with the non-equilibrium interaction between the generated optical and acoustic

phonons. Since nearly-stationary optical phonons form the majority of the vibrational

modes generated via Joule heating, they tend to persist in the hot spot region until decaying

into the faster acoustic modes. This non-equilibrium scenario may become particularly

relevant when device switching times approach the optical-acoustic decay times, on the

order of several picoseconds. A careful transient solution of the phonon populations may

be necessary to properly account for the non-equilibrium distributions [18].

Both sub-continuum effects in bulk nanotransistors are expected to take place in the

drain region. Hence, their effect is more likely to be pronounced on device reliability, rather

than reducing the device current drive, since the latter is thought to be determined by the

electron injection velocity near the source [19]. However, some indications exist that in the

limit of the smallest achievable bulk silicon MOSFETs (10 nm channel length) the optical

phonons generated in the drain may reach the device source before decaying into acoustic

phonons, and hence directly affect the source injection velocity [15].

1.1.2 Non-Traditional Transistors

Advanced, non-traditional device fabrication introduces a number of new materials with

lower thermal conductivities than bulk silicon. The thermal properties of these materials

are therefore expected to play a more significant role in device design and thermal behavior,

as summarized in Table 1.1. Bulk germanium transistors, for example, would suffer from

increased operating temperatures due to a substrate thermal conductivity approximately

60 percent lower than bulk silicon transistors. Strained silicon channel devices grown on
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a graded Si1−xGex buffer layer benefit from an increased mobility due to band degeneracy

splitting and a lighter effective mass in the strained film. However, their thermal behavior is

adversely affected by the lower thermal conductivity of the Si1−xGex alloy layer. The situa-

tion is worse for ultra-thin body devices grown on a silicon dioxide film. From an electrical

point of view, silicon-on-insulator (SOI) and FinFET devices (second and third diagrams

in Fig. 1.2) benefit from lower capacitive coupling with the substrate and better gate con-

trol of the channel — hence increased switching speeds and better turn-off characteristics.

Thermally, however, they are strongly affected by the very low thermal conductivity of the

buried oxide layer, which is about two orders of magnitude less than that of silicon. The

thermal conductivity of thin semiconductor films (thinner than the phonon mean free path)

is also significantly reduced by phonon boundary scattering. For example, the thermal con-

ductivity of a 10 nm thin silicon film is expected to be reduced by an order of magnitude

from that of bulk silicon [20]. Although experimental data for such thin films does not

yet exist, an estimate can be based on extrapolations to available data [21, 22], and also

supported by recently measured reduced thermal conductivity in silicon nanowires [23]. For

film (or nanowire) thicknesses on the order of a few nanometers, and therefore compara-

ble to the phonon wavelength, phonon confinement effects may become important as well,

further contributing to a degradation in thermal conductivity [24].

The small dimensions of future, confined-geometry device designs also imply a large

surface-to-volume ratio, and hence a stronger effect of material boundary resistance. Very

few estimates exist on the magnitude of the thermal boundary resistance between dissimilar

materials, e.g. a dielectric and a metal. Some measurements indicate it is on the order of the

thermal resistance of a 20 nm thick silicon dioxide film, and fairly independent of processing

conditions or the specific type of metal and dielectric involved [25]. This is a significant value

for nanoscale devices, and very important to understand. As more materials (e.g. high-k

dielectrics, germanium, various silicides) are introduced in semiconductor processing, there

is a growing need to understand the magnitude of boundary thermal resistance and its

importance in future nanoscale device behavior. The boundary thermal resistance plays a

significant role, for example, when a metal electrode is placed on top of the high-k gate
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dielectric (as expected for threshold voltage control in future technologies), as well as for

device metal contacts and interconnects. More measurements are needed in this area,

and more available data on thermal boundary resistance would also help towards a better

understanding and modeling of the atomic scale interaction at the interface between two

materials. Part of Chapter 5 of this dissertation presents a method for characterizing the

thermal interface resistance associated with the silicided contact and via geometry for deep

submicron device designs. This contact and via thermal resistance may play a significant

role in heat dissipation during normal operation as well as during Electrostatic Discharge

(ESD) events of ultra-scaled thin-body transistors.

1.2 Heat Conduction in Semiconductors

Proper modeling of heat conduction in semiconductors and metals is essential for under-

standing their thermal behavior and enabling improved design of nanometer-scale transis-

tors. As device dimensions and the body thickness (e.g. in ultra-thin body SOI and Fin-

FET devices) are scaled to the order of tens of nanometers, or comparable to the mean free

path of the energy carriers, sub-continuum effects are expected to become important. The

carriers responsible for heat transport in metals are the nearly-free conduction electrons,

whose thermal conductivity κe can be related to their electrical conductivity σ through the

Wiedemann-Franz law [7]:

κe =
π2

3

(
kB

e

)3

σT (1.1)

where kB is the Boltzmann constant, e is the elementary charge and T is the absolute

temperature. The energy carriers responsible for heat transport in crystalline dielectrics

(semiconductors) are the lattice vibrations (phonons). Even in heavily doped semiconduc-

tors, the electronic contribution to the thermal conductivity is only on the order of one

percent [26]. The thermal conductivity of a semiconductor can be written as [27]

κs =
1
3
CsvΛ (1.2)
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where Cs is the heat capacity per unit volume, v is the average phonon velocity and Λ is the

average phonon mean free path. The classical, continuum, heat diffusion equation (Fourier

Law)

Cs
∂T

∂t
= ∇ · (κs∇T ) + Q′′′ (1.3)

where Q′′′ is the heat generation rate per unit volume, cannot properly resolve heat transfer

problems on small time scales (on the order of the phonon relaxation times, i.e. picoseconds)

or short length scales (tens of nanometers, or less than the acoustic phonon mean free

path Λ). At such scales, the continuum heat diffusion theory must be replaced by a more

sophisticated formulation which takes into account the “granularity” of heat conduction

via discrete phonon modes. The phonon dispersion spectrum also comes into play (the

phonon frequency ω being a function of wave vector), as transverse acoustic phonons are

typically slower than longitudinal modes, and their group velocity is also a function of wave

vector. At length scales shorter than the acoustic phonon mean free path (a few hundred

nanometers), but larger than the phonon wavelength (a few nanometers), phonons can be

treated as semi-classical particles and the Boltzmann Transport Equation (BTE) may be

used [28, 29]:
∂f

∂t
+ v · ∇f =

(
∂f

∂t

)

coll
+

(
∂f

∂t

)

g
(1.4)

where f(r, ω, t) is the phonon distribution function, r is the spatial coordinate and v is

the phonon velocity. The ∂k/∂t term usually present in the BTE has been omitted, since

phonons, unlike electrons, are not influenced by external forces like the electric field [29].

The first term on the right hand side is due to phonon collisions, and the second term is due

to phonon generation and annihilation. In the relaxation time approximation the collision

term can be replaced by (
∂f

∂t

)

coll
=

fo − f

τph
(1.5)

where fo = 1/ (exp(h̄ω/kBT )− 1) is the equilibrium Planck distribution at temperature T ,

and τph is the average phonon scattering time, such that Λ = vτph. With these approxima-

tions, the two sides of Eq. 1.4 can be integrated over the phonon frequency and density of
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states, and the BTE can be rewritten in terms of the phonon energy density u as [17]:

∂u

∂t
+ v · ∇u =

uo − u

τph
+ Q′′′ (1.6)

where, as before, the term Q′′′ is the heat generation rate per unit volume. The current state

of the art heat transport simulations all replace the heat diffusion equation with various

solutions of the phonon Boltzmann Transport Equation. Mazumder and Majumdar [11]

solved the BTE with the Monte Carlo method but only incorporated the acoustic phonon

branches, and hence their approach is not directly applicable to the study of self-heating in

electronic devices. Sverdrup et al. [17] solved the phonon BTE both for acoustic and optical

phonons via the finite volume method inside a transistor. However, as with other previous

work, they modeled the heat generation rate as the dot product of the electric field and

current density, and assumed all energy to be dissipated to the optical phonon modes (which

were approximated as stationary), hence overestimating the resulting lattice temperature.

Such an approach does not provide enough information about the microscopic (non-local)

details of self-heating in semiconductor devices, as described in the next section. It is also

clear from a comparison of the BTE (Eq. 1.6) and the heat diffusion equation (Eq. 1.3), that

irrespective of the complexity of the phonon transport model, the heat conduction problem

in an electronic device intimately depends on identifying a proper treatment for the lattice

heating term from electron-phonon interactions, Q′′′.

1.3 Heat Generation in Semiconductors

The most basic method for calculating the total heat generation rate (power dissipated)

within a lumped (semi)conducting element is to write it as the product of the current and

voltage:

Q = I × V. (1.7)

Here, the voltage drop is that across the device alone, excluding its contacts. Hence, this

formula must be applied with care in describing the power dissipated in a structure with
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relatively large contact resistance, e.g. a nanotube or molecular device. This expression

will also tend to overestimate the total heat dissipated in a quasi-ballistic device, i.e. one

that is only a few electron mean free paths long. In such a device, electrons will gain

energies comparable to qV but will generally not undergo enough inelastic scattering events

to completely thermalize and give up this energy to the lattice (in the form of self-heating)

by the time they exit. Hence, relatively hot electrons will escape through the contacts, and

some portion of the I × V power will be deposited there instead [30]. In other words, the

power dissipated inside the device is less than the above formula suggests, and the rest of

power dissipation occurs in the contacts. In addition, the simple formula above only gives

an estimate of the total power dissipated, not of the physical location of its peak (if any)

or its make-up in terms of the emitted phonon frequencies. However this formula is very

well suited for quick, first order estimates.

In the context of a semiconductor device simulator, heat generation due to electric

current flow is most often calculated with the classical drift-diffusion approach. The main

component of this heat generation expression is the dot product of the electric field E and

current density J, as computed at every grid node within the simulation [17, 26]:

Q′′′ = J ·E + (R−G)(Eg + 3kBT ) (1.8)

where J = qnve, with n being the electron number density and ve the average electron

velocity.2 Note the notation of Q′′′ (power density per unit volume, i.e. W/cm3) versus Q

in Eq. 1.7 (total power in Watts). The total power Q in this formulation can be recovered

by integrating Eq. 1.8 over the device volume. The first term represents the Joule heating

rate, which is usually positive (power generation) as electrons drift down the band structure

slope under the influence of the electric field, and gradually lose energy through net phonon

emission. It should be noted that Joule heat can also be negative (power consumption)

2Here it is assumed that electrons are the majority current carriers (n-type semiconductor), but the
heating rate due to hole current can be similarly incorporated.
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Figure 1.3: Heat generation rate computed in a 0.18 micron bulk nMOSFET device with the classic
J ·E approach (Eq. 1.8). This approximation does not capture non-local electron transport, and the
arrow indicates the direction of heat generation beyond the peak of the electric field. Non-local heat
generation effects become important at device channel lengths comparable to the electron mean free
path, as described in Chapter 4.

when electrons diffuse against an energy barrier,3 and the energy required to move up the

conduction band slope is extracted from the lattice through net phonon absorption [29]. The

second term of the above equation is the heat generation rate due to non-radiative electron

and hole generation and recombination processes. When an electron and a hole, both with

an average energy (3/2)kBT recombine, the excitation energy Eg + 3kBT is given off either

directly to the lattice, or to another charge carrier (Auger transition). In the latter case,

the excited particle eventually gives off the energy to the lattice by phonon emission as well.

Equation 1.8 may include other higher order terms, accounting for electron drift along a

temperature gradient or across a discontinuity in the band structure, e.g. a heterojunction

like in a semiconductor laser [29]. Figure 1.3 shows the heat generation rate computed in

a 0.18 micron gate length transistor with the approach described above, as implemented

in the commercial simulator MEDICI. Unfortunately, this field-dependent method does not

3Such as in a forward-biased pn junction, or near the energy barrier at the injection point from the source
into the channel of a MOSFET.
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account for the microscopic non-locality of phonon emission near a strongly peaked electric

field region, such as in the drain of the transistor. Although electrons gain most of their

energy at the location of the electric field peak, they typically travel several mean free paths

before releasing all of it to the lattice, in decrements of (at most) the optical phonon energy.

In silicon transistors, for example, electrons can gain energies that are a significant fraction

of an eV, while the optical phonon energy is only about 60 meV. Assuming an electron

velocity of 107 cm/s (the saturation velocity in silicon) and an electron-phonon scattering

time around 0.05–0.10 ps in the high-field region, the electron-phonon mean free path is then

on the order of 5–10 nm. The full electron energy relaxation length is therefore even longer,

on the order of several inelastic mean free paths. While such a discrepancy may be neglected

on length scales of microns, or even tenths of a micron, it must be taken into account

when simulating heat generation rates on length scales of 10 nm, as in a future generation

transistor. The highly localized electric field in such devices leads to the formation of a

nanometer-sized hot spot in the drain region, that is spatially displaced (by several mean

free paths) from this drift-diffusion prediction. In addition, the J ·E formulation of the

Joule heating also does not differentiate between electron energy exchange with the various

phonon modes, and does not give any spectral information regarding the types of phonons

emitted.

The heating rate can also be computed with the more sophisticated hydrodynamic ap-

proach, as a function of the electron temperature and an average energy relaxation time [31]:

Q′′′ =
3
2
kB

n(Te − TL)
τe−L

+ (R−G)
[
Eg +

3
2
kB(Te + TL)

]
(1.9)

where the holes have been assumed in thermal equilibrium with the lattice (TL), but the

electrons are described by their own temperature (Te), energy relaxation time (τe−L), and

number density (n). This is the situation in which electrons are the majority current carri-

ers, but the holes and the hole temperature can be incorporated in a similar way. Unlike the

J ·E method, the hydrodynamic approach has been shown to be better suited for capturing
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non-local transport effects near highly peaked electric field regions. However, the hydro-

dynamic approach suffers from simplifications inherent to using a single (averaged) carrier

temperature and relaxation time, since scattering rates are strongly energy dependent. Sim-

ilar to the previously described methods, this average carrier temperature-based approach

also does not differentiate among electron energy exchange with the various phonon modes,

and does not give information regarding the frequencies of phonons emitted. Such spectral

information is important because it is well-known that the emitted phonons travel at differ-

ent velocities and have widely varying contributions to heat transport [9, 11] and to device

self-heating [32, 33].

The mechanism through which lattice self-heating occurs is that of electron scattering

with phonons, and therefore only a simulation approach which deliberately incorporates

all such scattering events will capture the full microscopic, detailed picture of self-heating.

As such, the Monte Carlo method [34, 35], although originally developed for studies of hot

electron effects [36], is ideally suited for computing a detailed picture of self-heating as well.

This is the approach adopted and extended in this work, as described in Chapters 3 and 4.

From a detailed physical point of view, self-heating starts when the nearly-free conduction

band electrons in a semiconductor are accelerated by the electric field. The electrons gain

energy from the field, then lose it by inelastically scattering with the lattice phonons, as all

other scattering mechanisms (e.g. impurity or boundary scattering) are considered elastic

(they affect the electron momentum, but not the energy) [8]. Electrons with energies below

50 meV tend to scatter mainly with acoustic phonons in silicon, while those with higher

energy scatter strongly with the optical modes. The optical phonon branches have low group

velocity (on the order of 1000 m/s) and their occupation number is also relatively low, hence

they do not contribute to heat transport [9]. The primary heat carriers in silicon are the

faster acoustic phonon modes, which are much more populated and have group velocities

from 5000 (for transverse modes) to 9000 m/s (for longitudinal modes).4 Optical phonons

decay into acoustic modes, but over relatively long time scales (picoseconds) compared to

4The group velocity of a phonon branch is given by its slope on the dispersion relationship from, e.g.,
Fig. 3.4.
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Figure 1.4: Diagram and characteristic time scales of the energy transfer processes in silicon. Scat-
tering with low group velocity optical phonons is the dominant relaxation mechanism for electron
energies above 50 meV. This may create a phonon energy bottleneck until the optical phonons decay
into the faster acoustic modes.

the electron-optical phonon scattering time (on the order of tenths of picoseconds) [14]. This

creates a phonon energy bottleneck which can cause the density of optical phonon modes to

build up over time, leading to more scattering events and impeding electron transport [32].

These processes are symbolically illustrated in Fig. 1.4. The dotted lines represent the effect

of the phonons on the electron population and hence, their transport. The details of the

electron band structure and of the phonon dispersion, as well as those of the electron-phonon

scattering rates can be readily incorporated into a Monte Carlo simulation, as described in

Chapters 3 and 4 of this dissertation. The heat generation rate in a Monte Carlo simulation

at steady state can then be computed as a sum over all phonon emission minus all phonon

absorption events per unit time:

Q′′′ ∼ 1
tsim

∑
(h̄ωems − h̄ωabs) (1.10)

where tsim is the simulation time. This approach can then be used to investigate the phonon

generation spectrum (the generation rate as a function of phonon frequency and mode), as

well as to study non-local heat generation near a strongly peaked electric field within a

realistic device geometry.
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1.4 The Scope of this Work

The goals of this dissertation are two-fold. The first objective is to explore the microscopic

details of self-heating in bulk and strained silicon. To this end, the Monte Carlo method

was used, and a new model was implemented from the ground up. This approach is different

from previous work (see Chapter 2) in its use of an analytic description for both the electron

energy bands as well as the phonon dispersion. The method is also extended to simple, yet

realistic device geometries where self-heating is computed and compared with traditional

simulation methods. The Monte Carlo approach gives information on both the location and

make-up of the heat generation region within the drain of a transistor.

The second objective of this dissertation is to analyze the design and scaling of confined-

geometry (i.e. SOI, FinFET) transistors from an electro-thermal point of view. The Monte

Carlo work shows that in the limit of the shortest possible devices, the heat is almost entirely

generated in the device drain. A carefully calibrated compact model for the self-heating

of such transistors is introduced and shown to yield device temperatures very sensitive

to device geometry, as well as to contact resistance. Several device design guidelines are

proposed, and the analysis indicates it is possible to optimize device geometry in order to

simultaneously minimize operating temperature and intrinsic gate delay.

1.5 Organization

This dissertation is organized in six chapters and one appendix, as follows. Chapter 2

presents a brief introduction of the Monte Carlo (MC) method for transport in semicon-

ductors, and specifically in silicon. This chapter also reviews several simulation approaches

of various complexity, and places the current contribution in historical context.

Chapter 3 describes the details of the Monte Carlo implementation in this work. This in-

cludes a combination of analytic (ellipsoidal) electron energy bands and analytic (quadratic)

phonon dispersion, an combined approach introduced for the first time in this work [37].

The electron-phonon scattering rates are re-derived taking into account the phonon disper-

sion, and a set of scattering deformation potentials is proposed which properly reproduces
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experimental data in both bulk and strained silicon.5 Chapter 3 also discusses the imple-

mentation of the Monte Carlo method within the context of a realistic 1- and 2-D device

geometry, including impurity and boundary scattering, as well as a self-consistent solution

of the Poisson equation.

Chapter 4 applies the Monte Carlo simulation method to compute detailed heat gener-

ation rates in both bulk and strained silicon. The heat generation spectrum (net emitted

phonons as a function of frequency) is computed. The method is also applied to simple, yet

relevant 1-D device geometries and the non-local nature of heat generation near strongly

peaked electric fields is investigated. The study finds most of the heat generated in a short6

device to occur in the device drain, and not in the channel where transport is quasi-ballistic.

The centroid of this “hot spot” is displaced by several inelastic mean free paths from the

peak of the electric field region.

Chapter 5 introduces a compact electro-thermal model suitable for analysis of confined-

geometry devices (e.g. SOI, GOI or FinFET). It is shown that the design of the raised

source/drain (i.e. its resistance) plays an important electrical as well as thermal role, since

most of the heat is dissipated there. The interface thermal resistance, both at the gate

(metal) to oxide boundary, as well as at the device contacts (silicide and via) is also shown

to play an increasingly limiting role in the heat dissipation of devices near the end of the

Technology Roadmap [1]. The compact model is also used to investigate the optimal device

design space such as to minimize both operating temperature and intrinsic gate delay.

Also, thin-body germanium-on-insulator (GOI) transistors are compared with equivalent

SOI devices. It is shown that well-designed GOI devices are not expected to suffer from

worse self-heating, despite their slightly higher thermal resistance, in part due to lower

power dissipation and partly due to thin film germanium mobility being less sensitive to

temperature.

Chapter 6 provides an overall conclusion of this thesis. The results are analyzed and

several suggestions for future research directions are offered. It is suggested that similar

5Previous approaches have used separate sets of deformation potentials in the two cases, without being
able to reconcile them.

6Compared to the electron mean free path, i.e. near 5-10 nm.
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studies ought to be carried out for other confined geometry devices (nanotubes, nanowires),

to understand the limiting effects of self-heating on device performance and design space.

The role of thermal (and electrical) contact resistance must also be studied more carefully

in such geometrically confined device designs. The appendix contains a brief user manual

for MONET, the Monte Carlo code implemented during the course of this dissertation. The

work described in the following chapters should provide enough detail to enable anyone with

similar resources to duplicate the results of this thesis.



Chapter 2

The Monte Carlo Method for

Transport in Semiconductors

The Monte Carlo (MC) method is regarded as the most comprehensive approach for simu-

lating charge transport in semiconductors. An early standard was set by the work of Canali

et al. [38] and Jacoboni et al. [34] using analytic, ellipsoidal descriptions of the energy band

structure. Over the past two decades the research community has added numerous enhance-

ments, including more comprehensive physical models, more efficient computer algorithms,

new scattering mechanisms, boundary conditions, electrostatic self-consistency in device

simulations, etc. A significant enhancement of the physical models was the introduction of

full electron energy bands from empirical pseudopotential calculations [36, 39].

For device operating voltages near 5 Volts, the full band MC method has been very

useful with high-energy transport simulations, including impact ionization [39, 40], where

details of the full band structure are essential. As device dimensions are scaled into the

nanometer range and supply voltages are reduced below the material’s band gap (1.1 Volts

for silicon) the role of impact ionization is greatly diminished. Transport at lower energies

can be adequately simulated with analytic band models. Hence simpler, faster analytic

band MC codes (including quantum mechanical corrections where required by confined di-

mensions) can be employed as engineering design tools for future nanoscale devices. In

19
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Figure 2.1: Historical context of various Monte Carlo models for electron transport in silicon. The
computational burden increases for full band (and full dispersion) simulations.

addition, despite increasingly sophisticated treatment of the electron energy bands over the

years, the phonon dispersion relation is still commonly simplified in practical device simu-

lators. Electron-phonon scattering is usually computed with a single dispersionless acoustic

mode and with one (or a few) fixed energy optical modes. This dissertation (in particular,

Chapter 3) presents a new Monte Carlo model which uses complete analytical descriptions

for both the electron band structure and the phonon dispersion relationship. The approach

is computationally efficient on modern PC workstations and suitable for simulating electron

transport in future, low-voltage technologies, while describing the electrons and phonons

with comparable accuracy.

2.1 Historical Overview

Figure 2.1 shows a brief historical overview of various MC simulation methods for charge

transport in silicon. Canali et al. [38] introduced the first multi-valley model with parabolic,

ellipsoidal bands and phonon scattering with a single dispersionless longitudinal acoustic

(LA) mode and six fixed-energy intervalley phonons. Jacoboni et al. [45] accounted for
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analytic band non-parabolicity and slightly altered Canali’s set of phonon deformation po-

tentials. A few years later Brunetti et al. [46] introduced a new set of deformation potentials,

more closely matching available data on the anisotropy of electron diffusion in silicon. This

phonon model was used by Jacoboni et al. in an excellent and frequently referenced re-

view of the MC method [34], and it subsequently became the set of phonon energies and

deformation potentials most often employed in the literature over the past two decades.

Other workers [44] also introduced scattering with first order intervalley phonons. Tang

and Hess [39] were the first to incorporate the full band structure of silicon (computed

from empirical pseudopotentials) for MC transport. However, they used the simple phonon

model of Canali and Brunetti (dispersionless LA phonons, six fixed intervalley phonons),

and the deformation potentials of Brunetti et al. [46]. Sano et al. introduced wave vector

dependent impact ionization rates in a full band MC formulation [40], but computed phonon

scattering rates with the multi-valley deformation potentials of Canali et al. [38].

Realistic device simulations using electrostatically self-consistent full band MC were first

performed by Fischetti and Laux [36]. They were also the first to make the distinction be-

tween longitudinal (LA) and transverse acoustic (TA) intravalley scattering, using a simple

analytic dispersion for both modes. Fischer et al. [41] pointed out the poor definition of

energy “valleys” in the context of full band models, and used only two averaged deformation

potentials: one for fixed-energy optical phonons and another for acoustic phonons (LA, but

not TA), including their dispersion. The most sophisticated MC models for charge transport

in silicon were developed by Yoder et al. [42] and Kunikiyo et al. [43]. They employed the full

band structure computed from empirical pseudopotentials and the full (anisotropic) phonon

dispersion obtained from an adiabatic bond-charge model. The electron-phonon scattering

rates were calculated as a function of energy and wave vector, consistently with the band

structure and phonon dispersion. In the absence of any adjustable parameters, mobilities

computed with these ab initio models are typically less accurate than those computed us-

ing more empirical simulators. Such codes also present formidable computational burdens,

rendering them impractical for simulations of realistic devices. Their only applications have

been for very detailed bulk transport calculations.
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Most MC codes found in practice today employ a sophisticated, full description of the

electron energy bands (often including quantum effects [47]), yet scattering rates and energy

exchange with the lattice are only computed with a simplified phonon dispersion [48, 49].

The phonon energies and deformation potentials in use most often are those originally

introduced by Brunetti et al. [46]. Optical phonon dispersion is ignored and often only

one acoustic branch (LA) is considered for intravalley scattering. Such models can lead

to unphysical thresholds in the electron distribution function [41] and cannot be used to

compute phonon generation rates for detailed phonon dynamics simulations (e.g. phonon

Boltzmann transport or Molecular Dynamics). In a realistic electron device a full phonon

dispersion is essential for extracting the correct phonon generation spectrum from Joule

heating [10]. Use of the full phonon dispersion is also important in strained or confined

materials and devices, where the dispersion relationship is altered from its bulk form.

Chapter 3 of this dissertation and Ref. [37] describe the implementation of a MC code

which uses analytic descriptions for both the electron bands and the phonon dispersion. In

the context of Fig. 2.1, the isotropic analytic phonon model described in this work lies on the

vertical axis between the anisotropic bond-charge dispersion method [42, 43], and all other

traditional approaches. This computationally efficient method is suitable for simulating low-

voltage nanodevices, while treating the electron bands and phonon dispersion with equal

attention.

2.2 General Monte Carlo Aspects

The general aspects of the Monte Carlo method for charge transport in semiconductors

have been well described before [8, 34, 35]. This section provides but a brief overview of the

MC algorithm, summarized with the diagram in Fig. 2.2. The ensemble MC approach used

in this work preselects several tens of thousands “super-particles” to represent the mobile

charge inside the semiconductor. This number is limited by computational (and to a lesser

extent, today, by memory) constraints, but good statistics can be obtained if the simulation
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is run for an adequately long time. The particles are initialized with thermal energy distri-

butions (average energy 3kBT/2) and with randomly oriented momenta. Spatially, in the

case of a realistic device simulation (as opposed to modeling the transport properties of bulk

silicon) the particles are initially distributed following the device doping profile or based

on initial conditions read from, for example, a drift-diffusion device simulator. Once the

simulation is started, the particles are allowed to drift for short periods of time (τ , shorter

than the average time between collisions), then a scattering process (if any) is selected. A

fictive “self-scattering” rate can be chosen in such a way that the sum of all scattering rates

is constant (Γo) and independent of the carrier energy. The distribution of each particle’s

free flight time intervals (τ) is then directly related to this total scattering rate as [8]

τ = − 1
Γo

ln(r1) (2.1)

where r1 is a random number uniformly distributed between 0 and 1. During its free

flight, the carrier is allowed to drift under the influence of the electric fields, as dictated by

Newton’s laws of motion with an effective mass (as opposed to the free electron mass) which

represents the collective influence of the lattice. Then another random number r2 between 0

and 1 is drawn1 and r2Γo is compared with cumulative probabilities of scattering which have

been precomputed at the beginning of the simulation as a function of energy. A scattering

mechanism (e.g. with impurities, acoustic or optical phonons) is selected in proportion to

the strength of each process. If self-scattering is selected, the particle continues its free

flight unimpeded. If a real scattering process is selected the particle’s state after scattering

is stochastically chosen taking into account both energy and momentum conservation, then

another random time of flight is drawn. This procedure then repeats for all particles.

In the case of a realistic device simulation, the Poisson equation must be solved at

every time step, to self-consistently update the electric fields as the mobile charge carriers

move inside the device. The Monte Carlo simulation can also be run without the Poisson

1It is this stochastic nature of the Monte Carlo simulation method which provides its name, a reference
to the gambling opportunities in the eponymous Mediterranean city.
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equation, in post-processor mode on the fixed (“frozen”) fields initially read from a drift-

diffusion simulator, although extensive work has shown [50] that the results are less accurate

and predictive, particularly for noise simulations. The super-particles are treated as single

carriers during their free flights, and as charge clouds when the Poisson equation is solved.

The cloud-in-cell method [35] is most often employed for assigning the super-particle charge

to the grid nodes before Poisson’s equation is solved. The charge on each super-particle is

Q = e
N

Nsim
(2.2)

where e is the elementary charge, N is the total number of mobile charges in the device

and Nsim is the number of super-particles used in the simulation. It should be noted that

the coupled solution to Poisson’s equation yields a much more stringent requirement on the

simulation time step, necessary to avoid charge imbalance due to plasma oscillations [8].

The Poisson equation therefore ought to be solved every

∆T <
1
2

√
εsm∗

e2n
(2.3)

where εs is the dielectric constant of the semiconductor, m∗ is the lighter effective mass of the

carrier in the material (the transverse mass mt for electrons in silicon) and n is the mobile

charge density. In the heavily doped contact regions of a device, where n ' 1020 cm−3, very

short (and therefore time-consuming) time steps less than 1 fs are necessary. The charge

density at the device contacts must also be updated at the end of each time step. This is

done by injecting (or deleting) thermal electrons at the grid nodes adjacent to the contacts,

to maintain charge neutrality there.

Ensemble averages are updated every time step, and statistics are gathered by sampling

the super-particle system at regular time intervals, until reaching a targeted accuracy. The

error margins are inversely proportional to the square root of the number of particles being

simulated, 1/
√

Nsim. The run of the algorithm ends when the total time alloted for the

simulation ends (typically, on the order of tens or hundreds of picoseconds), or when enough
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statistics have been gathered and the error margins of the sought-after ensemble averages are

deemed appropriate. It should be noted that Monte Carlo simulations are not well-suited

for low-field transport, where other, simpler but much faster methods may be preferred

(e.g. drift-diffusion). However, the method represents the most physically comprehensive

simulation approach for charge transport in semiconductors, and is usually the standard

against which all other methods are judged. Several reference works have been dedicated

to thorough reviews of the Monte Carlo method [8, 34, 35] and much more information can

be gathered therein.



Chapter 3

Analytic Band and Dispersion

Monte Carlo Implementation

This chapter describes the implementation of a new Monte Carlo model for electron trans-

port, specifically developed to compute heat (phonon) generation rates in bulk and strained

silicon, as well as in simple nanoscale device geometries. The model uses analytic, non-

parabolic electron energy bands and an isotropic, analytic phonon dispersion model, which

distinguishes between the optical/acoustic and longitudinal/transverse phonon branches. A

new, unified set of deformation potentials for electron-phonon scattering is introduced and

shown to yield accurate transport simulations (vs. the available data) in bulk and strained

silicon across a wide range of electric fields and temperatures. The Monte Carlo model is

then applied in the context of transport in one-dimensional (self-consistent with the Poisson

equation) and two-dimensional device geometries.

3.1 Electron Energy Band Model

This work models the electron energy bands analytically, following Jacoboni [34], and in-

cluding the non-parabolicity parameter α (= 0.5 eV−1 at room temperature). With α = 0

the kinetic energy is purely parabolic and Canali’s original model [38] is recovered. All six

27
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Figure 3.1: Three-dimensional view of the ellipsoidal conduction band valleys of silicon within the
first Brillouin zone (momentum space). The arrows represent the type of electron-phonon scattering
transitions, i.e. f - and g-type intervalley scattering, as well as intravalley scattering. (Original figure
courtesy C. Jungemann.)

ellipsoidal, energetically equivalent conduction band valleys of silicon are explicitly included,

as in Fig. 3.1. The non-parabolic band approximation represents a good description of elec-

tron transport at energies below approximately 1 eV, such as those of future low-voltage

nanotechnologies, where impact ionization and high energy transport are not expected to

play a significant role. Figure 3.2 shows a comparison between the total conduction band

density of states (DOS) computed in the non-parabolic band approximation and the full

band density of states. From the point of view of the DOS, which determines the scatter-

ing rates (as described in Section 3.3), the analytic band approximation is sufficient up to

1.5 eV in electron energy. This analytic, non-parabolic relationship between the electron

energy Ek and the wave vectors ki (i =1, 2 or 3, for the three Cartesian axes) is:

Ek(1 + αEk) =
h̄2

2

3∑

i=1

(ki − κvi)2

mi
(3.1)

where mi is the component of the electron mass tensor along the ith direction and κvi

represents the coordinates of the respective conduction band minimum. Silicon has six

equivalent conduction band minima near the X symmetry points, located at ±85 percent of
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Figure 3.2: Conduction band density of states (DOS) in silicon from a full band calculation (courtesy
C. Jungemann) vs. the DOS computed with the non-parabolic band approximation from Eq. 3.7.

the way to the edge of the Brillouin zone, along the three 〈100〉 axes (the ∆ lines), as shown

in Fig. 3.1. For example, the X-valley (sometimes also called the ∆-valley) along the 〈100〉
direction is centered at (0.85, 0, 0)G where |G| = 2π/a is the reciprocal lattice vector and

a = 5.431 Å is the silicon lattice constant. The mass tensor components are the longitudinal

mass ml/mo = 0.916 and the transverse mass mt/mo = 0.196 at room temperature, where

mo is the mass of the free electron. The temperature dependence of the band gap Eg(T ) is

also included analytically, following the review of Green [51]:

Eg(T ) = 1.1756− 8.8131× 10−5T − 2.6814× 10−7T 2 (3.2)

where T is the absolute temperature in degrees Kelvin. This dictates a slight temperature

dependence of the transverse mass as mt/mo = 0.196Ego/Eg(T ) and of the non-parabolicity

parameter as α = 0.5Ego/Eg(T ) eV−1, where Ego is the silicon band gap at room tempera-

ture [51]. Figure 3.3 shows a typical “snapshot” of the electron distribution in momentum

space, as represented by the current work.

Since it uses the analytic non-parabolic band approximation, suitable for low-energy

studies, the present work ignores the second conduction band (the L-valley) of silicon,

which lies slightly more than 1 eV above the bottom of the X-valley. Hence the maximum
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Figure 3.3: Electron distribution in momentum space, for an electric field of 50 kV/cm in the 〈111〉
direction, at 300 K. The color bar represents the electron energy, from 0 to 1 eV.

electron energy is usually limited to (or slightly above) 1 eV during the simulation. In fact,

this upper limit on the electron energy is a convenient value for several reasons: (a) it is the

approximate energy difference between the L and X valleys, (b) it is also about the value

of the silicon energy band gap, which controls impact ionization, and (c) it conveniently

corresponds to an upper limit on the maximum electron energy in low-voltage future nan-

odevices, which will operate at 1 Volt or below. Since electrons with energies larger than

the band gap will be rare, impact ionization is not expected to play a significant role and

consequently it can be safely neglected.

3.2 Phonon Dispersion Model

The present work treats all phonon scattering events inelastically, hence the electrons ex-

change the correct amount of energy (corresponding to the absorption or emission of a

phonon) with each scattering event. Particular attention is paid to the treatment of inelastic

acoustic phonon scattering, to properly account for energy dissipation at low temperatures

and low electric fields. Treating the acoustic phonons inelastically is also important for heat



3.2. PHONON DISPERSION MODEL 31

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10
x 10

13

Reduced phonon wave vector qa/2π <100>

Fr
eq

ue
nc

y 
ω

 [r
ad

/s
]

0

10

20

30

40

50

60

E
ne

rg
y 

[m
eV

]

g

~ f

Figure 3.4: Phonon dispersion in silicon along the 〈100〉 direction, from neutron scattering data
(symbols) [54]. The lines represent the quadratic approximation introduced in Ref. [37] and this
work. The f and g phonons participate in the intervalley scattering of electrons [52].

generation spectrum calculations, as shown in Chapter 4 and Ref. [10]. Figure 3.1 illus-

trates the ellipsoidal conduction band valleys and the allowed phonon scattering transitions.

As in the traditional analytic-band approach [34], scattering with six types of intervalley

phonons is incorporated. Intervalley scattering can be of g-type, when electrons scatter be-

tween valleys on the same axis, e.g. from 〈100〉 to 〈−100〉, or of f-type when the scattering

occurs between valleys on perpendicular axes, e.g. from 〈100〉 to 〈010〉. The phonons in-

volved in these scattering transitions (three of f-type and three of g-type) can be determined

from geometrical arguments [52] and are labeled in Fig. 3.4. Intravalley scattering refers

to scattering within the same conduction band valley and usually involves only acoustic

phonons [53].

Most typical MC codes [34, 40, 41, 44, 45, 46], both analytic- and full-band, treat

intravalley scattering with a single kind of acoustic phonon. This simplification is accom-

plished by grouping the longitudinal acoustic (LA) and transverse acoustic (TA) branches
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ωo vs c

1013 rad/s 105 cm/s 10−3 cm2/s

LA 0.00 9.01 -2.00

TA 0.00 5.23 -2.26

LO 9.88 0.00 -1.60

TO 10.20 -2.57 1.12

Table 3.1: Quadratic phonon dispersion coefficients for each branch of the phonon spectrum: lon-
gitudinal acoustic (LA), transverse acoustic (TA), longitudinal optical (LO) and transverse optical
(TO).

into a dispersionless mode with a single velocity and a single deformation potential. Histor-

ically, TA modes have been neglected because their matrix element is zero for intravalley

scattering within a band located at the center of the Brillouin zone [34, 53]. This isn’t

the case for silicon, hence in a more comprehensive approach (where scattering with all

phonon modes matters) intravalley scattering with TA modes should be considered. Unlike

the traditional approach, this work considers scattering with LA and TA modes separately.

Each phonon dispersion branch from Fig. 3.4 (including the optical modes) is treated with

the isotropic approximation

ωq = ωo + vsq + cq2 (3.3)

where ωq is the phonon frequency and q the wave vector. For the acoustic phonons, the

parameters vs and c can be chosen to capture the slope of the dispersion near the Brillouin

zone center and the maximum frequency at the zone edge, similar to Ref. [41]. The choice of

parameters for longitudinal optical (LO) phonons insures that they meet the zone edge LA

frequency. For both TA and transverse optical (TO) phonons the zone edge slope, i.e. their

group velocity is fit to zero. The continuous (longitudinal) and dashed (transverse) lines

in Fig. 3.4 represent these quadratic approximations, and the fitting coefficients are listed

in Table 3.1. Quartic polynomials would offer a better fit in the 〈100〉 crystal direction

but no advantage in the other directions, hence the quadratics are entirely sufficient for

this isotropic approximation. They track the phonon dispersion data closely, especially in
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the regions relevant to electron-phonon scattering in silicon: near the Brillouin zone center

for long wavelength intravalley acoustic phonons, and near the frequencies corresponding

to intervalley f- and g-type phonons. The quadratics are also easy to invert and, where

needed, to extract the phonon wave vector as a function of frequency.

The same approach can be used to extend this phonon dispersion model to other ma-

terials or confined dimensions. Changes in the phonon dispersion due to strain or con-

finement (e.g. in nanostructures) can be easily included. The challenge in this case lies

chiefly in determining the correct modified phonon dispersion to use in such circumstances.

The electron-phonon scattering rates need to be numerically recomputed with the modified

phonon description (as outlined below), which can be done efficiently if the dispersion is

written as a set of analytic functions, like the polynomials in this work.

3.3 Electron-Phonon Scattering

Scattering by lattice vibrations (phonons) is one of the most important processes in the

transport of carriers through a semiconductor. It is this scattering that limits the velocity

of electrons in the applied electric field, and from this point of view transport can be seen

as the balance between accelerative forces (the electric field) and dissipative forces (the

scattering). The treatment of electron-phonon scattering in Monte Carlo simulations is

based on the assumption that lattice vibrations cause small shifts in the energy bands, and

this additional potential U causes the scattering process, with the matrix element

M(k,k′) = 〈k′|U |k〉 (3.4)

between the initial state k and the final state k′ [8, 14]. This matrix element contains

the momentum conservation condition, k′ = k ± q + G, where q is the phonon wave

vector, G is a reciprocal lattice vector, and the upper and lower signs correspond to the

absorption and emission of a phonon. The electronic wave functions are typically taken to be

Bloch functions that exhibit the periodicity of the lattice. The electron-phonon scattering
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rate is based on Fermi’s Golden Rule, which is derived from first-order time-dependent

perturbation theory [8, 35] and gives the transition probability between the two eigenstates

P (k,k′) =
2π

h̄

∣∣M(k,k′)
∣∣2 δ(Ek − Ek′ ± h̄ωq) (3.5)

where the upper and lower signs have the same meaning as in the previous paragraph. It is

assumed that the scattering potential is weak, such that it can be treated as a perturbation

of the well-defined energy bands, and the δ-function ensures that two collisions do not

“overlap” in space or in time, i.e. they are infrequent, or that the scattering time is much

shorter than the time between collisions. The total scattering rate out of state k is obtained

by integrating over all final states k′ the electron can scatter into. Mathematically, this

integration can be carried out over k′ or q with the same result [14]. In those cases in which

the matrix element is independent of the phonon wave vector, the matrix element can be

removed from the integral, which leaves a total scattering rate directly dependent on the

density of states:

Γ(k) =
2π

h̄
|M(k)|2 gd(Ek ± h̄ωq), (3.6)

where M(k) includes the dependence on the phonon occupation of states, on the wave

function overlap integral and on the deformation potential characteristic of the particular

phonon involved.1 The dependence of the total scattering rate on the density of final states

has a satisfying interpretation [14], as it gives us a means for comparing scattering rates

in 1-, 2- or 3-dimensional systems. In three dimensions the electron-phonon scattering rate

increases roughly as the square root of the electron energy, just like the density of states2

gd(Ek) =
(2md)3/2

2π2h̄3

√
Ek(1 + αEk)(1 + 2αEk), (3.7)

1As will be shown in the subsequent sections, deformation potentials are typically extracted empirically
from comparison with low and high temperature electron mobility data.

2This is the density of states per energy ellipsoid in silicon, including the factor of 2 for spin. Note this
must be multiplied by a factor of six for all conduction band ellipsoids in silicon.
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written here in the non-parabolic, analytic band approximation (Eq. 3.1) adopted in this

work, where md = (m2
t ml)1/3 is the electron density of states effective mass.

3.3.1 Intravalley Scattering

Intravalley scattering refers to scattering within the same conduction band valley and it

usually involves only acoustic phonons [53]. In this work, the total intravalley scattering

rate is calculated separately with LA and TA phonons, as a function of the initial electron

energy Ek:

Γi(Ek) =
D2

amd

4πρh̄2ks

∫

q

1
ωq

(
Nq +

1
2
∓ 1

2

)
I2

q q3dq (3.8)

where Da is the respective deformation potential (DLA or DTA), and ρ is the mass density

of silicon. The top and bottom signs refer to phonon absorption and emission, respectively.

The electron wave vector is transformed to spherical Herring-Vogt [34, 55] space as:

ks =
√

2mdEk(1 + αEk)
h̄

(3.9)

Since the scattering rates are numerically integrated at the beginning of the simulation, the

correct phonon occupation can be incorporated as

Nq =
1

exp(h̄ωq/kBT )− 1
, (3.10)

without resorting to the equipartition or Joyce-Dixon approximations normally used [34].

The wave function overlap integral is included in the rigid ion approximation [56]:

Iq =
3

(qRs)3
[sin (qRs)− qRs cos (qRs)] (3.11)

where Rs = a[3/(16π)]1/3 is the radius of the spherical Wigner-Seitz cell, Rs = 2.122 Å for

silicon. All quantities are numerically evaluated using the corresponding phonon dispersion.

The scattering rate integral in Eq. 3.8 is carried out over all phonon wave vectors q that

conserve both energy (E′
k = Ek ± h̄ωq) and momentum (k′ = k± q). These arguments can
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be used to establish the range of q, as required by | cos(φ)| ≤ 1 where

cos(φ) = ∓ q

2ks
+

mdωq

h̄qks
[1 + α(2Ek ± h̄ωq)] (3.12)

and φ is the angle between the phonon and the initial electron wave vector. As in the

rest of this chapter, the top and bottom signs refer to phonon absorption and emission,

respectively. The intravalley scattering rate typically cited in the literature [34] can be

recovered by substituting the simple, dispersionless phonon frequency ωq = vsq (typically

for LA phonons only), Iq = 1 and using an approximation for Nq, which allows Eq. 3.8 to

be integrated analytically.

The final state of the electron after scattering |E′
k,k

′〉 reflects both the energy and

momentum exchange with the phonon, as follows: first the magnitude of the phonon wave

vector q is selected within the allowed range using a rejection algorithm [34] applied to the

integrand in Eq. 3.8, which includes the overlap integral. Then the magnitude of the electron

wave vector k′ after scattering is found by energy conservation, while the angle between k′

and k is obtained by momentum conservation. The final electron state is only accepted if

it falls within the first Brillouin zone, otherwise the rejection algorithm is repeated.

The intravalley deformation potentials have a general angular dependence which can be

written as [55]:

ΞLA(θ) = Ξd + Ξu cos2 θ (3.13)

ΞTA(θ) = Ξu sin θ cos θ (3.14)

where θ is the angle between the phonon wave vector and the longitudinal axis of the con-

duction band valley, Ξu is the shear and Ξd is the dilation deformation potential. Detailed

calculations have shown that the influence of this angular dependence on the electron trans-

port is relatively small [57]. Hence the intravalley deformation potentials can be averaged

over the angle θ, consistently with the general isotropic approach adopted in this work. The
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isotropically averaged deformation potentials become

DLA =

√
π

2

(
Ξ2

d + ΞdΞu +
3
8
Ξ2

u

)
(3.15)

DTA =
√

π

4
Ξu (3.16)

which are used for computing the intravalley scattering rates in Eq. 3.8. There is consid-

erable variation in the values of the shear (Ξu) and dilation (Ξd) deformation potentials

reported in the literature over the years. A good summary of these values can be found in

Ref. [58]: various theoretical and empirical studies have estimated Ξu in the range of 7.3 to

10.5 eV, while Ξd has been previously cited both as -11.7 eV (Ref. [59]) and near 1.1 eV

(Ref. [58]). Although, perhaps surprisingly, both values can be used to describe electron

mobility (hence the original confusion over the correct choice), it was shown that only the

latter (Ξd = 1.1 eV) yields the correct mobilities both for electrons and holes [58]. This

is the value adopted in the current study. Then Ξu is used as a fitting parameter while

calculating the low-field, low-temperature (T=77 K) electron mobility, a regime dominated

by scattering with intravalley phonons. An empirical best-fit value of Ξu = 6.8 eV is found,

in reasonable agreement with previous work. With these values of Ξd and Ξu the isotrop-

ically averaged deformation potentials are DLA = 6.39 eV and DTA = 3.01 eV. These are

comparable with the value of 9 eV typically cited in the literature for MC models where

scattering is only taken into account with the longitudinal modes [34].

3.3.2 Intervalley Scattering

As outlined in Section 3.2, intervalley scattering in silicon can take electrons between equiv-

alent (g-type) and non-equivalent (f-type) valleys. Based on geometrical arguments [52],

both f- and g-type scattering are Umklapp processes, involving a reciprocal lattice vector

|G| = 2π/a. Since the X-valley minima are located at 0.85 from the center to the edge of

the Brillouin zone, the change required in electron momentum is (0, 0.85, 0.85)G for f-type

scattering and (1.7, 0, 0)G for g-type scattering. Reduced to the first Brillouin zone, the
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Deformation potentials ∆if (108 eV/cm)

Type T (K) E (meV) Ref. [38] Ref. [61] Ref. [46] Ref. [44] This work

f1 TA 220 19 0.15 – 0.3 2.5 0.5

f2 LA/LO 550 51 3.4 4.3 2 – 3.5

f3 TO 685 57 4 2 2 8 1.5

g1 TA 140 10 0.5 0.65 0.5 – 0.3

g2 LA 215 19 0.8 – 0.8 4 1.5

g3 LO 720 62 3 7.5 11 8 6

Table 3.2: Summary of phonon energies and deformation potentials for intervalley electron-phonon
scattering in silicon.

phonons involved are (1, 0.15, 0.15)G and (0.3, 0, 0)G respectively [52, 60]. The f-phonon is

just 11◦ off the 〈100〉 direction, while the g-phonon is along 〈100〉, at 0.3G. These phonons

are schematically drawn on the dispersion relation in Fig. 3.4. The g-phonon frequencies

can be directly read off the 〈100〉 dispersion, while the f-phonons are typically assumed to

be those at the edge of the Brillouin zone. In this work, ωq is computed from the analytic

phonon dispersion and the intervalley scattering rate between the initial (i) and final (f )

valley can be written as follows [8, 34]:

Γif (Ek) =
π∆2

if Zf

2ρωq

(
Nq +

1
2
∓ 1

2

)
gdf (Ek ± h̄ωq) (3.17)

where Zf is the number of available final valleys (4 for f-type and 1 for g-type scattering),

gdf (Ek) is the density of states in the final valley (Eq. 3.7), and other symbols are the same

as previously defined. Intervalley scattering can also include an overlap factor, but its value

is typically incorporated into the scattering constant ∆if . The six phonons involved in

intervalley scattering, along with their approximate energies, equivalent temperatures (as

T = h̄ωq/kB), and deformation potential scattering constants are listed in Table 3.2.

Traditional MC models (apart from the ab initio approaches of Refs. [42] and [43])

assume the phonon energies involved in intervalley scattering are fixed at the values deter-

mined by transitions between the X-valley minima. Also, the state of the electron in the
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final valley is computed isotropically [34]. These geometrical arguments only hold strictly

for the lowest energy electrons at the bottom of the bands. This work takes into account

the phonon dispersion for scattering with both optical and acoustic phonons when calcu-

lating the final state of the electron. After the type of intervalley scattering mechanism

is determined, the state of the electron in the final valley is first chosen isotropically, as

in the traditional approach. The phonon wave vector necessary for this transition can be

calculated as q = k′ − k because the initial state of the electron is known. The phonon is

then reduced to the first Brillouin zone and its energy is obtained using the phonon dis-

persion described earlier. This procedure is applied to both acoustic and optical phonons.

The phonons that do not satisfy both energy and momentum conservation within a certain

tolerance are discarded with a rejection algorithm. This is a relatively inexpensive search

which ends when a suitable phonon is found. The effect of this algorithm is to smear out

any “hard” thresholds associated with intervalley phonon energies in the electron distri-

bution. Figure 3.5 shows the low field (200 V/cm) electron distribution computed with

this approach, compared to the typical models found in the literature [34, 46] where the

intervalley phonon dispersion is not taken into account. Any unphysical threshold, e.g. at

62 meV due to g-type optical intervalley scattering, is removed when phonons of varying en-

ergies around this value (as given by the dispersion relation and by energy and momentum

conservation) are allowed to participate. Such thresholds in the electron distribution are

also present in full band MC models which use a single, fixed energy optical phonon [41].

The current model removes them in a computationally inexpensive way, while satisfying

energy and momentum conservation for all scattering events.

Despite the added complexity of the full phonon dispersion, this analytic band code

is more than an order of magnitude faster when compared to typical full band programs

(using a simpler phonon description) doing the same velocity-field curve calculations, i.e.

Fig. 3.7. A version of the code compiled using fixed phonon energy values and without the

dispersion information (essentially identical to the one of Ref. [34]) was only a few percent

faster than our model which includes the dispersion. Hence this work incorporates the

phonon dispersion in an efficient way, giving significantly more physical insight than the
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Figure 3.5: Electron distribution vs. energy at (a) 77 K and (b) 300 K with low applied electric field
(200 V/cm). The typical dispersionless model [34, 46] is compared with the results of this work,
which include the full isotropic dispersion. Note the vertical axes are not at the same scale.

typical analytic band code for very little computational overhead, while still being more

than an order of magnitude faster than a typical full band code. The analytic phonon

dispersion and analytic electron bands significantly speed up the calculations of the final

electron state after scattering, compared to the look-up tables and interpolation schemes

found in full band codes. Further speed improvements can be obtained by including an

energy-dependent total scattering rate [62], which would significantly reduce the number of

self-scattering events.

3.4 Electron-Ionized Impurity Scattering

Ionized impurity scattering must be taken into account for electron transport through the

heavily doped regions (e.g. source or drain) of realistic devices. Unlike phonon scattering,

ionized impurity scattering is an elastic process, meaning that it does not change the energy

of the electron. However, the scattered electron momentum is altered, as indicated by the

effect ionized impurities have on the electron mobility. The scattering potential due to an
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Figure 3.6: Electron velocity-field relationship in doped bulk and strained silicon. The dashed lines
represent data for 1017 cm−3 doped bulk silicon, the solid lines are data for strained silicon on
x = 0.3 substrate Ge fraction [66]. The symbols are our simulation results for the two respective
cases.

impurity charge in a crystal is a screened Coulomb potential

U(r) =
Ze2

4πεsr
exp(−r/LD) (3.18)

depending on how many free charge carriers are present. Here Ze is the net extra charge

on the impurity atom,3 εs is the dielectric constant of the semiconductor, r is the distance

from the scattering center and LD =
√

εskBT/(e2n) is the Debye length. where n is the free

charge carrier (electron) density responsible for screening the potential in Eq. 3.18. Impurity

scattering is a highly anisotropic process [8, 63], showing a strong preference for small

scattering angles. Although physically sound, a direct implementation of this approach in

a Monte Carlo technique would yield several problems. Many small-angle scattering events

would have to be processed consuming computational time. Also, many short free-flight

times would be obtained, further degrading the efficiency of the procedure. The scattering

model proposed by Kosina [64, 65] avoids such pitfalls by reformulating impurity scattering

as an isotropic process with the same momentum relaxation time as the anisotropic process.

This work implements Kosina’s model, including the screening function from Ref. [64]. The

3For example, Z = 1 for n-type dopants from Group V, like Arsenic or Phosphorus.
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Figure 3.7: Electron drift velocity vs. electric field in unstrained silicon over a wide range of
temperatures. Symbols are the Monte Carlo simulations of this work. The lines represent the time
of flight experimental data of Canali et al. [38].

model has been shown to be adequate for doping concentrations up to 1020 cm−3, with

particularly notable improvements in efficiency at lower (less than 1017 cm−3) doping levels.

The dashed line and solid symbols in Fig. 3.6 show a comparison between velocity-field data

obtained in 1017 cm−3 doped bulk silicon and Monte Carlo simulations using the isotropic

scattering model. Good agreement is found over a wide range of electric fields. Similarly, the

low-field mobility was computed over a wide range of doping densities and good agreement

was found with available experimental data.

3.5 Transport Applications

Electron transport characteristics, as well as energy dissipation at moderate to high fields

and for all but the lowest temperatures are determined by the choice of intervalley phonon

coupling constants ∆if . This choice also determines the relative strength of f- and g-type

intervalley scattering. Several sets of coupling constants previously proposed are listed in

Table 3.2. The parameter set introduced by Brunetti et al. [46] has been most commonly

used in the literature over the past two decades, for both analytic and full band simulations.

This parameter set strongly favors g-type scattering with the 62 meV LO phonon, while the
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Low Field High Field

Ac (Ξa) ↑ Op (∆if ) ↑ Ac (Ξa) ↑ Op (∆if ) ↑
E ↓ ↓ ↓ ↓
v ↓ ↓ ↓ ⇑

Table 3.3: Transport dependence on optical and acoustic scattering potentials. In general, increasing
any coupling constant will decrease both the ensemble electron velocity (v) and energy (E), both
in the low-field and high-field region. However, the average velocity has an opposite dependence on
the optical intervalley scattering constants in the high-field region, as shown with the double arrow.

original set of Canali et al. [38] tends to favor f-type scattering with zone edge phonons.

It should be noted that the zone edge f-phonon at 51 meV is typically classified as part

of the LA branch, but this scattering can also happen with LO phonons [57], because the

two branches meet at the zone boundary.4 Since the current work takes into account both

acoustic and optical dispersion, when this f-type scattering event is selected the participating

phonon is assigned to the LO branch if |k′ − k| > 2π/a, and to the LA branch otherwise.

3.5.1 Bulk Silicon Mobility

The intervalley scattering constants for the current model are derived starting from the

set of Brunetti et al. [46]. To aid with parameter extraction, an inverse modeling code

originally developed for doping profile extraction was modified and used [67]. The intervalley

scattering parameters were extracted over a wide range of temperatures and electric fields,

by comparison with available transport data [38, 51]. Low energy phonons typically control

the low field and low temperature mobility. Increased coupling constants with low energy

phonons lead to lower drift velocities and lower electron energies, both in the low field

(linear) and the high field (saturation) region. The effect is the same in the low field region

when increasing the high energy (optical or f-type LA) coupling constants. On the other

hand, increased coupling constants with high energy phonons leads to higher drift velocities

in the high field region, while the average energy decreases. In other words, cooling the

electron distribution through high energy phonon emission leads to higher velocities because

4See the dispersion relationship in Fig. 3.4.



44 CHAPTER 3. MONTE CARLO IMPLEMENTATION

100

10
3

10
4

10
5

Temperature [K]

E
le

ct
ro

n 
dr

ift
 m

ob
ili

ty
 [c

m
2 /V

/s
]

Figure 3.8: Electron drift mobility simulation and data over a wide range of temperatures. Open
symbols are data from Canali [38], closed symbols are data from Green [51]. The solid line was
simulated with the current Monte Carlo method.

at higher energies the electron velocity is curtailed by non-parabolicity, which increases the

effective mass by a factor of (1 + 2αEk) [8]:

vi =
h̄ki

mi(1 + 2αEk)
(3.19)

for each component of velocity, wave vector and effective mass along the ith Cartesian

direction, as in Eq. 3.1. The low and high energy intervalley coupling constants have the

same effect on the drift velocity at low fields, but opposing effects at high fields. The

qualitative dependence of velocity and energy on the scattering constants is illustrated in

Table 3.3. This opposite dependence of velocity on low and high energy intervalley phonons

determines the “shape” (i.e. the “bend”) of the velocity-field curves (see Fig. 3.7) and

can be used to fine-tune the coupling constants. Since phonons involved in intervalley

scattering have different energies, the inverse modeling method can distinguish between the

contribution of the various parameters to the velocity-field curves. Most notably, a smaller

contribution of the g-type LO phonon is found, with a deformation potential approximately

40 percent lower than the value reported by Brunetti et al. [46] (see Table 3.2). For f-type

scattering the deformation potential of LA/LO is found to be stronger than that of TO

phonons, which is consistent with ab initio calculations [57].



3.5. TRANSPORT APPLICATIONS 45

Figure 3.9: Conduction band degeneracy splitting due to strain. The band splitting is proportional
to the fraction x of Ge in the Si1−xGex buffer substrate. A large enough splitting (x > 0.15) will
almost completely suppress f -type intervalley scattering between the two lower (X2) and four upper
(X4) valleys.

The temperature dependence of the low field mobility can be used to fine-tune the

low energy intervalley phonon parameters, assuming impurity scattering can be neglected.

Figures 3.7 and 3.8 show the results of transport simulations using the current set of param-

eters, which are listed in Table 3.2. Note the wide range of electric fields and temperatures

(from 30 K to 600 K) covered by the simulations and their comparison with the transport

data. The current model agrees with this data well within experimental error.

3.5.2 Strained Silicon Mobility

Strained silicon transport data was not available when the original sets of intervalley cou-

pling constants listed in Table 3.2 were proposed. As the technology for growing defect-free

strained silicon layers on top of Si1−xGex buffers was perfected, record mobilities have

been measured. Electron drift mobilities near 3000 cm2/V s at room temperature have

been reported in strained silicon modulation-doped structures (MODFETs) [66, 68]. These

mobilities are phonon-limited at room temperature, since remote impurity scattering only

plays a role at much lower temperatures. Also, the lattice-matched strained silicon layer

guarantees a lack of surface roughness scattering on both its sides, unlike in strained MOS

inversion layers, where surface scattering with the oxide interface dominates. It is this lack

of direct impurity scattering and of interface scattering which makes such modulation-doped
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Figure 3.10: Room temperature electron mobility in strained silicon grown on Si1−xGex. Mobilities
computed with this model (solid line), with the parameter set of Ref. [46] (dashed line) and the
record phonon-limited mobility data from Ismail, Nelson and co-workers [66, 68].

structures ideal for exploring phonon scattering in strained silicon. The high mobilities ob-

served in such MODFETs cannot be explained with the intervalley scattering parameters

of Ref. [46], as they require a stronger f-type intervalley coupling [58].

Incorporating strained silicon in the MC simulation is relatively straightforward. The bi-

axial strain removes the degeneracy of the conduction band, lifting four of the six X-valleys

by ∆E ' 0.67x where x is the Ge fraction in the Si1−xGex buffer substrate [44]. The

in-plane conductivity effective mass of the two lower valleys is the lighter transverse mass

mt of silicon. The difference in energy between the non-equivalent valleys also means that

f-type intervalley scattering is strongly reduced as the fraction x increases. For x > 0.15,

the energy splitting is large enough to almost completely suppress f-type scattering between

the lower and upper valleys at room temperature, and the strained silicon mobility enhance-

ment is dominated by conduction via the two lower valleys with the lighter transverse mass.

This explains the apparent “saturation” of the mobility for values of x > 0.15 in Fig. 3.10.

It should be noted that the transverse electron mass is slightly increased by the presence of

strain [69], e.g. mt = 0.199mo at x = 0.3, and this is taken into consideration in the cur-

rent model. The mobility enhancement of strained compared to that of unstrained silicon

is illustrated in Fig. 3.10. The “usual” parameter set [46] cannot account for the mobil-
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ity enhancement observed experimentally. The strained mobility data suggests a stronger

coupling with f-phonons, and consequently a weaker g-phonon coupling. This, along with

the fine tuning explained earlier, ultimately narrows down our choice of parameter sets to

that listed in the last column of Table 3.2, which was used to generate all figures. The

current choice of intervalley parameters is also in close agreement with recently reported

deformation potentials [53] from comprehensive theoretical calculations.5

3.6 One-Dimensional Device Applications

In the ensemble Monte Carlo method for device simulation, several things must be taken into

account in addition to the ensemble Monte Carlo method for bulk semiconductors (described

in the previous sections). One is that the motion of the particles is spatially restricted to

the device domain, hence suitable boundary conditions must be set up. Another is that the

impurity concentration, and hence the impurity scattering rate is dependent on position,

i.e. on the doping profile. Finally, the electric fields must be updated self-consistently with

the motion of the charged particles, through repeated solutions of the Poisson equation

(at every time step) with appropriate boundary conditions, which are consistent with the

boundary conditions applied to the carrier dynamics.

The most frequently studied, realistic, one-dimensional device in the Monte Carlo and

device transport community is the n+nn+ structure, sometimes referred to as a “ballistic”

diode [70, 71]. The energy band diagram of the ballistic diode is such that it represents a

simple model for a cross-section through the channel of a MOSFET transistor, as shown in

Fig. 3.11. The n+nn+ band diagram has similar features, like the voltage-controlled injection

barrier at the beginning of the “channel,” followed by a steep drop in potential (i.e. highly

peaked lateral electric field). Charge transport may be quasi-ballistic across the channel

region, provided it is short enough compared to the electron mean free path. This device

structure is also ideal as a testbed for the comparison of various simulation approaches (e.g.

5Good agreement with the theoretical results was serendipitous, as the current empirical set of defor-
mation potentials had already been settled upon when the results of the ab initio calculations came to our
attention.
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Figure 3.11: Ballistic diode physical structure (a) and energy band diagram (b). The “source” and
“drain” end regions are heavily doped (1019−1020 cm−3) whereas the middle region is lightly doped
(e.g. 1016 cm−3) or almost intrinsic (“i”). This yields the band diagram in subplot (b), which is
similar to that along the channel of a MOSFET.

drift-diffusion, energy balance or Monte Carlo) since it incorporates impurity scattering,

charge transport (with likely velocity overshoot) and realistic boundary conditions. On the

other hand, transport in a ballistic diode is not complicated by two-dimensional potential

or quantum confinement effects (both present in the channel of a MOSFET), which allows

for the other transport features mentioned above to be better isolated and understood. The

program code described in this dissertation has been implemented to simulate any one-

dimensional electron device, but focus in this section will be given to the ballistic diode

because of its relevance to a variety of transport problems. The code was named MONET6

and it is occasionally referred to as such in the remainder of this manuscript.

3.6.1 Self-Consistent Poisson Equation

The Monte Carlo modeling of a one-dimensional device, such as a ballistic diode, requires

the use of a simulation grid since the doping, electric field, potential and carrier profiles will

all be dependent on position. In this work, as is often the case in Monte Carlo simulation,
6Perhaps because of the author’s admiration for the artists’s work, or perhaps because MONET could

stand for, e.g., MONte carlo for Electron Transport.
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the grid is chosen to be uniform. This is done to simplify charge assignment on the grid

nodes and to eliminate spurious “self-forces” [72, 73].

As mentioned in Chapter 2, the ensemble Monte Carlo method models the entire mobile

charge inside the semiconductor device with a few thousand (e.g. ten to twenty thousand)

particles. These “super-particles” are treated as individual charge carriers while they drift,

but as clouds of charge when the simulation is stopped and the Poisson equation is solved.

The amount of charge then assigned to each super-particle is given by (from Chapter 2)

Q = eN/Nsim where e is the elementary charge, N is the total number of mobile charges

expected in the real device and Nsim is the number of super-particles used in the simulation.

Charge assignment on the device grid is done with the cloud-in-cell method, with

w1 = (x−Xi)/(Xi+1 −Xi) (3.20)

w2 = 1− w1 (3.21)

which are weights used in a simple linear interpolation of the charge Q at position x, onto

grid nodes at locations Xi and Xi+1 (where Xi < x < Xi+1). The charge assigned to the

grid nodes is then given by w1Q for grid node i and w2Q for grid node i + 1.

In order to self-consistently update the electric field as the mobile charge moves during

the simulation, Poisson’s equation must be solved at every time step ∆T . In other words

the mobile charge is allowed to drift under the influence of the electric fields for ∆T seconds

(an upper limit on this time step being given by the plasma oscillation period, as explained

in Chapter 2), then the simulation is stopped, the mobile charge is assigned to the grid

nodes, and the Poisson equation is solved in order to update the electric fields. The Poisson

equation may be written as

∇2Φ(x) = −ρ(x)
εs

= − e

εsi
[p(x)− n(x) + Nd(x)−Na(x)] (3.22)

where Φ is the potential, ρ is the net charge density and εs is the dielectric constant of the

semiconductor. The mobile charge densities (after charge assignment with the cloud-in-cell
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method) are given by n and p for electrons and holes, while the fixed charge is determined by

Nd and Na, the donor and acceptor doping profiles. In simulations of ballistic diodes with

MONET, the acceptor and hole densities are zero, since MONET only simulates electron,

not hole, transport. The Poisson equation can be discretized in general as:

− 1
hi

Φi−1 +
[

1
hi

+
1

hi+1

]
Φi − 1

hi+1
Φi+1 =

e

2εs
(Ndi − ni)(hi + hi+1) (3.23)

where hi = xi − xi−1 and hi+1 = xi+1 − xi and these differences in x become simply ∆x

on a uniform grid. The discretized Poisson equation can then be written as a set of linear

algebraic equations which can be easily solved through conventional means, e.g. tridiagonal

elimination [35, 74]. Once the potential is found, the electric field is written as its negative

derivative through centered differencing [75]:

Ei = −dΦ
dx

'
[

hi+1/hi

hi + hi+1

]
Φi−1 +

[
1

hi+1
− 1

hi

]
Φi −

[
hi/hi+1

hi + hi+1

]
Φi+1 (3.24)

where hi,i+1 are as defined above and, in the case of uniform grid spacing ∆x, reduces to

Ei = −Φi+1 − Φi−1

2∆x
. (3.25)

Particular care must be taken near the device boundaries and the following approach is

adopted in this work. The potential at the two boundaries (grid nodes 1 and n) is assumed

fixed, set by the applied voltage V , such that Φn − Φ1 = V (the initial potential profile

“guess” is actually read at the beginning of the simulation from a previous simulation run

done with a commercial drift-diffusion code, like Medici). The electric field for the two

boundary nodes is then found through off-centered differencing as [75]:

E1 = −−3Φ1 + 4Φ2 − Φ3

X3 −X1
(3.26)

En = −3Φn − 4Φn−1 + Φn−2

Xn −Xn−2
(3.27)

where the denominator, in both cases, is equal to 2∆x for a uniformly spaced grid. After
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the electric field is found, the simulation resumes and particles are allowed to drift under

the influence of the new field distribution for another ∆T seconds, after which this process

repeats (see Fig. 2.2).

3.6.2 Contact Boundary Conditions

In the case of one-dimensional simulation only two boundaries are present, which are the

contacts where the voltage is applied. In general, these contacts are unions of mesh nodes

where the device domain touches an ideal source/sink of carriers. In most Monte Carlo

simulations these boundaries are treated as ideal ohmic contacts, absorbing all incident

electrons that actually reach them, and emitting (as neccesary, and explained further below)

only electrons in thermal equilibrium with the contact temperature [71]. The boundary

conditions for particle transport must be consistent with those for the electric field and

potential. There are two ways which are usually employed to treat the particle flux at

boundaries within Monte Carlo simulation. They have both been implemented within

MONET, the code developed during this dissertation, and one or the other can be selected

when the code is compiled. The simplest way to model the two contacts is to assume periodic

boundary conditions, that is, particles which escape from one contact are reinjected at the

other with thermal energy, and with a momentum component weighed toward the inside of

the device as [8]:

px =
√
−2mxkBT ln(r) (3.28)

where mx is the conduction band effective mass along the injection direction and r is a

uniformly distributed random number between 0 and 1. This method conserves the particle

flux (current continuity) at the boundaries, but it is only suitable for one-dimensional sim-

ulation, and not for devices with three or more contacts (e.g. a bipolar junction transistor).

The particle current can be computed, for example as

I =
1

tsim
Q(Nright −Nleft) (3.29)
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where Q is the super-particle charge (Eq. 2.2), tsim is the simulation time and the term

in parenthesis is the difference between the number of particles that exit through the right

versus the left contacts. The instantaneous current (e.g. during transients) can be similarly

computed by counting particles exiting through the contacts during shorter periods of time,

e.g. only a few time steps ∆T .

The other method for treating device boundaries is more frequently employed in the

literature because it can be extended to devices with an arbitrary number of contacts. It

involves maintaining local charge neutrality at the grid nodes adjacent to the contact, which

is done as follows. At the beginning of the simulation a target super-particle density is cal-

culated at each contact, as consistent with local charge neutrality. During the simulation

the particles which exit through the contacts are deleted and tallied as current. Within

MONET, this is done by copying the information of the last particle in the array where

particles are stored on top of the ith particle to be deleted, then shrinking the array size

by one. After each time step ∆T , just before the Poisson equation is solved, the program

examines the super-particle count at each contact node and determines how many parti-

cles should be injected or deleted to reach the charge-neutral target initially determined.

The injected particles are assumed to have thermal energy, and a momentum component

forward-weighed into the device, as previously described (Eq. 3.28). This velocity weighing

is essential, as it accounts for the higher probability of a “fast” particle entering the device

from the conceptual thermal carrier gas considered touching the contact. Every particle

injected or deleted is tallied as current too. Note that with this second method for mod-

elling device contacts, the number of super-particles present in the device at any given time

during the simulation is not constant. This is also the method preferred for Monte Carlo

noise simulations [50, 71].

3.6.3 Ballistic Diode Simulation Results

To illustrate the one-dimensional device applications of the Monte Carlo code MONET, a

n+nn+ ballistic diode was simulated. The results are shown in Fig. 3.12 for the potential,

electric field, average electron velocity and density (solid lines) — and they are compared
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Figure 3.12: Ballistic diode with 20 nm long middle “n” region (doped 1016 cm−3), as simulated
with the drift-diffusion code Medici (dashed lines) and the Monte Carlo program developed in this
thesis, MONET (solid lines). The applied bias is 0.6 V, and the “n+” regions are not entirely shown
(they were 100 nm long, doped 1020 cm−3). Note the Monte Carlo code indicates significant velocity
overshoot.
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with the results of the commercial drift-diffusion code Medici (dashed lines). The n+nn+

diode has a “channel” length of 20 nm and source and drain lengths of 100 nm (although

only 40 nm of each are shown in the plots). The source/drain doping is 1020 cm−3 and the

channel doping is 1016 cm−3. The applied voltage for the simulations in the figure was 0.6 V.

The one-dimensional device structure was first “built” and simulated with the commercial

code Medici, with a uniform grid spacing. The resulting grid, charge, potential and electric

field distributions were then saved and imported into MONET, where they served as the

initial conditions. The Poisson equation was self-consistently solved along with the Monte

Carlo transport of charge. Several similarities and differences can be pointed out between

the drift-diffusion code and the Monte Carlo results. As can be seen from the plots, the

potential and electric field distributions are very similar. The Monte Carlo code, however,

predicts significant velocity overshoot in the short “channel” region, whereas the average

velocity predicted with the model selected in Medici plateaus at 107 cm/s, the saturation

velocity in silicon. Moreover, the influence of the heavily doped drain region (which injects

cool, slow electrons) is clearly seen in the velocity distribution computed by the Monte

Carlo method, which is slightly skewed toward the source side. It is also clear that the

average electron velocity is not at all a local function of the electric field. The differences

in the particle density distributions are consistent with the differences in the average ve-

locity between the two computational methods, as the net current density (proportional to

n× v) is the same, and constant through the one-dimensional profile, as required by current

continuity. This example shows the applicability of MONET to one-dimensional transport

problems, including self-consistently computed electric field distribution, spatially-varying

doping profile and realistic device contacts.

3.7 Two-Dimensional Device Applications

The scope of this dissertation work was not to develop a new Monte Carlo simulator from

the ground up,7 but rather to enhance the current transport models by including an analytic

7Such efforts have taken teams of full-time researchers years to complete [36, 73].
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phonon dispersion and to study heat generation in bulk and strained silicon, and in simple

device geometries. MONET can be used to simulate transport in two-dimensional device

geometries, but more care must be exercised in interpreting the results of such simulations.

The two-dimensional grid (including electric fields, doping, and device boundaries) must

be imported from a previous drift-diffusion simulator run (e.g. Medici). MONET does

not solve the two-dimensional Poisson equation, and hence the electric fields it computes

the particle motion on are the “frozen” ones imported at the beginning of the simulation.

This is the so-called non-self-consistent approximation, which has limited applications, and

has been shown [50] (as it might be expected) to not yield significant improvements in

accuracy over the drift-diffusion approach. This approach is also not suitable for device

noise simulations [50]. However, the results of such non-self-consistent simulations can still

be appreciated and interpreted qualitatively. Figure 3.13 illustrates the three-step process

by which MONET can be used to perform such simulations: the mesh (top subplot) and

electric field distribution (middle subplot) are imported from a drift-difussion simulation

with Medici, with voltages applied as necessary. MONET initially distributes particles in

proportion with the charge density (not the doping density) imported from Medici. These

particles are first assigned thermally distributed energies and randomly oriented momenta.

Then, the particles are allowed to drift under the influence of the electric field grid, but

the electric fields are not updated as the charge moves around. Boundary conditions at the

source and drain electrodes are similar to those described in the previous section. Scattering

with the other surfaces (e.g. between silicon and silicon dioxide) reflects the particles

back into the simulation domain, with unchanged energy, but newly oriented momenta.

This scattering can be either specular (the reflection angle is the same as the incident

angle) or diffuse (randomly chosen reflection angle). A specularity parameter is used to

choose between the two types of surface scattering, and the ratio of diffuse to specular

scattering is set at 0.15 [76] (which can be used-adjusted, as described in Appendix A).

The bottom subplot in Fig. 3.13 shows a snapshot of such a Monte Carlo simulation with

only a few hundred super-particles shown, for clarity. The device being simulated is an

18 nm gate length thin-body SOI with 1020cm−3 doped source and drain, undoped body
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Figure 3.13: Mesh layout (top), electric fields (middle) and Monte Carlo simulation snapshot (bot-
tom) of an 18 nm gate length thin-body SOI device. The mesh and electric field distribution are
imported from a drift-diffusion simulation with Medici. The Monte Carlo simulation only shows
a few hundred particles, for clarity. The vertical color bar is the electron energy scale in eV, the
physical axes are in nm.

and Molybdenum gate. The body thickness is 4.5 nm. The on/off current ratio predicted by

Medici for this layout is 1000/1 (µA/µm). Qualitatively, a few observations can be made

based on this non-self-consistent simulation. One can note the presence of hot electrons

almost entirely in the drain of the device. This indicates that (a) transport across the short

channel is nearly ballistic, and that (b) energy relaxation of the carriers, and therefore Joule

heating of the lattice happens entirely in the drain region of the device. This point will be

discussed in more detail in the next chapter, and the exact location of the heat generation

region will be analyzed with electrostatically self-consistent one-dimensional simulations.
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3.8 Summary

This chapter introduced a Monte Carlo (MC) simulation approach which fills the gap of

computational tools between simple analytic-band MC codes [34, 44] and more complex full-

band simulators [36, 43]. The emphasis of this work is on sophisticated physical modeling

within a computationally efficient framework. The use of analytical electron bands and

phonon dispersion enables simulations which are more than an order of magnitude faster

than full-band techniques, and very accessible on modern desktop computers. This method

can be applied to the engineering of low-voltage nano-devices and materials that require

detailed knowledge of electron-phonon coupling. The generated phonon distributions can

be extracted [10] and used as inputs to a phonon transport solver [18].

A new, unified set of deformation potentials for intervalley scattering was also introduced

which enables more accurate electron transport simulations in both strained and unstrained

silicon. The empirically fine-tuned coupling constants were extracted consistently with

the band and phonon structure. This work represents a new approach to analytic-band

Monte Carlo codes because it distinguishes between intravalley scattering with LA and TA

phonons, and includes an analytic dispersion for all phonon modes involved. The work can

be extended beyond silicon, to other materials (like germanium) or to strained or confined

nanostructures. Hole transport could also be simulated accordingly by modeling the valence

bands like in Ref. [34] and including the full phonon dispersion.

Comprehensive and electrostatically self-consistent one-dimensional device simulation

capability was demonstrated. Two-dimensional device simulations were shown to be ade-

quate for qualitative analysis. Appendix A contains a user manual for MONET, the Monte

Carlo code described in this chapter. Further documentation, results, and examples are

shared online [77].
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Chapter 4

Heat Generation in Silicon and in

Simple Device Geometries

This chapter examines the detailed spectral make-up of Joule heating (phonon emission) in

silicon with the aid of the Monte Carlo technique developed earlier, including acoustic and

optical phonon dispersion. It is found that a significant portion of the generated phonons

have low group velocity, like optical modes, or acoustic modes near the edge of the Brillouin

zone. The generated phonon spectrum in strained silicon is different from bulk silicon at

low electric fields due to band splitting and scattering selection rules which favor g-type and

reduce f-type phonon emission. However, heat generation is essentially the same in strained

and bulk silicon at high fields, when electrons have enough energy to emit across the entire

phonon spectrum despite the strain-induced band splitting. Heat generation in short devices

(ballistic diodes) is found to occur almost entirely in the drain, beyond the peak electric

field region, as transport across the channel is quasi-ballistic. The heat generation region

(“hot spot”) extends deep into the drain, because the energetic electrons take a relatively

long time (and space) to fully relax their energy to the lattice.

59
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4.1 Introduction

Understanding heat generation in silicon is of great physical interest and particularly rele-

vant to the self-heating and reliability of nanoscale and thin-film transistors. As previously

mentioned in Section 1.3 (“Heat Generation in Semiconductors”), Joule heating in the con-

text of a semiconductor device is often simulated with the classical drift-diffusion approach,

whose main component is the dot product of the electric field (E) and current density

(J) [17, 26, 29]:

Q′′′ = J ·E + (R−G)(Eg + 3kBT ) (4.1)

where (R − G) is the net (non-radiative) recombination rate, Eg is the semiconductor

band gap and T is the lattice temperature. Details on the significance of each term are

given in Section 1.3. The heating rate can also be computed with the more sophisticated

hydrodynamic approach, as a function of the electron temperature (Te) and an average

electron energy relaxation time (τe−L) [31]:

Q′′′ =
3
2
kB

n(Te − TL)
τe−L

+ (R−G)
[
Eg +

3
2
kB(Te + TL)

]
(4.2)

where n is the electron density and the subscript L denotes the semiconductor lattice. As

mentioned earlier, the field-dependent drift-diffusion approach does not account for the

non-local nature of transport and phonon emission near strongly peaked electric field re-

gions. The hydrodynamic approach suffers from simplifications inherent to using a single

(averaged) carrier temperature and relaxation time, since scattering rates are strongly en-

ergy dependent. Neither method differentiates among electron energy exchange with the

various phonon modes, nor do these methods give information regarding the frequencies

of phonons emitted. Such spectral information is important because the emitted phonons

travel at different velocities and have widely varying contributions to heat transport [9, 11]

and device self-heating [32, 33]. This chapter addresses these issues by using a Monte Carlo

(MC) simulation method to compute detailed phonon generation rates at various electric

fields, in technologically relevant doped bulk and strained silicon. The heating generation
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rate is also computed in a few simple (one-dimensional) device geometries, and the role of

non-local phonon emission near strongly peaked electric fields is investigated.

4.2 Implementation

The details of this Monte Carlo implementation have been described in Chapter 3 and

elsewhere [37]. The electron energy bands are modeled with the analytic non-parabolic

band approximation, including the six ellipsoidal conduction X-valleys of silicon [34]. This

is a good approximation for device voltages near or below the silicon band gap (1.1 eV),

such as those of future nano-technologies, and it is significantly faster than the full-band

MC method [36, 57]. In addition, the low electron energy range means that both impact

ionization (which is controlled by the band gap) and interband scattering with higher energy

bands can be safely neglected (the X-L band separation in silicon is about 1.2 eV).

As in the typical analytic-band approach [34], inelastic scattering with six types of in-

tervalley phonons is incorporated. Three of these are of g-type, assisting electron scattering

between valleys on the same k-axis, and three are of f-type, when the scattering occurs be-

tween valleys on orthogonal axes. Intravalley scattering refers to scattering within the same

conduction band valley and usually involves only acoustic phonons [53]. Ionized impurity

scattering is included with an efficient model which reduces the number of time-consuming

small angle scattering events [65] (see Section 3.4). Electron transport in strained silicon

is incorporated in the MC simulation as follows (also see Section 3.5.2). The biaxial strain

of silicon grown on a Si1−xGex substrate removes the degeneracy of the conduction bands,

lifting four of the six valleys by ∆E ' 0.67x, where x is the Ge fraction of the substrate [44].

The in-plane conductivity effective mass of the two lower valleys is the lighter transverse

mass mt of silicon. The strain-induced energy splitting between the valleys also reduces

f-type intervalley scattering, since the maximum available f-type phonon energy in silicon is

only about 50 meV (see the phonon dispersion plot in Figure 3.4). For x > 0.15 the energy

splitting is large enough to essentially suppress f-type scattering between the lower and up-

per valleys, and the strained silicon mobility enhancement is dominated by conduction via
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the two lower valleys with the lighter transverse mass. Figure 3.6 compares data reported

by Ismail et al. [66] with our simulations for electron drift velocity over a wide range of

electric fields. The simulation for strained silicon assumes no impurity concentration, while

the bulk sample is doped to 1017 cm−3. The strained silicon data of Ref. [66] were taken

on modulation-doped structures, where transport is phonon-limited at room temperature.

Our simulations agree well with the data within MC and experimental error, over a large

range of electric fields, and in both bulk and strained silicon. The scattering potentials used

in the simulations have also been carefully calibrated over a wide range of temperatures, as

outlined in Section 3.3 and Ref. [37].

Typical Monte Carlo codes treat phonon scattering with a simplified dispersion rela-

tionship, often grouping the longitudinal (LA) and transverse acoustic (TA) branches into

a dispersionless mode with constant group velocity [34], and assuming a single, fixed optical

phonon energy [36]. Since the intentions of this chapter (and this work) are to explore

the details of the phonon generation spectrum, scattering with all phonon modes must be

treated individually, and taking into account the phonon frequency dependence on wave

vector. Each branch of the phonon dispersion is modeled with the analytic approximation

ωq = ωo + vsq + cq2, (4.3)

where ωq is the phonon frequency and q is the wave vector [37]. The continuous (longi-

tudinal) and dashed (transverse) lines in Fig. 4.1(a) represent this quadratic model, and

the fitting coefficients are listed in Table 3.1. Our dispersion model is otherwise assumed

isotropic, since complex ab initio studies have shown that the anisotropic effect of the

phonon dispersion is rather small [43, 57].

The electron-phonon scattering rate is calculated in the typical fashion, based on the

Fermi Golden Rule [8, 34]. However unlike the typical approach, the intravalley scattering

rate is computed separately with LA and TA phonons. Intervalley scattering is computed

taking into account the six phonons (three of f-type, three of g-type) which satisfy the

conservation of crystal momentum. Both the intervalley and intravalley scattering rates
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are computed taking into account the isotropic phonon dispersion model, as described in

Section 3.3. The simulation treats all phonon scattering events as inelastic, and electrons

exchange energy with the lattice as determined by the phonon dispersion and scattering

selection rules. Scattering with intravalley LA and TA phonons, as well as with intervalley

longitudinal (LO) and transverse optical (TO) phonons is considered individually. The

phonon dispersion is also used when computing the final electron state after scattering,

taking into account both momentum and energy conservation. This allows a range of phonon

wave vectors and energies around the six typical f- and g-type phonons to participate in

scattering. This is an innovative, efficient and physically realistic approach introduced

for the first time in this dissertation and in Ref. [37]. During the simulation all phonons

absorbed and emitted are tallied, and full phonon generation statistics can be computed.

The total heat generation rate can be obtained from the sum of all phonon emission events

minus all phonon absorption events per unit time and unit volume:

Q′′′ =
A

∆V ∆t

∑
(h̄ωems − h̄ωabs) (4.4)

where A = N/Nsim is the scaling constant (ratio) between the total number of mobile

charges in the device, N , vs. the number of super-particles used in the simulation, Nsim

(also see Eq. 2.2). The steady-state heat generation rate on a particular device grid can

be obtained by replacing ∆t by the total simulation time after the transient is assumed

to die out, while ∆V is the volume element at each grid node. As shown in the next

sections, this approach can also be used to investigate the phonon generation spectrum (the

generation rate as a function of phonon frequency and mode), as well as to study non-local

heat generation near a strongly peaked electric field within a realistic device geometry.

4.3 Heat Generation in Bulk and Strained Silicon

This section explores the heat generation spectrum in doped bulk (and strained) silicon

with a constant applied electric field, i.e., essentially in the context of an infinite resistor.
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Figure 4.1: Phonon dispersion in silicon (a) and computed net phonon generation rates (emission
minus absorption) with low field (b,c) and high field (d,e) in strained and bulk silicon doped to
1017 cm−3, at T=300 K. Subplot (a) shows the dispersion data of Ref. [54] (symbols), our quadratic
approximation (lines), and the vector magnitude of f- and g-type intervalley phonons. Dashed lines
represent transverse, while solid lines represent longitudinal phonons throughout.

This is the “zero-dimensional” mode of operation of MONET, as described in more detail

in Appendix A. In this situation, the Monte Carlo program can be used to examine the

details of net phonon generation as a function of phonon frequency, in order to find out

exactly which branches of the phonon dispersion are excited when current flows in a constant

applied electric field. This situation resolves how many acoustic vs. optical and longitudinal

vs. transverse modes are generated through Joule heating in silicon.

Figure 4.1 shows the computed generation spectrum in 1017 cm−3 doped bulk and

strained silicon with both a lower (5 kV/cm) and higher (50 kV/cm) applied electric field.

These electric field values were chosen from two regions of Fig. 3.6 such that the mobility

enhancement in strained silicon is maintained at the lower field value, but not at the higher

field. To facilitate comparison, Fig. 4.1 subplots (b)-(e) are drawn such that the vertical

axes with energy units in meV match the vertical frequency axis of the phonon dispersion

in subplot (a), with units in rad/s, as given by E = h̄ω. Note the cutoff energies of the

various emitted phonon populations as required by their respective dispersion relation. Few

acoustic phonons are generated through intravalley scattering at low energies because the
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three-dimensional phonon density of states vanishes near the Brillouin zone (BZ) center,

where the phonon wave vector q → 0, as [7]:

gp(ω) =
∂Ns

∂ω
=

q2

2π2

(
dq

dω

)
(4.5)

where Ns is the total number of phonon states up to the frequency ω and dq/dω = 1/vs

is the inverse of the phonon group velocity near the BZ center (see Table 3.1). Intravalley

emission also decreases at higher frequencies (higher wave vectors) since fewer electrons

with large enough momentum are available to emit phonons of larger wave vector. This

behavior limits the intravalley phonon emission spectrum, both for LA and for TA phonons.

The sharp peaks in the phonon generation plots occur due to intervalley scattering

with the three g-type (TA, LA and LO, at 0.3 of the distance to the edge of the BZ) and

three f-type (TA, LA/LO and TO, at the edge of the BZ) phonons. The momenta and

hence the location within the BZ of these six intervalley phonons are given by scattering

selection rules [52]. The relative magnitude of their generation rates depends on the choice

of scattering deformation potentials, which have been carefully calibrated in Chapter 3

and Ref. [37]. While the deformation potentials used in this work may not be unique,1

the values empirically determined and used in this dissertation are the only ones currently

available in the literature which reproduce the experimental mobility data for both strained

and bulk (doped) silicon. Previous such mobility simulations have used two separate sets of

deformation potentials for bulk and for strained silicon, a situation acknowledged [58] to be

unphysical. Figures 4.1(b) and (c) highlight the difference in the phonon emission spectrum

between strained and bulk silicon at low electric fields. The strain-induced band splitting

suppresses f-type phonon emission between the two lower and four upper valleys. However,

since most conduction electrons in strained silicon are confined to the two lower valleys (of

lighter mass mt), they quickly gain energy and g-type emission between the lower valleys

is enhanced. Comparing Figs. 4.1(d) and (e), it can be noted that phonon generation in

strained and bulk silicon at high field is essentially identical, when electrons have enough

1Other possible sets are summarized in Table 3.2.
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Figure 4.2: Heat generation rates for each phonon mode as a function of applied steady-state electric
field. Dashed lines are for strained silicon (x = 0.3 substrate Ge fraction), solid lines are for bulk
silicon, both doped to 1017 cm−3.

energy to emit across the entire phonon spectrum despite the strain-induced band splitting.

This is consistent with the observation of similar saturation velocity in strained and bulk

silicon (Fig. 3.6).

Figure 4.2 compares the integrated net energy dissipation rates with each branch of the

phonon spectrum, at various steady-state electric fields. Dashed lines are used for strained

silicon, and solid lines are for bulk silicon. Note the enhancement of g-type LO emission and

the reduction in energy relaxation through f-type LA and TO phonons in strained silicon at

lower electric fields, as expected from the earlier discussion. However, at fields larger than

30–40 kV/cm, the average electron energy (in excess of 0.25 eV) becomes comparable to

or larger than the 0.2 eV strain-induced band-splitting (for Ge fraction x = 0.3), and heat

generation rates are the same in bulk and strained silicon. The total Joule power (per unit

volume) dissipated to the lattice, over all four phonon branches, conveniently sums up to

Q′′′ = J ·E = env|E| (4.6)

as anticipated, where J is the current density, E the electric field, e the elementary charge,

n the electron density and v the average drift velocity (as calculated, e.g., in Fig. 3.6). This



4.3. HEAT GENERATION IN BULK AND STRAINED SILICON 67

Bulk (all fields) and Low-field

high-field strained Si strained Si

TA < 0.03 0.02

LA 0.32 0.08

TO 0.09 < 0.01

LO 0.56 0.89

Table 4.1: Approximate fractions of the total Joule heating rate for each branch of the phonon
dispersion, based on Fig. 4.2. Note that each column adds up to unity. LO (mostly g-type) phonon
emission dominates low-field heat dissipation in strained silicon, but it accounts for only slightly
over half the heat dissipation in bulk silicon (all fields) and high-field strained silicon.

relationship holds for both bulk and strained silicon. Note the use of electron-volt units (the

elementary charge is taken to be unity) instead of Joules in Fig. 4.2. It should also be noted

that intervalley f-type scattering near the 50 meV phonon energy can be satisfied both by

LA and LO phonons [57] (where the two branches meet), so the distinction between the two

modes is somewhat arbitrary. In this work, a phonon is assigned to the LA branch when its

wave vector |q| < |G| = 2π/a, and to the LO branch otherwise, where G is the reciprocal

lattice vector and a = 5.431 Å is the silicon lattice constant. Also note that Fig. 4.1

shows generated phonon numbers, whereas Fig. 4.2 displays the phonon energy generation

(electron energy dissipation) rates. Even a quick examination of Figs. 4.1 and 4.2 reveals

that, unlike it is usually assumed [17, 31], not all electron energy is dissipated into the optical

phonon modes. Table 4.1 summarizes the relative proportion of energy dissipated into each

phonon mode, in bulk and strained silicon, at low and high electric fields. The longitudinal

optical (LO) modes make up the majority of phonon emission especially in strained silicon,

owing to strong electron coupling with the g-type phonon near 62 meV, but they account

for just over half of the total heat generation rate in bulk silicon at most practical electric

fields. Strong intervalley scattering with the f-type LA phonon at 50 meV is also a good

mechanism for electron energy relaxation, especially in bulk silicon, where it accounts for

about one third of the total heat generation rate. The remaining energy dissipation occurs

through transverse optical (TO) and acoustic (TA) modes. The TO phonons involved in
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f-type intervalley scattering are relatively energetic, but their coupling constants with the

electrons (see Table 3.2), and thus their scattering rates, are weak, making them account

for just under one tenth of the energy relaxation at high fields. Finally, transverse acoustic

(TA) phonons have relatively low energy and low coupling constants, and consequently are

the weakest energy relaxation (heat generation) mechanism. Note that both the f-type TA

and TO phonons are generated at the edge of the Brillouin zone (BZ), where their group

velocity is nearly zero, making them essentially stationary. However, their density of states

is large at the edge of the BZ (large wave vector, large dq/dω in Eq. 4.5), implying that

their occupation Nq is likely to be small. Hence, an overpopulation of zone-edge TA and

TO modes in a silicon-based electronic device is unlikely.

In strained silicon at low electric fields, all f-type intervalley phonon emission mech-

anisms (TA, LA and TO) are strongly suppressed by the strain-induced band splitting.2

Transport in this case is dominated by conduction via the two lower band valleys, and inter-

valley scattering with the g-type LO phonon is the dominant means for energy relaxation,

accounting for all but about ten percent of the energy released to the lattice (Table 4.1). In

other words, the conventional assumption of Joule heat being dissipated primarily into the

(nearly stationary) optical modes [17, 31] is a good approximation only in strained silicon

at low electric fields. Otherwise, care must be exercised when solving the phonon BTE to

compute self-heating in a silicon transistor operating under high field conditions, and the

entire silicon dispersion ought to be used.

4.4 Heat Generation in Ballistic Diodes

This section investigates heat (phonon) generation in one-dimensional devices, and specifi-

cally in the case of the ballistic diode first introduced in Section 3.6. Three ballistic diode

scenarios are first considered, with “channel” lengths of 500, 100 and 20 nm. The source

and drain regions are assumed doped to 1018, 1019 and 1020 cm−3, and the applied voltages

2As long as the strain-induced band splitting (∆E = 0.67x) is several times larger than the largest
available f-type phonon, i.e. the TO mode near 50 meV (hence, for Ge fraction values x > 0.15).
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are 2.5, 1.2 and 0.6 Volts, respectively. The latter are roughly equivalent to the operat-

ing voltages recommended by the ITRS guidelines [1] for CMOS devices of similar channel

lengths. The middle (channel) region is assumed doped to 1016 cm−3 throughout. Monte

Carlo simulations of heat generation using the code developed in this thesis, MONET, are

compared to the heat generation rate computed using the commercial drift-diffusion simula-

tor MEDICI, with the J ·E approach of Eq. 1.8. In general, Monte Carlo simulation results

are expected to be similar to those of the drift-diffusion calculations for “long” devices (long

compared to the electron-phonon mean free path), i.e. in the continuum approximation.

This limit provides a check on the accuracy of the Monte Carlo simulation, and enables a

study of the conditions under which the drift-diffusion heat generation calculations break

down. The Monte Carlo results are expected to differ from (and be more physically accu-

rate than) the drift-diffusion results in the limit of short channel lengths (comparable to

the electron-phonon mean free path), where velocity overshoot and other non-equilibrium

transport effects are expected to dominate. This is the limit under which the “granularity”

of charge transport and phonon emission becomes important, and the continuum approxi-

mation of the drift-diffusion method breaks down.

4.4.1 Joule Heating of the Drain

Figure 4.3 displays heat generation rates computed along the three n+nn+ ballistic diodes of

varying channel lengths. Both the drift-diffusion (Medici) and Monte Carlo (MONET) sim-

ulations are solved self-consistently with the Poisson equation, as described in Section 3.6.1.

As expected, the two approaches give very similar results for the longest simulated device,

with channel length (500 nm) much greater than the average electron-phonon scattering

length (5–10 nm). This is essentially still in the continuum limit, and the drift-diffusion

simulation approach is adequate. However, for the two shorter (100 nm and 20 nm) diodes

the heat generation rates computed by the Monte Carlo approach are seen to differ sig-

nificantly from the drift-diffusion results. The peak of the Monte Carlo heat generation is

“displaced” from the peak of the drift-diffusion heat generation. This outcome is qualita-

tively expected, and an explanation for it was already given in Section 1.3: electrons gain
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Figure 4.3: Heat generation along three different ballistic diodes with middle (“channel”) regions
of length 500 nm (top), 100 nm (middle) and 20 nm (bottom) and applied voltages of 2.5, 1.2 and
0.6 V, respectively. The solid line is the result of Monte Carlo simulations with MONET, while the
dashed line is taken from drift-diffusion calculations using Medici. The dotted lines represent the
optical (upper) and acoustic (lower) phonon heat generation rates, as computed by MONET.
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most of their energy at the location of the peak electric field, yet they travel several mean

free paths until they release this energy back to the lattice. Note that since the transport is

one-dimensional, the current density J = env is constant along the length of the diode, and

the heat generation rate computed by the drift-diffusion (J ·E) approach peaks at the loca-

tion of the electric field maximum. By comparison to the channel length L, the “non-local”

errors incurred by using the drift-diffusion vs. the Monte Carlo approach when finding the

location of the peak heat generation rate are ∆L/L = 0.10, 0.38 and 0.82 for the three diode

lengths L = 500, 100 and 20 nm. Another observation can be made about the “shape” of

the heat generation in the drain region of the diode, downstream from the electric field.

Since in reality electrons can only release energy in discrete packets (phonons) of at most

50–60 meV (the energy range of the optical phonons in silicon), the heat generation region

computed by the (physically correct) Monte Carlo approach spreads deep into the device

drain, as electrons drift toward the contact. This situation is particularly noticeable for

the shortest device (20 nm), where transport in the channel is nearly ballistic, and almost

the entire heat generation occurs in the drain. Note that the Monte Carlo method also

computes the integrated optical and acoustic phonon generation rates, with dotted lines in

Fig. 4.3. It can be seen that about twice as much energy is deposited in the optical (LO

and TO) compared to the acoustic (LA and TA) modes, along the length of the simulated

ballistic diodes. This is consistent with the observations summarized in Table 4.1, for Joule

heating in bulk silicon due to current flow at most practical electric fields.

Figure 4.4 explores heat generation in the 20 nm diode in more detail. Several voltages

are considered, from 0.2 to 1.0 Volts for the self-consistent Monte Carlo analysis. It can

be easily seen that the maximum heat generation rate scales linearly with the potential

drop across the channel, hence essentially with the applied voltage. The maximum average

electron energy also scales linearly with the applied voltage V , approximately as e× 0.4V ,

where e is the elementary charge. However, the characteristic (exponential) decay length

of the heat generation region in the drain is always approximately Λh = 20 nm, regardless

of the applied voltage. This can be qualitatively understood because electrons lose h̄ω (a
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Figure 4.4: Monte Carlo simulations results for a short channel (20 nm) ballistic diode with applied
voltages of 0.2, 0.4, 0.6, 0.8 and 1.0 V. The n+ regions are doped 1020 cm−3, the “channel” region is
1016 cm−3. The edges of the channel are at 0 and 20 nm respectively. The top plot is the conduction
band (increasing voltage from top to bottom), the middle plot is the average electron energy, and
the bottom plot is the net heat generation rate (increasing with voltage from bottom).
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phonon of) energy approximately every veτo, the inelastic scattering length. Neglecting non-

parabolicity, the electron velocity ve scales as the square root of energy, while the inelastic

(phonon) scattering time τo scales as 1/
√

E because the phonon scattering rate (1/τo) scales

with
√

E from the density of states (Eq. 3.7). Therefore, the inelastic scattering length is

relatively independent of the electron energy and of the applied voltage.

The length of the heat generation region in the drain can be understood in more detail as

follows. The electrons present in the drain are a heterogeneous mixture of two populations,

one being the “hot” electrons injected across the channel, and another made up of the many

“cold” electrons already present there due to the high doping. The cold electrons have an

average energy of 3kBT/2 (the thermal average) and they do not contribute to any net heat

generation. Hence, the heat generation (bottom plot in Fig 4.4) is entirely caused by the

hot electrons injected almost ballistically across the channel. While crossing the channel,

these electrons acquire an amount of energy that is a significant fraction of the applied

voltage. This energy is then released, in discrete amounts of h̄ω (the phonon energy) to the

lattice in the drain. Assuming an average inelastic scattering time τo = 0.05–0.1 picoseconds

(based on the Monte Carlo scattering rates computed in Chapter 3) and an average injected

electron velocity ve = 107 cm/s, the inelastic scattering length is about 5–10 nm. Since

an electron of energy E must release multiple phonons to relax its energy entirely down

to the thermal average, the total length of the heat generation in the drain can be written

approximately as

Lh '
E − 3

2kBT

h̄ω
veτo (4.7)

where h̄ω is the average emitted phonon energy. The average energy of the hot electrons

injected across the drain scales linearly with the applied voltage and it is a significant

fraction of it (E ∼ αV ). Furthermore, if the electron energy is significantly larger (several

tenths of an eV) than 3kBT/2 (39 meV at room temperature), the multiplying fraction

in Eq. 4.7 can be reduced to E/(h̄ω). If the average emitted phonon (including acoustic

and optical modes) has an energy about h̄ω=50 meV, the multiplying factor E/(h̄ω) is

approximately 10–20 at biases near 1 Volt. Hence the length of the heat generation region
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in the drain is on the order of Lh ' 100 nm, which is consistent with our findings via Monte

Carlo simulation, as shown at the bottom of Fig. 4.4. Equation 4.7 is a crude approximation,

but it gives a good order of magnitude estimate and correctly explains the long (much longer

than the channel length when quasi-ballistic transport dominates) heat generation region

in the device drain. These findings are consistent with the work of Lake and Datta [30],

implying that heat dissipation in mesoscopic devices occurs in or near the contacts rather

than in the active device region, i.e. when the length of the active region is on the order of

the inelastic mean free path.

4.4.2 Thermoelectric Cooling of the Source

Unlike in the drain, the electrons in the source region are essentially in thermal equilibrium

with the lattice temperature. However, a careful examination of both Figs. 4.3 and 4.4,

reveals a small, but consistent negative heat generation region (lattice cooling) at the be-

ginning of the channel. This is a thermoelectric effect due to the presence of the potential

barrier at the injection point from the source into the channel. The situation is analogous

to the Peltier effect in macroscopic junctions made of dissimilar materials which are used

to make thermoelectric coolers. To understand the cooling effect when current flows over

the potential barrier into the channel, consider the electron energy distribution just to the

left of the barrier. The electrons in the source are essentially in thermal equilibrium and

the distribution is a Maxwellian (or Fermi-Dirac function, if the doping level is degener-

ate) at temperature T . From this distribution, only the electrons with forward-oriented

momenta and energies larger than the barrier height are going to travel into the channel.

Since a portion of the high energy tail of the distribution is able to leave, the remaining

electrons have an average energy below 3kBT/2. By the principle of detailed balance, these

electrons will, on average, absorb more phonons than they emit, which contributes to a net

effective cooling of the lattice. This thermoelectric cooling effect as current flows over an

energy barrier can also be explained from the more classical approach of Eq. 1.8 (the J ·E
approach) and the discussion surrounding it. The electric field and the direction of current
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flow are pointing in opposite directions at the beginning of the energy barrier into the chan-

nel, hence the J ·E product is negative, and so is the heat generation rate. In other words,

electrons diffusing against an energy barrier extract the energy required to move up the

conduction band slope (against the electric field) from the lattice, through net phonon ab-

sorption. This phenomenon has been exploited in the design of heterojunction laser diodes,

where the energy barriers introduced by band structure offsets can be optimized to provide

internal thermoelectric cooling near the active laser region [78].

4.5 Summary

This chapter investigates the details of Joule heating (phonon emission) in silicon with the

aid of Monte Carlo simulations including acoustic and optical phonon dispersion. Phonon

generation is examined both in bulk and strained silicon, as well as in simple device ge-

ometries. The generated phonon distributions are different in bulk and strained silicon at

low fields, but they are essentially the same at high fields. This difference is due to band

splitting and scattering selection rules in strained silicon which favor g-type and reduce f-

type phonon emission. It is found that the usual assumption of Joule heat being exclusively

deposited in the optical modes only holds in strained silicon at low electric fields. In most

practical situations (i.e. high electric fields, and bulk silicon at all fields) the emitted phonon

spectrum is more evenly distributed among the phonon modes, although about half of it is

relaxed into longitudinal optical phonons. The heat generation spectrum in strained and

bulk silicon is similar at high fields, because electrons have enough energy to emit across

the entire phonon spectrum despite the strain-induced band splitting.

Heat generation is also explored in simple device geometries, using Monte Carlo trans-

port simulations self-consistent with the electric fields, which are updated through repeated

solutions of the Poisson equation. Joule heating in short ballistic diodes is found to occur

almost entirely in the drain, beyond the peak electric field region, as transport across the

channel is quasi-ballistic. The heat generation region (“hot spot”) extends deep into the

drain, because the energetic electrons only relax their energy to the lattice over the length
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of several inelastic mean free paths. A small heat absorption region is also found near the

potential barrier to electron injection from the source into the channel. This is shown to be

thermoelectric effect, consistent with the observations of previous researchers.

This work advances the state-of-the-art understanding of self-heating in silicon, and has

applications to the engineering of devices that may require detailed knowledge of the heat

generation spectrum. The approach can be similarly extended to other materials (e.g.,

germanium) or to low-dimensional structures (e.g., nanowires).



Chapter 5

Analysis of Thin-Body Device

Scaling Including Self-Heating

This chapter explores the effects of confined dimensions and complicated geometries on

the self-heating of ultra-thin body silicon-on-insulator (SOI) and germanium-on-insulator

(GOI) devices near the limits of conventional scaling [1]. An electro-thermally self-consistent

compact model is introduced for calculating device temperature, saturation current and in-

trinsic gate delay. The compact model also enables quick engineering estimates on the effect

of various parameters (e.g. device geometry, interface thermal resistance) on device perfor-

mance. The analysis assumes the heat is dissipated entirely in the drain for devices with

very short (quasi-ballistic) channel lengths, a result of previous Monte Carlo simulations,

The device operating temperature is found to be very sensitive to the choice of drain and

channel extension dimensions, and to material boundary resistance. The analysis indicates

that the raised device source/drain can be designed to simultaneously lower device temper-

ature and parasitic capacitance, such that the intrinsic gate delay (CV/I) is optimal. It

appears that a raised source/drain height approximately three times the channel thickness

would be desirable both from an electrical and a thermal point of view. Furthermore, op-

timized GOI devices could provide at least 30 percent performance advantage over similar

SOI devices, despite the lower thermal conductivity of the germanium layer.

77
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5.1 Introduction

Ultra-thin body, fully depleted silicon-on-insulator (SOI) devices offer great promise for

scaling near the end of the roadmap [1] due to better control of short channel effects, more

immunity to latch-up and radiation effects, and lower parasitic capacitance [79, 80, 81, 82].

Such devices are built in a thin silicon layer on top of a thicker silicon dioxide layer (see, e.g.,

Fig. 1.2, Fig. 5.1 or Fig. 5.7). The buried oxide layer minimizes the depletion capacitance

typically associated with the source/drain of a bulk device. The lower depletion capacitance

enables faster switching speeds, as well as a better sub-threshold slope

S =
kBT

e
log

(
1 +

Cd

Cox

)
(5.1)

where e is the elementary charge, Cox is the capacitance of the gate oxide and Cd is the

depletion capacitance. The use of a fully depleted transistor body and of the buried ox-

ide layer helps decrease Cd, which consequently decreases the sub-threshold slope toward

the theoretical minimum value of 60 mV/decade. The lower sub-threshold slope allows a

decrease of the transistor threshold voltage (hence increasing the gate overdrive, and the

drive current) while lowering the Drain Induced Barrier Lowering (DIBL) effect. Unfor-

tunately, besides being a very good electrical insulator, the buried silicon dioxide layer is

also a very good thermal insulator. Since its thermal conductivity is two orders of mag-

nitude less than that of silicon (Table 1.1), SOI devices have usually been associated with

self-heating problems [83]. This is somewhat alleviated if the buried oxide becomes thinner

with scaling. However, confined dimensions and more complicated device geometries can

still lead to significant self-heating, as the analysis shows in the rest of this chapter.

Very recently germanium-on-insulator (GOI) structures and devices have been reported

[85, 86, 87], that could be even more attractive because germanium offers a mobility en-

hancement up to 2× compared to silicon, for both electrons and holes. However, the thermal

conductivity of bulk germanium is only 40 percent as large as that of silicon, which com-

bined with the poor thermal conductivity of the buried oxide may lead to worse thermal

problems for GOI than those already well documented for SOI [20, 83]. The analysis in this
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Figure 5.1: TEM (Transmission Electron Microscopy) image of a typical fully-depleted SOI transis-
tor. The thin body is about 3-4× thinner than the gate length. The source and drain have been
epitaxially raised to lower series resistance. The buried oxide (BOX) is not fully shown. Image
courtesy Intel Corp. [84].

chapter investigates self-heating trends in similarly “well-behaved” SOI and GOI devices

near the limits of scaling, and shows that despite the lower thermal conductivity of germa-

nium, the temperature rise in GOI may be comparable to that in similar SOI devices, owing

mainly to reduced power dissipation. The analysis also indicates that ultra-thin body GOI

and SOI devices can be designed to provide optimal performance, taking self-heating into

account self-consistently. The next few sections introduce several heat transfer issues in

confined-geometry thin body transistors, which serve as ingredients for the self-consistent

electro-thermal compact model presented in the latter part of the chapter.

5.2 Thin Film Thermal Conductivity

Previous work [15, 17] has suggested that sub-continuum heat conduction effects play a role

in bulk nanotransistors because the area of most intense heat generation (i.e. the phonon

“hot spot”) is much smaller than the phonon mean free path (Λb ∼ 100 nm in bulk silicon).

In thin body transistors the phonon mean free path is limited by the body thickness (tsi),

hence the sub-continuum effect predicted for bulk devices is of less importance. However,
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the thermal conductivity of doped ultra-thin films is strongly reduced from the bulk value

(148 Wm−1K−1 for silicon) by phonon boundary and impurity scattering. From kinetic

theory arguments, the thermal conductivity can be written as [7, 27]:

κ =
1
3
CsvΛ (5.2)

where Cs is heat capacity per unit volume, v is the average phonon velocity and Λ is an

appropriately averaged phonon mean free path, which is affected by boundary and impu-

rity scattering. Note that the lattice vibrations (phonons) are the dominant heat carriers

in semiconductors, since electrons have a negligible contribution even in heavily doped sil-

icon [26]. Ju and Goodson [9] measured the thermal conductivity of undoped crystalline

silicon to be halved in films of thickness tsi ∼ 100 nm. This is due to phonon boundary

scattering becoming the limiting factor of thermal conductivity. Other recent experimental

work by Asheghi et al. [21] found the thermal conductivity decreasing about 30 percent in

highly doped (> 1019 cm−3) bulk silicon characteristic of modern devices. The combined

thin film and impurity effects can be approximated by writing the phonon mean free path

through Matthiessen’s rule as
1
Λ

=
1
Λb

+
1
tsi

+
1

Λimp
(5.3)

where Λb is the phonon mean free path in undoped, bulk silicon (controlled only by an-

harmonic phonon-phonon interactions, and hence by temperature), and Λimp is the mean

phonon-impurity scattering length, chosen to fit the data of Ref. [21]. This simple approach

can be extrapolated to ultra-thin films that have not yet been experimentally measured.

For example, the thermal conductivity of a highly doped 10 nm thin silicon film is esti-

mated at 13 Wm−1K−1, less than 9 percent of the bulk value. This is consistent with

recent measurements on 20 nm thin silicon films that found κsi = 22 Wm−1K−1 [22], as

well as with recent data on silicon nanowires [23], suggesting their thermal conductivity

is on the order of 5 Wm−1K−1 for a 20 nm diameter (which, as expected, is lower than

the thermal conductivity of comparably thin silicon films). Some theoretical work has also
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proposed that in ultra-thin films1 changes in the phonon dispersion may reduce the phonon

velocity and further decrease their thermal conductivity [24], although experimental results

have not yet conclusively supported this. Figure 5.2 plots the thermal conductivity of un-

doped ultra-thin silicon and germanium films based on this Matthiessen’s rule estimate

for the phonon mean free path. The theoretically estimated thermal conductivity for thin

silicon films is consistent with the experimental values mentioned earlier, but no thermal

conductivity data for thin germanium films is yet available. The estimated ratio of the

thermal conductivities, κge/κsi, is closer to unity (higher) in ultra-thin films than in bulk,

where germanium (60 Wm−1K−1) is only 40 percent as thermally conductive as silicon

(148 Wm−1K−1). In other words, germanium suffers a proportionally smaller decrease of

thermal conductivity in thin films (a lesser “size effect”) due to its shorter bulk phonon

mean free path.2 It should be noted that when heat transport is limited by phonon bound-

ary scattering with the film thickness, the ultra-thin film thermal conductivity is largely

independent of temperature [22].

5.3 Material Interface Thermal Resistance

When a heat flux flows across the interface between two dissimilar materials, a temper-

ature difference usually develops. This can be modeled in terms of a boundary thermal

resistance. If both materials are dielectrics (i.e. phonons are the heat flux carriers) this

can be understood by considering that when the phonons reach the interface, some of them

are transmitted through, while the remainder are reflected. There are two generally ac-

cepted models for this situation. The acoustic mismatch model (AMM) assumes that all

phonons have a specular interaction with the interface [90], while the diffuse mismatch

model (DMM) assumes phonons scatter diffusely with it [91]. The AMM is analogous to

the impedance mismatch due to the refractive indices of two optically different materials,

1Of thickness 5 nm or less, i.e. comparable to the phonon wavelength.
2The phenomenon is similar to the size effect observed on the electrical conductivity of aluminum and

copper lines of width comparable to the electron mean free path [88, 89]: bulk aluminum has a shorter
electron mean free path (16 nm) than copper (38 nm), but in metal lines thinner than about 50 nm the
electrical conductivity of aluminum is less affected by boundary scattering.
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and it is generally appropriate at low temperatures, when the phonon wavelengths are much

larger than the characteristic size of the interface roughness. On the other hand, the DMM

is more adequate at room temperature, when the dominant transport phonons have a much

shorter wavelength. In the latter case, the probability of phonon transmission across the

interface depends on the ratio of phonon density of states between the two materials, and

the maximum phonon frequency transmitted is limited by the material with the lower De-

bye temperature [17, 91]. While both models provide useful reference calculations, neither

captures the complexity of the interaction between phonons and real interfaces, much of

which is still not understood [92].

In the case of the interface between a metal and a dielectric, heat conduction is domi-

nated by electrons in the metal and by phonons in the dielectric. Hence, for heat transport to

occur across a metal-dielectric interface energy must be transferred between the electrons

and the phonons. There are two possible scenarios, namely: (i) coupling between metal

electrons and dielectric phonons through anharmonic interactions at the interface and (ii)

coupling between electrons and phonons within the metal, followed by coupling between

phonons in the metal and the dielectric. The role of the electron-phonon coupling at the

metal-dielectric interface was only recently explored at room temperature [93]. The total

interface thermal resistance is the sum, i.e. the series combination of the electron-phonon

(in the metal) and the phonon-phonon (across the interface) thermal resistances. The latter

can be estimated from the DMM, while the former was found to scale as (Ceκp/τep)−1/2,

where Ce is the heat capacity of the metal electrons per unit volume, κp is the phonon

thermal conductivity in the metal and τep is the electron-phonon scattering time [93].

5.3.1 MOS Thermal Boundary Resistance

The room temperature thermal conductivity of bulk silicon dioxide (κox = 1.38 Wm−1K−1)

is about two orders of magnitude less than that of silicon. Measurements on metal-oxide-

silicon (MOS) structures have found that the thermal resistance of very thin oxide films

does not scale linearly with their thickness and is larger than expected by a constant offset.

This can been explained if it is assumed that the two interfaces between the MOS materials
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Figure 5.4: Measured metal-oxide-silicon thermal resistance, for various processing conditions, as a
function of oxide film thickness (reproduced after Yamane et al. [25]).

have a non-negligible thermal resistance. The data of Refs. [25] and [94] can be interpreted

if the total MOS thermal resistance is written as

Rox =
1
A

(
Ri +

tox

κox

)
(5.4)

where tox is the thickness, A is the area of the oxide, and the total interface resistance

Ri (including both interfaces) is about 2 × 10−8 m2KW−1. The origin of this value is not

well understood, since it is about an order of magnitude larger than the DMM theoretical

predictions based on phonon dispersion mismatch at the boundaries [91]. This theoreti-

cal lower bound is only slightly enhanced by heat carrier (electron-phonon) conversion at

the metal/oxide interface [93]. More subtle boundary effects may be playing a significant

role, e.g. near-interfacial disorder in the metal, such as porosity or small grain size. How-

ever, the value of Ri was reported to be relatively independent of processing conditions

(see Fig. 5.4) and is approximately equivalent to the thermal resistance of a 20 nm oxide

film. This implies that the thermal resistance of the nanometer-thin silicon dioxide films
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found in practical MOSFET devices with a metal gate is essentially independent of the

oxide thickness. In other words smaller, thinner FETs with metal gates do not have an

advantage of increased cooling through the gate oxide, despite a thinner insulator. Some

high-k dielectrics have a higher thermal conductivity than SiO2, but similar interface issues

are likely to dominate their MOS thermal resistance as well, although no experimental data

for them exists yet. The thermal resistance of a polysilicon-oxide-silicon stack is likely to

be somewhat smaller because phonons are the heat carriers across both boundaries, and

the additional electron-phonon scattering impedance in the metal is lacking. However, the

polysilicon gate introduces a larger thermal resistance itself (compared to a metal gate),

since the thermal conductivity of polysilicon is typically lower than that of most metals.

Moreover, with the transition toward metal gates in future technologies, the metal-oxide-

silicon thermal impedance is likely to remain an issue. In the remainder of this study, all

devices being considered are near the limits of conventional scaling and they are assumed to

have metal gates. Hence, the combined metal-oxide-silicon interface resistance from Eq. 5.4

and the discussion above is assumed to be present and is incorporated in the model.

5.3.2 Contact and Via Thermal Resistance

The source and drain contacts of a modern device are layered structures consisting of

several dissimilar materials: silicon, silicide (e.g. CoSi2) and the via metals (e.g. tungsten

or copper). The copper used in vias and interconnects can diffuse into silicon dioxide

and silicon, hence additional barrier metal liners (e.g. TiN) must be present around the

vias and interconnects. The presence of these various material interfaces introduces not

only an additional electrical resistance, but a thermal boundary resistance as well. The

latter is typically ignored in thermal interconnect studies [95], and although the electrical

properties of the contacts have been studied exhaustively [89, 96, 97], only one known (and

currently outdated) study is available on the magnitude of their thermal resistance [98].

With continued device scaling, the thickness of the metal barrier cannot be reduced as

rapidly as the interconnect dimensions because of reliability constraints, hence its effect

on via electrical and thermal resistance is expected to be enhanced. Furthermore, for the
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Figure 5.5: Typical Kelvin probe structure layout (top view), such as the one used in this work.
Pads A and B are connected to the metal lines on top, C and D to the active (doped) region beneath.
To obtain the contact resistance, a current is forced through pads A and C and the voltage drop is
measured across B and D.

smallest devices the proximity of the contact to the active (channel) region will make both

electrical and thermal transport at the contact a relevant part of the overall device behavior.

As the heat generation region in the drain gets closer to the contact (see Section 4.4.1),

thermal transport through the contact, and the possibility of device cooling through its vias

may also become important.

In order to resolve the magnitude of the contact/via thermal resistance in a modern

technology, several wafers were obtained from Texas Instruments.3 Typical Kelvin probe

structures were selected for contacts of diameter 0.13 µm and their electrical resistance was

measured with the four-point probe technique. As shown in Fig. 5.5, a current was forced

through pads A and C and the voltage drop was measured across pads B and D. The pads

were then reversed (current forced through pads B and D, voltage measured across A and C)

and the values of the obtained resistance were averaged. This measures the total electrical

resistance of the copper via, in series with the contact resistance between via, liner metal

and silicide, and with the contact resistance between silicide and the (highly n+ doped)

silicon diffusion region. The metal and silicide resistances have a linear (monotonically

3The author is much indebted to Dr. Charvaka Duvvury.
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Figure 5.6: Electrical resistance measurement of a 0.13 µm diameter via and contact. The resistance
is measured with the four-point probe technique both as a function of temperature and as a function
of input power (P = IV ).

increasing) dependence on temperature, while the silicide/silicon contact resistance has a

more complicated dependence, which is roughly inversely proportional to temperature [96].

This is the case because thermionic emission over the silicide/silicon energy barrier is en-

hanced as the temperature increases, whereas tunneling through the barrier is not strongly

affected. The metal resistance is linearly dependent on temperature due to a reduction

of the electron-phonon scattering length as the temperature (and phonon occupation) in-

creases. The four-point probe electrical resistance was measured as a function of chuck

temperature, and a linear overall dependence was found:

Rel(T ) = Ro [1 + α(T − To)] (5.5)

where the subscript o refers to the reference temperature (taken to be zero degrees Celsius

here), and α is the temperature coefficient of resistance (TCR). Since the overall dependence

of the measured resistance is linear with temperature, it is possible to surmise that the

combined resistance of the metals (via, barrier and silicide) dominates the total via/contact
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resistance. The experimental TCR is α ' 6.6× 10−4 K−1, almost seven times smaller than

the via (copper) TCR which is 4.5× 10−3 K−1. However, detailed knowledge of the various

components of the electrical resistance is not necessary to determine the lumped thermal

resistance of the via/contact. What is needed is simply the temperature dependence of

this resistance (its calibration), which can then be used for electrical thermometry. If the

electrical power (P = IV ) flowing through the via/contact is increased, the contact is

expected to self-heat and its electrical resistance will change accordingly. In other words,

if Rel(T ) and Rel(P ) are both known, then a relationship between the temperature T and

power P can be inferred, and consequently the thermal resistance is simply written as Rth =

T/P . The results of such measurements, with electrical resistance as a function of varying

input power, at different chuck temperatures, are summarized in Fig. 5.6. The dependence of

electrical resistance on power is linear, just like its dependence on temperature. This implies

another linear relationship between temperature and input power, the ratio of which is the

thermal resistance:
dRel

dP
=

(
dRel

dT

) (
dT

dP

)
= αRth (5.6)

It should be noted that this linear relationship holds as long as resistance increase due

to current crowding can be neglected, i.e. at the moderate current/power levels shown in

Fig. 5.6. At higher current levels the electrical resistance rises faster (almost quadratically)

with input power, and some of this increase is owed to current crowding in the small contact,

not due to self-heating alone. The extracted thermal resistance itself has a small dependence

on temperature, which is expected since the thermal conductivities of all materials involved

decrease somewhat as the temperature is increased. The lumped thermal resistance of

the 0.13 µm via/contact is extracted to be approximately Rth ' 9.54 × 104 K/W at room

temperature and 1.08×105 K/W at 100 oC. Part of this is a contribution from the spreading

thermal resistance from the contact to the heat sink (chuck) at the back of the wafer, which

can be estimated as

Rsp ' 1
2πκsd

' 1.4× 104 K/W (5.7)

where κs is the thermal conductivity of the silicon wafer and d = 0.13 µm is the contact
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diameter. This is the only thermal resistance component which would be different for a

SOI wafer (rather than the bulk wafer these measurements were made on) hence it must

be subtracted out. Without the spreading component, the remaining lumped via/contact

thermal resistance is approximately in the range of 8.0 − 9.5 × 104 K/W for the normal

operating temperature range of a transistor device.4 This is the value for a 0.13 µm diam-

eter contact, which is then scaled with the contact area and used in the compact thermal

model introduced in the following sections. Assuming a circular area, the lumped thermal

resistivity of the contact is approximately 1.6× 10−9 m2KW−1. This is about one order of

magnitude less than the contact thermal resistivity for the metal-oxide-silicon (MOS) stack

described in the previous section, but comparable to recently measured data on TiN/MgO

interfaces [99]. Although relatively brief in its scope, the present analysis is the first study

to explore the via/contact thermal resistance for modern, cobalt silicided contacts with

copper vias. Especially with device scaling, the via/contact thermal resistance is expected

to play a more important role not only for thermal device behavior under normal operating

conditions (see below) but also during Electrostatic Discharge (ESD) events.

5.4 Ultra-Thin Body Device Thermal Model

A typical ultra-thin body (UTB) SOI or GOI device can be modeled using the thermal

circuit in Figs. 5.7 (top) and 5.8 [20, 100]. All dimensions, thermal resistances and temper-

atures of interest are labeled on the two diagrams. A thermal circuit can be solved similarly

to an electrical (resistive) network, with temperature being the equivalent of voltage and

power (heat flow) the equivalent of current. The thermal circuit has an equivalent “Ohm’s

Law,” i.e. T = PRth, comparable with the electrical version where V = IRel. A similar

thermal circuit can be used for a FinFET device, but with the gate being wrapped over the

channel such that the gate and gate oxide thermal resistances (Rg and Rox respectively) are

lower due to a larger surface area [20]. The FinFET body (“fin”) resistance is also different

due to additional boundary scattering from the limited fin height, itself typically less than
4This value is comparable to the thermal resistance found for 0.35 µm titanium silicided contacts with

tungsten vias, in the only previously published work known to have measured it [98].
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Figure 5.7: Ultra-thin body MOSFET and the thermal resistances (top) and parasitic capacitances
(bottom) used in this model. The dark gray represents the metalized gate and contacts, and the
light gray is the surrounding oxide insulator. The image is not drawn to scale.

the bulk silicon phonon mean path.

The thermal resistance of each device portion is written as R = L/(κA) where the ma-

terial thermal conductivity κ is adjusted for boundary and impurity scattering, L is the

dimension along the heat conduction direction and A is the cross-sectional area of heat flux

perpendicular to it. The thermal circuit layout of the model is shown in Fig. 5.8. The ther-

mal resistances are as defined in Fig. 5.7, and the subscript notation is consistent throughout.

The resistances Rxs and Rxd are the source- and drain-side series resistances, including the

thin channel extension. For example, Rxs = Rex + Rsd where Rex = Lex/(κsitsiW ) and the

subscript si refers to the thin silicon body. Since the current specified by the ITRS guide-

lines is given per device width, and because all thermal resistances scale as the device width

W , the entire problem can be scaled with this width, which can be safely dropped from

the math when the thermal circuit solution is sought. The temperature Td is defined at the

point of maximum heat generation, which makes it the highest temperature, i.e. the worst-

case scenario for a given device design. The temperature Ts is defined at the point directly

under the source-side edge of the gate, making it the temperature which directly affects
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Figure 5.8: Equivalent thermal circuit of the thin-body FET. Rg is the gate thermal resistance, Rcd

and Rcs are the drain- and source-side thermal resistance of the thin body channel. Rxd and Rxs

contain Rsd from Fig. 5.7 in series with the drain- and source-side component of the thin channel
extension, respectively. Other thermal resistances are defined in Fig. 5.7.

the channel injection velocity, backscattering coefficient and the maximum current drive of

the device. The next section contains more details on how Ts is used to self-consistently

compute the current drive of the device. Both Td and Ts affect the temperature-dependent

series resistance of the device.

This compact thermal model correctly reproduces the experimentally observed DC (de-

vice fully on) temperature rise in 100 nm channel length SOI devices [101]. Polonski and

Jenkins [101] found a peak (steady-state) temperature rise of 96 oC above ambient for an

input power level of 1.5 mW/µm, and a device thermal constant on the order of 100 ns,

results which are consistent with their earlier electrical measurements [102]. Ref. [101] is the

most recent known publication to have directly measured the temperature rise in modern

devices, although unfortunately no results are yet available for sub-100 nm channel lengths.

The model described in this dissertation is extended and applied precisely to this range for

end-of-roadmap SOI and GOI devices. The design space for such devices is easier to explore

from a modeling point of view, since hardware is difficult and expensive to manufacture,

and some issues (e.g. ultra-thin germanium films, proper selection of gate material work-

function) have not yet been fully addressed experimentally. This is a situation in which
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modeling can guide experimental work, by providing and narrowing down the device design

space and taking into consideration, for the first time, both electrical and thermal effects

self-consistently.

The gate length (Lg), saturation current (Id), nominal voltage (Vdd) and gate oxide

thickness (tox) used in this study follow the most recent ITRS guidelines [1]. Other as-

sumptions made regarding the device geometry are as follows. The SOI body thickness

needed to ensure good electrostatics scales as tsi = Lg/4 [79]. The GOI body thickness

should then scale by a factor of the material permittivity ratio, as tge = εsitsi/εge = 3tsi/4.

The buried oxide thickness scales as tBOX = 2Lg [1]. The thermal resistance of the buried

oxide can be approximated as [83]

RBOX ' 1
2W

(
tBOX

κoxκsitsi

)1/2

(5.8)

where W is the width of the device and κsi is the thermal conductivity of the thin body of

silicon, significantly reduced by boundary scattering (Fig. 5.2). The thin body is assumed to

be essentially undoped to prevent dopant fluctuation effects on the threshold voltage. The

threshold voltage is then mainly determined by the choice of gate metal workfunction, which

in this work is taken to be a metallic alloy with a thermal conductivity of 40 Wm−1K−1,

typical of silicides. All other silicon regions (channel extension Lex, source and drain Lsd)

are highly doped to reduce series resistance, and their thermal conductivity is adjusted

accordingly.

Electron mobility in thin germanium layers is about 2× higher than in thin silicon layers

near room temperature [86, 103]. Recent devices built by Yu et al. [86] indicate this mobility

enhancement means GOI devices can carry the same saturation current (Id) at 40 percent

lower voltage (Vdd) than comparable SOI transistors. This is the assumption used in the

current work when comparing otherwise similar SOI and GOI transistors. However, since

the FETs in Ref. [86] are large (Lg = 10 µm), this may be a conservative estimate for very

small devices, where velocity saturation is less important and the 2× mobility advantage of

germanium could play a stronger role [19, 104]. With the assumption used in this work, a
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“well-behaved” GOI device dissipates 40 percent less power (P = IdVdd) than an equivalent

SOI device, while generating the same drive current, as specified by the ITRS guidelines [1].

5.5 Temperature Dependence of Saturation Current

To estimate the temperature dependence of the saturation current (per unit width) for

devices near the limit of scaling, the following simple model is employed [19]:

Id = vT
λ

2l + λ
Cox(Vgs − Vt) (5.9)

where vT is the unidirectional thermal velocity, λ the electron mean free path (both at the

source), l is the distance of the first kBT/e potential drop in the channel, Cox the gate

oxide capacitance per unit area and Vt is the threshold voltage. The various temperature

dependencies are [19, 100, 105]:

vT = vTo(T/To)1/2 (5.10)

λ = λo(T/To)1/2+α (5.11)

l = lo(T/To) (5.12)

Vt = Vto + η(T − To) (5.13)

µ = µo(T/To)α (5.14)

where the subscript o denotes the value at room temperature. Electron mobility in ultra-

thin silicon layers has been experimentally found to vary as T−1.4 (α = −1.4) near room

temperature, and to be largely independent of the layer thickness [12, 13]. This temperature

coefficient of mobility enters the mean free path from λ = 2µ(kBT/e)/vT [105]. No data is

yet available on the temperature dependence of electron mobility in ultra-thin germanium

layers. However, it is well known that electron mobility in bulk (undoped) germanium is

less temperature sensitive (T−1.7) than in bulk (undoped) silicon (T−2.4), due to the lower

optical phonon energy in germanium. By extension, in this work the assumption is made
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that the thin layer germanium mobility has a T−1 dependence.

The threshold voltage of ultra-thin body fully depleted devices varies linearly with tem-

perature, with a coefficient η, which can be approximated as [106, 107]:

η ' ∂φF

∂T
=

kB

e

[
ln

(
Na√
NcNv

)
+

1
2kB

∂Eg

∂T
− 3

2

]
(5.15)

where e is the elementary charge, Na is the body doping, Nc and Nv are the conduction

and valence band effective density of states and Eg is the band gap [107]. The temperature

dependence of the band gap for silicon can be written empirically as in Eq. 3.2, and a

similar relationship exists for germanium [107]. Recent experimental work [106] has found

η ' −0.7 mV/K for fully depleted thin-body SOI devices. Although such data is not yet

available for similar GOI devices, a quick estimate (accounting for the smaller germanium

band gap, different conduction and valence band effective density of states) yields a nearly

identical value of η, which will be used in this study.

Taking the above into account, a relationship for the temperature dependence of the

saturation current for quasi-ballistic devices near the limit of scaling can be extracted:

∆Id

Ido
=

[
1
To

(
1
2

+
2α− 1

2 + λo/lo

)
− η

Vgs − Vto

]
∆T, (5.16)

which is a generalization of the expression in Ref. [105]. All values with subscript o are taken

to be at room temperature (To = 300 K), and in the rest of this work Ido and Vto are assumed

to be the values of saturation current and threshold voltage, respectively, targeted by the

ITRS guidelines [1]. It should be noted that the equation has two distinct components,

one from the channel backscattering coefficient (i.e. the low-field mobility at the point of

injection into the channel) and the other from the temperature dependence of the threshold

voltage. The two components have opposite effects on the device saturation current. As the

temperature increases, the mobility decreases due to additional scattering at the beginning

of the channel (shorter mean free path, larger backscattering coefficient), which leads to a

decrease in the saturation current. On the other hand, the threshold voltage is lowered with
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an increase in temperature (η < 0), which gives a larger overdrive for a given gate voltage

(Vgs−Vt) and therefore has a positive effect on the saturation current. This simple argument

explains the experimentally observed dependence of saturation current on mobility (and on

temperature), which is not a one-to-one relationship [102, 106].

The temperature rise due to self-heating used in the model above, ∆T = Ts − T∞, is

assumed to be that at the source end of the channel, since this is the region which affects

the injection velocity, mean free path and threshold voltage in Eq. 5.9 and in the rest of this

model. This temperature is computed with respect to the background circuit temperature

T∞, which is generally a function of device density, layout, surrounding circuit activity [108]

and cooling technology in the packaging. In a modern chip, T∞ can reach 360–380 K near

the clock [3, 109] and this figure is expected to increase unless significant improvements are

made in thermal packaging or circuit layout [4].

5.6 Self-Consistent Current Estimate

A self-consistent iterative solution of the device temperature and current based on the

model in Fig. 5.7 and the discussion above was implemented. The total dissipated power

(Id × Vdd) is assumed to be entirely generated in the device drain, based on the previous

Monte Carlo simulation results (Section 4.4.1). This power is input to the thermal resistance

model assuming (at first) the current to be the room-temperature value (Ido) targeted by

the ITRS. The model yields a temperature rise at the source end of the channel (∆T )

which is used to adjust the current based on Eq. 5.16. The device power is reevaluated

with the new current level as P (T ) = I(T )Vdd, after which it is used again to solve for

the device temperature, and this loop is repeated until the temperature and current are

obtained self-consistently.

Figure 5.9 shows the calculated average temperature rise at 20 percent duty factor for

SOI and GOI devices along the technology roadmap. The relationship between maximum

(DC) temperature and the average temperature for a given duty factor f can be written

as Tavg = fTdc, since device thermal time constants (tens of nanoseconds) are much longer
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Figure 5.9: Self-consistently computed average drain- (a) and source-side (b) temperature rise in
SOI and GOI devices operated with a duty factor of 20 percent. Two GOI cases are shown, one
with the same current (but 40 percent lower Vdd) as the SOI, and one with the same power as the
SOI. The raised SD thickness scales as tsd = 3tsi and the channel extension as Lex = Lg/2.
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Figure 5.11: Self-consistently computed percentage decrease in drain current due to self-heating (vs.
the ITRS-targeted current), for the same cases as in Fig. 5.9.

than device switching times (tens of picoseconds) [101]. Both same-current (but lower Vdd,

hence lower power) and same-power scenarios are compared for GOI and SOI in Fig. 5.9.

The drain temperature rise of GOI is expected to be higher in either case, due to the

lower overall thermal conductivities. However, the source temperature rise is generally

comparable, and even slightly lower for the same-current GOI vs. SOI case. This is due

to the larger GOI channel thermal resistance, along with the lower dissipated power. Self-

consistency is important in these calculations, since without it the temperature may be

overestimated by close to 100 percent for the smallest devices, as shown in Fig. 5.10. Owing

to their less temperature-sensitive mobility, GOI devices show less current degradation due

to self-heating, as shown in Fig. 5.11.

5.7 Design Considerations

Since a thin device body and a relatively thicker buried oxide are required by electrostat-

ics [79], and because heat transfer through the gate oxide and contacts is limited by interface

thermal resistance, another way to ensure heat is more easily transferred out is to lower

the thermal series resistance of the source and drain regions [20]. In other words, a (e.g.,

epitaxially) raised source/drain (SD) and shorter extension length Lex are essential not only

to reduce the electrical series resistance, but also to reduce the thermal series resistance of a
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Figure 5.12: Possible changes in device source/drain geometry to reduce both its electrical and
thermal series resistance, and hence lower its operating temperature. The extension length Lex can
be shortened and the source/drain tsd can be epitaxially raised. The heat generation region (“hot
spot”) in the drain is also illustrated.

device, and therefore lower its operating temperature. Possible device design variations are

illustrated in Fig. 5.12. Raising the source/drain height tsd has a double thermal benefit:

it improves the thermal conductivity of the region by allowing a larger phonon mean free

path (Eq. 5.3), and it lowers the thermal resistance by offering a larger area for lateral

heat flow. Shortening the extension length Lex also helps move the heat generation region

farther into the (larger) drain, away from the channel, and closer to the contact where

it may be more easily dissipated. Among other constraints, the smallest achievable Lex

may in practice be limited by technological control over the spacer width. The choice of

source/drain dimensions must also account for the geometry effect on dopant diffusion into

the channel extension and possibly under the gate. From an electrostatic point of view,

a raised source/drain and shorter Lex will also increase the gate fringing capacitance (see

bottom of Fig. 5.7). Hence, a clear trade-off exists between changes in geometry which may

enhance the saturation current (by lowering device temperature) and the effect the same

changes have on the device parasitic capacitance.

The performance impact (or penalty) of the modified source/drain can be quantified

by estimating the intrinsic gate delay, CVdd/Id(T ). The gate capacitance components are

shown in the bottom of Fig. 5.7, and modeled as in Ref. [110]. For example, the fringing



5.7. DESIGN CONSIDERATIONS 99

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Physical Gate Length L
g
 [nm]

In
tri

ns
ic

 G
at

e 
D

el
ay

 [p
s]

SOI 

GOI 

Figure 5.13: Self-consistently computed intrinsic delay for SOI and GOI devices in the same-current
scenario. The SD height tsd is varied as a parameter, from tsi (no raised SD, top line in each set of
curves) to 5tsi. The extension length is assumed constant at each node, Lex = Lg/2. The intrinsic
delay is not reduced significantly for tsd > 3tsi.

component Cex can be written as:

Cex =
2βεsw

π
ln

(
1 +

Lex

tox

)
(5.17)

where εsw is the dielectric constant of the sidewall material (assumed to be oxide in this

study) and β ' 0.8 is a geometrical shape factor [110]. Figure 5.13 shows the computed

intrinsic delay for SOI and GOI devices with the same drive current, but implicitly lower Vdd

for GOI (as discussed earlier). The elevated source/drain lowers the device temperature and

thus improves the drain current Id, but at the same time increases the capacitance between

gate and drain. For this reason, it appears that raising the source/drain thickness tsd

much beyond 3×tsi does not result in significant additional speed gain: the trend lines

for tsd = 3, 4 and 5 × tsi are essentially superposed both for SOI and GOI, at all device

dimensions along the far-term roadmap. The intrinsic gate delay in this case was computed

assuming the channel extension scales linearly with gate length, as Lex = Lg/2.

Using a similar approach, the extension length and the source/drain height can also

be optimized simultaneously for a given device gate length. Otherwise “well-behaved”

18 nm SOI (top) and GOI (bottom) devices are considered in Fig. 5.14, and the extension
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Figure 5.14: Geometry optimization to minimize intrinsic delay for a SOI (top) and GOI device
(bottom) with Lg = 18 nm and tsi = 4.5 nm, assuming the GOI device provides the same current
at 40 percent less Vdd. The results are expressed as contour plots of the delay (in picoseconds) with
the extension length (Lex) and SD thickness (tsd) as parameters.

length and source/drain height are used as optimization parameters. Following an earlier

discussion, the silicon and germanium body thickness are assumed to be tsi=4.5 nm and

tge = 3/4tsi. The computed intrinsic delay (taking into account self-consistently the geom-

etry effect on temperature and hence on current — and on parasitic capacitance) is plotted

as a series of contours. The delay contours again suggest an optimal source/drain height

around 3-4×tsi and an extension length approximately Lg/3 for GOI and closer to Lg/2 for

the SOI device. Both of these targets may be practically achievable, although their exact

effect on device self-heating remains to be seen experimentally. However, this theoretical

scaling study provides a reasonable set of guidelines for future experimental device research
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and fabrication.

Significant improvement in device heat dissipation and lowering the operating tempera-

tures could also be achieved by lowering the contact thermal resistance, or the power input.

However, aside from the study presented in Section 5.3.2 of this dissertation, little data is

available on the thermal resistance of modern contact technologies, and it is still difficult to

speculate how they may change in the future. It should be also be noted that throughout

this study, the average temperature is seen to increases with decreasing device dimensions,

despite the planned power reduction in the ITRS guidelines. This occurs primarily because

the device volume scales faster, i.e. quadratically or cubically with the gate length (depend-

ing on device width) than the power P = IdVdd, which is planned to scale about linearly

with the gate length and technology node [1]. Instead, a quadratic power scaling rule, e.g.

Q = −0.17L2
g + 27.5Lg with Lg in nm can be used for near-isothermal scaling of UTB-SOI

devices down to the shortest gate lengths. The power budget for thin-body devices near

10 nm gate lengths may need to be as low as 250 µW/µm, suggesting operating voltages

near 0.25 V for drive currents of 1000 µA/µm. All else being equal, dramatically increasing

power densities will probably require a reduction in the ITRS power guidelines to achieve

near-isothermal scaling of thin-body devices, especially below the 25 nm node.

5.8 Summary

This chapter compares the electro-thermal behavior of ultra-thin body fully depleted GOI

and SOI devices near the limits of scaling. The thermal conductivity of ultra-thin silicon

and germanium layers is investigated, and it is shown that for the thinnest technologically

relevant films (a few nm thick) the thermal conductivity reduction of germanium is less

severe than for silicon, owing to the former’s shorter bulk phonon mean free path. Via and

contact thermal resistance are measured experimentally, providing the first such study for

modern device architectures (copper via, cobalt silicided diffusion), and a simple method

for the thermal characterization of contacts, using already existing tools and test structures.

A self-consistent model for calculating device temperature, current and intrinsic gate
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delay is introduced. It is shown that device temperatures are very sensitive to the drain

and extension dimensions, and to material boundary resistance. Lowering the drain region’s

thermal resistance (e.g. by epitaxially raising it) can aid heat dissipation. While contact

and material interface thermal properties are difficult to manage and predict, the device

source/drain geometry could be designed to simultaneously minimize device temperature

and parasitic capacitance, such that the intrinsic gate delay is optimal. A source/drain

thickness that scales roughly as three times the body thickness seems optimal both from an

electrical and a thermal point of view. In order to manage power dissipation at the smallest

device lengths, ultra-thin body SOI and GOI devices ought to be used sparingly, in circuits

with low duty factor, or with an operating power significantly lower (e.g. quadratically

scaled with technology node) than current ITRS guidelines. Finally, it is found that opti-

mized GOI devices could provide at least 30 percent performance advantage over similarly

“well-behaved” SOI devices, even when self-heating is taken into account. There are strong

indications that the ultimate device parameter design choices will need to involve thermal

as well as electrical and technological considerations.



Chapter 6

Conclusions

This chapter presents a summary of this work, followed by a discussion and some suggestions

for future research.

6.1 Summary

This dissertation explored the details of Joule heat generation in silicon, and analyzed

the possible scaling options of confined geometry (ultra-thin body) transistors, taking into

account their self-heating. There are several important contributions of this work. First, a

new Monte Carlo (MC) code named MONET was developed from the ground up, specifically

aimed at computing heat (phonon) generation rates in bulk and strained silicon, and in

simple mesoscopic device geometries. The model is different from previous work in that it

uses an analytic (non-parabolic) description of the electron energy bands combined with an

analytic (quadratic) phonon dispersion model, which distinguishes between the four phonon

branches. This approach bridges the gap of computational tools between simple analytic-

band MC codes [34, 44] and more complex full-band simulators [36, 43]. The implementation

is computationally efficient (an order of magnitude faster than full-band MC), yet physically

sophisticated, best suited for sub-band gap (1.1 V) device operating voltages, such as those

of future technologies. A new, unified set of deformation potentials for electron-phonon

scattering was introduced and shown to properly reproduce experimental transport data

103
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in both bulk and strained silicon across a wide range of electric fields and temperatures

(previous MC approaches have used separate sets of deformation potentials for bulk and

strained silicon, without being able to reconcile them). The empirically fine-tuned coupling

constants were extracted consistently with the band and phonon structure.

Comprehensive and electrostatically self-consistent one-dimensional device simulation

capability was demonstrated. Two-dimensional device simulations were shown to be ade-

quate for qualitative analysis. The current Monte Carlo approach gives information on both

the location and spectral make-up of the heat generation region in a mesoscopic device. It

was found that heat is dissipated almost entirely in the drain, near the contact, and not in

the active region of short devices under quasi-ballistic transport conditions. This finding

has implications for the design and engineering of mesoscopic devices and materials where

self-heating is expected to play important role. The generated phonon distributions can

be extracted (as demonstrated in Chapter 4) and used as inputs to a phonon transport

solver [18]. The approach can be extended beyond silicon, to other materials (like germa-

nium) or to strained or confined nanostructures, as long as the electron band and phonon

dispersion relation are replaced by appropriate analytic expressions.

Another objective of this dissertation was to analyze the design and scaling of confined-

geometry (ultra-thin body) transistors from an electro-thermal point of view. Several re-

strictions to heat flow in such devices were identified, such as thermal conductivity reduction

due to phonon boundary scattering in ultra-thin layers, and interface thermal resistance be-

tween the different materials used. It was shown that the “size effect,” i.e. thermal conduc-

tivity reduction in ultra-thin germanium films is less severe than in equally thin silicon films,

due to the shorter bulk phonon mean free path of the former material. An experimental

study was designed to extract the thermal resistance of via/contact structures for modern

device technologies. The method uses standard test structures (Kelvin probes) and could

be generalized and employed in situ during wafer testing. The temperature dependence of

the contact resistance could also be used to determine limiting factors of the via/contact

processing conditions. A carefully calibrated compact model for the self-heating of ultra-

thin body transistors was introduced, incorporating the most recent understanding of heat
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generation and flow at such dimensions. The model is electro-thermally self-consistent and

useful for quick estimates on the effect of various device parameters (e.g. geometry, interface

thermal resistance) on device performance. In particular, the device operating temperatures

were found to be very sensitive to the choice of drain and channel extension dimensions.

However, the self-consistent analysis indicated that the elevated device source/drain could

be designed to simultaneously lower device temperature and parasitic capacitance, such that

the intrinsic gate delay (CV/I) is optimal. It appears that a raised source/drain height ap-

proximately three times the channel thickness would be desirable both from an electrical

and a thermal point of view in aggressively scaled, thin-body transistors. Furthermore,

“well-behaved,” optimized germanium-on-insulator (GOI) devices could provide at least

30 percent performance advantage over similar silicon-on-insulator (SOI) devices, despite

the lower thermal conductivity of the thin germanium layer. This study could be used to

guide future experimental device work, by providing and narrowing down the device design

space and taking into consideration, for the first time, both electrical and thermal effects

self-consistently.

6.2 Discussion and Suggestions for Future Work

Several unknowns relating to the electrical and thermal behavior of semiconductors at meso-

scopic length scales have been identified during the course of this work. A deeper under-

standing of this research area is important from a physical point of view, while certain de-

ficiencies may also be a limiting factor which could impede future nanoscale device design.

Some of these issues are related to the electrical and thermal properties of nanometer-thin

semiconductor films, still a very recent and quickly evolving research area. While the mo-

bility and thermal conductivity of thin silicon films has been recently characterized [12, 22],

no such data is yet available for thin germanium films. In this study, the thin film ger-

manium mobility was assumed to scale as T−1 based on simple theoretical arguments, and

its thermal conductivity was based on a Matthiessen’s rule estimate, previously calibrated

against the silicon data. Experimental studies must be carried out to find the validity of
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these assumptions and to better understand the electro-thermal behavior of such thin films.

More comprehensive Monte Carlo studies (possibly based on an extension of the method

introduced in Chapter 3) could also be carried out to verify the temperature dependence of

mobility [13].

6.2.1 Experimental Source/Drain Design

A number of other assumptions and findings relating to the compact thermal model intro-

duced in this dissertation could be verified experimentally, especially if this work is used

to guide future device design. Studies similar to those of Jenkins et al. [101, 102] could be

carried out to probe the steady-state temperature rise of thin-body device geometries with

raised source/drain. Similarly, more research must be done to find the thermal side-effects

(if any) of replacing polysilicon with metal gates for future device designs. The metal may

introduce an additional thermal interface resistance with the high-k dielectric, but its higher

thermal conductivity (higher than polysilicon) may, on the other hand, compensate for it.

Schottky (metal) source/drain devices may also benefit from the higher thermal conductiv-

ity of the metal, but no information is yet available on their thermal behavior. Similarly,

since heat is almost entirely dissipated in the drain of ultra-scaled devices, any alternative

drain designs are likely to affect the device thermal behavior as well, including its reliabil-

ity. Heavily silicided or Si1−xGex source/drain designs [111] may also have an impact, as

silicides are comparable thermal conductors with thin-film silicon, while Si1−xGex alloys are

generally worse (Table 1.1).

6.2.2 Contact and Thermal Interface Resistance

With decreasing device dimensions, and even more rapidly decreasing device volume for heat

dissipation, the interfaces between the device and its surroundings are expected to play a

more important role, electrically as well as thermally. Interface effects can already be seen,

such as carrier-boundary scattering which is responsible for both electrical as well as thermal

conductivity reduction in ultra-thin films and wires. The larger surface-to-volume ratio also
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Figure 6.1: Typical suspended silicon nanowire field-effect device fabricated with electron beam
lithography and a buffered HF underetch. The cross-section of this wire is 23×80 nm. The confined
dimensions significantly alter both current and heat transport through the wire.

implies a stronger effect of material boundary resistance, while very little (aside from the

studies reviewed or presented in this dissertation) is known about it. As more materials (e.g.

high-k dielectrics, germanium, various silicides) are introduced in semiconductor processing,

there is a growing need to understand the magnitude of boundary resistance between them,

and its significance in future nanoscale device behavior. Approaches like the 3-ω method

[25] can be used to investigate, for example, the thermal interface resistance between new

materials immediately relevant to the semiconductor industry (e.g. metal gate with high-k

dielectric, silicide with silicon). The via/contact resistance for future technologies should

also be explored, possibly through the method proposed in this thesis. Additional data on

contact and thermal boundary resistance would also help towards a better understanding

(and modeling) of the atomic scale interaction at the interface between two materials.

6.2.3 Electro-Thermal Properties of Nanowires

Transistors made from semiconductor nanowires (NWs) may be the ultimate, electro-

thermally confined, limiting case of confined geometry semiconductor devices. They have

received a lot of attention for their current-carrying capabilities, low synthesis temperature
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(as low as 275 oC for CVD-grown germanium NWs [112]), and relative ease of fabrica-

tion and integration with currently existing technologies [113, 114, 115]. Nanowires also

present an ideal vehicle for studying (low-dimensional) electronic and thermal transport at

nanometer length scales, as well as coupled electro-thermal transport. There are few data

available on the mobility and thermal conductivity of NWs, but it is strongly believed that

confined electron and phonon conduction play an important role in these devices. Recently

measured silicon NW thermal conductivity suggests it is on the order of 5 Wm−1K−1 for

wires of 20 nm diameter [23], which (as expected) is lower than the thermal conductivity

of comparably thin silicon films. The theoretical understanding of such transport is still

poor, and key simulation tools are not yet available. This is but one area where intensive

research must still be carried out. The low NW thermal conductivity combined with their

good current-carrying ability imply tight and possibly limiting coupling (especially at high

current levels) between electrons and the lattice. In other words, although such devices are

known to be adversely affected by poor contact resistance, in practice their performance

may be ultimately limited by self-heating. The design space for NW-based devices ought

to be charted, taking into account self-heating effects, as well as the physics of transport

in the confined geometry (quantized electron as well as phonon states). Only with a solid

theoretical understanding from an electro-thermal point of view (and controlled growth on

a large scale), could NWs perhaps complement (although not necessarily displace) currently

existing CMOS technology.

6.2.4 Carbon Nanotubes

Unlike nanowires, carbon nanotubes (CNTs) cannot be synthesized at relatively low tem-

peratures, but rather only in the 550-1100 oC range, depending on the method and catalyst

used. However, both their electrical and thermal properties are outstanding, such that

CNT-based devices may well represent the ultimate limit of nano-transistors. CNTs ex-

hibit quantized, ballistic transport at low temperature and low bias, and extremely high

current-carrying ability at high bias, up to 70 mA through a single-wall tube of diameter
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Figure 6.2: Carbon nanotube (CNT) transistor including low-resistivity (Ohmic) Pd contacts, high-k
dielectric and dual gate control [116]. (Image and diagram courtesy A. Javey.)

1.4 nm [116]. Until recently, CNT performance was significantly hindered by large con-

tact resistance; however with the introduction of low-resistivity Pd contacts, such devices

are one step closer to realizing their potential applications [116]. The same work has also

shown that for nanotubes much longer than the electron-optical phonon mean free path

(MFP), high-bias electron transport is not truly ballistic. Despite the ballistic nature of

CNTs at low-bias (where the intrinsic resistance is close to h/4e2 or 6.5 kΩ), the electron-

optical phonon emission dominates high-field transport, when electrons are able to gain

energies more than 0.16 eV (the zone-boundary optical phonon energy in CNTs) [117]. In

general, the electron-acoustic phonon interaction in CNTs is assumed to be elastic (elec-

trons are simply backscattered, but their energy is not changed) while the electron-optical

(zone center or zone edge) interaction is assumed to be strongly inelastic (electrons lose

h̄ω = 0.16-0.20 eV energy when emitting a high-energy phonon) [117]. The electron-optical

phonon MFP from theoretical estimates is on the order of 30 nm [118], but the empirically

extracted MFP is closer to 10 nm [116]. The two values have not yet been reconciled,

but it is suspected that optical phonon (re)absorption may play a role in the MFP reduc-

tion. In other words, in spite of their high thermal conductivity [119], CNTs may still suffer

from non-equilibrium self-heating effects, dependent on the overpopulation of optical modes

and their decay into the faster acoustic modes. Optical phonon absorption or stimulated

emission may be important if phonons cannot rapidly escape into the substrate, and if the
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optical-acoustic decay times (currently, not well understood) are long enough under some

conditions. Measurements at high bias on suspended CNTs could shed light on this possi-

ble non-equilibrium self-heating issue. Similarly, a more sophisticated high-bias transport

theory including self-heating and contact effects must be introduced.

6.3 Epilogue

Future research must contribute both theoretically and experimentally to the body of knowl-

edge on electro-thermal transport at mesoscopic length scales, and across material interfaces.

The ultimate goals are to study limiting experimental scenarios and develop theory, models

and code which are of both fundamental relevance and practical use. Much interesting work

is yet to be done, and without a doubt this research area will remain “hot” (pun intended)

for years to come.



Appendix A

MONET User Manual

The implementation of the Monte Carlo (MC) code MONET was described in Chapter 3

of this work. The program was written from the ground up, without borrowing any lines of

code from previous MC programs (e.g. DAMOCLES, MOCA). Only the random number

generator was copied from the Numerical Recipes book [74], but converted from type float

to double. The rest of the implementation however follows that described with good detail

in comprehensive reference works by Jacoboni [34] and Tomizawa [35]. The latter, in par-

ticular, is a great guide for the technical implementation of a MC code, featuring a lot of

helpful examples written in pseudo-code.

MONET was written in C and compiled on the Linux operating system with the freely

available Intel C Compiler (icc). The executable is run from the command line and can

take a few options, a summary of which can be obtained with monet -h:

Usage: monet [options] infile logfile

-d Append date stamp to output directory

-h Print this help

-r Read scattering rates from scatrates.txt

infile <monet.in>

logfile <monet.log>

The output files are written in a directory called out, unless the -d switch is given, in
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which case the output directory could be called, for example, out-18Jul04-182833 if the

simulation was started on July 18th, 2004 at 18:28 hours and 33 seconds.1 Typically,

MONET will compute the electron scattering rates at the beginning of every simulation,

and will save them in a text file called scatrates.txt in the directory where MONET was

called from. If several runs are made where the scattering rates should not change (i.e.

the temperature, doping, strain and deformation potentials remain the same) it is useful,

in the interest of saving some computational time, to re-read the scattering rates from the

previous run. This can be done with the -r switch, which will read the scattering rates from

the scatrates.txt file, if one exists from a previous run. Finally, MONET reads all other

runtime parameters from a file called monet.in. The name of this file can be changed if it

is specified on the command line when MONET is run, e.g., monet otherinputfile. The

evolution of ensemble averages (energy, momentum, etc.) is written to the screen during

the run of the code, as well as in a log file. The log file is typically called monet.log

and it is written in the output directory. The name of the log file can also be overwritten

from the command line, when MONET is invoked. A copy of the input file is saved in the

output directory as well, as a reminder of what input parameters the respective results were

obtained with.

A MONET simulation can be performed in zero, one and two dimensions. In “zero”

dimensions it computes ensemble averages in an infinite resistor with constant applied elec-

tric field. This is useful for computing electron velocity-field curves, mobilities (in bulk or

strained silicon) or heat generation rates for each phonon mode at a given electric field.

MONET can also be used on a one (1-) or two dimensional (2-D) realistic device grid, with

a few caveats. First, the grid must be equally spaced and rectangular (although in two

dimensions the x-grid spacing is not required to equal the y-grid spacing). Second, in 2-D

the Poisson equation is not solved along with the equations of motion, so the Monte Carlo

results should only be regarded qualitatively. However, when simulating a 1-D cross-section

of a device (e.g. a n+nn+ ballistic diode) the simulation is realistic, self-consistently solving

1This becomes useful when several runs are made with slightly modified input parameters, since it
automatically avoids overwriting the out directory results from a previous run.
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the Poisson equation every time step, as well as accounting for impurity scattering which

varies with the doping concentration at each grid node. The 1- and 2-D grid simulations re-

quire an input file (see the parameter FIELDFILE below) with the grid coordinates, doping

profiles and initial electric fields typically obtained from another device simulator run (e.g.

the commercial code MEDICI). A PERL script is available to extract grid node information

from MEDICI and translate it to the column input format that MONET requires. In this

sense, the 2-D MONET simulation is essentially just a post-processor for a MEDICI run on

the same grid.

A.1 Input File Description

The MONET input file (called monet.in by default) is read by the program at the beginning

of each run. This file must be found in the directory MONET is invoked from, and it contains

a number of parameters that can be modified without having to recompile the code. These

parameters are listed below, with their description followed by the default value and units

(if any) in parenthesis. The input file is a list of PARAMETER = value pairs, where the equal

sign is mandatory, but the number of white spaces surrounding it (none or more) may vary.

Any line beginning with a hash (#) or percent (%) sign is considered a comment and ignored.

Similarly, any portion of a line following such a sign is also ignored.

A.1.1 Parameters of Relevance in All Dimensions

TEMP = ambient lattice temperature. (300 K)

DT = simulation time step. The simulation runs faster (fewer interruptions) when DT

is larger, but its upper value is limited by the minimum grid spacing and by the maximum

doping (plasma oscillations). The program will warn if either of these is exceeded. When

the Poisson equation is self-consistently solved in 1-D to update the electric fields every

DT (see the input parameter POISSON), this time step has to be reduced significantly,

typically to fractions of a femtosecond. (10−14 sec)

SUBHIST = the number of time steps DT over which to compute intermediate ensemble
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averages. It is assumed these ”sub-histories” are roughly independent, so this number should

be chosen such that the sub-history duration (SUBHIST × DT) is at least on the order of

tenths of a picosecond. (50)

NELEC = number of electrons to simulate. (10000)

TTRANS = time (in seconds) after which transients are assumed to die and ensemble

averages start to be computed. During TTRANS no averages are computed (i.e. the code

runs somewhat faster), nothing is written to the log file and only dots are printed to the

screen, one for every SUBHIST. If TTRANS is not user-specified in the input file, the

program uses an internal algorithm to make an (admittedly, fairly rudimentary) attempt at

estimating it. If possible, it is best advised for the user to make a test run with TTRANS

= 0 and watch the ensemble averages printed to the screen, make a note of the approximate

time it takes them to converge, then use that as the value for TTRANS in the next run(s).

TTOT = total time until the simulation ends. Note that final ensemble averages are

computed over the time TTOT − TTRANS and sampled every SUBHIST × DT seconds.

EMAX = maximum electron energy allowed in the simulation. This should not be set

much higher than 1.1 eV (the band gap energy) for an analytic-band code like MONET,

which ignores impact ionization and high energy (e.g. L-valley) transport. If an electron

exceeds this value, its energy is reset to EMAX and its momentum components appropriately

rescaled. Also see Fig. 3.2, a comparison of the analytic band and full band density of states

(DOS), indicating that EMAX < 2.0 eV is reasonable from the point of view of the DOS.

(1.1 eV)

SEED = sets the starting seed (integer value) of the random number generator. If this

is not set, MONET uses a value which is the (somewhat random) product of the process ID

and the local time in milliseconds, at the moment when the command was invoked. When

SEED is set, MONET will generate the same sequence of pseudo-random numbers, and

hence the exact same results (ensemble averages) in consecutive runs, as long as no other

input parameters are changed.

INPUTFILE = if this is set, MONET will read the starting electron distribution (posi-

tion, momentum x y z components, energy, integer valley index) from the six columns of a
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file with this name. If the simulation is on a 2-D grid, the input file has seven columns, with

the first two being the x and y coordinates of the electrons.2 Otherwise MONET initializes

the electrons based on a Maxwellian distribution with average thermal energy (3kBT/2)

and randomly oriented momenta. Similarly, if INPUTFILE is not set and the simulation

is to be performed in 1- or 2-D, MONET will distribute the initial particles in proportion

to the doping density on the grid (or in proportion to the charge distribution read from

MEDICI, if any).

OUTPUTFILE = if this is set, MONET will write the final electron distribution (posi-

tion, momentum x y z components, energy, integer valley index) to a file with this name.

This file can be used to save the status of the particle distribution for analysis, or such that

a future run of the code can use it as its input (INPUTFILE) and thus avoid spending time

going through the particle transients.

ALPHA = non-parabolicity parameter used in the description of the analytic electron

energy bands, as in Eq. 3.1. (0.5 eV−1)

DTAf = deformation potential for f-type intervalley scattering with Transverse Acoustic

(TA) phonons of energy near 19 meV. (5× 107 eV/cm)

DLAf = deformation potential for f-type intervalley scattering with Longitudinal Acous-

tic and Optical (LA/LO) phonons of energy near 51 meV. Note that both LA and LO

phonons can assist with this type of scattering near the edge of the Brillouin zone, where

their dispersion meets. (3.5× 108 eV/cm)

DTOf = deformation potential for f-type intervalley scattering with Transverse Optical

(TO) phonons of energy near 57 meV. (1.5× 108 eV/cm)

DTAg = deformation potential for g-type intervalley scattering with Transverse Acoustic

(TA) phonons of energy near 10 meV. (3× 107 eV/cm)

DLAg = deformation potential for g-type intervalley scattering with Longitudinal Acous-

tic (LA) phonons of energy near 19 meV. (1.5× 108 eV/cm)

2The format is exactly the same as that of the OUTPUTFILE. For an example, set the OUTPUTFILE
and look at the output, then use that as the INPUTFILE.
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DLOg = deformation potential for g-type intervalley scattering with Longitudinal Op-

tical (LO) phonons of energy near 62 meV. (6× 108 eV/cm)3

XU = shear deformation potential (Ξu) used to compute intravalley acoustic phonon

scattering. (6.8 eV)

XD = dilatation deformation potential (Ξd) used to compute intravalley acoustic phonon

scattering. (1.1 eV)4

DIM = dimensionality of the problem (0, 1 or 2). Set DIM=0 to calculate transport

parameters in a steady-state electric field (e.g. in an infinite resistor), such as the velocity-

field curve, mobility, or heat generation rates for each phonon mode. Set DIM=1 or 2 to

calculate electron transport and heat generation on a 1- or 2-D device grid. Note that the

Poisson equation (see parameter POISSON below) can be solved self-consistently in 1-D,

but not in 2-D. (0)

A.1.2 Parameters of Relevance in DIM=0 Simulations

EFSTART = starting value for the electric field (in V/cm) for a velocity-field, mobility,

or steady-state heat generation calculation. This can also be a comma-separated list of

electric fields, in which case the next 3 parameters (EFSTOP, EFSTEPS and LOGSTEPS)

are ignored.

EFSTOP = last value of the electric field range (in V/cm) for a velocity-field or steady-

state heat generation calculation. If EFSTART is a comma-separated list of electric field

values then this parameter is ignored.

EFSTEPS = the (integer) number of steps MONET should take between the EFSTART

and EFSTOP electric fields. The number of field values MONET runs simulations for is

always EFSTEPS+1. For example, if EFSTEPS=4 then the program computes velocities,

energies and other ensemble averages at the EFSTART, EFSTOP fields, and at another

three values in between (see LOGSTEPS for how these are chosen). If EFSTEPS=0 then

3The six intervalley deformation potentials described above are summarized in Table 3.2 and discussed
in Section 3.3.2.

4The intravalley deformation potentials XU and XD are discussed in Section 3.3.1.
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MONET computes ensemble averages only for the EFSTART field value and ignores EF-

STOP and LOGSTEPS. In this case of single field computation, the program also saves

detailed heat generation statistics for each phonon polarization in the files lphon.txt (for

the longitudinal acoustic and optical modes) and tphon.txt (for the transverse acoustic and

optical modes). These files contain the net (emission minus absorption) number of phonons

generated as a function of phonon energy, over the range of longitudinal and transverse

phonon energies available. Both files can be found in the output directory, and can be used

to create heat generation diagrams like those in Fig. 4.1. If EFSTART is a comma-separated

list of electric field values then this parameter is ignored.

LOGSTEPS = used to determine either linear or logarithmic spacing of electric field

values between EFSTART and EFSTOP. Set it to 0 for linear spacing (equally spaced

fields) or to 1 for logarithmic spacing. If EFSTART is a comma-separated list of electric

field values then this parameter is ignored.

EFDIR = direction of the applied electric field, e.g. 100, 110 or 111.

VERROR = ratio of velocity standard deviation to ensemble velocity average (∆v/v,

as computed over each simulation sub-history), used as a criterion for convergence. The

simulation is ended early (before TTOT is reached) if ∆v/v < VERROR. Set this value

to zero if computing ensemble averages until TTOT is reached on every simulation run is

desired.

DOPING = value of ionized impurity concentration (in cm−3) to be used when calcu-

lating the impurity scattering rate in the sample being simulated. If not set, the sample is

assumed undoped.

MOBCALC = enables (if set to 1) or disables (if set to 0) a detailed mobility calculation.

If set to 1, the mobility is obtained around the (first) field value specified by EFSTART.

This is done by calculating the average drift velocity at five field values centered around

EFSTART, two slightly above this value and two slightly below, then interpolating to find

an average mobility. (0)

SIGEX = sets the Ge percentage (x) of the Si1−xGex buffer substrate for strained silicon

mobility calculations. See Section 3.5.2 for a detailed discussion of transport in strained
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silicon. (0)

A.1.3 Parameters of Relevance in 1-D or 2-D Simulations

FIELDFILE = the name of the file where the 1- or 2-D device grid is read from. The

grid node position, electric field, mobile charge density, potential and doping density are

stored in separate columns as follows:

x (cm) Field (V/cm) Nelec (cm−3) Pot (V) Doping (cm−3)

For a 2-D simulation an additional column must exist with the y grid coordinate (also in cm)

between the position and electric field columns. This file can be extracted from a previous

simulation with a commercial code like MEDICI, and a PERL script exists to convert the

MEDICI output. Any line beginning with a hash (#) or percent (%) sign is considered a

comment and ignored. If not user-supplied, the default FIELDFILE name is efield1.txt

for 1-D simulations and efield2.txt for 2-D simulations.

POISSON = enables (if set to 1) or disables (if set to 0) the self-consistent solution

of Poisson’s equation in simulations on a 1-D device grid. If this is enabled, the Poisson

equation is solved and the electric field is updated every time step DT. This maintains

consistency between the motion of mobile charge in the device and the electric field, at the

expense of some computational time and a tighter restriction on the choice of DT (generally

less than a femtosecond) in order to avoid plasma oscillations. If POISSON is not enabled,

the electric fields are read once from FIELDFILE and charge motion is simulated on this

“frozen” field distribution. (0)

SURFSCAT = the ratio of diffuse to specular scattering events used for computing

surface roughness scattering in a 2-D simulation. (0.15)

A.2 Example: Heat Generation in Bulk Si

The following input file can be used to compute the heat (phonon) generation profile in

a bulk silicon sample doped to 1017 cm−3, at an electric field of 50 kV/cm. The phonon
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generation results are stored in the files lphon.txt and tphon.txt in the output directory,

and plotting them will reproduce the result in Fig. 4.1(d). The phonon generation files are

only written to the output directory when EFSTEPS=0 and the computation is done for a

single field value.

TEMP = 300 # ambient lattice temperature

DT = 10.e-15 # time step

SUBHIST = 75 # sub-history for averaging (x DT)

NELEC = 10000 # number of electrons

TTRANS = 5e-12 # time after which transients are assumed to die

TTOT = 50e-12 # total simulation time

EMAX = 1.2 # maximum electron energy in the simulation

DIM = 0 # dimensionality of the problem

EFSTART = 50000 # electric field value

EFSTEPS = 0 # how many E-field steps (int)

EFDIR = 100 # direction of E-Field

VERROR = 0.002 # fraction Vstd/Vmean for convergence

DOPING = 1e17 # ionized impurity concentration

Note that turning on MOBCALC=1 and using, e.g., EFSTART=500 would enable the

computation of low-field electron mobility. The program then calculates the mobility at

five electric field values around 500 V/cm and reports the average. The simulation progress

is printed to the screen as well as to the log file monet.log (along with the mobility value),

which is stored in the output directory.

A.3 Example: Strained Si Velocity-Field Curve

The following input file can be used to compute the average electron velocity as a function

of electric field for transport in a strained silicon layer grown on top of a Si0.7Ge0.3 substrate

(x = 0.3).
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TEMP = 300 # ambient lattice temperature

DT = 10.e-15 # time step

SUBHIST = 75 # sub-history for averaging (x DT)

NELEC = 10000 # number of electrons

TTRANS = 10e-12 # time after which transients are assumed to die

TTOT = 50e-12 # total simulation time

EMAX = 1.2 # maximum electron energy in the simulation

DIM = 0 # dimensionality of the problem

EFSTART = -50000 # can be comma-separated list too

EFSTOP = -50 # last value in E-field range

EFSTEPS = 8 # how many E-field steps (int)

LOGSTEPS = 1 # 1 log scale, 0 linear scale

EFDIR = 100 # direction of E-Field

VERROR = 0.0002 # fraction Vstd/Vmean for convergence

SIGEX = 0.3 # Si(1-X)Ge(X) percentage

The simulation starts at a field of -50 kV/cm and ends with a field of -50 V/cm, after

taking eight logarithmically spaced steps.5 This input file will generate the strained silicon

velocity-field curve (open circles) from Fig. 3.6. The results are stored in the file monet.log,

which also contains the net amount of phonons generated per branch of the spectrum, at

each value of the electric field.

A.4 Example: 1-D Device Simulation

The following input file sets up a realistic 1-D device simulation, including impurity scat-

tering and self-consistent updates of the electric field (Poisson equation) at every time

step. The device grid, doping, starting potential and electric field values are read from

the FIELDFILE nin100nm1916.txt, which (in this case) contained the layout of a n+nn+

5The choice of electric field sign is not essential, but a negative value will result in positive average
electron velocities.
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ballistic diode with a 1016 cm−3 doped and 100 nm long “channel” region, and 1019 cm−3

doped n+ regions.

TEMP = 300 # ambient lattice temperature

DT = 0.25e-15 # time step

SUBHIST = 400 # sub-history for averaging (x DT)

NELEC = 40000 # number of electrons

TTRANS = 5.0e-12 # time after which transients are assumed to die

TTOT = 55.0e-12 # total simulation time

EMAX = 1.5 # maximum electron energy in the simulation

OUTPUTFILE = monet.out # write output electron distribution

DIM = 1 # dimensionality of the problem

FIELDFILE = nin100nm1916.txt # where to read device grid from

POISSON = 1 # calculate self-consistent field

Note the very short (less than a femtosecond) time step, to avoid plasma oscillations in

the highly doped regions. Also note that the final electron distribution (position, momenta,

energies) is written to the output file monet.out. Otherwise, the ensemble averages (electron

density, velocity, potential, electric fields, at each grid node) are stored in the file avgs.txt

in the output directory. This file is updated every SUBHIST time steps, and it can be

replotted in “real time” to observe the progress and convergence of the simulation. The

avgs.txt file is column-delimited, with the information stored as follows:

X [cm] N [cm−3] E [eV] V [cm/s] Pot [V] Fld [V/cm] AcPhon OpPhon

where the quantities are averaged at each grid node, over the simulation time that has

passed since the end of TTRANS. The quantities AcPhon and OpPhon are the phonon

energy generation rates at each grid node, in units of eV/cm3/s. Plot and compare these

(in particular, their sum) with the product J ·E, which is the classical way of computing

heat generation inside a device. The results of such a simulation and comparison can be

seen in Fig. 4.3.
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[111] M. C. Öztürk, J. Liu, H. Mo, and N. Pesovic, “Advanced Si1−xGex source/drain

and contact technologies for sub-70 nm CMOS,” in IEDM Tech. Dig., Dec. 2002, pp.

375–378.

[112] D. Wang and H. Dai, “Germanium nanowire by chemical vapor deposition,” Angew.

Chem. Int. Ed., vol. 41, no. 24, pp. 4783–4786, 2002.

[113] D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C. McIntyre, T. Krishnamo-

han, and K. C. Saraswat, “Germanium nanowire field-effect transistors with SiO2 and

high-k HfO2 gate dielectrics,” Appl. Phys. Lett., vol. 83, no. 12, pp. 2432–2434, 2003.

[114] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance

silicon nanowire field effect transistors,” Nano Lett., vol. 3, no. 2, pp. 149–152, 2003.

[115] L. Pescini, A. Tilke, R. H. Blick, H. Lorenz, J. P. Kotthaus, W. Eberhardt, and

D. Kern, “Suspending highly doped silicon-on-insulator wires for applications in

nanomechanics,” Nanotechnology, vol. 10, pp. 418–420, 1999.

[116] A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, “High-

field quasiballistic transport in short carbon nanotubes,” Phys. Rev. Lett., vol. 92,

no. 10, pp. 106 804–106 807, 2004.

[117] Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall

carbon nanotubes,” Phys. Rev. Lett., vol. 84, no. 13, pp. 2941–2944, 2000.

[118] J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustinel, S. Braig, T. A. Arias,

P. W. Brouwer, and P. L. McEuen, “Electron-phonon scattering in metallic single-

walled carbon nanotubes,” Nano Lett., vol. 4, no. 3, pp. 517–520, 2004.



BIBLIOGRAPHY 135

[119] J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, and J. E.

Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,”

Appl. Phys. A, vol. 74, pp. 339–343, 2002.


	Abstract
	Acknowledgment
	List of Tables
	List of Figures
	Introduction
	Thermal Implications of Device Design
	Bulk Silicon Transistors
	Non-Traditional Transistors

	Heat Conduction in Semiconductors
	Heat Generation in Semiconductors
	The Scope of this Work
	Organization

	The Monte Carlo Method for Transport in Semiconductors
	Historical Overview
	General Monte Carlo Aspects

	Analytic Band and Dispersion Monte Carlo Implementation
	Electron Energy Band Model
	Phonon Dispersion Model
	Electron-Phonon Scattering
	Intravalley Scattering
	Intervalley Scattering

	Electron-Ionized Impurity Scattering
	Transport Applications
	Bulk Silicon Mobility
	Strained Silicon Mobility

	One-Dimensional Device Applications
	Self-Consistent Poisson Equation
	Contact Boundary Conditions
	Ballistic Diode Simulation Results

	Two-Dimensional Device Applications
	Summary

	Heat Generation in Silicon and in Simple Device Geometries
	Introduction
	Implementation
	Heat Generation in Bulk and Strained Silicon
	Heat Generation in Ballistic Diodes
	Joule Heating of the Drain
	Thermoelectric Cooling of the Source

	Summary

	Analysis of Thin-Body Device Scaling Including Self-Heating
	Introduction
	Thin Film Thermal Conductivity
	Material Interface Thermal Resistance
	MOS Thermal Boundary Resistance
	Contact and Via Thermal Resistance

	Ultra-Thin Body Device Thermal Model
	Temperature Dependence of Saturation Current
	Self-Consistent Current Estimate
	Design Considerations
	Summary

	Conclusions
	Summary
	Discussion and Suggestions for Future Work
	Experimental Source/Drain Design
	Contact and Thermal Interface Resistance
	Electro-Thermal Properties of Nanowires
	Carbon Nanotubes

	Epilogue

	MONET User Manual
	Input File Description
	Parameters of Relevance in All Dimensions
	Parameters of Relevance in DIM=0 Simulations
	Parameters of Relevance in 1-D or 2-D Simulations

	Example: Heat Generation in Bulk Si
	Example: Strained Si Velocity-Field Curve
	Example: 1-D Device Simulation

	Bibliography

