Appendix A – Course Syllabi

Appendix A: Syllabi

Engineering Physics

Bachelor of Science in Engineering Physics

Self-Study Report

New Mexico State University

Chemical Engineering Courses

Chemical Engineering Courses

Course Number and Name: Ch E 111: Introduction to Computer Calculations in Chemical Engineering

Credits and Contact Hours:	3
Instructor:	Jessica Houston
Textbook:	MATLAB for Engineers 2/E; Holly Moore; Pearson
	Prentice Hall, 2008
	Introduction to MathCAD 15 2/E; Ronald W. Larsen;
	Pearson Prentice Hall, 2011

Specific course information

catalog description	Introduction to the use of computer software to solve
	earn a C or better.
Pre- and co-requisites:	MATH 121 or MPL greater than or equal to 4.
Required/elective/selected	Required for EP students with Chemical concentration

Specific goals for the course: The central goal of this course is for students to develop competency in the use of the primary computational tools used in the Chemical Engineering Curriculum including structured programming, spreadsheeting, and mathematical software.

outcomes of instruction	Program effectively with the Matlah7 software
	using built in functions: operations: arrays:
	functions, platting, logical statements, and
	functions; plotting; logical statements; and
	structured programming with looping operations.
	 Perform spreadsheet-based calculations and
	operations with Excel by formatting cells, rows,
	columns, and sheets; graphing functions and
	regressing data; solving formulas; utilizing
	functions: implementing logical statements: and
	performing filters and sorts.
	 Program effectively with MathCad software by
	defining variables, functions, ranges, vectors
	uenning variables, functions, ranges, vectors
	matrices; building expressions; creating graphs;
	formatting areas; using/converting units; data
	analysis by linear regression; solving an equation
	in a single unknown; solving a system of
	linear/non-linear equations; finding the roots of a
	polynomial; symbolic solutions of equations;
	simple programming operations.
Student outcomes addressed:	a, k
Brief list of topics to be covered	1. MATLAB programming
	2. MathCAD programming
	2. Microsoft Even
	3. IVIICTOSOTT EXCEI

Course Number and Name:

Ch E 201: Material and Energy Balances

Credits and Contact Hours:	4 (2+2P)
Instructor:	David Rockstraw
Textbook:	Elementary Principles of Chemical Processes, 3rd
	Update Edition, Richard M. Felder and Ronald W.
	Rousseau, 2005

Specific course information

catalog description	Chemical Engineering basic problem-solving skills; unit conversions; elementary stoichiometry; material balances; energy balances; combined energy and material balances including those with chemical reaction, purge and recycle; thermochemistry; application to unit operations. Sources of data. Introduction to the first law of thermodynamics and its applications. Chemical engineering majors must earn C or better in this course. Restricted to CH E majors.
Pre- and co-requisites:	CHEM 115 or CHEM 111G, Ch E 111 and MATH 192G
Required/elective/selected	Required for EP students with Chemical concentration

outcomes of instruction	Student will be able to apply concepts in topics covered
student outcomes	a, c, d, e, g, k
addressed	
Brief list of topics to be	units and conversions; data analysis; process
covered	classification; balances and flowcharts; degree of
	freedom analysis; general material balance; material
	balances; recycle and by-pass; limiting/excess reactant;
	fractional conversion; chemical equilibrium;
	molecular/atomic balances; extent of reaction;
	combustion reactions; non-ideal gas equations of state;
	compressibility; chemical equilibria; Gibbs phase rule;
	condensable components; liquid solutions and solubility;
	forms of energy; first law of thermodynamics; closed
	system energy balance; open system energy balance; the
	steam tables; energy balance calculations; phase changes
	and latent heat; psychometric charts; adiabatic cooling;
	mixing and solution; heat of reaction; heat of formation;
	heat of combustion; reactive processes energy balance;
	adiabatic reactors; solution thermochemistry; fuels and
	combustion; adiabatic flame temperature; flammability
	and ignition; and flames and detonations.

Course Number and Name: Ch E 301: Chemical Engineering Thermodynamics I

Credits and Contact Hours:	3
Instructor:	Hongmei Luo
Textbook:	Sandler, Stanley I., Chemical, Biochemical, and
	<i>Engineering Thermodynamics</i> , 4 th edition, John Wiley and
	Sons, 1999, ISBN# 0-471-66174-0.

Specific course information

catalog description	Applications of the first and second law to chemical
	process systems, especially phase and chemical
	equilibrium and the behavior of real fluids. Development
	of fundamental thermodynamic property relations and
	complete energy and entropy balances. Chemical
	engineering majors must earn C or better in this course.
Pre- and co-requisites:	CH E 201 and MATH 291
Required/elective/selected	Required for EP students with Chemical concentrations

Specific goals for the course: This course is one of the core courses in the Chemical Engineering curriculum that satisfies the professional component to enable graduates to design, analyze and control physical, chemical and biological processes consistent with program objectives to provide all graduating B.S. students with a solid foundation in the fundamentals of chemical engineering science, design, and practice.

outcomes of instruction	 At the end of this course the student will be able to: Define a system, outcome (a) an ability to apply knowledge of mathematics, science, and engineering; Solve problems using the energy balance appropriate for a system (the First Law of Thermodynamics), outcome (e) an ability to identify, formulate and solve engineering problems; Solve problems using the entropy balance appropriate for a system (the Second Law of Thermodynamics), outcome (e) an ability to identify, formulate and solve engineering problems; Solve problems using the entropy balance appropriate for a system (the Second Law of Thermodynamics), outcome (e) an ability to identify, formulate and solve engineering problems; Evaluate, manipulate and use thermodynamic partial derivatives, outcome (a) an ability to apply knowledge of mathematics, science, and angineering.
	 engineering; Correctly use a thermodynamic property chart
	and the steam tables, outcome (a) an ability to
	apply knowledge of mathematics, science, and
	engineering and outcome (k) an ability to use the

	 techniques, skills, and modern engineering tools necessary for engineering practice As a team, choose a process related to energy production or refrigeration, and present a description of the process, including mass, energy and entropy balances, via written and oral presentations, outcome (d) an ability to function on multidisciplinary teams, (e) an ability to identify, formulate and solve engineering problems and outcome (g) an ability to communicate effectively.
student outcomes	a, d, e, g, k
addressed	
Brief list of topics to be	1. Conservation of Mass
covered	2. Application of Mass Balance
	3. The First Law of Thermodynamics, Conservation of
	Energy
	4. Application of Energy Balance
	5. Entropy, the Second Law of Thermodynamics
	6. Application of Entropy Balances
	7. Steam Table
	8. Heat, Work, Engines
	9. Power and Refrigeration Cycles
	10. Thermodynamics Fundamental Equations
	11. Evaluation of Thermodynamic Partial Derivatives
	12. Ideal Gas
	13. Equation of State
	14. Criteria for Equilibrium
	15. Stability of Thermodynamic systems
	16. The Third Law of Thermodynamics

Course Number and Name: Ch E 302: Chemical Engineering Thermodynamics II

Credits and Contact Hours:	2
Instructor:	Martha Mitchell
Textbook:	Sandler, Stanley I., Chemical, Biochemical, and
	<i>Engineering Thermodynamics</i> , 4 th edition, John Wiley and
	Sons, 1999, ISBN# 0-471-66174-0.

Specific course information

catalog description	Continuation of CH E 301. Chemical engineering majors
	must earn C or better in this course.
Pre- and co-requisites:	CH E 301 and MATH 392
Required/elective/selected	Required for EP students with Chemical concentration

Specific goals for the course: This course is one of the core courses in the Chemical Engineering curriculum that satisfies the professional component to enable graduates to design, analyze and control physical, chemical and biological processes consistent with program objectives to provide all graduating B.S. students with a solid foundation in the fundamentals of chemical engineering science, design, and practice.

outcomes of instruction	At the end of this course the student will be able to:
	 State and apply the First and Second Laws of
	thermodynamics to open and closed systems
	(student outcome (e) an ability to identify,
	formulate, and solve engineering problems)
	• Use departure functions to solve First and Second
	Law problems for non-ideal systems (student
	outcome (e) an ability to identify, formulate, and
	solve engineering problems)
	• State the conditions of equilibrium for multiphase
	systems (student outcome (a) an ability to apply
	knowledge of mathematics, science, and
	engineering)
	 Understand and apply fugacity to phase equilibria
	problems (student outcome (a) an ability to apply
	knowledge of mathematics science and
	engineering)
	 Compute the vapor pressure for single-
	component multiphase systems (student outcome
	(a) an ability to apply knowledge of mathematics
	(a) all ability to apply knowledge of mathematics,
	Apply partial molar quantities to compute mixture
	properties (student outcome (a) an ability to apply
	knowledge of mathematics, science, and
	engineering)
	 Know and apply models for excess Gibbs free

	•	energy in nonideal mixtures (student outcome (a) an ability to apply knowledge of mathematics, science, and engineering) Construct binary phase diagrams for multiple phase systems correcting for nonideal behavior using fugacity coefficients and activity coefficients (student outcome (a) an ability to apply knowledge of mathematics, science, and engineering) Perform bubble and dewpoint calculations for vapor-liquid equilibria (student outcome (a) an ability to apply knowledge of mathematics, science, and engineering) Determine the equilibrium composition for a reacting system given the reaction stoichiometry, temperature and pressure (student outcome (a) an ability to apply knowledge of mathematics, science, and engineering)
student outcome addressed	a, e	
Brief list of topics to be	1.	Review of the First and Second Laws of
covered		Thermodynamics
	2.	Review of nonideal fluids and estimation of
		thermodynamic properties using equations of
	2	State and departure functions
	5.	systems
	4.	Thermodynamics of multicomponent mixtures
	5.	Estimation of Gibbs energy and fugacity of
		components in mixtures (including activity coefficient models)
	6.	Multiphase equilibrium in mixtures (vapor-liquid,
		liquid-liquid, vapor-liquid-liquid)
	7.	Phase equilibria in systems including solids
	8.	Chemical equilibrium

Course Number and Name: Ch E 302L: Thermodynamic Models of Physical Properties

Credits and Contact Hours:	1 (3P)
Instructor:	Martha Mitchell
Textbook:	none

Specific course information

catalog description	Computational analysis of thermodynamic models in a chemical process simulator, and comparison to experimental data. Specification of pseudo-components. Generation of physical properties by group contribution methods.
Pre- and co-requisites:	CH E 302 (corequisite)
Required/elective/selected	Required for EP students with Chemical concentration

outcomes of instruction	At the end of this course the student will be able to:
	 Use MathCAD to calculate one-component
	properties using cubic equations of state (student
	outcome (k) an ability to use the techniques, skills,
	and modern engineering tools necessary for
	engineering)
	 Use MathCAD to ompute the vapor pressure for
	single-component systems
	Use MathCAD to calculate fugacity coefficients for
	mixture equations of state (student outcome (k)
	an ability to use the techniques, skills, and
	modern engineering tools necessary for
	engineering)
	Use MathCAD to calculate activity coefficients
	(student outcome (k) an ability to use the
	techniques, skills, and modern engineering tools
	necessary for engineering)
	Use MathCAD to calculate bubble and dewpoints soofficients (student outcome (k) an ability to use
	the techniques, skills, and modern engineering
	tools necessary for engineering)
	Use Visual Basic program LINIEAC to determine
	mixture properties from group contribution
	methods (student outcome (k) an ability to use
	the techniques, skills, and modern engineering
	tools necessary for engineering)
	 Use AspenPlus (flowsheeeting software) to
	analyze thermodynamic models and compare to
	experimental data, to specify pseudo-components

		and generate physical properties by group contribution methods methods (student outcome (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering)
student outcomes	k	
addressed:		
Brief list of topics to be	1.	Use of MathCAD to predict single-component
covered		properties for cubic equations of state (enthalpy,
		entropy, specific volume, fugacity)
	2.	Use of MathCAD to predict multi-component
		properties (fugacity coefficients, activity
		coefficients)
	3.	Use of UNIFAC (through a Virtual Basic interface)
		to predict multi-component mixture properties
	4.	Use of ASPEN to predict single component
		properties, such as vapor pressure
	5.	Use of ASPEN to predict multi-component mixture
		properties
	6.	Use of ASPEN to predict vapor-liquid equilibrium

Course Number and Name: Ch E 305: Transport Operations I: Fluid Flow

Credits and Contact Hours:	3
Instructor:	Paul Andersen
Textbook:	Andersen (2012) Fluid Mechanics: Theory and
	Applications, 2012 Edition (available on line).

Specific course information

catalog description	Theory of momentum transport. Unified treatment via
	equations of change. Shell balance solution to 1-D
	problems in viscous flow. Analysis of chemical
	engineering unit operations involving fluid flow. General
	design and operation of fluid flow equipment and piping
	networks. Chemical engineering majors must earn C or
	better in this course.
Pre- and co-requisites:	CH E 201, MATH 291G, MATH 392 (corequisite)
Required/elective/selected	Required for EP students with the Chemical
	concentration

outcomes of instruction	Students successfully completing this course will demonstrate the ability to do the following:
	 Basic Concepts. Write and explain the meanings of the basic balances and equations of fluid mechanics. [Outcome 3(a)]
	2. Model Building. Given a verbal or pictorial description, create useful mathematical models of engineering flow systems. [3(e)]
	3. Problem Solving. Solve problems involving mass, energy, momentum balances, fluid forces, etc. [3(a)(e)]
	This course addresses the following student outcomes from ABET Criterion 3:
	(a) Ability to apply knowledge of mathematics, science, and engineering
	(e) Ability to identify, formulate, and solve engineering problems
student outcomes addressed	a, e

List of topics to be covered	Balances
	 Supplemental relations
	• Mass
	• Energy
	 Entropy and free energy
	Momentum
	Static fluid forces
	• Dynamic fluid forces
	 Dimensionless parameters and scale-up
	• Lift and drag
	• Flow in conduits
	• Friction
	• Fluid machinery

Course Number and Name: Ch E 306: Transport Operations II: Heat and Mass Transfer

Credits and Contact Hours:	3
Instructor:	Shuguang Deng
Textbook:	Frank P. Incropera and David P. DeWitt "Fundamentals of
	Heat and Mass
	Transfer" 6 th Edition, John Wiley & Sons, 2007 (ISBN: 0-
	471-45728-0)

Specific course information

catalog description	Theory of heat and mass transport. Unified treatment via
	equations of change. Analogies between heat and mass
	transfer. Shell balance solution to 1-D problems in heat
	and mass transfer. Analysis of chemical engineering unit
	operations involving heat transfer. Design principles for
	mass transfer equipment. Chemical engineering majors
	must earn C or better in this course.
Pre- and co-requisites:	CH E 305, MATH 392
Required/elective/selected	Required for EP students with Chemical concentration

Specific goals for the course: for students to learn to apply the fundamentals of transport phenomena to solve problems relevant to chemical engineering practice: energy and mass transfer. In each case, we will work through examples that help to explore both the intuitive concepts and the formal mathematical framework necessary to make predictions. Transport phenomena, along with thermodynamics and reactor design, define the fundamental skill set necessary for solving the challenging problems that arise in the chemical engineering profession.

outcomes of instruction	 At the completion of this course, the students will be able to (the mapping of these objectives to ABET outcomes a-k): Set up microscopic and macroscopic energy and mass balances (conservation principles) (a, e); Know the flux laws for heat and mass transport (a, c, e); Apply the conservation principles and flux laws to model transport processes central to chemical
	 Use the physical and mathematical similarities between the processes of heat and mass transfer to solve new problems "by analogy" (a, c, e); Perform basic unit operation design calculations for heat and mass transfer equipment (a, c, e)
student outcomes addressed	a, c, e

Brief list of topics to be	Heat Transfer
covered	 Conservation of Energy
	 1-D and 2-D Steady-State Conduction
	Transient Conduction
	Convection Heat Transfer
	 Heat and Mass Transfer Analogies
	 Internal and External Flow
	Free Convection
	 Boiling and Condensation
	Heat Exchangers
	 Mass Transport in Non-stationary Media
	 Conservation Equations and Concentrations at
	Interfaces
	 Diffusion with Homogeneous Chemical Reactions
	Transient Diffusion

Course Number and Name: Ch E 361: Engineering Materials

Credits and Contact Hours:	3
Instructor:	M. Ginger Scarbrough
Textbook:	Materials Science and Engineering, An Introduction 8/e;
	Callister and Rethwisch; John Wiley and Sons, 2009

Specific course information

Catalog description	Bonding and crystal structure of simple materials.
	Electrical and mechanical properties of materials. Phase
	diagrams and heat treatment. Corrosion and
	environmental effects. Application of concepts to metal
	alloys, ceramics, polymers, and composites. Selection of
	materials for engineering design.
Pre- and co-requisites:	CHEM 111 or 114 or 115
Required/elective/selected	Required for EP students with Chemical concentration

specific gouis for the course	
Outcomes of instruction	At the completion of this course, students will be able to: analyze the interrelationship between chemical bonding and composition, structures, and processes (including heat treatments and mechanical strengthening mechanisms) and their effect on material properties (mechanical, thermal, and electrical); select materials, given specific design parameters; and evaluate and discuss economic, environmental, and societal issues in Materials Science and Engineering.
Student outcomes	a, h
addressed	
Brief list of topics covered	1) Introduction to Materials Engineering
	2) Atomic Structure & Bonding
	3) Crystal Structure & Geometry
	4) Crystalline Imperfections
	5) Diffusion
	6) Mechanical Properties
	7) Dislocation Strengthening
	8) Failure
	11) Thermal Processing
	12) Ceramics & Applications
	13) Polymers & Applications
	14) Nanotechnology
	15) Composites
	16) Electrical Properties
	17) Corrosion

Course Number and Name: Ch E 441: Chemical Kinetics and Reactor Engineering

Credits and Contact Hours:	3
Instructor:	David Rockstraw
Textbook:	Elements of Chemical Reaction Engineering, 4th ed., H.
	Scott Fogler, 2007

Specific course information

catalog description	Chemical Kinetics and Reactor Engineering, 3 cr.; Analysis
	and interpretation of kinetic data and catalytic
	phenomena. Applied reaction kinetics; ideal reactor
	modeling; non-ideal flow models. Mass transfer
	accompanied by chemical reaction. Application of basic
	engineering principles to design, operation, and analysis
	of industrial reactors.
Pre- and co-requisites:	CHEM 314; CH E 306; CH E 307 (co-requisite)
Required/elective/selected	Required for EP students with Chemical concentration

outcomes of instruction	At the completion of this course, students will be able to: perform mole balances in systems involving chemical reaction; calculate conversion in batch and flow systems; size single and staged continuous-stirred tank, and plug flow reactors; develop rate laws from mechanisms and experimental data; calculate pressure drops and the effect on kinetics in packed-bed PFRs; apply the differential and integral methods of kinetic data analysis; maximize product selectivity for systems involving multiple reactions; understand effects of non-isothermal operation and unsteady-state behavior; apply rate limiting step and quantify performance in catalytic systems, quantify mass transfer limitations on heterogeneous systems, and understand the idea of a residence time distribution, and the effect on reactor ideality.
student outcomes addressed	a, e
Brief list of topics to be covered	Design/Performance Equations; Reaction Conversion; Isothermal Reactor Design; Rate Laws/Stoichiometry; Kinetic Data Analysis; Multiple Reactions; Unsteady State, Nonisothermal, and Nonadiabatic Reactor Operation; Effect of Mass Transfer Resistance on Heterogeneous Reactions; Catalysis and Catalyst Deactivation, Design and Analysis of Catalytic Reactors; Residence Time Distributions; Nonideal Reactor Models