
1

Computational Semantics
Chapter 18

1

November 2012

We will not do all of this…

Lecture #12

Semantic Analysis

• Semantic analysis is the process of taking in some
linguistic input and producing a meaning
representation for it.

Th f d i thi i f l t l

2

– There are many ways of doing this, ranging from completely
ad hoc domain specific methods to more theoretically
founded by not quite useful methods.

– Different methods make more or less (or no) use of syntax

– We’re going to start with the idea that syntax does matter
• The compositional rule-to-rule approach

Compositional Analysis

• Principle of Compositionality
– The meaning of a whole is derived from the meanings of the

parts

• What parts?
The constituents of the syntactic parse of the input

3

– The constituents of the syntactic parse of the input.

Example

• AyCaramba serves meat.

),()^,()^(MeateServedAyCarambaeServereServinge

4

Compositional Analysis

5

Compositional Semantics
• Note in the previous example:

• Part of the meaning derives from the people and
activities it’s about (predicates and arguments, or,
nouns and verbs) and part from the way they are

6

) p y y
ordered and related grammatically: syntax

• Question: can we link up syntactic structures to a
corresponding semantic representation to produce
the ‘meaning’ of a sentence in the course of parsing
it?

2

Specific vs. General-Purpose
Rules

• We don’t want to have to specify for every possible
parse tree what semantic representation it maps to

• We want to identify general mappings from parse
t t ti t ti

7

trees to semantic representations:
– Again (as with feature structures) we will augment the

lexicon and the grammar

– Rule-to-rule hypothesis: a mapping exists between rules of
the grammar and rules of semantic representation

Semantic Attachments

• Extend each grammar rule with instructions on how
to map the components of the rule to a semantic
representation (grammars are getting complex)

S  NP VP {VP.sem(NP.sem)}

8

• Each semantic function is defined in terms of the
semantic representation of choice

• Problem: how to define these functions and how to
specify their composition so we always get the
meaning representation we want from our grammar?

Augmented Rules

• Let’s look at this a little more abstractly. Consider the general
case of a grammar rule:

)}.,....({... 11 semsemfA nn 

9

• This should be read as the semantics we attach to A can be
computed from some function applied to the semantics of A’s
parts.

Augmented Rules

• As we’ll see the class of actions performed by f in the following rule
can be quite restricted.

10

)}.,....({... 11 semsemfA nn 

Compositional Analysis

11

A ‘Simple’ Example
AyCaramba serves meat.

• Associating constants with constituents
– ProperNoun  AyCaramba {AyCaramba}

– MassNoun  meat {Meat}

12

• Defining functions to produce these from input
– NP  ProperNoun {ProperNoun.sem}

– NP  MassNoun {MassNoun.sem}

• Assumption: meaning reps of children are passed up
to parents for non-branching constituents

3

• Verbs here are where the action is
– V  serves {  e,x,y) Isa(e,Serving) ^ Server(e,x) ^

Served(e,y)}
– Will every verb have its own distinct representation?
– Predicate(Agent,Patient)…

• How do we combine these pieces?

13

– VP  V NP {????}
– Goal:  (e,x) Isa(e,Serving) ^ Server(e,x) ^ Served(e,Meat)
– S  NP VP {????}
– Goal:  (e) Isa(e,Serving) ^ Server(e, AyCaramba) ^

Served(e,Meat)

– VP and S semantics must tell us
• Which variables are to be replaced by which arguments?
• How is this replacement done?

Lambda Notation
• Extension to FOPC

 x P(x)

 + variable(s) + FOPC expression in those variables

• Lambda binding
• Apply lambda-expression to logical terms to bind lambda-

i ’ t t t (l bd d ti)

14

expression’s parameters to terms (lambda reduction)

• Simple process: substitute terms for variables in lambda
expression
xP(x)(car)

P(car)

• Lambda notation provides requisite verb semantics
– Formal parameter list makes variables within the body of the

logical expression available for binding to external
arguments provided by e.g. NPs

– Lambda reduction implements the replacement

• Semantic attachment for grammar rules:
– S  NP VP {VP.sem(NP.sem)}
– VP  V NP {V.sem(NP.sem)}

15

{ ()}
– V  serves {???}

{  (e,x,y) Isa(e,Serving) ^ Server(e,y) ^ Served(e,x)} becomes
{y x  (e) Isa(e,Serving) ^ Server(e,x) ^ Served(e,y)}

– Now ‘x’ is available to be bound when V.sem is applied to
NP.sem, and ‘y’ is available to be bound when the S rule is
applied.

Example

16

Example

17

Example

18

4

Example

19

Key Points

• Each node in a tree corresponds to a rule in the
grammar

• Each grammar rule has a semantic rule associated
with it that specifies how the semantics of the LHS of
that rule can be computed from the semantics of its

20

that rule can be computed from the semantics of its
daughters.

Strong Compositionality

• The semantics of the whole is derived solely from the
semantics of the parts.

(i.e. we ignore what’s going on in other parts of the
tree).

21

Predicate-Argument Semantics

• The functions/operations permitted in the semantic
rules fall into two classes
– Pass the semantics of a daughter up unchanged to the

mother

22

– Apply (as a function) the semantics of one of the daughters
of a node to the semantics of the other daughters

Mismatches

• There are unfortunately some annoying mismatches
between the syntax of FOPC and the syntax provided
by our grammars…

• So we’ll accept that we can’t always directly create
valid logical forms in a strictly compositional way

23

valid logical forms in a strictly compositional way
– We’ll get as close as we can and patch things up after the

fact.

Quantified Phrases

• Consider

A restaurant serves meat.

• Assume that A restaurant looks like

)RI (

24

• If we do the normal lambda thing we get

)RestaurantxIsax ,(

Meat)Served(e,))RestaurantxxIsaeServereeServing  ,(,()(

5

Complex Terms

• Allow the compositional system to pass around representations
like the following as objects with parts:

Complex-Term → <Quantifier var body>

25

)Restaurant,(xIsax

Example

• Our restaurant example winds up looking like

• Big improvement…

Meat)Served(e,))RestaurantxxIsaeServereeServing  ,(,()(

26

Big improvement…

Conversion

• So… complex terms wind up being embedded inside
predicates. So pull them out and redistribute the parts
in the right way…

P(< tifi b d >)

27

P(<quantifier, var, body>)
turns into

Quantifier var body connective P(var)

Example

))Restaurant,(,(xIsaxeServer




28

),()Restaurant(xeServerx, Isax 


Quantifiers and Connectives

• If the quantifier is an existential, then the connective
is an ^ (and)

• If the quantifier is a universal, then the connective is
(i li)

29

an -> (implies)

Multiple Complex Terms

• Note that the conversion technique pulls the
quantifiers out to the front of the logical form…

• That leads to ambiguity if there’s more than one
complex term in a sentence.

30

6

Quantifier Ambiguity

• Consider
– Every restaurant has a menu

– Every restaurant has a beer.

– I took a picture of everyone in the room.

31

– That could mean that

every restaurant has a menu

– Or that
There’s some super-menu out there and all restaurants have that

menu

Quantifier Scope Ambiguity

),(),(),()(,

)(

MenuyIsayeHadxeHavereyHavinge

xtxRestauran




32

),(),()(

),(),(

yeHadxeHavereeHaving

RestaurantxxIsaMenuyyIsa




Ambiguity

• This turns out to be a lot like the prepositional phrase
attachment problem

• The number of possible interpretations goes up
exponentially with the number of complex terms in
the sentence

33

the sentence

• The best we can do is to come up with weak methods
to prefer one interpretation over another

Doing Compositional Semantics

• To incorporate semantics into grammar we must
– Figure out right representation for a single constituent based

on the parts of that constituent (e.g. Adj)

– Figure out the right representation for a category of
constituents based on other grammar rules making use of

34

that constituent (e.g Nom Adj Nom)

• This gives us a set of function-like semantic
attachments incorporated into our CFG
– E.g. Nom  Adj Nom {x Nom.sem(x) ^ Isa(x,Adj.sem)}

What do we do with them?

• As we did with feature structures:
– Alter an Early-style parser so when constituents (dot at the

end of the rule) are completed, the attached semantic
function is applied and a meaning representation created
and stored with the state

35

• Or, let parser run to completion and then walk
through resulting tree running semantic attachments
from bottom-up

Option 1 (Integrated Semantic
Analysis)

S  NP VP {VP.sem(NP.sem)}
– VP.sem has been stored in state representing VP

– NP.sem has been stored with the state for NP

– When rule completed, go get value of VP.sem, go get
NP.sem, and apply VP.sem to NP.sem

36

NP.sem, and apply VP.sem to NP.sem

– Store result in S.sem.

• As fragments of input parsed, semantic fragments
created

• Can be used to block ambiguous representations

7

Drawback

• You also perform semantic analysis on orphaned
constituents that play no role in final parse

• Hence, case for pipelined approach: Do semantics
after syntactic parse

B t

37

• But….

• Let’s look at some other examples….

Harder Example

• What makes this hard?

• What role does Harry play in
all this?

38

Harder Example

 e,f,x Isa(e, Telling) ٨

Isa(f, Going) ٨

Teller(e, Speaker) ٨

Tellee(e, Harry) ٨

ToldThing(e, f) ٨

39

ToldThing(e, f)

Goer(f, Harry) ٨

Destination(f, x)

Harder Example

• The VP for told is VP -> V NP VPto
– So you do what?

Apply the semantic function attached to VPTO the semantics of
the NP; this binds Harry as the goer of the going.

Then apply the semantics of the V to the semantics of the NP;
this binds Harry as the Tellee of the Telling

40

this binds Harry as the Tellee of the Telling
And to the result of the first application to get the right value of
the told thing.

V.Sem(NP.Sem, VPto.Sem(NP.Sem))

Harder Example

• That’s a little messy and violates the notion that the
grammar ought not to know much about what is
going on in the semantics…

• Better might be
– V.sem(NP.Sem, VPto.Sem) ????

41

()
– VPto.sem(V.sem, NP.sem)???
– i.e Apply the semantics of the head verb to the semantics of

its arguments.
– Complicate the semantics of the verb inside VPto to figure

out what’s going on.

Two Philosophies

1. Let the syntax do what syntax does well and don’t
expect it to know much about meaning

– In this approach, the lexical entry’s semantic attachments
do the work

2 Assume the syntax does know about meaning

42

2. Assume the syntax does know about meaning
• Here the grammar gets complicated and the lexicon

simpler

8

Example

• Consider the attachments for the VPs
VP -> Verb NP NP (gave Mary a book)

VP -> Verb NP PP (gave a book to Mary)

43

Assume the meaning representations should be the same for both.
Under the lexicon-heavy scheme the attachments are:

VP.Sem(NP.Sem, NP.Sem)

VP.Sem(NP.Sem, PP.Sem)

Example

• Under the syntax-heavy scheme we might want to do
something like

• VP -> V NP NP
V.sem ^ Recip(NP1.sem) ^ Object(NP2.sem)

• VP -> V NP PP

44

• VP -> V NP PP
V.Sem ^ Recip(PP.Sem) ^ Object(NP1.sem)

• I.e. the verb only contributes the predicate, the
grammar “knows” the roles.

Integration

• Two basic approaches
– Integrate semantic analysis into the parser (assign meaning

representations as constituents are completed)

– Pipeline… assign meaning representations to complete trees
only after they’re completed

45

Example

• From BERP
– I want to eat someplace near campus

– Somebody tell me the two meanings…

46

Pros and Cons

• If you integrate semantic analysis into the parser as
its running…
– You can use semantic constraints to cut off parses that

make no sense

– You assign meaning representations to constituents that

47

You assign meaning representations to constituents that
don’t take part in the correct (most probable) parse

Non-Compositionality

• Unfortunately, there are lots of examples where the
meaning (loosely defined) can’t be derived from the
meanings of the parts

48

– Idioms, jokes, irony, sarcasm, metaphor, metonymy, indirect
requests, etc

9

English Idioms

• Kick the bucket, buy the farm, bite the bullet, run the
show, bury the hatchet, etc…

• Lots of these… constructions where the meaning of
the whole is either

T t ll l t d t th i f th t (ki k th

49

– Totally unrelated to the meanings of the parts (kick the
bucket)

– Related in some opaque way (run the show)

Example

• Enron is the tip of the iceberg.
NP -> “the tip of the iceberg”

• Not so good… attested examples…
– the tip of Mrs. Ford’s iceberg

th ti f 1000 i b

50

– the tip of a 1000-page iceberg

– the merest tip of the iceberg

• How about
– That’s just the iceberg’s tip.

Example

• What we seem to need is something like

• NP ->
An initial NP with tip as its head followed by

a subsequent PP with of as its head and that has iceberg as
the head of its NP

51

the head of its NP

And that allows modifiers like merest, Mrs. Ford, and 1000-
page to modify the relevant semantic forms

The Tip of the Iceberg

• Describing this particular construction
1. A fixed phrase with a particular meaning

2. A syntactically and lexically flexible phrase with a particular
meaning

3. A syntactically and lexically flexible phrase with a partially

52

3. A syntactically and lexically flexible phrase with a partially
compositional meaning

Constructional Approach

• Syntax and semantics aren’t separable in the way
that we’ve been assuming

• Grammars contain form-meaning pairings that vary in
the degree to which the meaning of a constituent
(and what constitutes a constituent) can be computed

53

(and what constitutes a constituent) can be computed
from the meanings of the parts.

Constructional Approach

• So we’ll allow both

VP → V NP {V.sem(NP.sem)}

and

54

VP → Kick-Verb the bucket {λ x Die(x)}

10

Computational Realizations

• Semantic grammars
– Simple idea, dumb name

• Cascaded finite-state transducers
– Just like Chapter 3

55

Semantic Grammars

• One problem with traditional grammars is that they don’t
necessarily reflect the semantics in a straightforward way

• You can deal with this by…
Fighting with the grammar

56

– Fighting with the grammar
• Complex lambdas and complex terms, etc

– Rewriting the grammar to reflect the semantics
• And in the process give up on some syntactic niceties

BERP Example

57

BERP Example

• How about a rule like the following…

Request → I want to go to eat FoodType Time

{ some attachment }

58

Semantic Grammar

• The term semantic grammar refers to the motivation for the
grammar rules

• The technology (plain CFG rules with a set of terminals) is the
same as we’ve been using

• The good thing about them is that you get exactly the semantic

59

rules you need

• The bad thing is that you need to develop a new grammar for
each new domain

Semantic Grammars

• Typically used in conversational agents in
constrained domains
– Limited vocabulary

– Limited grammatical complexity

– Chart parsing (Earley) can often produce all that’s needed

60

– Chart parsing (Earley) can often produce all that s needed
for semantic interpretation even in the face of ungrammatical
input.

