
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this
document under the terms of the OWASP License.

The OWASP
Foundation

OWASP

http://www.owasp.org

SELinux tutorial
Hardening web servers with
SELinux

EU Summit, Portugal, November 2008

2OWASP

Introduction
$whoami

Pavol Lupták

 OWASP Slovakia local chapter leader
 Big open source and Unix/Linux fan
 Owner of security company Nethemba s.r.o.
 Security consultant with more than 10+ years of

practical experience in security with many
business certificates (CISSP, CEH, ...) and MSc in
Security/Computer Science

3OWASP

Why to use SELinux for Web
servers?

 The most secure Linux hardening
 Opensource (everybody can see its code)
 High granularity (full control which syscalls

are allowed for every user process)
 With current GUI tools it is not difficult to

configure
 Complete segregation of web server from

the rest of system
 You can create SELinux policy for any web

server or web script

4OWASP

Agenda
 SELinux history
 DAC vs. MAC approach
 DTE, RBAC, MLS models
 SELinux Flask Architecture
 SELinux policy
 Auditing
 Types of policies
 Apache SELinux policy
 SELinux modules: Apache
 Booting SELinux (optional)

5OWASP

Differences between this
2-hours presentation and
1-day training course
 All practical exercises have been removed
 All non-Apache SELinux policy examples

have been removed
 No SELinux/CentOS training images are

provided

6OWASP

Recommended SELinux
platform

 Any Linux distribution (the best support is
probably for Redhat EL/CentOS, targeted
policy works OK also on Ubuntu, Debian,
Gentoo)

 Usually there is no commercial support for
strict/MLS policy

 TrustedBSD (SEBSD module)

OWASP

SELinux history I.
 Originally a development project from the
National Security Agency (NSA)
 Implementation of the Flask operating
system security architecture
 The NSA integrated SELinux into the Linux
kernel using the Linux Security Modules
(LSM) framework (Linus Torvalds, who
wanted a modular approach to security
instead of accepting just SELinux into the
kernel)

OWASP

SELinux history II.
 Originally, the SELinux implementation used
persistent security IDs (PSIDs) stored in an
unused field of the ext2 inode
 The next evolution of SELinux was as a loadable
kernel module for the 2.4.<x> series of Linux
kernels. This module stored PSIDs in a normal
file
 Finally, the SELinux code was integrated
upstream to the 2.6.x kernel, which has full
support for LSM and has extended attributes
(security.selinux in xattrs) in the ext3 file
system. SELinux was moved to using xattrs to
store security context information.

OWASP

DAC (Discretionary Access Control)

 Users can change security attributes at request
 Subject with a certain access permission is

capable of passing the permission to any other
subject

 Users: administrators vs non-administrators
 Unix DAC - ability of the owner of a file or

directory to grant or deny access to other users
(chown, chmod, chattr, ..)

OWASP

Standard Linux Access Control

 Uses an Unix DAC
 Subjects are processes with real and

effective user group IDs
 Objects are files, directories, pipes and

devices with access mode in inode: rwx r-x
--- uid gid

 Access rules are hard-coded in the kernel,
checked on syscall call

OWASP

Standard Linux Security
Problems

 Access is based on user's access
 Example: Your firefox (if it is compromised)

can read your ssh keys!
 Example II: It is possible to gain root shell

through exploiting root process
 Kernel does not distinguish

applications from users
 Processes can change security

properties

OWASP

MAC (Mandatory Access
Control)

 Users can not change security attributes at
request (non-discretionary)

 A corporate policy or security rules is
enforced

 User programs have to work within the
constraints of these access rules

 Follows the principle of least privilege
 Subjects vs. Objects

OWASP

SELinux Access Control

 Uses Flask architecture, DTE, RBAC and
MLS security models

 The subjects and the objects remain the
same, SELinux assigns to every subject
and object a security context (SID)
combined from a SELinux user, role, type
and MLS level

 Configurable via policy language
 All access is denied by default

OWASP

Domain Type Enforcement
(DTE) model

 Considers domains associated with subjects
(processes) and types associated with
objects (file, directory, device, ..)

 Domain Definition Table (DDT) - represents
allowed access modes between subjects
and objects (e.g. read, write, execute)

 Domain Interaction Table (DIT) - represents
allowed access modes between domains
(e.g. signal, create, ..)

 All acccess is denied unless explicitly
allowed

OWASP

Role Based Access Control
(RBAC) model

 Associates the permissions to the roles, not
directly to the users

 Each user (or subject) is associated with
one or more roles

 Each role contains the permissions that are
needed for its correct operation

 4 classes of RBAC models (core,
hierarchical, constrained, unified)

OWASP

Multilevel Security (MLS) model
 Based on the Bell-La Padula (BLP)
 Multi-level subject - its low level differs from

its high level, it is trusted to handle data at
any level in its range while maintaing proper
separation among the different levels

 Multi-level object - used for the private state
of multi-level subjects and for data sharing
between multi-level subjects

 Does not care about integrity of data, least
privilege, or separating processes and
objects by their duty, and has no
mechanisms for controlling these security
needs

OWASP

Bell La Padula
(confidentiality model)

1. The *-property (read star-property) states
that a subject at a given security level
must not write to any object at a lower
security level (no write-down).

2. The Simple Security Property states that a
subject at a given security level may not
read an object at a higher security level
(no read-up).

3. The Discretionary Security Property uses
an access matrix to specify the
discretionary access control

OWASP

Flask architecture
 Provides flexible support for MAC control

policies
 Separates the definition of the policy logic

from the enforcement mechanism
 Provides an access vector cache (AVC) that

stores the access decision computations
provided by the security server

 Focuses on the concept of least privilege
 Specifies the interfaces provided by the

security server to the object manager that
enforce the security policy (DTE, RBAC,
MLS)

OWASP

Flask architecture

OWASP

SELinux, implemented Flask
 LSM module, using the LSM hooks in the

kernel to control and label (Because of the
abstraction layer provided - SELinux is highly
configurable and modifiable)

 Differences in the specific way SELinux
implements Flask in the Linux kernel
compared to traditional Flask:

 Under traditional TE, there is a distinction
between types and domains. In SELinux,
domains are processes that have the attribute
process

 The security server, the AVC, and the policy
engine are now all parts of the kernel.

OWASP

What is policy?
 A set of rules that guide the SELinux

security engine
 Defines types for file objects and domains

for processes, uses roles to limit the
domains that can be entered, and has user
identities to specify the roles that can be
attained,

OWASP

Where is policy?
 /etc/selinux/<policyname>/policy/ — the

binary policy and runtime configuration
files

 /etc/selinux/<policyname>/src/policy/ —
policy sources

 /etc/selinux/<policyname>/contexts/ —
location of the security context information

 /
etc/selinux/<policyname>/modules/boolea
ns.active

 The configuration file /etc/selinux/config

OWASP

File System Security Contexts

 SELinux stores file security labels in xattrs
 Label every file system object (all files) with

an individual security attribute
 Mount support: mount -t nfs -o

context=user_u:object_r:user_home_t
<hostname>:/shares/homes/ /home/

 fscontext= sets the overarching file system
label to a specific security context

 defcontext= overrides the value set for
unlabeled files in the policy and requires a file
system that supports xattr labeling

OWASP

SELinux integration –
example I

 id -Z
 root:system_r:unconfined_t
 ls -dZ /tmp
 drwxrwxrwt root root

system_u:object_r:tmp_t /tmp/
 touch /tmp/foo
 ls -Z /tmp/foo
 -rw-r--r-- root root root:object_r:tmp_t

 /tmp/foo

OWASP

SELinux integration -
Example II

 ps -Z, ps auxZ
 Id -Z
 ls -laZ
 lsof -Z
 netstat -Z
 find / -context=

OWASP

SELinux integration –
Example III

 chcon (fundamental utility used to change
a files context)

 restorecon
 tar --selinux
 star -xattr -H=exustar -c -f
 rsync –X -xattr

OWASP

SELinux integration –
Example IV

 setenforce [0 | 1]
 getenforce
 getsebool named_disable_trans
 setsebool named_disable_trans 1
 setsebool httpd_enable_homedirs 1
 /etc/selinux/config
 selinuxenabled (for scripts)
 matchpathcon

OWASP

Object Classes
 SELinux defines a number of classes for

objects in order to group certain
permissions by specific classes
(e.g.filesystem for file systems, file for files,
and dir for directories).

 Each class has it's own associated set of
permissions (filesystem: mount, unmount,
get attributes, set quotas, relabel,..,
file:read, write, get and set attributes, lock,
relabel, link,rename, append, .. netif:
tcp_recv, tcp_send, udp_send, udp_recv,
rawip_recv, rawip_send)

OWASP

SELinux Permissions
 Permissions are the actions that a subject

can take on an object, if the policy allows
it. These permissions are the access
requests that SELinux actively allows or
denies

 There are several common sets of
permissions defined in the targeted policy,
in $SELINUX_SRC/flask/access_vectors
(EXERCISE)

OWASP

TE Rules - Attributes
 Identify as groups sets of security types

that have a similar property (e.g.
httpdcontent, file_type, netif_type,
port_type, and node_type, fs_type,
exec_type, mta_delivery_agent, domain,
reserved_port_type)

 a type can have any amount of attributes,
and an attribute can be associated with
any number of types.

 attribute domain; attribute netmsg_type;

OWASP

TE Rules – Type Declaration
 Syntax:
 type <typename> [aliases] [attributes];
 ## Examples
 type httpd_config_t, file_type, sysadmfile;
 type http_port_t, port_type,

reserved_port_type;
 type httpd_php_exec_t, file_type,

sysadmfile, exec_type;

OWASP

TE Rules – Type Transitions

 results in a new process running in a new
domain different from the executing
process, or a new object being labeled with
a type different from the source doing the
labeling

 ## General syntax of a transition>
 type_transition <source_type(s)>

<target_type(s)> : <class(es)>
<new_type>

OWASP

TE Rules – Domain Type
Transition

 ## Domain transition syntax:
 type_transition <current_domain>

<type_of_program> : process
<new_domain>

 type_transition httpd_t
httpd_sys_script_exec_t:process
httpd_sys_script_t;

 type_transition initrc_t
squid_exec_t:process squid_t;

 Macro: domain_auto_trans(initrc_t,
named_exec_t, named_t)

OWASP

TE Rules – Object Labeling
Transition

 ## New object labeling syntax:
 type_transition <creating_domain>

<parent_object_type> :<class(es)>
<new_type>

 type_transition named_t var_run_t:sock_file
named_var_run_t;

 file_type_auto_trans(named_t, var_run_t,
named_var_run_t, sock_file);

OWASP

TE Rules - Access Vectors
 rules that allow domains to access various

system objects
 <av_kind> <source_type(s)>

<target_type(s)>:<class(es)>
<permission(s)>

 allow named_t sbin_t:dir search;
 auditallow unconfined_t security_t :

security { load_policy setenforce setbool };
 dontaudit named_t root_t:file { getattr

read };

OWASP

TE Rules - neverallow

 neverallow <source_name(s)>
<target_name(s)> :
<class(es)><permission(s)>

 neverallow domain ~domain:process
transition;

 These assertions are checked by the policy
compiler, checkpolicy, when the policy is
built, but after the entire policy has been
evaluated, and are not part of the runtime
access vector cache.

OWASP

Understanding AVC

 Disallow an operation -> denial message is
generated:

 Jan 14 19:10:04 hostname kernel:
audit(1105758604.519:420): avc: denied
{ getattr } for pid=5962
exe=/usr/sbin/httpd
path=/home/auser/public_html dev=hdb2
ino=921135
scontext=root:system_r:httpd_t
tcontext=user_u:object_r:user_home_t
tclass=dir

OWASP

Understanding SELinux log
messages

 AVC Messages can get created for a variety
of reasons:

 A mislabeled file
 A process running under the wrong context
 A bug in policy
 Basically an application goes down a code

path that was never tested by the policy
writer and gets an unexpected AVC

 An intruder

OWASP

audit2allow and audit2why
(tools)

 audit2allow - generate SELinux policy
allow rules from logs of denied operations

 audit2allow -a -l -o domains/misc/local.te
 audit2allow -a -l -M domains/misc/local
 audit2why – translates SELinux audit

messages into a description of why the
access was denied

OWASP

SELinux Troubleshoot Tool
 setroubleshoot - service listens to audit

daemon for AVC messages, then
processes plugin database for known
issues /usr/share/setroubleshoot/plugins

 Displays knowledge base of how to
handle avc message

 sealert command can launch browser or
analyze log files

 Can be configured to send mails
/etc/setroubleshoot/setroubleshoot.cfg

OWASP

Auditing

 Audit system receives SELinux Events
 No auditd running -> AVC in

/var/log/messages and dmesg
 auditd running -> AVCs

in/var/log/audit/audit.log
 CAPP – Controlled Access Protection Profile
 EAL4+. ­ E Assurance Level (Level of

testing and documentation)
 cp /usr/share/doc/audit­1.0.12/capp.rules

/etc/audit.rules

OWASP

 Enable Kernel Auditing
 Sometimes applications fail with no AVC

messages (dont audit rules sometimes cover
up Real errors)

 Append the parameter audit=1 to your kernel
boot line

 RHEL 4: Install selinux­policy­targeted­sources
 make ­C /etc/selinux/targeted/src/policy

enableaudit load
 RHEL 5: semodule ­b

/usr/share/selinux/targeted/enableaudit.pp
 semodule ­b

/usr/share/selinux/targeted/base.pp

OWASP

Policy Macros
 SELinux uses m4 macro language
 policy.conf contains exploded macro policy

codeadmfile;
 # can_exec(domain,executable)
 define(`can_exec',`allow $1 $2:file

{ rx_file_perms execute_no_trans };')
 define(`rx_file_perms', `{ read getattr lock

execute ioctl }')

OWASP

SELinux Users
 Different than UNIX identities
 Not currently used in targeted policy: In

the targeted policy, processes and objects
are system_u, and the default for Linux
users is user_u

 Linux UIDs and SELinux user identities
should match because login and similar
applications will try to look up the match. If
it fails to find a match, it will fall back to
user_u

OWASP

SELinux Roles
 Define which SELinux user identities can

have access to what domains (but
simply being in a role is not enough to
allow domain transition)

 role <rolename> types <domain(s)>;
 role sysadm_r types ldconfig_t;
 allow user_r sysadm_r;
 role_transition sysadm_r $1_exec_t

system_r; (rarely used, only in strict
policy)

 Used in strict and MLS policy

OWASP

TE Rules - Constraints
 Provide final and overarching constraints

on the use of permissions that are enforced
during runtime by the kernel security
server

 Are in the form of Boolean expressions.
The expression must be satisfied for the
given permission to be granted.

 constrain process transition (u1 == u2 or
t1 == privuser);

 constrain process transition (r1 == r2 or
t1 == privrole);

OWASP

Special interfaces &
Filesystems

 /proc/<PID>/attr
 current — current security context.
 prev — the context prior to the last exec
 exec — the context to apply at the next

exec
 fscreate — the context to apply to any new

files created by this process.

OWASP

Types of policies
 Strict - every subject and object are in a

specific security domain, with all
interactions and transitions individually
considered within the policy rules

 Targeted - every subject and object runs
in the unconfined_t domain except for the
specific targeted daemons. The objects on
the system that are in the unconfined_t
domain are allowed by SELinux to have no
restriction

OWASP

Strict Policy
 A system where everything is denied by

default
 SELinux designed to be a strict policy.
 The policy rules only have allows, no

denies
 Minimal privilege's for every daemon
 Separate user domains for programs like

GPG,X, ssh, etc
 Difficult to enforce in general purpose

operating system
 Not Supported in RHEL

OWASP

Targeted Policy
 System where processes by default are

unconfined - only targeted processes are
confined

 By default user processes run in unconfined
domains (unconfined_t)

 System processes run in initrc_t
 Unconfined processes have the same

access they would have without SELinux
running

 Daemons with defined policy transition to
confined domains

OWASP

Targeted Domains
 In RHEL4: 15 targets defined (httpd, squid,

pegasus, Mailman, named, dhcpd, mysqld,
nscd, ntpd, portmap, postgresql, snmpd,
syslogd, winbindd)

 In RHEL5: 200 targets defined (every
program shipped by Red Hat and started on
boot should have a domain defined)

 All system space is confined
 Limited confinement for user space (20

unconfined domains)

OWASP

MLS Policy

 Strict policy with Bell­LaPadula Support
 Supported in RHEL 5 with special license.
 Server only operating system
 No X­windows support
 Limited package set
 HP/IBM working towards getting

EAL4+/LSPP certification

OWASP

httpd_selinux policy I
 httpd_sys_content_t – data content which is

available from all httpd scripts and the
daemon

 httpd_sys_script_exec_t – CGI scripts that are
allowed to run

 httpd_sys_script_ro_t - CGI scripts in
httpd_sys_script_exec_t can only read these
files

 httpd_sys_script_rw_t – CGI scripts in
httpd_sys_script_exec_t can read/write these
files

 httpd_sys_script_ra_t – CGI scripts in
httpd_sys_script_exec_t can read/append these
files

OWASP

httpd_selinux policy II
 httpd_unconfined_script_exec_t – CGI

scripts in this contenxt can run without any
SELinux protection (should only be used for
a very complex httpd scripts, after
exhausting all other options)

 public_content_t, public_content_rw_t – for
sharing files with multiple domains
(Apache, FTP, rsync, Samba, ..)

 You need to enable httpd to write to
public_content_rw_t by “setsebool -P
allow_httpd_anon_write=1” or “setsebool -P
allow_httpd_sys_script_anon_write=1”

OWASP

Booleans in SELinux Policy
 /selinux/booleans/
 echo “1 1”> /selinux/booleans/....
 echo 1 > /selinux/commit_pending_bools
 setsebool [-P] boolean value | bool1=val1

bool2=val2 ...
 getsebool [-a] boolean ...
 /

etc/selinux/targeted/modules/active/boolea
ns.local

OWASP

httpd booleans I
 Online interactive customization of SELinux

policy (setsebool)
 httpd_enable_cgi
 httpd_enable_homedirs (chcon -R -t

httpd_sys_content_t ~user/public_html)
 httpd_tty_comm (prompt for a password to

open cert.file)
 httpd_unified (all files labeled as httpd

context can be read/write/execute)
 httpd_builtin_scripting (turn on/off internal

(e.g. PHP) scripting)

h

OWASP

httpd booleans II
 httpd_can_network_connect
 httpd_suexec_disable_trans (disable suexec

transition)
 httpd_disable_trans (disable whole SELinux

protection for httpd)

OWASP

Understanding the File
Contexts Files

 # Syntax of file context description
 regexp <-type> (<file_label> |

<<none>>)
 Type -d means to match only directories,

the -- means to match only files
 /usr(/.*)?/java/.*\.so(\.[^/]*)* --

system_u:object_r:shlib_t
 ifdef(`dhcp_defined', `', ` /var/lib/dhcp(3)?

-d system_u:object_r:dhcp_state_t
define(`dhcp_defined') ')

OWASP

Common SELinux macros
 init_daemon_domain, init_system_domain,

domain_file, domain_entry_file
 can_exec
 corenet_tcp_sendrecv_all_if,

corenet_udp_sendrecv_all_if,
corenet_raw_sendrecv_all_if,
corenet_tcp_sendrecv_all_node,
corenet_udp_sendrecv_all_node,
corenet_raw_sendrecv_all_node,
corenet_tcp_connect_all_ports

 domain_auto_trans, domain_trans
 files_tmp_file, file_pid_file

OWASP

Understanding Roles in
Targeted policy

 system_r - role is for all system processes
except user processes

 user_r - default user role for regular Linux
users

 object_r - all objects have the role object_r
 sysadm_r - system administrator role in a

strict policy

OWASP

Assigning Object Types

 Configuration file specifies default context
 Inherited from containing directory at

runtime
 Applications can explicitly set context:
 chcon: utility to set contexts
 passwd: maintains context on /etc/shadow

OWASP

Assigning Process Types
 (default) inherited from parent process

[bash (user_t) -> ls (user_t)]
 set by policy (type transition rule) [init

(init_t) -> httpd_init_script (initrc_t) ->
httpd (httpd_t)]

 set by application (e.g., login) [login
(login_t) -> bash (user_t)]

OWASP

Policycoreutils
 genhomedircon, fixfiles, restorecon, restorecond,

setfiles, chcon, chcat
 audit2allow, audit2why (See Understanding

SELinux log messages)
 secon, sestatus
 semodule, semodule_deps, semodule_expand,

semodule_link, semodule_package
 load_policy
 run_init (only in MLS, strict)
 semanage, system­config­selinux
 setsebool, getsebool
 newrole (only in MLS, strict)

OWASP

Managing File Labeling

 restorecon (Used to set a file back to the
system default policy)

 setfiles (Used to initialize a system. Used
at the File system level. Require to specify
file_context file)

 fixfiles (Script that wraps
setfiles/restorecon with several useful
features)

 genhomedircon (Used to generate
file_contexts.homedir)

OWASP

SELinux Modules

 In RHEL 5 /Fedora Core 5 and later, the
concept of Policy Modules was introduced

 The semodule command:
 Copies the policy package (pp) files to
 /etc/selinux/targeted/modules/active/modules
 Compiles all installed pp files into new policy

file /etc/selinux/targeted/policy/policy.21
 Creates new file_context file and

file_context.homedirs
 Loads new policy

OWASP

SELinux Modules II
 semodule ­l ; List all modules currently

loaded
 semodule ­b

/usr/share/selinux/targeted/enableaudit.pp
 semodule ­b

/usr/share/selinux/targeted/base.pp
 semodule ­i myapache.pp
 semodule ­r myapache

OWASP

Policy Modules
 Policy modules consists of three files:
 Type Enforcement File (te) (Contains the

allow rules and interface calls associated
with the confined domain)

 File Context File (fc) (Contains all of the
labeling file context for the policy module)

 Interface File (if) (Contains all interfaces
used by other domains to interact with this
confined domain)

OWASP

semanage framework
 Allowing Apache to listen on port 81:
 In RHEL4: required custom policy, policy

sources and tools
 In RHEL5: semanage port ­a ­t

http_port_t ­P tcp 81
 Other use: semanage user ­a guest_u
 semanage fcontext ­a ­t

httpd_bugzilla_script_exec_t
/usr/share/bugzilla/cgi(/.*)?

OWASP

Writing New Policy for a
Daemon

 policygentool mydaemon
/usr/sbin/mydaemon

 make -f /usr/share/selinux/devel/Makefile
 semodule -i mydaemon.pp
 restorecon -v /usr/sbin/mydaemon
 setenforce 0
 service mydaemon restart
 audit2allow -R -f /var/log/audit/audit.log

OWASP

References

https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/selinux-guide/
http://people.redhat.com/dwalsh/SELinux/Presentations/ManageRHEL5.pdf
http://en.wikipedia.org/wiki/Bell-LaPadula_model
http://hq.alert.sk/~wilder/SELinux-hysteria

https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/selinux-guide/
http://people.redhat.com/dwalsh/SELinux/Presentations/ManageRHEL5.pdf
http://en.wikipedia.org/wiki/Bell-LaPadula_model
http://hq.alert.sk/~wilder/SELinux-hysteria

71OWASP

Thank you!

Pavol Lupták
pavol.luptak@nethemba.com

http://www.owasp.org
http://www.owasp.org/index.php/Slovakia

http://www.owasp.org/
http://www.owasp.org/index.php/Slovakia

OWASP

Kernel Boot Parameters

 Kernel parameters override
/etc/selinux/config settings

 selinux=0 Boots the kernel with SELinux
turned off (All files will no longer get
created with file context)

 Enforcing=0 Boots the kernel in
permissive mode (File labeling continues)

OWASP

Booting SELinux I
1.The initial process is assigned the predefined

initial SID kernel (before the policy is loaded)
2./sbin/init mounts /proc/, then looks for the

selinuxfs
3.If init does not find SELinux in the kernel, finds

it is disabled via the selinux=0 boot
parameter, or if /etc/selinux/config specifies
that SELINUX=disabled, boot proceeds with a
non-SELinux system

4.init sets the enforcing status if it is different
from the setting in /etc/selinux/config
(parameter enforcing is passed during boot)

OWASP

Booting SELinux II
1.The kernel checks /selinux/policyvers for the

supported policy version (/etc/selinux/config)
2.If the binary policy is not the version

supported, init attempts to load the previous
version policy

3.Init modifies the policy in memory based on
the local booleans settings

4.Initial SIDs are mapped to security contexts in
the policy

5.init then re-executes itself so that it can
transition to a different domain

6.At this point, init continues with its normal
boot.

OWASP

Booting SELinux III

	SELinux presentation
	Introduction – Who am I ?
	SELinux for web servers
	Agenda
	Diff
	SELinux platform
	SELinux history I.
	SELinux history II.
	DAC
	Standard Linux Access Control
	Standard Linux Security Problems
	MAC
	SELinux Access Control
	DTE
	RBAC
	MLS
	Bell La Padula
	Flask Architecture
	Flask Architecture - Image
	SELinux Flask
	What is Policy
	Where is Policy
	File System Security Contexts
	SELinux integration I
	SELinux integration II
	SELinux integration III
	SELinux integration IV
	Object Classes
	Permissions
	Attributes
	Type Declaration
	Type Transition
	Domain Type Transition
	Object Labeling Transition
	Access Vectors
	Neverallow
	Understanding AVC
	Understanding log messages
	audit2allow, audit2why
	Troubleshoot Tool
	Auditing
	Kernel Auditing
	Policy Macros
	SELinux Users
	SELinux Roles
	Constraints
	Special interfaces & Filesystems
	Policy Types
	Strict Policy
	Targeted Policy
	Targeted Domains
	MLS Policy
	httpd_selinux policy I
	httpd_selinux policy II
	Booleans
	httpd booleans I
	httpd booleans II
	Understanding File Contexts
	Macros
	Roles in Targeted Policy
	Assigning Object Types
	Assigning Process Types
	Slide 63
	File Labeling
	SELinux Modules
	SELinux Modules II
	Policy Modules
	semanage framework
	Writing New Policy for a Daemon
	References
	Thank You
	Kernel Boot Parameters
	Booting SELinux I
	Booting SELinux II
	Booting SELinux III

