Self-supervised Learning for Vision-and-Language

Licheng Yu, Yen-Chun Chen, Linjie Li

Nowadays Machine Learning

Nowadays Machine Learning

Datasets + Labels

Please describe the image:

Instructions:

- Describe all the important parts of the scene.
- Do not start the sentences with "There is".
- Do not describe unimportant details.
- Do not describe things that might have happened in the future or past.
- Do not describe what a person might say.
- Do not give people proper names.
- The sentence should contain at least 8 words.

- MS COCO's Image Captioning:
 - 120,000 images
 - 5 sentences / image
 - 15 cents / sentence
 - +20% AWS processing fee

Datasets + Labels: Self-Supervised Learning for Vision

Image Colorization

[Zhang et al. ECCV 2016]

Jigsaw puzzles

[Noroozi et al. ECCV 2016]

Image Inpainting

[Pathak et al. CVPR 2016]

Relative Location Prediction

[Doersch et al. ICCV 2015]

Datasets + Labels: Self-Supervised Learning for Vision

CPC; Ord et al, 2019

MOCO; He et al, 2019

CMC; Tian et al, 2019

SimCLR; Chen et al, 2020

Datasets + Labels: Self-Supervised Learning for NLP

Q

W

M

>263 618 active users[notes 2]

and >62.976.506 registered

Users

Wikipedia WIKIPEDIA

Article Talk

From Wikipedia, the free encyclopedia

1.2 Launch and early growth

4.0 December linet

Main page Contents Featured conten Current events Random article Donate to Wikipedia Wikipedia store Interaction Help About Wikipedia Community portal Recent changes Contact page Tools What links here Related changes Upload file RTRC Special pages Permanent link Page information Wikidata item

Cite this page

Create a book

Print/export

View history 🟠 TW 👻 Search

"As we approach the centenary of the Easter Rising we want to try to get a sense of how ordinary people coped with one of the most disruptive periods in contemporary Irish history - from loved ones serving in the British Army and Dublin itself becoming a theatre of war, to the business of state carried out by government."

n the cooler

[Devlin et al. NAACL 2019]

[Radford et al. 2019]

Pre-training + Finetuning

Two-Stage Training Pipeline

Large, Noisy, Cheap Data

Generalization

Large, Noisy, Cheap Data

Pre-training Data

Pre-training Vision+Language Data

'man with his dog on a couch

Free Data for Vision + Language

Free Data for Vision + Language

Free Data for Vision + Language

...

Common Pre-training Data for Vision + Language

	In-domain		Out-of-domain	
Split	COCO Captions	VG Dense Captions	Conceptual Captions	SBU Captions
train	533K (106K)	5.06M (101K)	3.0M (3.0M)	990K (990K)
val	25K (5K)	106K (2.1K)	14K (14K)	10K (10K)

Conceptual Caption

Alt-text: A Pakistani worker helps to clear the debris from the Taj Mahal Hotel November 7, 2005 in Balakot, Pakistan.

Conceptual Captions: a worker helps to clear the debris.

SBU Caption

Little girl and her dog in northern Thailand. They both seemed interested in what we were doing

https://github.com/lichengunc/pretrain-vl-data

Feature Representations for Vision and Language

Visual and Language Features

"man with his dog on a couch"

Visual and Language Features

'man' 'with' 'his' 'dog' 'on' 'a' 'couch'

Visual Features

Pre-2017: grid feature maps [Ren et al, NeurIPS 2015]

Post-2017: region features [Anderson et al, CVPR 2018]

[Jiang et al, CVPR 2020]

Model Architecture

Downstream Tasks VQA VCR NLVR2 Visual Entailment Referring Expressions Image-Text Retrieval Image Captioning

Model Architecture:

[Behand the Scene; Cao et al 2020]

Downstream Tasks VQA VCR NLVR2 Visual Entailment Referring Expressions Image-Text Retrieval Image Captioning

Model Architecture:

[Behand the Scene; Cao et al 2020]

<u>Downstream Tasks</u>
VQA •VCR •NLVR2
Visual Entailment
Referring Expressions
Image-Text Retrieval
Image Captioning

Model Architecture:

[Behand the Scene; Cao et al 2020]

Single-Stream Architecture

Single-Stream Architecture

Single-Stream Architecture

Masked Language Modeling (MLM)

Masked Language Modeling (MLM)

Masked Region Modeling (MRM)

Masked Language Modeling (MLM)

Image Regions: $\mathbf{v} = \{v_1, ..., v_K\}$ Sentence Tokens: $\mathbf{w} = \{w_1, ..., w_T\}$ Masking Indices: $\mathbf{m} \in \mathbb{N}^M$

Loss Function of <u>Masked Language Modeling</u> (MLM): $\mathcal{L}_{\text{MLM}}(\theta) = -E_{(\mathbf{w},\mathbf{v})\sim D} \log P_{\theta}(\mathbf{w}_{\mathbf{m}} | \mathbf{w}_{\backslash \mathbf{m}}, \mathbf{v}).$

Image Regions: $\mathbf{v} = \{v_1, ..., v_K\}$ Sentence Tokens: $\mathbf{w} = \{w_1, ..., w_T\}$ Masking Indices: $\mathbf{m} \in \mathbb{N}^M$

Loss Function of Masked Region Modeling:

 $\mathcal{L}_{\mathrm{MRM}}(\theta) = E_{(\mathbf{w},\mathbf{v})\sim D} f_{\theta}(\mathbf{v}_{\mathbf{m}} | \mathbf{v}_{\backslash \mathbf{m}}, \mathbf{w}).$

1) Objective of Masked Region Feature Regression (MRFR)

$$f_{\theta}(\mathbf{v}_{\mathbf{m}} | \mathbf{v}_{\backslash \mathbf{m}}, \mathbf{w}) = \sum_{i=1}^{M} \| h_{\theta}(\mathbf{v}_{\mathbf{m}}^{(i)}) - r(\mathbf{v}_{\mathbf{m}}^{(i)}) \|_{2}^{2}$$

Image Regions: $\mathbf{v} = \{v_1, ..., v_K\}$ Sentence Tokens: $\mathbf{w} = \{w_1, ..., w_T\}$ Masking Indices: $\mathbf{m} \in \mathbb{N}^M$

Loss Function of Masked Region Modeling:

$$\mathcal{L}_{\mathrm{MRM}}(\theta) = E_{(\mathbf{w},\mathbf{v})\sim D} f_{\theta}(\mathbf{v}_{\mathbf{m}} | \mathbf{v}_{\backslash \mathbf{m}}, \mathbf{w}).$$

2) Objective of <u>Masked Region Classification (MRC)</u>

$$f_{\theta}(\mathbf{v}_{\mathbf{m}} | \mathbf{v}_{\backslash \mathbf{m}}, \mathbf{w}) = \sum_{i=1}^{M} \operatorname{CE}(c(\mathbf{v}_{\mathbf{m}}^{(i)}), g_{\theta}(\mathbf{v}_{\mathbf{m}}^{(i)}))$$
Pretraining Tasks

Image Regions: $\mathbf{v} = \{v_1, ..., v_K\}$ Sentence Tokens: $\mathbf{w} = \{w_1, ..., w_T\}$ Masking Indices: $\mathbf{m} \in \mathbb{N}^M$

Loss Function of Masked Region Modeling:

$$\mathcal{L}_{\mathrm{MRM}}(\theta) = E_{(\mathbf{w},\mathbf{v})\sim D} f_{\theta}(\mathbf{v}_{\mathbf{m}} | \mathbf{v}_{\backslash \mathbf{m}}, \mathbf{w}).$$

3) Objective of Masked Region Classification – KL Divergence (MRC-kl)

$$f_{\theta}(\mathbf{v}_{\mathbf{m}} | \mathbf{v}_{\backslash \mathbf{m}}, \mathbf{w}) = \sum_{i=1}^{M} D_{KL}(\tilde{c}(\mathbf{v}_{\mathbf{m}}^{(i)}) || g_{\theta}(\mathbf{v}_{\mathbf{m}}^{(i)}))$$

Pretraining Tasks

Image-Text Matching (ITM)

Image Regions: $\mathbf{v} = \{v_1, ..., v_K\}$ Sentence Tokens: $\mathbf{w} = \{w_1, ..., w_T\}$

Loss Function of **Image-Text Matching (ITM)**

$$\mathcal{L}_{\text{ITM}}(\theta) = -E_{(\mathbf{w},\mathbf{v})\sim D}[y \log s_{\theta}(\mathbf{w},\mathbf{v}) + (1-y) \log(1-s_{\theta}(\mathbf{w},\mathbf{v}))]).$$

Pretraining Tasks

- UNITER: Word-Region Alignment
- VLP: Left-to-Right Language Modeling
- 12-in-1: Multi-task Learning
- LXMERT: Multi-task Learning

•

• OSCAR: Multi-View Alignment (tokens, tags, regions)

Downstream Tasks

Downstream Task 1: Visual Question Answering

What color are her eyes? What is the mustache made of?

How many slices of pizza are there? Is this a vegetarian pizza?

Is this person expecting company? What is just under the tree?

Does it appear to be rainy? Does this person have 20/20 vision?

[Antol et al., ICCV 2015]

Downstream Task 1: Visual Question Answering

What color are her eyes?

Downstream Task 2: Visual Entailment

Premise

- Two woman are holding packages.
- The sisters are hugging goodbye while holding to go packages after just eating lunch.
- The men are fighting outside a deli.

Hypothesis

- Entailment
- Neutral

Contradiction

Answer

Downstream Task 2: Visual Entailment

Two woman are holding packages.

Downstream Task 3: Natural Language for Visual Reasoning

The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing.

true

One image shows exactly two brown acorns in back-to-back caps on green foliage.

false

Downstream Task 3: Natural Language for Visual Reasoning

The left image contains twice the number of dogs as the right

image, and at least two dogs in total are standing.

Downstream Task 4: Visual Commonsense Reasoning

a) The is giving [per cont]] an obtained

I choose (a) because:

- a) [person1] has the pancakes in front of him.
 - [person4 **1**] is taking everyone's order and asked for clarification.
- c) [person3 [] is looking at the pancakes and both she and
 [person2]] are smiling slightly.
- d) [person3 [] is delivering food to the table, and she might not know whose order is whose.

Downstream Task 4: Visual Commonsense Reasoning

Why is [person4 [] pointing at [person1]?

- a) He is telling [person3] that [person1] ordered the pancakes.
- b) He just told a joke.
- c) He is feeling accusatory towards [person1].
- d) He is giving [person1] directions.

Downstream Task 5: Referring Expression Comprehension

woman washing dishes

Downstream Task 5: Referring Expression Comprehension

Downstream Task 6: Image-Text Retrieval

Downstream Task 6: Image-Text Retrieval

"four people with ski poles in their hands in the snow" "four skiers hold on to their poles in a snowy forest" "a group of young men riding skis" "skiers pose for a picture while outside in the woods" "a group of people cross country skiing in the woods"

Downstream Task 6: Image-Text Retrieval

Self-Supervised Learning for Vision + Language

- Dynamic Batching
- Gradient Accumulation
- Mixed-precision Training

- Dynamic Batching
 - Transformer (self-attention) is $O(L^2)$ (L: number of word + region)
 - Common practice: pad the input to the same maximum length (too long)
 - Our solution: batch data by similar length and only do minimum padding

Conventional Batching

- Dynamic Batching
- Gradient Accumulation
 - For large models, the main training bottleneck is **network communication overhead** between nodes
 - We reduce the communication frequency, hence increase overall throughput

- Dynamic Batching
- Gradient Accumulation
- Mixed-precision Training
 - Bring in the benefits from both worlds of 16-bit and 32-bit
 - 2x~4x speedup compared to standard training

	Fp-16	Fp-32
Speed	Fast	Slow
Memory	Low	High
Numerical Stability	Bad	Good

Self-Supervised Learning for Vision + Language

SOTA of V+L Tasks (Early 2020)

- VQA: UNITER
- VCR: UNITER
- GQA: NSM* [Hudson et al., NeurIPS 2019]
- NLVR2: UNITER
- Visual Entailment: UNITER
- Image-Text Retrieval: UNITER
- Image Captioning: VLP
- Referring Expressions: UNITER

*: without V+L pre-training

Tasks		SOTA V	VI DEDT	VLBERT	Unicoder	ViewalDEDT	LYMERT	UNI	TER
Ta	SKS	SUIA	VILBERI	(Large)	-VL	VISUAIBERI	LAMERI	Base	Large
VQA t	test-dev	70.63	70.55	71.79		70.80	72.42	72.70	73.82
	test-std	70.90	70.92	72.22	-	71.00	72.54	72.91	74.02
	$Q \rightarrow A$	72.60	73.30	75.80	-	71.60	-	75.00	77.30
VCR	QA→R	75.70	74.60	78.40	-	73.20	-	77.20	80.80
	$Q \rightarrow AR$	55.00	54.80	59.70	-	52.40		58.20	62.80
NI VD ²	dev	54.80	-	-		67.40	74.90	77.18	79.12
NLVR	test-P	53.50	-	-	-	67.00	74.50	77.85	79.98
SNLI-	val	71.56	-	-	- 1	-	-	78.59	79.39
VE	test	71.16	-	-	-	-	-	78.28	79.38
7C ID	R@1	-	31.86		48.40	-	-	66.16	68.74
$\Delta S I I $	R@5		61.12	_	76.00	-	-	88.40	89.20
(FIICKT)	R@10	-	72.80	_	85.20	-	-	92.94	93.86
ID	R@1	48.60	58.20	-	71.50	-	-	72.52	75.56
	R@5	77.70	84.90	-	91.20	-	-	92.36	94.08
(Flickr)	R@10	85.20	91.52	-	95.20	-	-	96.08	96.76
ID	R@1	38.60	-	-	48.40	-	-	50.33	52.93
IR	R@5	69.30	-	-	76.70	-	-	78.52	79.93
(COCO)	R@10	80.40	-	-	85.90	-	-	87.16	87.95
ZS TR (Flickr)	R@1	-	-	=	64.30	-	-	80.70	83.60
	R@5	-	-	-	85.80	-	-	95.70	95.70
	R@10	-	-	-	92.30	-	-	98.00	97.70
TD	R@1	67.90	-	-	86.20	-	-	85.90	87.30
TR	R@5	90.30	_	_	96.30	-	-	97.10	98.00
(Flickr)	R@10	95.80	-	-	99.00		-	98.80	99.20
TD	R@1	50.40	-	-	62.30	-	-	64.40	65.68
TR	R@5	82.20	_	-	87.10	-	_	87.40	88.56
(COCO)	R@10	90.00	-	-	92.80	-	-	93.08	93.76
-	val	87.51		-	-	-	-	91.64	91.84
	testA	89.02	-	_		-	-	92.26	92.65
Ref-	testB	87.05	-	-	-	-	-	90.46	91.19
COCO	val^d	77.48	-	-	-	-	-	81.24	81.41
	$testA^d$	83.37	-	-	-	-	-	86.48	87.04
	$testB^d$	70.32	-	_	_	-	-	73.94	74.17
Ref- COCO+	val	75.38	-	80.31	-	-	(-	83.66	84.25
	testA	80.04	-	83.62	-	-	-	86.19	86.34
	testB	69.30	_	75.45	-	-	-	78.89	79.75
	vald	68.19	72.34	72.59	-	_	-	75.31	75.90
	$testA^d$	75.97	78.52	78.57	_	-	_	81.30	81.45
	$testB^d$	57.52	62.61	62.30	-	-	-	65.58	66.70
a .	val	81.76	-	-		-		86.52	87.85
Ref-	test	81.75	_	_	_	-	-	86.52	37273
COCOg	vald	68 22	-	_			-	74.31	74986
8	test ^d	69 46	_			-	_	74.51	75.77
		50.10							

Moving Forward...

- Interpretability of VLP models
 - VALUE [Cao et al., 2020]
- Better visual features
 - Pixel-BERT [Huang et al., 2020]
 - OSCAR [Li et al., 2020]
- Adversarial (pre-)training for V+L
 - VILLA [Gan et al., 2020]

What do V+L pretrained models learn?

VALUE: Vision-And-Language Understanding Evaluation

Probing Pre-Trained Models

- Single-stream vs. two-stream
- Attention weight probing
 - 12 layers x 12 heads = 144 attention weight matrices
- Embedding probing
 - 768-dim x 12 layers

- Visual Probing
- Linguistic Probing
- Cross-Modality Probing

- Visual Probing
 - Visual relation detection (existence, type)
 - VG dataset; top-32 frequent relations

Probing visual relations Type: wear

- Visual Probing
- Linguistic Probing
 - Surface tasks (sentence length)
 - Syntactic tasks (syntax tree, top constituents, ...)
 - Semantic tasks (tense, subject/object, ...)

Input Image

A guard with a white hat is directing traffic [SEP]

- Visual Probing
- Linguistic Probing
- Cross-Modality Probing
 - Multimodal fusion degree
 - Modality importance
 - Visual coreference

VALUE: Vision-And-Language Understanding Evaluation

- 1. Cross-modal fusion:
 - a. In single-stream model (UNITER), deeper layers have more cross-modal fusion.
 - b. The opposite for two-stream model (LXMERT).
- 2. Text modality is more important than image.
- 3. In single-stream model, some heads only focus on cross-modal interaction.
- 4. Visual relations are learned in pre-training.
- 5. Linguistic knowledge can be found.

From Region Features to Grid Features

[[]Pixel-BERT; Huang et al., 2020]

Object Tags as Input Features

[OSCAR; Li et al., 2020]

VILLA: Vision-and-Language Large-scale Adversarial training

[VILLA; Gan et al., 2020]

VILLA: Vision-and-Language Large-scale Adversarial training

- 1. Task-agnostic adversarial pre-training
- 2. Task-specific adversarial finetuning
- 3. "Free" adversarial training
 - FreeLB [Zhu et al., ICLR 2020]
 - KL-constraint
- 4. Improved generalization
 - No trade-off between accuracy and robustness.

Method	VQA			NLVR ²		SNLI-VE			
	test-dev	test-std	Q→A	$QA \rightarrow R$	$Q \rightarrow AR$	dev	test-P	val	test
VL-BERTLARGE	71.79	72.22	75.5 (75.8)	77.9 (78.4)	58.9 (59.7)	-	-	-	-
OscarLARGE	73.61	73.82	-	-	-	79.12	80.37	-	-
UNITER LARGE	73.82	74.02	77.22 (77.3)	80.49 (80.8)	62.59 (62.8)	79.12	79.98	79.39	79.38
VILLALARGE	74.69	74.87	78.45 (78.9)	82.57 (82.8)	65.18 (65.7)	79.76	81.47	80.18	80.02

(a) Standard vs. adversarial pre-training
SOTA of V+L Tasks

- VQA: UNITER
- VCR: UNITER
- GQA: NSM* [Hudson et al., NeurIPS 2019]
- NLVR2: UNITER
- Visual Entailment: UNITER
- Image-Text Retrieval: UNITER
- Image Captioning: VLP
- Referring Expressions: UNITER

SOTA of V+L Tasks

- VQA: VILLA (single), GridFeat+MoVie* (ensemble)
- VCR: VILLA
- GQA: HAN* [Kim et al., CVPR 2020]
- NLVR2: VILLA
- Visual Entailment: VILLA
- Image-Text Retrieval: OSCAR
- Image Captioning: OSCAR
- Referring Expressions: VILLA

[GridFeat; Jiang et al., CVPR 2020] [MoVie; Nguyen et al., 2020]

*: without V+L pre-training

Take-away

- SOTA pre-training for V+L
 - Available datasets
 - Model architecture
 - Pre-training tasks
- Future directions
 - Study the representation learned by pre-training \rightarrow pruning/compression
 - Better visual features \rightarrow end-to-end training of CNN
 - Reasoning tasks (GQA)

Beyond Image+Text Pre-Training

- Self-supervised learning for vision-and-language navigation (VLN)
 - PREVALENT [Hao et al., CVPR 2020]
 - VLN-BERT [Majumdar et al., 2020]
- Video+Language Pre-training

Self-Supervised Learning for VLN

[PREVALENT; Hao et al., CVPR 2020]

[VLN-BERT; Majumdar et al., 2020]

110

Video+Language Pre-Training

Self-supervised Learning for Video-and-Language

Video + Language Pre-training

Keep rolling tight and squeeze the air out to its side and you can kind of pull a little bit.

Image credits: https://ai.googleblog.com/2019/09/learning-cross-modal-temporal.html

Video + Language Pre-training

Video: Sequence of image frames Language: Subtitles/Narrations

Keep rolling tight and squeeze the air out to its side and you can kind of pull a little bit.

Image credits: https://ai.googleblog.com/2019/09/learning-cross-modal-temporal.html

Pre-training Data for Video + Language

<u>TV Dataset</u> [Lei et al. EMNLP 2018]

- 22K video clips from 6 popular TV shows
- Each video clip is 60-90 seconds long
- Dialogue ("character name: subtitle") is provided

HowTo100M Dataset

[Miech et al. ICCV 2019]

- 1.22M instructional videos from YouTube
- Each video is 6 minutes long on average
- Narrations in different languages

Pre-training

[Miech et al, ICCV 2019]

Pre-training

Large-scale Pre-training Dataset

• 136M video clips with narrations from 1.2M YouTube videos spanning 23K activities

[Miech et al, ICCV 2019]

Pre-training

Large-scale Pre-training Dataset

• 136M video clips with narrations from 1.2M YouTube videos spanning 23K activities

Video Representations

- 2D features from ImageNet pretrained ResNet-152
- 3D features from Kinetics pretrained ResNeXt-101

Pre-training

Large-scale Pre-training Dataset

• 136M video clips with narrations from 1.2M YouTube videos spanning 23K activities

Video Representations

- 2D features from ImageNet pretrained ResNet-152
- 3D features from Kinetics pretrained ResNeXt-101

Text Representations

• GoogleNews pre-trained word2vec embedding models

Pre-training

Large-scale Pre-training Dataset

• 136M video clips with narrations from 1.2M YouTube videos spanning 23K activities

Video Representations

- 2D features from ImageNet pretrained ResNet-152
- 3D features from Kinetics pretrained ResNeXt-101

Text Representations

• GoogleNews pre-trained word2vec embeddings

Pre-training Joint Embedding

- Non-linear functions to embed both modalities to a common embedding space
- Supervise the training with max-margin ranking loss

Pre-training

[Miech et al, ICCV 2019]

Model	CrossTask (Averaged Recall)
Fully-supervised Upper-bound [1]	31.6
HowTo100M PT only (weakly supervised)	<u>33.6</u>

Step Localization

 HowTo100M PT is better than training a fully supervised model on a small training set

[1] Zhukov, Dimitri, et al. "Cross-task weakly supervised learning from instructional videos." CVPR 2019

Model	CrossTask (Averaged Recall)
Fully-supervised Upper-bound [1]	31.6
HowTo100M PT only (weakly supervised)	<u>33.6</u>

Step Localization

 HowTo100M PT is better than training a fully supervised model on a small training set

despite the domain differences

[1] Zhukov, Dimitri, et al. "Cross-task weakly supervised learning from instructional videos." CVPR 2019

Model	CrossTask (Averaged Recall)
Fully-supervised Upper-bound [1]	31.6
HowTo100M PT only (weakly supervised)	<u>33.6</u>

Step Localization

 HowTo100M PT is better than training a fully supervised model on a small training set

 HowTo100M PT largely boosts model performance despite the domain differences

[1] Zhukov, Dimitri, et al. "Cross-task weakly supervised learning from instructional videos." CVPR 2019

Downstream Performance vs. Pre-training Data Size

Adding more data gives better results across all downstream tasks

Pre-training

Pre-training

Large-scale Pre-training Dataset

• 312K cooking/recipe videos from YouTube

Pre-training

Large-scale Pre-training Dataset

• 312K cooking/recipe videos from YouTube

Text Representations

• Tokenized into WordPieces, following BERT

[Sun et al, ICCV 2019]

Pre-training

Large-scale Pre-training Dataset

• 312K cooking/recipe videos from YouTube

Video Representations

- 3D features from Kinetics pretrained S3D
- Tokenized into 21K clusters using hierarchical k-means

Text Representations

• Tokenized into WordPieces, following BERT

[CLS] Place [SEP] the steak the in pan [>] T₁₀ T₁₁ T₁₂ T₁₃ VideoBERT E_{the} E_v(**5**) E,()) E[MASK] E_v(**)** Ethe E[MASK] Ein E_[CLS] E_{Place} E,(E_[SEP] (MASK) [CLS] Place ([MASK]) [>] [SEP] the in the pan

Pre-training

Large-scale Pre-training Dataset

• 312K cooking/recipe videos from YouTube

Text Representations

• Tokenized into WordPieces, following BERT

Video Representations

- 3D features from Kinetics pretrained S3D
- Tokenized into 21K clusters using hierarchical k-means

Pre-training Joint Embedding

- Transformer-based Video-Text encoder
- Pre-training tasks: Masked Language Modeling (MLM) + Masked Frame Modeling (MFM)

[CLS] Place [SEP] the steak in the pan [>] T₁₄ T₁₀ T₁₂ Τ, T₁₃ VideoBERT E_[MASK] E_{Place} E_{the} E_v(**5**) E_v(**5**) E,()) Ethe E[MASK] Ein E,(E_[SEP] E (MASK) [CLS] Place ([MASK]) [SEP] the in the pan [>]

Pre-training

[Sun et al, ICCV 2019]

Model	Verb top-5	Object top-5
Fully-supervised Method [1]	<u>46.9</u>	30.9
VideoBERT (Zero-Shot)	43.3	<u>33.7</u>

YouCook2 Action Classification

 VideoBERT (Zore-Shot) performs competitively to supervised method

Model	BLEU-4	METEOR	ROUGE-L	CIDEr
SOTA w/o PT [2]	3.84	11.55	27.44	0.38
VideoBERT	4.04	11.01	27.50	0.49
VideoBERT + S3D	<u>4.33</u>	<u>11.94</u>	<u>28.80</u>	<u>0.55</u>

YouCook2 Captioning

VideoBERT outperforms SOTA

Adding S3D features to visual tokens further boosts performance

[1] Xie, Saining, et al. "Rethinking spatiotemporal feature learning for video understanding." ECCV 2018[2] Zhou, Luowei, et al. "End-to-end dense video captioning with masked transformer." CVPR 2018

Adding more data generally gives better results

Large-scale Pre-training Dataset

• HowTo100M

Video Representations

• 3D features from Kinetics pretrained S3D

Text Representations

• Tokenized into WordPieces, following BERT

Large-scale Pre-training Dataset

• HowTo100M

Text Representations

• Extract contextualized word embeddings from BERT

Video Representations

• 3D features from Kinetics pretrained S3D

Pre-training for Better Video Representations

- 3 Transformers: BERT, CBT and Cross-modal Transformer
- Pre-train through Noise Contrastive Estimation (NCE)
 - Video-only Pre-training (end-to-end)
 - Video-Text Alignment (fixed S3D and BERT)

[Sun et al, 2019]

Model	BLEU-4	METEOR	ROUGE-L	CIDEr
SOTA w/o PT [1]	4.38	11.55	27.44	0.38
S3D	3.24	9.52	26.09	0.31
VideoBERT + S3D	4.33	11.94	28.80	0.55
СВТ	<u>5.12</u>	12.97	<u>30.44</u>	0.64

YouCook2 Captioning

CBT achieves the new state of the art, as contrastive learning encourages better video representations

[1] Zhou, Luowei, et al. "End-to-end dense video captioning with masked transformer." CVPR 2018

Pre-training

Large-scale Pre-training Dataset

• HowTo100M

Video Representations

• 3D features from I3D/S3D

Text Representations

• GoogleNews pre-trained word2vec embeddings

Pre-training

Large-scale Pre-training Dataset

• HowTo100M

Video Representations

• 3D features from I3D/S3D

Text Representations

• GoogleNews pre-trained word2vec embeddings

Pre-training Joint Embedding

- MIL-NCE pre-training
 - Multiple Instance Learning (MIL)
 - Noise Contrastive Estimation (NCE)

[Miech et al, CVPR 2020]

Pre-training

Downstream Tasks

[Miech et al, CVPR 2020]

Pre-training

Downstream Tasks

[Miech et al, CVPR 2020]
MIL-NCE: End-to-End Learning of Visual Representations from Uncurated Instructional Videos

Model	Labeled Dataset Used	YouCook2 (Median R)	MSRVTT (Median R)
HowTo100M	ImageNet + Kinetics400	46	38
	ImageNet + Kinetics400 + YouCook2	24	-
MIL-NCE	None	<u>16</u>	<u>35</u>

Zero-shot Clip Retrieval

* On both datasets, MIL-NCE improves over HowTo100M without using any labeled data

✤ On YouCook2, MIL-NCE even surpasses supervised HowTo100M model

Pre-training

Large-scale Pre-training Dataset

- 380K videos from HowTo100M
- All food domain related videos

Video Representations

- 2D features from ImageNet pre-trained ResNet-152
- 3D features from Kinetics pre-trained ResNeXt-101

Text Representations

• Tokenized into WordPieces, following BERT

Pre-training

Large-scale Pre-training Dataset

- 380K videos from HowTo100M
- All food domain related videos

Video Representations

- 2D features from ImageNet pre-trained ResNet-152
- 3D features from Kinetics pre-trained ResNeXt-101

Text Representations

• Tokenized into WordPieces, following BERT

Pre-training Joint Embedding

• Pre-training tasks: MLM + MFM + Video-Text Alignment

Pre-training

Downstream Tasks

Model	Pre-training Data Size	YouCook2 (Median R)	MSRVTT (Median R)
	1.2M	24	<u>9</u>
HOW IO IOUM	380K	25	16
UniViLM	380K	<u>20</u>	<u>9</u>

Clip Retrieval

- On YouCook2 (in-domain), UniViLM improves over HowTo100M with less pre-training data
- On MSRVTT (out-of-domain), UniViLM surpasses HowTo100M with the same amount of pre-training data

YouCook2 Captioning

- UniViLM w/o pre-training achieves worse performance
- UniViLM w/ pre-training slightly outperforms SOTA

Model	Pre-training Data Size	BLEU-4	METEOR	ROUGE-L	CIDEr
SOTA [1]	0	9.01	<u>17.77</u>	36.65	1.12
UniViLM	0	8.67	15.38	35.18	1.00
	380K	<u>10.42</u>	16.93	<u>38.04</u>	<u>1.20</u>

[1] Shi, Botian, et al. "Dense procedure captioning in narrated instructional videos." ACL 2019

Conclusion

- Video + Language Pre-training is still at its early stage
 - Video + Language inputs are directly concatenated, losing the temporal alignment
 - Pre-training tasks directly borrowed from Image + Text Pre-training
 - Pre-training datasets limited to narrated instructional videos from YouTube
- Video + Language downstream tasks are relatively "simple"
 - Mostly focus on visual clues only
 - Subtitles/Narrations contain a lot of information, but usually discarded

Thank you! Any questions?