

Raychem SELF-REGULATING CABLES

This step-by-step design guide provides the tools necessary to design a selfregulating heat-tracing system for insulated pipes and tubing. For other applications or for design assistance, contact your Pentair Thermal Management representative or phone (800) 545-6258. Also, visit our web site at www.pentairthermal.com.

Contents
Introduction
Conductive-Polymer Technology
System Overview
Typical Self-Regulating System
Approvals and Certifications
Thermal Design4
Pipe Heat Loss Calculations
Heating Cable Selection
Bill of Materials
Determining the Total Length of Heating Cable
Electrical Design
Connection Kit Selection and Accessories

INTRODUCTION

Pentair Thermal Management invented self-regulating heating cable technology more than 30 years ago and today has over 900 million feet of Raychem brand selfregulating heating cable installed worldwide.

Self-regulating systems are the preferred choice for most complex pipe-tracing applications. This is due to their parallel construction, which allows them to be cut to length and spliced in the field, and their self-regulating output, which provides more heat where it is needed.

Pentair Thermal Management self-regulating heating cables are certified for use in hazardous locations and have been tested and approved for unconditional temperature classifications by worldwide approval agencies.

Conductive-Polymer Technology

Pentair Thermal Management uses innovative conductive-polymer technology in both monolithic (solid core) and fiber (polymeric fiber wrap) heating cables, as seen in Figures 1 and 2 on page 2. The heating element is made of polymers mixed with conductive carbon black. This special blend of materials creates electrical paths for conducting current between the parallel bus wires along the entire cable length.

Pentair Thermal Management invented self-regulating heating cable technology more than 30 years ago and today has over a billion feet of Raychem brand self-regulating heating cable installed worldwide.

In each heating cable the number of electrical paths between the bus wires changes in response to temperature fluctuations. As the ambient temperature surrounding the heating cable decreases, the conductive core or fiber contracts microscopically. This contraction decreases electrical resistance and creates numerous electrical paths between the bus wires. Current flows across these paths to warm the core or fiber.

As the temperature rises, the core or fiber expands microscopically. This expansion increases electrical resistance, and the number of electrical paths decreases. As a result, the heating cable automatically begins to reduce its power output.

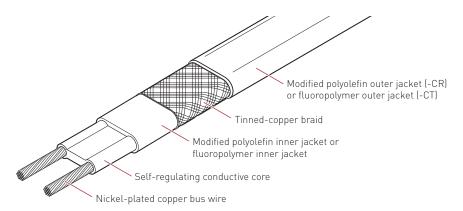


Fig. 1 Monolithic heating cable (BTV, QTVR, HBTV, and HQTV)

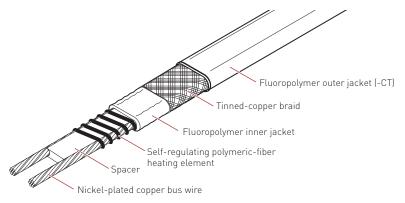


Fig. 2 Fiber-wrap heating cable (XTV and HXTV)

Typical Self-Regulating System

A typical self-regulating heating cable system is shown in Figure 3. The heating cable is cut to length at the job site and attached to the pipe with glass tape. A power connection kit connects the heating cable bus wires to power in a junction box. Tees and splices accommodate pipe branches to connect two or three heating cables together. An end seal kit is used to terminate the end of the heating cable. These required connection kits are designed and approved to provide a safe and reliable heat-tracing system. For applications requiring tight temperature control, electrical system monitoring, or remote operation, consider a control and monitoring system.

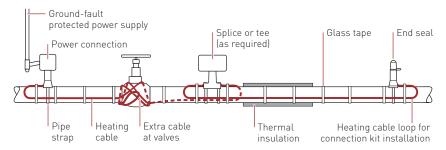


Fig. 3 Typical self-regulating heating cable system

Approvals and Certifications

Pentair Thermal Management self-regulating systems are approved and certified for use in nonhazardous and hazardous locations by many agencies. Please refer to technical data sheets for more details.

THERMAL DESIGN

Pipe Heat Loss Calculations

Note: All thermal and electrical design information provided here is based upon a "standard" installation; i.e., with heating cable installed on insulated pipes. For any other method of installation, consult your Pentair Thermal Management representative for design assistance.

Note: Heat loss calculation is based on a nonflowing pipe.

To select the proper heating cable you must first calculate the pipe heat loss, as outlined in the following four steps:

- Gather the necessary information.
 - T_M: Maintain temperature
 - T_A: Minimum expected ambient temperature
 - Pipe or tubing size and material
 - Thermal insulation type and thickness
- 2 Calculate the temperature differential between the pipe maintain temperature and the minimum ambient temperature.
- Calculate the pipe heat loss.
- Adjust the heat loss to compensate for specific insulation type.

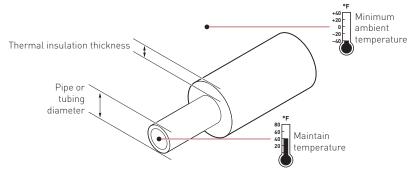


Fig. 4 Pipe heat loss

Thermal Design

- 1. Gather information
- 2 Calculate temperature differential
- 3. Calculate heat loss
- 4 Compensate for insulation type

Step Gather the necessary information

To select the heating cable, gather and record the following information:

- T_M: Maintain temperature
- T_A: Minimum expected ambient temperature
- Pipe or tubing size and material
- Thermal insulation type and thickness

Example: Gather information

Maintain temperature Water freeze protection at 40°F

Minimum ambient temperature -40°F

6-inch diameter, steel

Pipe size and material Insulation thickness and type

2-1/2 inch, calcium silicate

Thermal Design

- Gather information
- 2. Calculate temperature differential
- Calculate heat loss
- 4. Compensate for insulation type

Step 2 Calculate temperature differential ΔT

To calculate the temperature differential (ΔT), use the formula below:

Formula
$$\Delta T = T_M - T_A$$

Example: Calculate temperature differential

 $T_M = 40$ °F (from Step 1) $T_{\Lambda} = -40^{\circ}F$ (from Step 1) Input Calculation $\Delta T = 40^{\circ}F - (-40^{\circ}F) = 80^{\circ}F$

$$\Delta T = 80^{\circ} F$$

Thermal Design

- 1. Gather information
- 2. Calculate temperature differential
- 3. Calculate heat loss
- 4. Compensate for insulation type

Step 3 Calculate the pipe heat loss

From Table 1 on page 6, match the pipe size and insulation thickness with the temperature differential, ΔT , to find the base heat loss of the pipe (Q_B) .

Example: Calculate pipe heat loss

Pipe size = 6 inch (from Step 1) Input

Input Insulation thickness = 2-1/2 inch (from Step 1)

Input $\Delta T = 80^{\circ} F \text{ (from Step 2)}$

Pipe heat loss = 3.6 W/ft (from Table 1) Input

From Table 1, Q_R must be calculated through interpolation. For this example, 80°F is 3/5 of the difference between the ΔT of $50^{\circ}F$ and the ΔT of $100^{\circ}F$:

 $Q_B = 3.6 \text{ W/ft} + [3/5 \times (7.4 - 3.6)] (7.4 \text{ is the } \Delta T \text{ of } 100^{\circ}\text{F}; 3.6 \text{ is the } \Delta T \text{ of } 50^{\circ}\text{F})$

Calculation $Q_{\rm B} = 3.6 + 2.3 = 5.9 \text{ W/ft}$

Pipe heat loss $Q_B = 5.9 \text{ W/ft} @ 40^{\circ}\text{F}$

Thermal Design

- 1. Gather information
- 2. Calculate temperature differential
- 3. Calculate heat loss
- 4. Compensate for insulation type

Step 4 Compensate for insulation type

Multiply the base heat loss of the pipe (Q_B) from Step 3 by the insulation compensation factor (f) from Table 2 at the bottom of page 7 to get the total heat loss per foot of pipe (Q_{τ}) .

Formula $Q_T = Q_B \times f$

Example: Insulation type compensation

Insulation type = calcium silicate (from Step 1) Input Input f = 1.50 for calcium silicate (from Table 2)

 $Q_B = 5.9 \text{ W/ft (from Step 3)}$ Input Calculation $Q_T = 5.9 \text{ W/ft } \times 1.50 = 8.85 \text{ W/ft}$

 $Q_{T} = 8.85 \text{ W/ft at } 40^{\circ}\text{F}$

Now proceed to the Heating Cable Selection section, page 8, to determine the heating cable that will compensate for this heat loss.

Note: Heat loss calculations are based on IEEE Standards.

TABLE 1 PIPE HEAT LOSS (W/FT)

					Pipe dia	meter (IP	S) in inche	es		
			1/4	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2
Insulation	(/	Δ T)			Tub	ing size (i	nches)			
hickness	°F	°C		3/4	1	1-1/4	1-1/2	2		
D.5"	50	28	1.9	2.5	2.9	3.5	4.1	4.6	5.5	6.5
	100	56	3.9	5.2	6.1	7.2	8.6	9.6	11.5	13.5
	150	84	6.1	8.1	9.5	11.2	13.4	14.9	17.9	21.1
	200	111	8.5	11.3	13.2	15.6	18.6	20.7	24.9	29.2
1.0"	50	28	1.3	1.6	1.9	2.2	2.5	2.8	3.2	3.8
	100	56	2.7	3.4	3.9	4.5	5.2	5.8	6.8	7.8
	150	84	4.2	5.3	6.1	7.0	8.2	9.0	10.6	12.2
	200	111	5.8	7.4	8.4	9.7	11.3	12.4	14.6	16.9
	250	139	7.6	9.7	11.0	12.7	14.8	16.3	19.1	22.1
1.5"	50	28	1.1	1.3	1.5	1.7	1.9	2.1	2.4	2.8
	100	56	2.2	2.8	3.1	3.5	4.0	4.4	5.1	5.8
	150	84	3.5	4.3	4.8	5.5	6.3	6.9	8.0	9.1
	200	111	4.8	5.9	6.7	7.6	8.7	9.5	11.0	12.6
	250	139	6.3	7.8	8.7	9.9	11.4	12.4	14.4	16.5
	300	167	7.9	9.7	11.0	12.4	14.3	15.6	18.1	20.6
	350	194	9.6	11.9	13.3	15.1	17.4	19.0	22.0	25.1
2.0"	50	28	0.9	1.1	1.3	1.4	1.6	1.8	2.0	2.3
	100	56	2.0	2.4	2.7	3.0	3.4	3.7	4.2	4.8
	150	84	3.1	3.7	4.2	4.7	5.3	5.8	6.6	7.5
	200	111	4.3	5.2	5.8	6.5	7.4	8.0	9.2	10.4
	250	139	5.6	6.8	7.5	8.5	9.6	10.4	12.0	13.5
	300	167	7.0	8.5	9.4	10.6	12.1	13.1	15.0	17.0
	350	194	8.5	10.3	11.5	12.9	14.7	15.9	18.2	20.6
2.5"	50	28	0.9	1.0	1.2	1.3	1.4	1.6	1.8	2.0
	100	56	1.8	2.2	2.4	2.7	3.0	3.3	3.7	4.2
	150	84	2.8	3.4	3.7	4.2	4.7	5.1	5.8	6.5
	200	111	3.9	4.7	5.2	5.8	6.5	7.0	8.0	9.0
	250	139	5.1	6.1	6.8	7.6	8.5	9.2	10.5	11.7
	300	167	6.4	7.7	8.5	9.5	10.7	11.5	13.1	14.7
	350	194	7.8	9.3	10.3	11.5	13.0	14.0	15.9	17.9
3.0"	50	28	0.8	1.0	1.1	1.2	1.3	1.4	1.6	1.8
	100	56	1.7	2.0	2.2	2.4	2.7	2.9	3.3	3.7
	150	84	2.6	3.1	3.4	3.8	4.3	4.6	5.2	5.8
	200	111	3.6	4.3	4.8	5.3	5.9	6.4	7.2	8.0
	250	139	4.8	5.7	6.2	6.9	7.8	8.3	9.4	10.5
	300	167	6.0	7.1	7.8	8.7	9.7	10.4	11.8	13.2
	350	194	7.3	8.6	9.5	10.5	11.8	12.7	14.3	16.0
4.0"	50	28	0.7	0.9	0.9	1.0	1.1	1.2	1.4	1.5
	100	56	1.5	1.8	2.0	2.1	2.4	2.5	2.9	3.2
	150	84	2.4	2.8	3.0	3.4	3.7	4.0	4.4	4.9
	200	111	3.3	3.9	4.2	4.6	5.2	5.5	6.2	6.8
	250	139	4.3	5.1	5.5	6.1	6.7	7.2	8.1	8.9
		4 / 17	Г /	/ 0	/ 0	7 /	ОГ	0.0	10 1	11.2
	300 350	167	5.4	6.3	6.9	7.6	8.5	9.0 11.0	10.1	11.2

Note: Pipe heat loss $[Q_B]$ is shown in watts per foot. Heat loss calculations are based on IEEE Standards with the following provisions:

- Pipes insulated with glass fiber in accordance with ASTM C547
 Pipes located outdoors in a 20-mph wind

- No insulating air space assumed between pipe and insulation
 No insulating air space assumed between the insulation and outer cladding
- Includes a 10% safety factor

3	3-1/2	4	6	8	10	12	14	16	18	20	24
7.7	8.6	9.6	13.6	17.4	21.4	25.2	27.5	31.3	35.0	38.8	46.2
16.0	18.0	20.0	28.4	36.3	44.6	52.5	57.4	65.2	73.0	80.8	96.3
25.0	28.1	31.2	44.3	56.6	69.6	81.9	89.5	101.7	113.8	126.0	150.2
34.6	39.0	43.3	61.5	78.5	96.6	113.6	124.2	141.1	158.0	174.8	208.5
4.4	4.9	5.4	7.5	9.4	11.5	13.5	14.7	16.6	18.6	20.5	24.4
9.1	10.2	11.2	15.6	19.7	24.0	28.1	30.6	34.7	38.7	42.8	50.9
14.2	15.9	17.5	24.3	30.7	37.4	43.8	47.8	54.1	60.4	66.7	79.4
19.7	22.0	24.2	33.7	42.5	51.9	60.7	66.2	75.0	83.8	92.5	110.0
25.8	28.7	31.7	44.0	55.6	67.9	79.4	86.6	98.1	109.6	121.0	143.9
3.2	3.6	3.9	5.3	6.7	8.1	9.4	10.2	11.5	12.9	14.2	16.8
6.7	7.4	8.1	11.1	13.9	16.8	19.6	21.3	24.0	26.8	29.5	35.0
10.5	11.6	12.7	17.3	21.6	26.2	30.5	33.2	37.5	41.8	46.1	54.6
14.5	16.1	17.6	24.0	30.0	36.3	42.3	46.0	52.0	57.9	63.8	75.7
19.0	21.0	23.0	31.4	39.2	47.5	55.3	60.2	68.0	75.7	83.5	99.0
23.8	26.3	28.8	39.3	49.2	59.6	69.3	75.4	85.1	94.9	104.6	124.0
28.9	32.0	35.0	47.8	59.8	72.4	84.3	91.7	103.5	115.4	127.2	150.8
2.6	2.9	3.1	4.2	5.2	6.3	7.3	7.9	8.9	9.9	10.9	12.9
5.5	6.0	6.6	8.8	10.9	13.1	15.2	16.5	18.6	20.7	22.8	26.9
8.5	9.4	10.2	13.8	17.0	20.5	23.8	25.8	29.0	32.3	35.5	42.0
11.8	13.0	14.2	19.1	23.6	28.4	32.9	35.7	40.2	44.7	49.2	58.2
15.5	17.0	18.5	24.9	30.9	37.2	43.1	46.7	52.6	58.5	64.3	76.1
19.4	21.3	23.2	31.2	38.7	46.6	54.0	58.6	65.9	73.3	80.6	95.3
23.6	25.9	28.3	38.0	47.1	56.6	65.6	71.2	80.2	89.1	98.1	115.9
2.3	2.5	2.7	3.6	4.4	5.2	6.1	6.6	7.4	8.2	9.0	10.6
4.7	5.2	5.6	7.4	9.1	10.9	12.6	13.7	15.3	17.0	18.7	22.0
7.4	8.1	8.7	11.6	14.2	17.0	19.7	21.3	23.9	26.5	29.1	34.3
10.2	11.2	12.1	16.1	19.7	23.6	27.2	29.5	33.1	36.7	40.3	47.5
13.3	14.6	15.8	21.0	25.8	30.9	35.6	38.6	43.3	48.0	52.8	62.2
16.7	18.3	19.8	26.3	32.3	38.7	44.6	48.4	54.3	60.2	66.1	77.9
20.3	22.2	24.1	32.0	39.3	47.1	54.3	58.8	66.0	73.2	80.4	94.7
2.0	2.2	2.4	3.1	3.8	4.5	5.2	5.6	6.3	7.0	7.6	9.0
4.2	4.6	4.9	6.5	7.9	9.4	10.8	11.7	13.1	14.5	15.9	18.7
6.6	7.1	7.7	10.1	12.4	14.7	16.9	18.3	20.5	22.6	24.8	29.2
9.1	9.9	10.7	14.0	17.1	20.4	23.4	25.3	28.3	31.4	34.4	40.4
11.9	12.9	14.0	18.3	22.4	26.6	30.6	33.1	37.1	41.0	45.0	52.8
14.9	16.2	17.5	23.0	28.1	33.4	38.4	41.5	46.5	51.4	56.3	66.2
18.1	19.7	21.3	28.0	34.1	40.6	46.7	50.5	56.5	62.5	68.5	80.5
1.7	1.8	2.0	2.5	3.1	3.6	4.1	4.4	5.0	5.5	6.0	7.0
3.5	3.8	4.1	5.3	6.4	7.5	8.6	9.3	10.3	11.4	12.4	14.5
5.5	6.0	6.4	8.3	10.0	11.8	13.4	14.5	16.1	17.8	19.4	22.7
7.6	8.3	8.9	11.4	13.8	16.3	18.6	20.0	22.3	24.6	26.9	31.4
10.0	10.8	11.6	15.0	18.1	21.3	24.3	26.2	29.2	32.2	35.2	41.1
12.5	13.5	14.6	18.8	22.6	26.7	30.5	32.8	36.6	40.3	44.1	51.5
15.2	16.5	17.7	22.8	27.5	32.4	37.1	39.9	44.5	49.0	53.6	62.6

TABLE 2 INSULATION FACTORS

Preformed pipe insulation	Insulation factor (f)	k factor at 50°F (10°C) (BTU/hr-°F-ft ² /in)
Glass fiber (ASTM C547)	1.00	0.25
Calcium silicate (ASTM C533)	1.50	0.37
Cellular glass (ASTM C552)	1.60	0.40
Rigid cellular urethane (ASTM C591)	0.64	0.16
Foamed elastomer (ASTM C534)	1.16	0.29
Mineral fiber blanket (ASTM C553)	1.20	0.30
Expanded perlite (ASTM C610)	1.90	0.48

HEATING CABLE SELECTION

Note: The data presented here are nominal and conservative. Additional engineering analysis at specific voltages may allow optimization that could extend circuit lengths and/ or available power output. Consult Pentair Thermal Management for more information.

If your application is freeze protection of water piping, follow the five-step heating cable selection process outlined below.

- **1** Gather the following information:
 - Pipe size and material
 - Insulation type and thickness
 - Maintain temperature (T_M)
 - Minimum ambient temperature (T_△)
 - Minimum start-up temperature
 - Service voltage
 - Chemical environment
 - Maximum intermittent exposure temperature*
 - Electrical area classification**
- 2 Select the heating cable family.
- Select the service voltage.
- Determine the heating cable power output rating.
- 5 Select the jacket type.
- * Determines whether a higher exposure temperature heating cable is needed.
- ** Determines whether special design requirements and connection kits must be used.

If your application is maintenance of another fluid at a temperature other than 40°F (5°C) or is temperature-sensitive, you will need the information above plus the following data:

Example data

70°F • Process temperature • Maximum ambient temperature 105°F Fluid degradation temperature*** 150°F

HEATING CABLE CATALOG NUMBER

Before beginning, take a moment to understand the structure underlying heating cable catalog numbers. You will refer to this numbering convention throughout the product selection process. Your goal is to determine the catalog number for the product that best suits your needs.

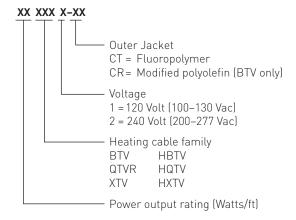


Fig. 5 Heating cable catalog number

^{***}Determines whether thermostatic control is necessary.

Heating Cable Selection

- 1. Gather information
- 2. Select heating cable family
- 3. Select service voltage
- 4. Determine power output rating
- 5. Select jacket type

Step Gather the necessary information

To select the heating cable, gather and record the following information:

Pipe size and material

Insulation type and thickness

Maintain temperature (T_M) Minimum ambient temperature (T_{Δ})

Minimum start-up temperature

Service voltage

Chemical environment

Maximum intermittent exposure temperature

Electrical area classification

Example: Gather necessary information

• Pipe size and material* 6 inches in diameter, steel Insulation type and thickness* 2-1/2 inch, calcium silicate Maintain temperature (T_M)* Water freeze protection at 40°F

Minimum ambient temperature $(T_{\Delta})^*$ -40°F 0°F Minimum start-up temperature Service voltage 120 Vac

Chemical environment Organic chemicals

366°F Maximum intermittent exposure temperature**

Electrical area classification*** Nonhazardous

From Thermal Design, Step 1

Determines whether a higher exposure temperature heating cable is needed.

Determines whether special design requirements and connection kits must be used.

Heating Cable Selection

- 1. Gather information
- 2. Select heating cable family
- 3. Select service voltage
- 4. Determine power output rating
- 5. Select jacket type

Step 2 Select the heating cable family

Based on your application's maintain temperature, pipe material, maximum exposure temperature, and T-rating, select the appropriate heating cable.

For nonhazardous locations, use Table 3 on page 10 to select the heating cable family. Base your selection on your application's maintain temperature, pipe material, and maximum intermittent exposure temperature.

For Class I, Division 1 or 2 hazardous locations, also use Table 3 or Table 4 on page 11, but first determine the required T-rating for the area.

Temperature identification numbers (T-ratings) are defined by the National Electrical Code (NFPA 70), Articles 500 and 505; and the Canadian Electrical Code Part I, Section 18. If the T-rating of the area has been defined, then select a heating cable from Table 3 or 4 having a T-rating equivalent to or less than the T-rating of this location (for example, T6 is a lower T-rating than T3).

The purpose of the T-rating is to ensure that electrical equipment does not exceed the auto-ignition temperatures (AIT) of flammables handled in a hazardous location.

If the T-rating for the area has not been defined, use one of the following methods.

FOR CSA CERTIFICATION

• Select the material with the lowest AIT in °C.

This temperature is the maximum allowable heating cable sheath temperature.

FOR FM APPROVAL

• Select material with the lowest AIT in °C.

This temperature is the maximum allowable heating cable sheath temperature.

FOR FM APPROVAL, DIVISION 1 HAZARDOUS LOCATIONS

- Select material with the lowest AIT in °C.
- Multiply the ignition temperature by 0.8.

This temperature is the maximum allowable heating cable sheath temperature. Use Table 4 to select the heating cable family.

TABLE 3 HEATING CABLE PRODUCT PERFORMANCE DATA

Heating cable family	Maximum maintain temperature	Maximum continuous exposure temperature	Maximum intermittent exposure *temperature**	T-rating/ maximum sheath temperature	Pipe material
BTV	150°F (65°C)	150°F (65°C)	185°F (85°C)	T6 185°F (85°C)	plastic/ metal
QTVR	225°F (110°C)	225°F (110°C)	225°F (110°C)	T4 275°F (135°C)	plastic¹/ metal only
5XTV1,2 10XTV1,2 15XTV2	250°F (121°C) 250°F (121°C) 250°F (121°C)	250°F (121°C) 250°F (121°C) 250°F (121°C)	420°F (215°C) 420°F (215°C) 420°F (215°C)	T3 392°F (200°C) T3 392°F (200°C) T3 392°F (200°C)	metal only metal only metal only
15XTV1 20XTV1 20XTV2	250°F (121°C) 250°F (121°C) 250°F (121°C)	250°F (121°C) 250°F (121°C) 250°F (121°C)	420°F (215°C) 420°F (215°C) 420°F (215°C)	T2D 419°F (215°C) T2C 446°F (230°C) T2C 446°F (230°C)	metal only metal only metal only

With the heating cable power on

Example: Nonhazardous location

40°F maintain temperature (from Thermal Design, Step 1) 366°F intermittent exposure temperature (from Step 1) Input

Heating cable family XTV (from Table 3) Input

Catalog number xx**XTV**x-xx

¹⁰⁰⁰ hours (power on/power off)

For plastic pipes please consult TraceCalc Pro design software or contact the Customer Service Center.

TABLE 4 HEATING CABLE PRODUCT PERFORMANCE DATA (FM-CID1 HAZARDOUS LOCATIONS)

Heating cable family	Maximum maintain temperature	Maximum continuous exposure temperature	Maximum intermittent exposure *temperature**	T-rating/ maximum sheath temperature	Pipe material
HBTV-CT	150°F (65°C)	150°F (65°C)	185°F (85°C)	T6 185°F (85°C)	plastic/ metal
HQTV-CT	225°F (110°C)	225°F (110°C)	225°F (110°C)	T4 275°F (135°C)	plastic¹/ metal only
	250°F (121°C) 250°F (121°C) 250°F (121°C)	250°F (121°C) 250°F (121°C) 250°F (121°C)	420°F (215°C) 420°F (215°C) 420°F (215°C)	T3 392°F (200°C) T3 392°F (200°C) T3 392°F (200°C)	metal only metal only metal only
20HXTV1-CT	250°F (121°C) 250°F (121°C) 250°F (121°C)	250°F (121°C) 250°F (121°C) 250°F (121°C)	420°F (215°C) 420°F (215°C) 420°F (215°C)	T2D 419°F (215°C) T2C 446°F (230°C) T2C 446°F (230°C)	metal only

With the heating cable power on

Example: CID1 hazardous location

For the same inputs, the heating cable family is HXTV from Table 4 on page 11.

FOR FM APPROVED SYSTEMS IN CID1 HAZARDOUS LOCATIONS

Due to the potentially hazardous nature of Division 1 locations, the requirements below must be followed at all times.

- Use only Raychem brand HBTV-CT, HQTV-CT, and HXTV-CT heating cables and HAK-C-100 connection kits specifically approved by FM.
- Complete and send the field information form found in the Approval for Class I. Division 1 Hazardous Locations in USA form (H56987), available on www.pentairthermal.com, to the Pentair Thermal Management Customer Service Center — phone (800) 545-6258, fax (800) 527-5703 — for design verification.
- Be sure the installer completes and returns the Required Installation Record for Class I, Division 1 Hazardous Locations in USA form (H57426), available on www.pentairthermal.com, or the one in the back of the installation manual shipped with the product.

FOR CSA CERTIFIED SYSTEMS IN CID1 HAZARDOUS LOCATIONS

Due to the potentially hazardous nature of Division 1 locations, use only Raychem brand BTV-CT, QTVR-CT, and XTV-CT heating cables and HAK-C-100 connection kits specifically certified by CSA.

Heating Cable Selection

- 1. Gather information
- 2. Select heating cable family
- 3. Select service voltage
- 4. Determine power output rating
- 5. Select jacket type

Step 3 Select the service voltage

Service voltage options: 1 = 120 volts (100-130 Vac)

2 = 240 volts (200-277 Vac)

Example: Service voltage selection

Input XTV heating cable (from Step 2)

Input 120 volts (from Step 1)

Voltage option

Catalog number xXTV1-xx

¹⁰⁰⁰ hours (power on/power off)

For plastic pipes please consult TraceCalc Pro design software or contact the Customer Service Center.

Heating Cable Selection 1. Gather information 2. Select heating cable family 3. Select service voltage 4. Determine power output rating 5. Select jacket type

Step 4 Determine the heating cable power output rating

To select the heating cable power output, use Table 5 to determine the appropriate power output graph based on the heating cable family and voltage already determined.

TABLE 5 HEATING CABLE POWER OUTPUT GRAPH SELECTION

Pipe material	Heating cable	Voltage	Graph number
Metal pipe	BTV, QTVR, HBTV, HQTV	120 208 240 277	1 2 3 4
Metal pipe	XTV and HXTV	120 208 240 277	5 6 7 8
Plastic pipe*	BTV and HBTV	120 208 240 277	9 10 11 12

^{*} Graphs assume the use of aluminum tape over the heating cable.

Using the selected graph, locate the heating cable with thermal output greater than the heat loss (Q_T) at the pipe maintenance temperature (T_M) .

If the pipe heat loss, Q_T , is between the two heating cable power output curves, select the higher-rated heating cable. If Q_T is greater than the power output of the highestrated heating cable, you can:

- Use two or more heating cables run in parallel.
- Spiral the heating cable.
- · Use thicker insulation to reduce heat loss.
- Use insulation material with a lower k factor.

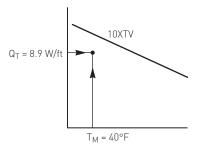


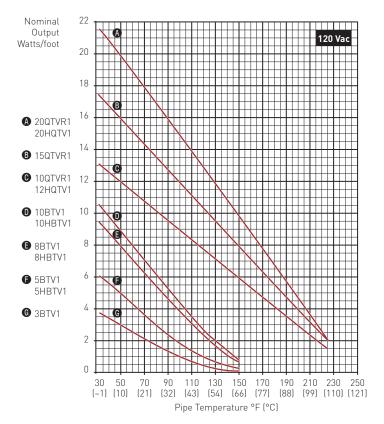
Fig. 6 Heating cable thermal output

Spiraling

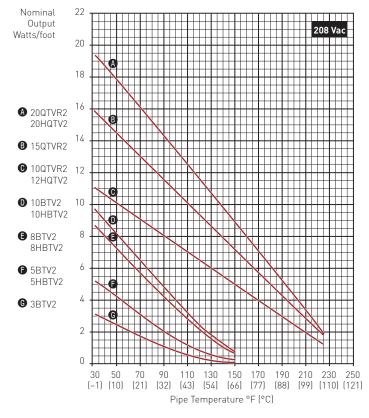
If spiraling is elected, use the formula below to determine the spiral factor (length of heating cable per foot of pipe):

Spiral factor = Q_T / Heater power output at T_M

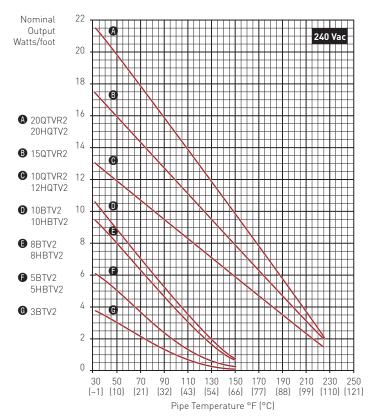
When the spiral factor exceeds 6 or the pipe size is less than three inches, consider using two or more heating cables run in parallel rather than spiraling.

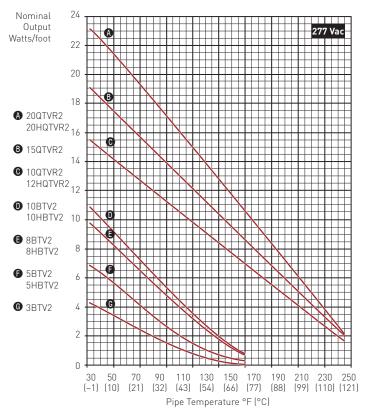

Example: Determine power output rating

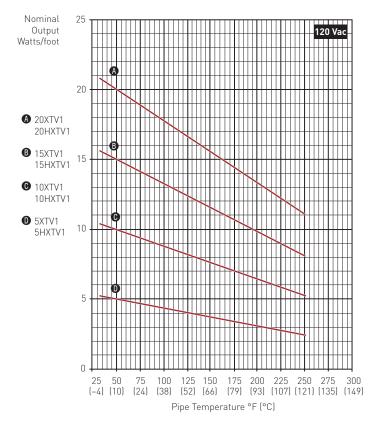
Input XTV heating cable (from Step 3)

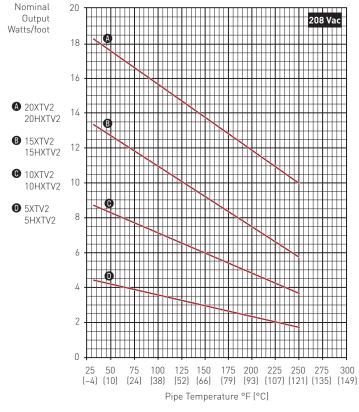

Heat loss is 8.7 W/ft (from Thermal Design, Step 4 and Table 1) Input 10XTV output of 10.2 W/ft exceeds 8.7 W/ft at 40°F (from Graph 5) Input

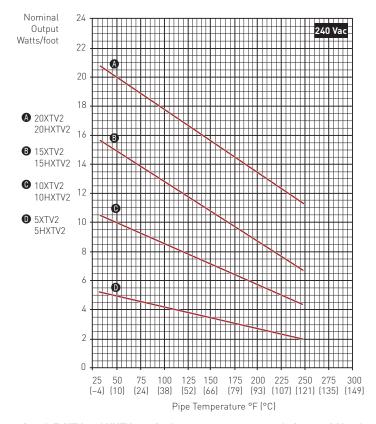
Power output rating

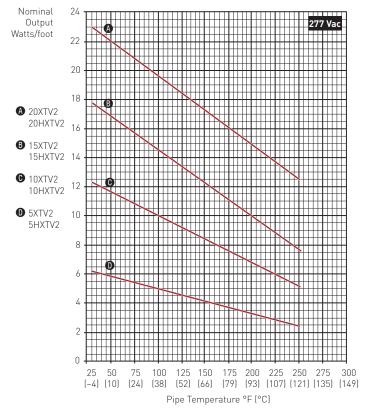

Catalog number **10XTV1**-xx

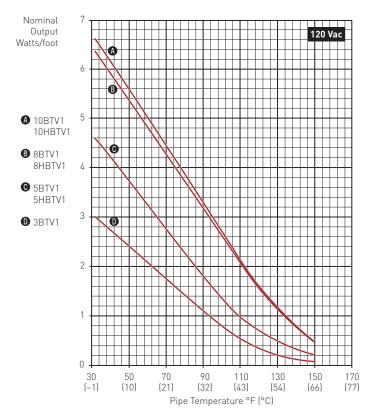

Graph 1 BTV, HBTV, QTVR, and HQTV nominal power output on metal pipes at 120 volts

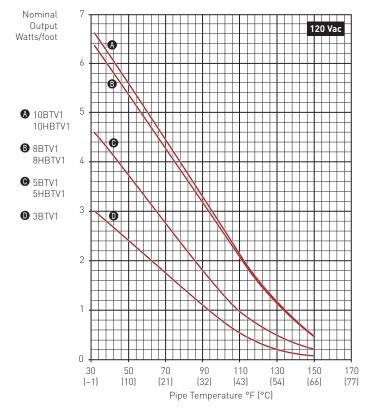

Graph 2 BTV, HBTV, QTVR, and HQTV nominal power output on metal pipes at 208 volts

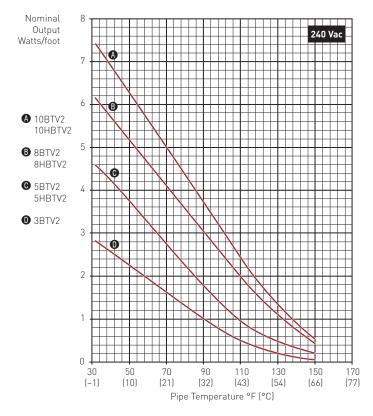

Graph 3 BTV, HBTV, QTVR, and HQTV nominal power output on metal pipes at 240 volts

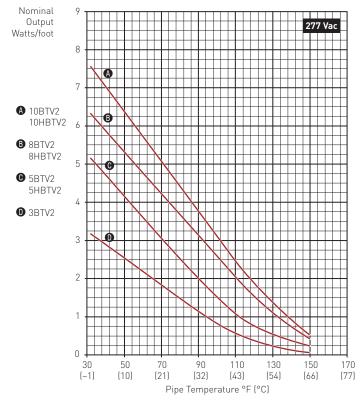

Graph 4 BTV, HBTV, QTVR, and HQTV nominal power output on metal pipes at 277 volts


Graph 5 XTV and HXTV nominal power output on metal pipes at 120 volts


Graph 6 XTV and HXTV nominal power output on metal pipes at 208 volts


Graph 7 XTV and HXTV nominal power output on metal pipes at 240 volts


Graph 8 XTV and HXTV nominal power output on metal pipes at 277 volts


Graph 9 BTV and HBTV nominal power output on plastic pipes at 120 volts

Graph 10 BTV and HBTV nominal power output on plastic pipes at 208 volts

Graph 11 BTV and HBTV nominal power output on plastic pipes at 240 volts

Graph 12 BTV and HBTV nominal power output on plastic pipes at 277 volts

Heating Cable Selection 1. Gather information 2. Select heating cable family 3. Select service voltage 4. Determine power output rating

5. Select jacket type

Step 5 Select the jacket type

While QTVR and XTV heating cables are only available with a CT outer jacket, the BTV heating cables are also available in a CR version.

TABLE 6 HEATING CABLE OUTER JACKET OPTIONS

Option	Material	Application
СТ	Fluoropolymer	Exposure to organic chemicals or corrosives
CR	Modified polyolefin	Exposure to aqueous inorganic chemicals

If you are unsure about the correct jacket for your application, select the CT version or contact your Pentair Thermal Management representative for assistance.

Example: Jacket type selection

10XTV1-xx heating cable (from Step 4) Input

Input Organic chemicals

CT Jacket type

10XTV1-CT Catalog number

BILL OF MATERIALS

Now that you have selected the correct heating cable for your application, this section helps you to determine:

- Total length of heating cable required
- Electrical design, including circuit breaker sizing and selection
- Quantity and type of connection kits and accessories

Determining the Total Length of Heating Cable

To determine the total length of heating cable, follow these six steps:

- 1 Gather the necessary information:
 - Pipe length and diameter
 - Type and number of valves
 - Type and number of pipe supports
 - Start-up temperature
 - Number of circuits and tees in the piping
- Calculate the total length of heating cable for the piping.
- 3 Calculate the total length of heating cable for the valves.
- Calculate the total length of heating cable for the pipe supports.
- **5** Calculate additional heating cable for connection kit installation.
- 6 Add all the lengths together.

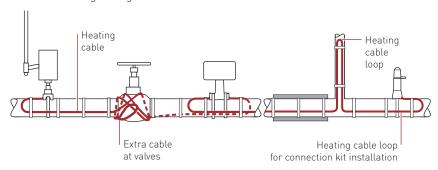


Fig. 7 Typical heating cable layout

Heating Cable Length

- 1. Gather information
- 2. Calculate cable length for piping
- Calculate cable length for valves
- Calculate cable length for supports
- 5. Calculate cable length for connection kits
- 6. Add all lengths

Step Gather the necessary information

To determine the total length of heating cable, gather and record the following information:

- Pipe length and diameter
- Type and number of valves
- Type and number of pipe supports
- Start-up temperature
- · Number of circuits and tees in piping

Example: Gather necessary information

Pipe length and diameter
Type and number of valves
Type and number of pipe supports
Start-up temperature
Number of circuits and tees in piping

100 feet of 6-inch pipe Three 6-inch gate valves Support shoes, 10 each, 1-foot length 0°F

Power connections: 1 End seals: 3

Pipe tees: 2

Heating Cable Length

- Gather information
- 2. Calculate cable length for piping
- 3. Calculate cable length for valves
- 4. Calculate cable length for supports
- 5. Calculate cable length for connection kits
- 6. Add all lengths

Step 2 Calculate the total length of heating cable for the piping

Example: Total length of cable for piping calculation

100 ft of pipe (from Step 1) = 100 ft of cable for single tracing

Heating Cable Length

- 1. Gather information
- 2. Calculate cable length for piping
- 3. Calculate cable length for valves
- 4. Calculate cable length for supports
- 5. Calculate cable connection kits
- 6. Add all lengths

Step 3 Calculate the total length of heating cable for the valves

Table 7 contains guidelines to determine the amount of additional heating cable required to compensate for heat loss on valves. For a more detailed analysis, use TraceCalc Pro design software or consult Pentair Thermal Management.

Multiply the number of valves to arrive at the total additional footage of heating

TABLE 7 RECOMMENDED VALVE ALLOWANCE

Pipe diameter (IPS) (inches)	Heating cable feet (meters)	Comments*
1/4 1/2 3/4 1 1-1/4 1-1/2	0.3 (0.09) 0.8 (0.24) 1.3 (0.4) 2.0 (0.6) 3.3 (1.1) 4.3 (1.3) 4.3 (1.3)	These recommendations are limited by the amount of heating cable that can physically be installed on small valves. Heat loss may not be fully compensated under extreme conditions.
3 4 6 8	4.3 (1.3) 4.3 (1.3) 5.0 (1.5) 5.0 (1.5)	
10 14 18 24	5.6 (1.7) 7.3 (2.2) 9.4 (2.9) 12.6 (3.8)	These numbers represent the minimum amount of heating cable required for a service loop. Additional cable may be required to compensate for total heat loss.

 $^{^{*}}$ Use TraceCalc Pro design software to calculate the exact quantity required for the valve.

Example: Heating cable length for valves calculation

From Table 7 for a 6-inch diameter pipe,

Each valve requires: 5.0 ft Cable needed for three valves: 3 x 5.0 ft Total cable length needed for valves: 15.0 ft

Heating Cable Length

- 1. Gather information
- 2. Calculate cable length for piping
- 3. Calculate cable length for valves
- 4. Calculate cable length for supports
- 5. Calculate cable length for connection kits
- 6. Add all lengths

Step 4 Calculate the total length of heating cable for the pipe supports

SUPPORT SHOES

For each pipe support shoe, calculate the additional heating cable required as follows:

Determine the heat loss for one support.

- Formula: Q_{SUPPORT} = 0.7L x (T_M T_A), where L = Support length (ft) (assumes a 0.25-inch steel welded shoe partially shielded from winds)
- Multiply that heat loss by the total number of supports.
- Add 10 percent to the total heat loss for added safety.
- Obtain the heating cable power output per foot from Graph 5 on page 15.
- Divide the total support heat loss by the heating cable power output per foot to get the number of feet of heating cable needed.

Example: Total length of cable for pipe supports calculation

Input 10XTV1-CT heating cable (from Cable Selection, Step 5)
Input 10 one-foot welded steel shoe supports (from Step 1)

Heat loss for one support $0.7 \times 1 \times (40-(-40)) = 56 \text{ W}$

Heat loss for all supports $10 \times 56 \text{ W} = 560 \text{ W}$ Add safety factor 560 W + 10% = 616 W

Heating cable power output 10.2 W/ft (from Step 3 of Cable Selection) Heating cable required 616 W/10.2 W/ft = 60 ft of heating cable

Heating Cable Length

- 1. Gather information
- 2. Calculate cable length for piping
- 3. Calculate cable length for valves
- 4. Calculate cable length for supports
- 5. Calculate cable length for connection kits
- 6. Add all lengths

Step 5 Calculate additional heating cable for connection kit installation

Estimate the number of power connections, tees, and splices for the system. Allow an additional three feet for each connection kit.

Example: Include additional cable

Input 1 power connection, 3 end seals, 2 tees

(from Step 1)

Total number of connection kits 6 (from Step 1)

Cable needed for 6 connection kits 6 x 3 ft of additional cable

Total cable length for 6 connection kits 18 ft of cable

Heating Cable Length

- 1. Gather information
- 2. Calculate cable length for piping
- Calculate cable length for valves
- 4. Calculate cable length for supports
- 5. Calculate cable length for connection kits
- 6. Add all lengths

Step 6 Add all lengths together

Example: Final addition

Cable for piping 100 ft (from Step 1)
Cable for valves 15 ft (from Step 3)
Cable for supports 60 ft (from Step 4)
Cable for connection kits 18 ft (from Step 5)

Sum of all lengths 100 + 15 + 60 + 18 = 193 ft

Total length of heating cable 193 ft

Now that you have the total length of heating cable, you can determine the number of electrical circuits you will need.

Electrical Design

WARNING: Fire hazard

There is a danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed. To comply with Pentair Thermal Management requirements, certifications, and national electrical codes, and to protect against the risk of fire, ground-fault equipment protection must be used on each heating cable circuit. Arcing may not be stopped by conventional circuit breakers.

DETERMINING MAXIMUM LENGTH OF HEATING CABLE ON ONE CIRCUIT BREAKER

Using Table 8 on page 23 and Table 9 on page 24, match the heating cable catalog number at the expected minimum start-up temperature with the total heating cable length and select a circuit breaker trip rating. The circuit breaker trip rating should not exceed the maximum trip rating shown for heating cables of that product family. For example, the trip rating of a circuit breaker protecting several 10XTV circuits should not exceed 50 amps. To maximize fault current protection, use the lowest allowable circuit breaker.

Maximum circuit length per breaker depends on four factors:

- Heating cable family and catalog number
- 2. Minimum start-up temperature
- 3. Service voltage
- 4. Circuit breaker trip rating

TABLE 8 MAXIMUM CIRCUIT LENGTH (FEET) VS. CIRCUIT BREAKER TRIP RATING (AMPS)

120- and 240-vol	it neating C	antes apptit	eu to me				=			120- and 240-volt heating cables applied to metal pipe with glass tape 120-volt cable 240-volt cable													
				120-v	olt cabl	.e			24	0-volt c	able												
BTV BTV HBTV OBTV OHBTV	Start-u tempe		15 A	20 A	30 A	40 A	50 A	15 A	20 A	30 A	40 A	50 A											
3BTV	50°F	(10°C)	330	330	330	330	+	660	660	660	660	+											
	0°F	(-18°C)	200	265	330	330	+	395	530	660	660	+											
	-20°F	(-29°C)	175	235	330	330	+	350	465	660	660	+											
	-40°F	(-40°C)	155	205	310	330	+	310	410	620	660	+											
5BTV	50°F	(10°C)	230	270	270	270	+	460	540	540	540	+											
5HBTV	0°F	(-18°C)	140	190	270	270	+	285	380	540	540	+											
	-20°F	(-29°C)	125	165	250	270	+	250	330	500	540	+											
	-40°F	(-40°C)	110	145	220	270	+	220	295	440	540	+											
8BTV	50°F	(10°C)	150	200	210	210	+	300	400	420	420	+											
8HBTV	0°F	(-18°C)	100	130	200	210	+	200	265	400	420	+											
	-20°F	(-29°C)	85	115	175	210	+	175	235	350	420	+											
	-40°F	(-40°C)	80	105	155	210	+	155	210	315	420	+											
10BTV	50°F	(10°C)	120	160	180	180	†	240	315	360	360	†											
10HBTV	0°F	(-18°C)	80	110	160	180	+	160	215	325	360	+											
	-20°F	(-29°C)	70	95	140	180	+	145	190	285	360	+											
	-40°F	(-40°C)	65	85	125	170	+	125	170	255	340	+											
10QTVR	50°F	(10°C)	100	130	195	195	†	200	265	390	390	+											
12HQTV	0°F	(-18°C)	80	105	160	195	+	160	210	320	390	+											
	-20°F	(-29°C)	70	95	145	195	+	145	195	295	390	+											
	-40°F	(-40°C)	65	90	135	180	+	135	180	275	365	+											
15QTVR	50°F	(10°C)	75	100	150	200	220	160	210	320	340	+											
	0°F	(-18°C)	60	80	120	160	200	125	170	255	340	+											
	-20°F	(-29°C)	55	70	110	145	185	115	155	235	315	+											
	-40°F	(-40°C)	50	65	100	135	170	110	145	220	290	+											
20QTVR	50°F	(10°C)	60	80	120	160	195	120	160	240	320	390											
20HQTV	0°F	(-18°C)	45	60	95	125	160	95	125	190	255	320											
	-20°F	(-29°C)	40	55	85	115	145	85	115	175	235	295											
	-40°F	(-40°C)	40	55	80	110	135	80	110	165	220	275											
5XTV	50°F	(10°C)	180	240	360	385	385	360	480	720	765	765											
5HXTV	0°F	(-18°C)	160	210	320	385	385	315	420	625	765	765											
	-20°F	(-29°C)	150	200	305	385	385	295	395	595	765	765											

-40°F

(-40°C)

145

195

290

385

385

285

380

570

760

765

TABLE 8 MAXIMUM CIRCUIT LENGTH (FEET) VS. CIRCUIT BREAKER TRIP RATING (AMPS)

120- and 240-volt heating cables applied to metal pipe with glass tape

				120-v	olt cabl	.e			24	0-volt	able	
Heating cable	Start-u temper	•	15 A	20 A	30 A	40 A	50 A	15 A	20 A	30 A	40 A	50 A
10XTV	50°F	(10°C)	110	145	220	270	270	220	295	440	540	540
10HXTV	0°F	(-18°C)	95	130	195	260	270	195	260	385	515	540
	-20°F	(-29°C)	95	125	190	250	270	185	245	370	495	540
	-40°F	(-40°C)	90	120	180	240	270	175	235	355	470	540
15XTV	50°F	(10°C)	75	100	150	200	220	150	200	300	400	445
15HXTV	0°F	(-18°C)	65	90	135	180	220	130	175	265	355	440
	-20°F	(-29°C)	65	85	130	170	215	125	165	250	335	420
	-40°F	(-40°C)	60	80	125	165	205	120	160	240	40 540 85 515 70 495 470 00 400 65 355 60 335 40 320 30 305 05 275 00 265	405
20XTV	50°F	(10°C)	60	80	120	160	190	115	150	230	305	380
20HXTV	0°F	(-18°C)	50	70	105	140	180	100	135	205	275	345
	-20°F	(-29°C)	50	65	100	135	170	100	130	200	265	330
	-40°F	(-40°C)	50	65	100	130	165	95	125	190	255	320

[†] Not permitted

For a fully optimized design, use TraceCalc Pro design software or contact your Pentair Thermal Management representative.

TABLE 9 MAXIMUM CIRCUIT LENGTH (FEET) VS. CIRCUIT BREAKER TRIP RATING (AMPS)

				208-v	olt cable	e			27	7-volt c	able	
Heating cable	Start-u temper		15 A	20 A	30 A	40 A	50 A	15 A	20 A	30 A	40 A	50 A
3BTV	50°F	(10°C)	635	635	635	635	†	690	710	710	710	+
	0°F	(-18°C)	390	520	635	635	+	405	540	710	710	+
	-20°F	(-29°C)	345	460	635	635	+	360	480	710	710	+
	-40°F	(-40°C)	305	405	610	635	+	315	425	635	710	+
5BTV	50°F	(10°C)	435	505	505	505	+	490	590	590	590	+
5HBTV	0°F	(-18°C)	270	360	505	505	+	303	404	590	590	+
	-20°F	(-29°C)	235	315	475	505	+	265	355	530	590	+
	-40°F	(-40°C)	210	280	420	505	+	235	315	470	590	+
3BTV	50°F	(10°C)	280	370	385	385	†	330	440	465	465	+
8HBTV	0°F	(-18°C)	185	250	370	385	+	220	290	440	465	+
	-20°F	(-29°C)	165	220	330	385	+	195	255	385	465	+
	-40°F	(-40°C)	145	195	295	385	+	170	230	346	460	+
10BTV	50°F	(10°C)	220	290	330	330	+	260	350	400	400	+
10HBTV	0°F	(-18°C)	150	200	295	330	+	180	240	355	400	+
	-20°F	(-29°C)	130	175	260	330	+	155	210	315	400	+
	-40°F	(-40°C)	115	155	235	310	+	140	185	280	375	+
10QTVR	50°F	(10°C)	195	260	365	365	+	190	255	385	410	+
12HQTV	0°F	(-18°C)	155	205	310	365	+	150	205	305	410	+
	-20°F	(-29°C)	145	190	290	365	+	140	190	285	380	+
	-40°F	(-40°C)	135	180	270	360	+	130	175	265	350	+
15QTVR	50°F	(10°C)	150	205	305	305	+	175	230	350	370	+
	0°F	(-18°C)	120	160	245	305	+	140	185	280	370	+
	-20°F	(-29°C)	110	150	225	300	+	130	170	260	345	+
	-40°F	(-40°C)	105	140	210	280	+	120	160	240	320	+

TABLE 9 MAXIMUM CIRCUIT LENGTH (FEET) VS. CIRCUIT BREAKER TRIP RATING (AMPS)

208- and 277-volt heating cables applied to metal pipe with glass tape

			208-volt cable				277-volt cable					
Heating cable	Start-u temper		15 A	20 A	30 A	40 A	50 A	15 A	20 A	30 A	40 A	50 A
20QTVR	50°F	(10°C)	110	145	220	290	355	125	170	255	340	426
20HQTV	0°F	(-18°C)	85	115	175	235	290	100	135	200	270	340
	-20°F	(-29°C)	80	105	160	215	270	95	125	185	250	315
	-40°F	(-40°C)	75	100	150	200	250	85	115	175	235	290
5XTV	50°F	(10°C)	355	475	715	720	720	390	520	750	750	750
5HXTV	0°F	(-18°C)	310	415	625	720	720	340	450	680	750	750
	-20°F	(-29°C)	295	395	595	720	720	325	430	645	750	750
	-40°F	(-40°C)	285	380	565	720	720	310	410	615	750	750
10XTV	50°F	(10°C)	220	290	435	515	515	235	315	470	580	580
10HXTV	0°F	(-18°C)	190	255	385	515	515	205	275	415	550	580
	-20°F	(-29°C)	185	245	365	490	515	195	260	395	525	580
	-40°F	(-40°C)	185	235	350	470	515	190	250	380	500	580
15XTV	50°F	(10°C)	145	195	295	395	420	160	215	320	430	480
15HXTV	0°F	(-18°C)	130	175	260	345	420	140	190	280	375	470
	-20°F	(-29°C)	125	165	250	330	415	135	180	270	360	450
	-40°F	(-40°C)	120	160	235	315	395	130	170	260	345	430
20XTV	50°F	(10°C)	110	150	220	295	355	125	165	250	330	415
20HXTV	0°F	(-18°C)	100	135	200	270	335	110	150	225	300	375
	-20°F	(-29°C)	95	130	195	260	320	105	145	215	290	360
	-40°F	(-40°C)	90	125	185	250	310	105	140	210	280	345

[†] Not permitted

Example: Determine maximum length of heating cable on one circuit breaker

Input 10XTV1 heating cable (from Cable Selection, Step 3)

120 volts (from Cable Selection Step 1) Input

0°F start-up temperature (from Cable Selection, Step 1) Input

Maximum circuit length = 195 feet on a 30-amp breaker (from Table 8) Input

If the total length of cable exceeds 195 feet, you must use a 40-amp circuit breaker, which allows up to 260 feet.

DETERMINE MINIMUM NUMBER OF CIRCUITS

Example: Minimum number of circuits calculation

Input 195 ft allowed per 30-amp circuit (from Table 8)

Input Total circuit length = 193 ft (from Bill of Materials, Step 6)

1 circuit Number of circuits

If the total length of heating cable required exceeded 195 ft, you would need to split the total length into two separate circuits or use a larger circuit breaker size.

Line 1 + Line 2 + Line 3 ≤ Maximum circuit length

Fig. 8 Maximum heating cable circuit length

Ground-fault protection

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with the requirements of Pentair Thermal Management, agency certifications, and national electrical codes, groundfault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Many DigiTrace control and monitoring systems meet the ground-fault protection requirement.

Connection Kit Selection and Accessories

WARNING: Fire hazard

To prevent fire or shock, Raychem brand specified connection kits must be used. Do not substitute parts or use vinyl electrical tape.

OVERVIEW

Pentair Thermal Management offers a full range of connection kits for power connections, splices, and end seals on self-regulating cable systems. These connection kits must be used to ensure proper functioning of the product and compliance with warranty, code, and approvals requirements.

Different power connection, end seal, splice, and tee kits are required depending on the area classification. Data sheets can be found on the Pentair Thermal Management web site, www.pentairthermal.com, or the Technical data sheet section of the Advanced Industrial Solutions Heat-Tracing Products & Services Catalog (H56550).

NONHAZARDOUS AND HAZARDOUS LOCATION CONNECTION KITS

Figure 9 shows the connection kits and accessories available for self-regulating heating systems.

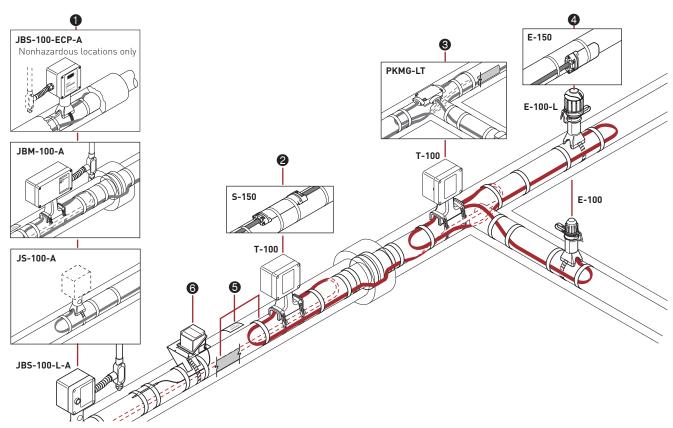


Fig. 9 Self-regulating heating system connection kits and accessories

TABLE 10 NONHAZARDOUS AND HAZARDOUS CONNECTION KITS AND ACCESSORY SELECTION

Description	Catalog number	Quantity
Connection Kits		
Power connection		1 per circuit
Single heating cable Single heating cable with light Single heating cable with digital electronic controller	JBS-100-A JBS-100-L-A JBS-100-ECP-A (nonhazar	rdous locations only)
Single heating cable (user-supplied junction box)	JS-100-A	
Multiple heating cables (1, 2, or 3) Multiple heating cable with light	JBM-100-A JBM-100-L-A	
2 Splice connection		1 per splice
Above insulation	T-100	
Below insulation	S-150	
3 Tee connection		1 per tee
Above insulation	T-100	
Below insulation	PMKG-LT (BTV and QTVR o	only)
4 End seal		1 per power connection plus 1 per tee
Above insulation	E-100	
Above insulation with light	E-100-L-A	
Below insulation	E-150	
Accessories		
5 Attachment tape, labels, and pipe straps		

Controls (optional)

⑥ Thermostat — Control and Monitoring design guide (H56889)

CID1 HAZARDOUS LOCATION CONNECTION KITS

All power connections, splices, tees, and end seals in a Division 1 location must use the HAK-C-100 connection kit and an HAK-JB3-100 or a Division 1 Nationally Recognized Testing Lab (NRTL) approved junction box.

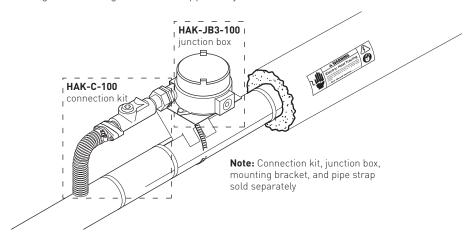
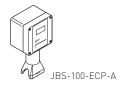


Fig. 10 CID1 hazardous location connection kits

TABLE 11 CID1 CONNECTION KIT SELECTION

				Additional materials required			
Connection type	Number of HAK-C-100 kits required	Number of holes required on the junction box	Junction box catalog number	Mounting brackets*	Pipe straps		
Power	1	2	HAK-JB3-100	1	1		
Splice	2	2	HAK-JB3-100	1	1		
Tee	3	3	HAK-JB3-100	1	1		
End seal	1	1	HAK-JB3-100	1	1		

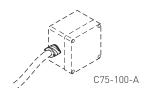
^{*} Catalog number UMB

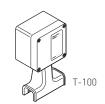

The HAK-C-100 kit is FM approved and CSA certified to be used for all power connections, splices, tees, and end seals in Division 1 locations.

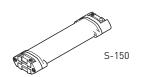
SYSTEM CONNECTION KITS

JBS-100-A Power connection for one heating cable in nonhazardous and hazardous locations. Includes cold-applied heating cable core seal. Requires one pipe strap to be ordered separately.

With red indicator light, order JBS-100-L-A


JBS-100-ECP-A Power connection and digital electronic controller. Requires one pipe strap to be ordered separately. Nonhazardous locations only.

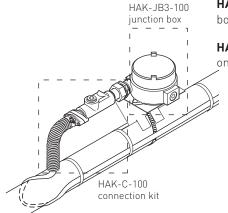

JS-100-A Junction box stand for one heating cable in nonhazardous and hazardous locations. A separate customer-supplied NEMA 4X junction box is required. Includes cold-applied heating cable core seal. Requires one pipe strap to be ordered separately.


JBM-100-A Multiple-entry power connection for up to three heating cables. Can also be used as a splice or tee connection. For use in nonhazardous and hazardous locations. Includes cold-applied heating cable core seal. Requires two pipe straps to be ordered separately. With red indicator light, order JBM-100-L-A.

C75-100-A A NEMA 4X-rated gland kit (3/4" NPT) used to transition heating cables into a junction box in nonhazardous and hazardous locations. Includes cold-applied heating cable core seal. A terminal block (3 x 12 AWG) is included. This kit does not include the junction box or the conduit.

T-100 Tee or splice connection for up to three heating cables in nonhazardous and hazardous locations. Includes cold-applied heating cable core seal. Requires two pipe straps to be ordered separately.

S-150 Splice kit for heating cables in nonhazardous and hazardous locations. Includes cold-applied heating cable core seal.



E-100-A End seal for heating cable in nonhazardous and hazardous locations. Reenterable. Includes cold-applied heating cable core seal. Requires one pipe strap to be ordered separately.

E-100-L-A Lighted version

E-150 Low-profile end seal for heating cable in nonhazardous and hazardous locations. Includes cold-applied heating cable core seal.

HAK-C-100 CID1 hazardous location connection kit for one heating cable. Junction box ordered separately.

HAK-JB3-100 CID1 hazardous location junction box for up to three entries. Requires one pipe strap and a universal mounting bracket (UMB) to be ordered separately.

ACCESSORIES

GT-66 Glass Installation Tape

- For use on pipes other than stainless steel
- 1/2" x 66' roll
- Strap at 1-foot intervals at minimum application temperature of 40°F (5°C)

GS-54 Glass Installation Tape

- For use on all pipes, particularly stainless steel
- 1/2" x 54' roll
- Strap at 1-foot intervals at minimum application temperature of -40°F (-40°C)

AT-180 Aluminum Tape

- For use on all pipe materials
- 2-1/2" x 180' roll
- Temperature class: 300°F (150°C)
- Minimum installation temperature: 32°F (0°C)

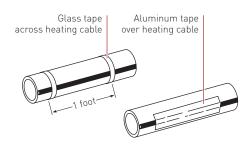


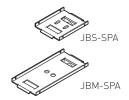
Fig. 11 Tape installation

TABLE 12 ATTACHMENT TAPE REQUIREMENTS

		Rolls needed per 100 ft of cable							
		Pipe diameter (IPS) in inches							
Tape type	1/2	1	2	3	4	6	8		
GT-66	0.6	1.2	4	4	6	8	10		
GS-54	0.6	1.2	4	6	6	10	12		
AT-180	Use one	foot of tap	e per foot	of heating	g cable				

ETL (Electric Traced Label)

Attach the label to the outside of the thermal insulation weather barrier to indicate presence of electrical heat tracing. Use one label for every 10 feet (3 m) of pipe, alternating on either side of the pipe.



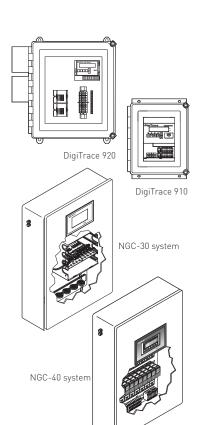
Pipe Straps

Stainless steel pipe straps to attach connection kit to the heat-traced pipe. Use Table 13 below to assist with pipe strap selection.

TABLE 13 PIPE STRAP SELECTION

Catalog number	Pipe size
PS-01	For conduit ≤ 1"
PS-03	For connection kits on pipes with dimensions < 2"
PS-10	For connection kits on pipes with dimensions 2" – 10"
PS-20	For connection kits on pipes with dimensions 10" – 19.5"

Small Pipe Adapters


JBS-SPA Adapter for mounting E-100, JBS-100, and JS-100-A to small pipe. (≤ 1" diameter)

JBM-SPA Adapter for mounting JBM-100 and T-100 to small pipe. (≤ 1" diameter)

Conduit Drain

JB-DRAIN-PLUG-3/4IN Conduit drain for JBS-100, JBM-100, and JS-100-A.

Controls

For a complete selection of control and monitoring products, including thermostats, see Control and Monitoring design guide (H56889)

WWW.PENTAIRTHERMAL.COM

NORTH AMERICA

Tel: +1.800.545.6258 Fax: +1.800.527.5703 Tel: +1.650.216.1526 Fax: +1.650.474.7711 thermal.info@pentair.com **EUROPE, MIDDLE EAST, AFRICA**

Tel: +32.16.213.511 Fax: +32.16.213.603 thermal.info@pentair.com **ASIA PACIFIC**

Tel: +86.21.2412.1688 Fax: +86.21.5426.2917 cn.thermal.info@pentair.com **LATIN AMERICA**

Tel: +1.713.868.4800 Fax: +1.713.868.2333 thermal.info@pentair.com

All Pentair trademarks and logos are owned by Pentair or its global affiliates. Pentair reserves the right to change specifications without prior notice. © 2001-2013 Pentair.