
2013 134

Carlos Bobed Lisbona

Semantic Keyword-based
Search on Heterogeneous

Information Systems

Departamento

Director/es

Informática e Ingeniería de Sistemas

Mena Nieto, Eduardo

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Carlos Bobed Lisbona

SEMANTIC KEYWORD-BASED
SEARCH ON HETEROGENEOUS

INFORMATION SYSTEMS

Director/es

Informática e Ingeniería de Sistemas

Mena Nieto, Eduardo

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA

Semantic Keyword-based Search on Heterogeneous

Information Systems

Carlos Bobed Lisbona

Tesis Doctoral

Departamento de Informática e Ingenieŕıa de Sistemas
Universidad de Zaragoza

Octubre 2013

“There’s a sign on the wall but she wants to be sure
’Cause you know sometimes words have two meanings”

Stairway to Heaven - Led Zeppelin

“Sanity can be the toll -
leading to the core of your soul.”

Avantasia - Avantasia

“I’ve got to keep going, be strong
Must be so determined and push myself on”

The Loneliness of the Long Distance Runner - Iron Maiden

Acknowledgements

First of all, I want to thank my advisor, Eduardo Mena, who, apart from
being there anywhere and anytime to help me with my thesis1, has had the
patience needed to get the best out of my efforts.

This work would not have been possible without the priceless help of
my colleagues of the SID group which are also my co-authors: Sergio Ilarri,
Raquel Trillo, Jordi Bernad, and the latest acquisitions, Fernando Bobillo,
Roberto Yus, and Guillermo Esteban. Thank you all for the efforts and all
those long nights trying to reach all those unforgiving deadlines. Thanks
also to all my laboratory mates (I will not try to name all of them, as it has
been quite a long time and I do not want to miss anyone) for all the great
moments shared, specially at coffee breaks.

To finish with the academic staff, I also want to thank Francisco Serón,
whose phone calls, along with Eduardo’s ones, have become one of my
strongest fears (you both will fight later for whom scares me the most, calm
down ,).

After this, where to start? I want to thank my friends, Luis Carlos
and Estefańıa, Raúl and Sheila, Santi and Javi (Mr. Paquito), for all those
moments of laughs that have reminded me that there is life beyond the
thesis. Thanks also to my handball mates, after quite a few ball hits I have
finally got my PhD (it was not a joke, I was really taking a PhD ,).

Last but not least, I want to thank my parents (Javier and Conchita) for
all their support; my brothers (Javier and Jorge), always there for suggesting
me new games which waste my time with ,; and, specially, my girlfriend,
Elena, because of all the patience she has had with me, encouraging me to
go on, and being there in highest and lowest moments, I love you.

1Specially anytime behind the email: at first, I thought he had some kind of bot
answering all the emails I sent him.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Overview of the Approach . 3

1.3 Semantic Levels of Our Approach 4

1.4 Structure of the Thesis . 6

2 Technological Context 9

2.1 Knowledge Representation . 9

2.1.1 Ontologies . 9

2.1.2 Description Logics . 13

2.1.3 Representation Languages 15

2.1.4 OWL: Web Ontology Language 17

2.2 Query Languages . 20

2.2.1 Informal Query Languages 21

2.2.2 Formal Query Languages 23

2.3 Systems Related to QueryGen 29

2.3.1 Keyword Interpretation on Semantic Data 29

2.3.2 Keyword Search on Relational Databases 35

2.3.3 Question Answering Systems 36

3 Semantic Keyword-based Search 39

3.1 Lightweight Semantic Keyword Search on Linked Data 39

3.2 Keyword Search vs. Semantic Keyword-based Search 42

3.3 Generalized Keyword Interpretation 44

3.4 QueryGen: Architecture of the System 45

3.5 Summary of the Chapter . 48

4 Discovery of the Semantics of the Keywords 51

4.1 Disambiguating the Input Keywords 51

I

4.2 Architecture of the Disambiguation Module 54

4.3 Multi-Ontology Senses Library 55

4.4 Ontology Library . 57

4.4.1 Integrating the Ontological Information 58

4.4.2 Example of Ontology Integration from Keywords . . . 61

4.5 Summary of the Chapter . 63

5 Semantic Query Generation 67

5.1 Overview of the Semantic Query Generation Module 67

5.2 Analysis Table Constructor 69

5.2.1 Specifying the Query Languages 70

5.3 Query Generator . 75

5.3.1 Permutation of Keyword Types 76

5.3.2 Generation of Abstract Query Trees 76

5.3.3 Query Rendering . 77

5.4 Semantic Processor . 79

5.4.1 Inconsistent Query Filtering 79

5.4.2 Semantic Enrichment 82

5.5 Reduction Techniques . 84

5.5.1 Avoiding the Generation of Redundant Queries 84

5.5.2 Extraction of Relevant Query Patterns 86

5.6 Summary of the Chapter . 88

6 Accessing Data 91

6.1 Using the Adapters . 91

6.2 Accessing DBpedia from DL Queries 94

6.2.1 DBpedia Adapter . 96

6.2.2 A Complete Example with Data from DBpedia 97

6.3 Accessing LOQOMOTION with Extended Semantics 100

6.3.1 LOQOMOTION Architecture 100

6.3.2 Semantic Location Granules 102

6.3.3 Location-dependent Queries with Location Granules . 108

6.3.4 LOQOMOTION Adapter 111

6.3.5 A Complete Example with LOQOMOTION as Back-
end System . 115

6.4 Summary of the Chapter . 116

7 Experimental Results 119

7.1 Evaluating the Semantic Capabilities of QueryGen 119

7.1.1 Selected Query Set . 119

II

7.1.2 Evaluation of Discovery of Users Intended Query . . . 121
7.1.3 Evaluating QueryGen Accessing Data: From Keywords

to Data in DBpedia 125
7.2 System Performance . 130

7.2.1 Keyword Disambiguation Performance 130
7.2.2 Evaluation of Query Generation 132

7.3 Summary of the Chapter . 134

8 Conclusions 137
8.1 QueryGen: Main Contributions 137
8.2 Other Contributions . 139
8.3 Evaluation of Results . 141
8.4 Future Work . 143

Relevant Publications Related to the Thesis 145

Bibliography 147

III

IV

List of Figures

1.1 Main steps of our approach. 5

2.1 Ontology categorization. 11

2.2 Formalism and implementation languages. 13

2.3 RDF example. 16

2.4 Visual OWL example. 19

2.5 Visual OWL example (expanded). 20

3.1 Lightweight search on Linked Data. 40

3.2 Expressivity trade-off. 43

3.3 Overview of QueryGen. 46

4.1 Possible senses for keyword star. 52

4.2 Discovery of keyword senses. 52

4.3 Architecture of the Disambiguation Module. 55

4.4 Organization of the information managed by the agent Li-
brarian. 56

4.5 Ontology Library index. 57

4.6 Senses missing information. 58

4.7 Structure of the integrated ontology. 60

4.8 Excerpts of the senses obtained for “book” and “offer”. . . . 63

4.9 Integrated ontology for “book” and “offer” (part 1). 64

4.10 Integrated ontology for “book” and “offer” (part 2). 65

5.1 Multi-language query generation process. 68

5.2 Grammar example. 71

5.3 Inner structure of the Query Generator. 75

5.4 Sample abstract query trees. 78

5.5 Example of semantic checking on the local conditions of a
non-DL operator. 80

V

5.6 Example of the global semantic checking on a DL-query in-
volving projections. 81

5.7 Semantic enrichment. 83
5.8 Example of query patterns for “person drives” and “person

fish”. 88

6.1 Data access architecture. 92
6.2 Articles and resources in DBpedia. 95
6.3 DBpedia excerpt. 95
6.4 Query processing in LOQOMOTION. 101
6.5 Semantic location granules as instances. 103
6.6 Sample granule map. 106
6.7 Examples of different types of inside constraints. 110
6.8 Syntax of location-dependent queries with location granules. . 111

7.1 Keyword disambiguation performance evaluation. 131
7.2 Average number of queries and shown patterns. 133
7.3 Processing time of the query generation step. 134

VI

List of Tables

2.1 Syntax and interpretation for ALC DLs. 15
2.2 RDF-S elements. 17
2.3 OWL 2 concepts. 18
2.4 OWL 2 axioms. 19

5.1 Properties of the operators of BACK language. 72
5.2 Operators of the inner specification language. 73
5.3 Global conditions for BACK language. 74
5.4 Queries and patterns generated for “person bus”. 87

6.1 Rewriting rules applied by the DBpedia Adapter. 97
6.2 Results for “fictional dogs” accessing DBpedia. 99
6.3 Annotated grammar for LOQOMOTION. 113

7.1 Success rate of QueryGen against the QALD excerpt. 122
7.2 Details of the evaluation against QALD. 122

VII

VIII

Chapter 1

Introduction

The work presented in this thesis belongs to the broad context of Informa-
tion Systems, understanding them as systems that help users to fulfill their
information requirements. Delving into this context, our work is closely re-
lated to Semantic Search, Semantic Web, Knowledge Representation, and
even Ontology Engineering. In particular, this thesis focuses on exploiting
the different mechanisms that Semantic Web technologies have provide us
with to bridge the gap that there exists between the spread keyword-based
interfaces and the formalisms that are used to access information.

Taking into account the semantics of the different elements that take part
in the search process, our approach is able to access and integrate data from
different heterogeneous underlying information systems using plain keywords
as initial input. We focus on this kind of input as the popularity of keyword-
based interfaces has grown along with the spread of Web Search engines. Its
simplicity allows users to express their information needs easily; however,
they introduce the high cost of ambiguity.

Our work aims at reconciliating this ease of use of keyword-based inter-
faces with the expressive power of structured query languages. This issue
has been studied by other research groups, achieving solutions that are at-
tached to the underlying information system by both the query language
and the data model used. In this thesis, we generalize the problem and
provide a flexible solution that enables us to get rid of these limitations.
Our work builds on previous research works of our group on keyword senses
disambiguation, a crucial step in our approach as we will see.

In this chapter, we first present the motivation for this thesis. Then, we
detail the different semantic levels that our proposal takes into account to
achieve its goal. Finally, we present the structure of this thesis.

1

2 Chapter 1. Introduction

1.1 Motivation

In the last few years, with the upcoming of the World Wide Web, a huge
amount of information has made been available for users in several forms.
Moreover, this information is more easily accessible than ever thanks to the
increasing levels of connectivity that the users are provided with: On the one
hand, users can access to the Internet via broadband Internet connections
at their homes; on the other hand, technological advances of mobile devices
and wireless networks (e.g., 3G, Wi-Fi) allows them to be connected all the
time via their smartphones.

All this information has a sheer potential value. . . if filtered and accessed
properly according to the user’s needs. The excess of information can be as
harmful as the lack of it, as users might be overwhelmed and not be able
to process it. Besides, this information might be behind different sources or
sites, thus forcing users to actively search for the appropriate place to search
for particular data.

The information systems that effectively provide users with this informa-
tion are of such a different nature that users would have to be aware of each
of their particularities to be able to exploit them. For example, compare the
direct use of a Web Search engine with a Linked Data [BHBL09] endpoint:
In the case of the former, users can pose their queries directly expressed
in terms of keywords; while, in the case of the latter, users need to know
both the underlying data schema and the query language itself to be able
even to build a query. This heterogeneity becomes greater when we consider
any possible information service as source of potential relevant information
for the user (e.g., location-dependent services, databases exported via Web
Services, etc.).

As the amount of information and the heterogeneity of the systems hold-
ing it is so high, the integration of such information systems should be
performed externally, providing methods to access them transparently as it
occurs, for example, in federated database systems [HM85,SL90]. The trend
to integrate all the possible services can be easily seen in the Google search
main page: The user’s search can be posed almost transparently to different
search services (e.g., search for Web pages, images, maps, etc). The actual
search service used gives a global meaning to the kind of searches that are
performed, but at least they are all integrated in one site. Regarding the
integration of information systems, the use of ontologies and mappings to
the underlying systems’s data schemas has been of great help [MI01]. They
can be used to provide a global view of the integrated systems, and to store
information needed to actually access them.

1.2. Overview of the Approach 3

Apart from integrating these systems, we have to provide users with an
easy method to express their information needs. This method needs to be
independent of any particular system (independent of its data model, its
query language, and its query processing model) in order to be adaptable
enough to integrate them under its unifying view. Regarding this issue,
keyword-based interfaces have spread thanks to its adoption by the most
popular Web Search engines. They provide a simple way to express queries,
but it comes at the cost of lack of expressivity, and ambiguity.

So far, several approaches have addressed the problem of performing
keyword-search on different information systems. However, they are usually
bounded to its data model and query languages, which makes them non-
flexible solutions. Moreover, they do not provide a single entry point to the
different information services that might be relevant for the user’s needs.

Therefore, in this thesis, we propose an approach to integrate all these
heterogeneous information systems under the unifying view of a semantic
keyword-based search that:

1. Provides users with an easy way to express their queries that they are
used to, i.e., keyword-based search;

2. Avoids the ambiguity of plain keyword-based search by discovering the
exact meaning that users have in mind when posing their queries;

3. Adapts itself to the answering capabilities of each of the underlying
systems.

Our system encapsulates the different systems attached to it, adapting
their query languages, data models, and query execution models, and pro-
viding users with a simple way of expressing their searches.

1.2 Overview of the Approach

As we have introduced in the previous section, our approach aims at provid-
ing the benefits of keyword search, while avoiding ambiguity and integrating
different heterogeneous information systems. To do so, we advocate for a
semantic keyword-based search, where the semantics of the input are well
established firstly, to then access only the semantically relevant data.

For this task, several approaches (e.g., [RS06,TGEM07]) advocate start-
ing with the discovery of the meaning of each keyword among the dif-
ferent possible combinations. These approaches consult a pool of ontolo-
gies (which offer a formal, explicit specification of a shared conceptualiza-

4 Chapter 1. Introduction

tion [Gru93, Gru95]) and use disambiguation techniques to discover the in-
tended meaning of each user keyword. So, plain keywords can be mapped
to ontological terms (concepts, roles, or instances).

In this thesis, we delve into that line and present a system that performs
semantic keyword-based search on different data repositories. Our system:

1. Discovers the meaning of the input keywords by consulting a generic
pool of ontologies and disambiguates them taking into account their
context (the rest of the keywords in the input set); i.e., each keyword
in the input has influence on the rest of the keyword’s meanings.

2. Then, as a given set of user keywords (even when their semantics
have been properly established) could represent several queries, the
system finds all the possible queries using the input keywords in order
to precisely express the exact meaning intended by the user. This is
done considering different formal query languages (the use of formal
languages avoids ambiguities and expresses the user information in
a precise way), and avoiding inconsistent and semantically equivalent
queries with the help of a Description Logics (DL) reasoner [BCM+03].
During this process, our system considers the addition of virtual terms.
These virtual terms represent missing keywords that users had in their
mind but did not input1. This way, our system can explore further
meanings when the user has given an incomplete input.

3. Finally, once the user has validated the generated query that best fits
her/his intended meaning, our system routes the query to the appro-
priate structured data repositories that will retrieve data according to
the semantics of such a query.

The architecture of our system is flexible enough to deal with different
ontologies, formal query languages, and query processing capabilities of un-
derlying data repositories. In the following section, we discuss the different
semantic aspects that are taken into account in our approach.

1.3 Semantic Levels of Our Approach

The main feature of our approach is that it is completely semantics guided.
In Figure 1.1, we can see how the three main steps align with the different
semantic levels that are taken into account during the whole process.

1For example, a user looking for movies whose genre is “horror” could enter “horror
movie”, omitting the keyword “genre”.

1.3. Semantic Levels of Our Approach 5

Relevant Data

Plain Keywords

USER

Query Languages

Discovery of Meanings

Interpretation and Translation
into Formal Languages

Access Data

Semantics of the Input

Semantics of the

Query Execution

Semantics of the

Figure 1.1: Main steps of our approach and the semantic levels involved.

Semantics of the Input

The semantics of the input set of keywords are treated at two different levels:

• First, our system discovers and disambiguates the meaning of each of
the keywords that conforms the input. For instance, the keyword
“book” could mean “a kind of publication” or “to reserve a hotel
room”. To determine the meaning of each input keyword, it takes
into account its context (the rest of the keywords in the input set);
i.e., each input keyword has influence on the rest of the keyword’s
meanings.

• Second, once each keyword has an exact meaning, our system con-
siders the semantics of the whole set of keywords to build possible
interpretations according to the different query languages of the inte-
grated systems. The use of ontologies and formal languages to express
the information needs enables our system to get rid of the ambiguity
of the input composed by plain keywords.

Semantics of the Query Languages

In our approach, the syntax of the different query languages that are used
is left aside to focus on the semantics of their different operators. On the
one hand, via the use of extended grammars, we make it possible to specify

6 Chapter 1. Introduction

query languages taking into account their operators: The arguments that
they take as input, their returned values, their properties, etc. On the other
hand, we extend further this semantic specification by using Description
Logics [BCM+03] to express different semantic conditions that both the
operators and their operands must satisfy to build not only syntactically
valid queries, but also semantically.

Semantics of the Query Execution

Last but not least, our system considers the different semantics that are
behind the different execution models offered by the systems. Different user
information needs might require different types of queries and execution
schemas, each with its own semantics. For example, information needs about
static knowledge require a snapshot query execution (e.g., a user looking for
the list of taxi companies in a city); while information needs about volatile
knowledge require a continuous query processing as the answer might be
continually changing (e.g., a user looking for a cab nearby in a rainy day
requires considering continually their position -user and cabs positions- as
the answer gets obsolete quickly).

These three semantic levels (input, query languages, and query execu-
tion ones) are integrated in our approach to develop a highly flexible system
that enables users to perform keyword-based searches over heterogeneous in-
formation systems. Our approach is capable of adapting itself to the query
capabilities of the underlying systems, providing users with a single entry
point to all of them, while retrieving the appropriate answer for their infor-
mation needs.

1.4 Structure of the Thesis

This thesis is composed of eight chapters, including this one. In Chapter 2,
we present the technological context of this thesis, focusing on what ontolo-
gies are and what benefits their use provides us with; and on the differences
among the informal and formal query languages relevant to this thesis. We
finish Chapter 2 with an analysis of the main works related to this thesis.

In Chapter 3, we present a lightweight approach to perform semantics-
oriented keyword search on Linked Data repositories. Then, we introduce
the problems of translating queries expressed using the keyword query model
into other more expressive query models, and present QueryGen, our ap-
proach to achieve a generalized keyword interpretation where the semantics
of all the elements involved in the process are taken into account.

1.4. Structure of the Thesis 7

In Chapter 4, we explain how QueryGen obtains the meaning of each of
the input keywords taking into account their query context. In this step, the
information retrieved during the disambiguation process is integrated into a
multi-ontology sourced ontology, which contains the user’s intended mean-
ings. We explain also how we have used external sources and modularization
techniques to enrich the available information.

In Chapter 5, we focus on the query generation process that Query-
Gen performs to translate the keyword queries into more expressive query
languages. We detail how we can specify different query languages using
specially annotated grammars, and how QueryGen uses these language spec-
ifications to generate the queries guided by the semantics of the input key-
words and the operators. We also present how QueryGen uses the integrated
knowledge to filter out inconsistent queries, and to react to insufficient in-
puts by performing a semantic enrichment of the input. Last but not least,
we present the semantic techniques that QueryGen uses to reduce the search
space that a generalized keyword interpretation implies.

In Chapter 6, we explain the solution adopted to make QueryGen ca-
pable of handling different underlying data models. It is an architecture
based on wrappers, which can be attached on the fly. These wrappers pro-
vide QueryGen with information about their underlying information sys-
tems (the query languages used, data formats, and execution models). We
present and detail two successful use cases already implemented (DBpe-
dia [BLK+09] and LOQOMOTION [IMI06]). As a result of working in the
field of location-dependent queries, we also propose two different semantic
models for representing location granularities that extend the semantics of
the queries that can be handled with LOQOMOTION.

In Chapter 7, we test QueryGen from a qualitative and a quantitative
point of view. In particular, using a third-party query set, we evaluate the
semantic capabilities of our approach regarding the discovery of the user’s
intended meaning. Then, we focus on the performance of the system, paying
special attention to execution times and the impact of the query reduction
techniques used by QueryGen.

Finally, in Chapter 8, we present the conclusions as well as our main
contributions; we finish with the future research topics.

8 Chapter 1. Introduction

Chapter 2

Technological Context

In this chapter, we present the technological background needed to under-
stand this thesis. Firstly, we give an overview of what ontologies are, their
underlying formalism, and their representation languages. Then, we present
a brief summary of query languages and give some overview of the ones
that are specially relevant to our system. Finally, we provide an overview of
the different systems that are related directly to the work presented in this
thesis.

2.1 Knowledge Representation

In this section, we present the main semantic tools used along the whole
thesis and their relationships. In particular, we use ontologies to handle
the semantics of the underlying data models, choosing the Description Log-
ics [BCM+03] as underlying formalism. Description Logics languages come
along with reasoners, which allows, among other tasks, to check the con-
sistency of the model. Finally, we present three representation languages
that are closely related to each other: RDF [MM04], RDF-S [BG04], and
OWL [HKP+12]. The three of them are W3C recommendations for different
tasks in the context of the Semantic Web [BLHL01,SHBL06].

2.1.1 Ontologies

Ontologies have their roots in Philosophy, where ontology means a system-
atic explanation of being. In the context of Computer Science, and, in
particular, in Artificial Intelligence, they are used as models of the reality,

9

10 Chapter 2. Technological Context

providing the computers with descriptions that they are capable of under-
standing. Gruber defined them as follows [Gru93,Gru95]:

An ontology is an explicit specification of a conceptualization.

A definition which comprises two of their main characteristics:

• They are conceptualizations, abstract models formed out of a reality
we want to model.

• They are an explicit specification, where all the elements of the ontol-
ogy must be clearly defined.

Then, Borst [Bor97] extended this definition to add two another impor-
tant characteristics:

Ontologies are defined as a formal specification of a shared con-
ceptualization.

Both definitions were merged by Studer et al. [SBF98] in the following def-
inition:

An ontology is a formal, explicit specification of a shared con-
ceptualization. Conceptualization refers to an abstract model of
some phenomenon in the world by having identified the relevant
concepts of that phenomenon. Explicit means that the type of
concepts used, and the constraints on their use are explicitly
defined. Formal refers to the fact that the ontology should be
machine-readable. Shared reflects the notion that an ontology
captures consensual knowledge, that is, it is not private of some
individual, but accepted by a group.

There are several approaches to categorize them according to different di-
mensions: The objective of the conceptualization [MVI95], the amount and
type of structure of the conceptualization and the subject of the conceptual-
ization [vHSW97], or their level of dependence on a particular task [Gua98].
Nevertheless, from a practical point of view, we focus on the categorization
given in [LM01], where ontologies are classified in lightweight and heavy-
weight ones according to the information needs to express and the richness
of its internal structure (see Figure 2.1). Thus, we would have:

2.1. Knowledge Representation 11

Figure 2.1: Ontology categorization: lightweight and heavyweight ones
(taken from [LM01]).

• Lightweight ontologies

– Controlled vocabularies: They provide a finite list of terms, each
of one has an unambiguous interpretation (e.g., catalogues).

– Glossaries: They provide a list of terms that come along with
their meanings specified as natural language statements (e.g., dic-
tionaries).

– Thesauri: They provide a list of terms with additional semantics
in their relationships among each other. Typically, they provide
information about synonymy (equivalence) and hierarchical re-
lationships between terms, such as hypernymy (“broader than”)
and hyponymy (“narrower than”).

– Informal is-a hierarchies: They organize the terms using a general
notion of generalization and specialization. They are not a strict
subclass hierarchy, but provide a way to organize concepts that
are strongly related together. For example, the general category
“apparel” could include a subcategory “women” (which should
more accurately be titled women’s apparel) which then includes
subcategories accessories and dresses.

• Heavyweight ontologies

– Formal is-a hierarchies: They organize the terms adopting the
formal notion of generalization/specification. In this hierarchies,
if B is a subclass of A and we have an instance of B, then it is
also an instance of A. This interpretation is needed to exploit
inheritance in the model. These ontologies only include class
names.

– Formal is-a hierarchies with individuals: They are formal is-a
hierarchies that include individuals of the domain, via formal
instance relationships.

12 Chapter 2. Technological Context

– Frames (properties): They include classes (frames or concepts)
and their properties (slots or attributes), which can be inherited
by classes of the lower levels of the formal is-a taxonomy.

– Ontologies that express value restrictions: They are ontologies
that allow to place restrictions on the values that can fill a prop-
erty, forcing the instances to belong to a determined class.

– Ontologies that express logical restrictions: The most expressive
ones. They make it possible to specify first-order logic constraints
between terms using expressive ontology languages. Moreover,
further detailed information about concepts (e.g., disjointness)
and properties (e.g., inverse ones, symmetry, transitivity, etc.)
can be expressed.

For further details on this topic, we refer to [GPFLC04]. There, the
interested reader can find (among other interesting readings) an in-depth
discussion on the different definitions and categorizations of ontologies.

From a modeling point of view, and focusing on rich ontologies (i.e.,
heavyweight ones according to Figure 2.1), we can distinguish three main
modeling elements in every ontology independently of the underlying for-
malism:

• Concepts: They represent classes of objects within the modeled do-
main. They are usually organized in taxonomies, via subsumption
relationship.

• Roles: They represent existing relationships between concepts in the
domain, making it possible to describe properties of the concepts.

• Instances: They represent specific individuals of the concepts in the
ontology.

The relationship between these elements, the formalism adopted to rep-
resent ontologies, and the implementation languages can be seen as a three
layer composition. The ontological elements are formally represented within
the knowledge representation paradigm selected to represent the ontology.
Examples of such formalisms are Frame Logic [KLW95] or Description Log-
ics [BCM+03]; each of which have different computational properties and
modeling expressiveness. While Gruber in [Gru93] firstly proposed frames
along with first order logic to model ontologies, Description Logics lan-
guages have gained popularity due to their adoption by the community for

2.1. Knowledge Representation 13

the Semantic Web (they are the formal base for the Web Ontology Lan-
guage - OWL [HKP+12]). Finally, each of these underlying formalisms is
implemented using different languages which might cover different aspects of
them. In Figure 2.2, the formalism and implementation languages adopted
in this thesis are presented.

Figure 2.2: Formalism and implementation languages in this thesis.

In the following subsections, we focus on them, giving an overview of
both the selected formalism and the representation languages.

2.1.2 Description Logics

Description Logics languages (DLs from now on) are “formal languages for
representing knowledge and reasoning about it” [BCM+03]. In this section,
we briefly overview their definitions1.

DLs are formed by an intensional layer T called TBox and an extensional
layer A called ABox. The TBox is composed by a set of terminological ax-
ioms. Axioms are formulas of the form C ≡ D or C v D, where C and D
are concepts. Concepts are formed by means of: 1) a set of concepts names
NC , conceptualizations of a set of individuals (or instances), for example,
Person, Car, and Dog; 2) a set of roles NR, which are binary relations be-
tween individuals, for instance, hasPet, and hasChildren; and 3) construc-

1We refer the interested reader to [BCM+03].

14 Chapter 2. Technological Context

tors to define new concepts, such as ∩, ∪, ∃, ∀. For example, given that we
have as concepts Person and Dog, and hasPet as a role, we can define a new
concept to represent people who have a pet dog as Person ∩ ∃hasPet.Dog.
An axiom of the form C ≡ D says that concepts C and D are equivalent,
that is, any individual that belongs to C also belongs to D, and vice versa.
An axiom C ≡ D is called a concept definition if the left hand of the axiom
is a concept name. Axioms of type C v D represent that concept C is sub-
sumed by D, i.e., any individual in C is in D, but not necessarily vice versa.
A general TBox is a finite set of axioms. An example of TBox expressing
that men are human and fathers are men who have children is:

T = {Man v Human;Father ≡Man ∩ ∃hasChild.Human}

An ABox is a set of assertions that describe a specific state of the world
represented by the associated TBox. We can express with assertions that
John is Mary’s father:

A = {Man(John);Human(Mary);hasChild(John,Mary)}

John and Mary will be constants representing individuals. Let us note that
we have not asserted that John is a father, as this is implicitly deduced from
the TBox and the ABox. The knowledge representation given by TBox T
and ABox A is denoted by K = {T ,A}.

DLs can be classified according to their expressivity, i.e., depending
on how many different symbols can be used to express axioms and how
those symbols can be combined. For example, a DL with constructors
u,t, ∀, ∃,¬,>,⊥ is an ALC DL, and if the set of constructors is enlarged
with ≤ n, ≥ n (unqualified number restrictions), we obtain an ALCN DL.
An interpretation I is a set ∆I and a function that associates each con-
cept name C to a subset CI ∈ ∆I , and each role R to a binary relation
RI ⊆ ∆I ×∆I (see Table 2.1).

DLs are logics and provide a formal framework where rules of inference
can be applied to deduce automatically new knowledge from TBoxes and
ABoxes. This is done using reasoners, which are programs that can perform
several different reasoning tasks over ontologies. The most typical reasoning
tasks reasoners perform include:

• Consistency check : Checks if there exists a logical model satisfying all
the axioms in the ontology.

• Instance retrieval : Get all the instances of a concept.

2.1. Knowledge Representation 15

C,D → A ∈ NC | A is a concept name
> | >I = ∆I

⊥ | ⊥I = ∅
¬C | (¬C)I = ∆I \ CI

C uD | (C uD)I = CI ∩DI

C tD | (C tD)I = CI ∪DI

∀R.C | (∀R.C)I = {a ∈ ∆I | ∀b, (a, b) ∈ RI → b ∈ CI}
∃R.C | (∃R.C)I = {a ∈ ∆I | ∃b ∈ CI , (a, b) ∈ RI}

Table 2.1: Syntax and interpretation for ALC DLs.

• Concept satisfiability : Checks if a concept can have instances i.e., if it
does not necessarily denotes the empty set.

• Entailment : Checks if a given fact is a logical consequence which can
be derived from the axioms in the ontology.

• Subsumption: Checks if a concept/property C can be considered more
general than (or subsumes) a concept D.

• Classification: Computes a concept/property hierarchy based on the
relations of concept/property subsumption.

In this thesis we have used two different reasoners, Pellet2 [SPG+07]
and HermiT3 [MSH07, MSH09], both of which support OWL 2, the repre-
sentation language proposed by W3C for ontology specification, which is
overviewed in the following subsection.

2.1.3 Representation Languages

As we have seen in Section 2.1.1, and, in particular, in Figure 2.2, once we
have selected what to model (the ontology) and the underlying formalism
(DLs) to express it, we have to implement it in a representation or implemen-
tation language. In this section, we present the most important languages
adopted and used in the context of the Semantic Web: RDF (along with
RDF-S) and OWL.

2http://clarkparsia.com/pellet, last accessed October 3, 2013.
3www.hermit-reasoner.com, last accessed October 3, 2013.

16 Chapter 2. Technological Context

2.1.3.1 RDF and RDF-S

RDF (Resource Description Framework) [MM04] is a language for represent-
ing information about resources on the World Wide Web. At first, it was
intended for representing metadata (title, date of creation, authorship, etc.)
about Web documents; however, by generalizing the notion of resource, it
can be used to represent information about anything that can be identified
in the Web by a URI (Uniform Resource Identifier).

In RDF, the most basic representation data unit is the triplet, < a R b >,
which represents an statement where a is the subject, b the object, and R is
the property that links them. This simple data model provides flexibility to
represent the information about the resources as a graph of nodes and arcs
which represent the resources, their properties, and their values.

In Figure 2.3, we can see an example of an RDF graph comprising infor-
mation about myself. We have a URI representing myself as subject of a set
of different statements. Summing up, the nodes of the RDF graph can be:
Other resources identified by their own URIs (e.g., my PhD. advisor); blank
nodes, which makes it possible to have composite values (e.g., an address)
without having to give them an identifier; or literals, typed or not (e.g., my
age and my hobby).

Figure 2.3: RDF example: information about myself.

The structure of the information enables it to be automatically shared
and processed by different programs; however, they have to speak the same
language, i.e., use the same vocabulary. RDF-S (RDF Schema) [BG04] was
developed to ease the definition and sharing of these vocabularies that enable
interoperability. It allows to define classes, along with their properties (see
Table 2.2). Despite of the fact that its expressiveness is quite low, it provides
a formal implementation language for simple ontologies.

2.1. Knowledge Representation 17

Classes Properties Utility Properties

rdfs:Resource rdfs:domain rdfs:seeAlso
rdfs:Class rdfs:range rdfs:isDefinedBy

rdfs:Literal rdf:type
rdfs:Datatype rdfs:subClassOf

rdf:XMLLiteral rdfs:subPropertyOf
rdf:Property rdfs:label

rdfs:comment

Table 2.2: RDF-S elements.

In the following subsection, we present OWL, which builds on RDF-S,
extending further its expressiveness.

2.1.4 OWL: Web Ontology Language

OWL (Web Ontology Language) [HKP+12] is the current W3C recommen-
dation for ontology specification. OWL is based on the DL SROIQ(D).
In this subsection we will only describe the syntax of the language, but
more details about the underlying logic, including the semantics, can be
found in [HKS06]. OWL provides several syntaxes, among which, we will
use Manchester syntax [HP12], specifically designed to be easily understood
by humans.

OWL ontologies have five elements: Individuals, concepts (or classes),
datatypes (or concrete domains), object properties, and data properties.
Essentially, concepts are sets of individuals, datatypes are sets of values
defined over a concrete domain (such as integers or dates), object proper-
ties are binary relations between individuals, and datatype properties relate
individuals and datatypes.

Table 2.3 shows the supported concept constructors in OWL 2, its latest
version. Using these constructors, we can build complex concepts from sim-
pler ones inductively. On the other hand, Table 2.4 summarizes the main
axioms in OWL 2. The top part of the table (with 7 axioms) contains the
axioms concerning the ABox, and the lower part contains the axioms con-
cerning the TBox. Some of the axioms are just syntactic sugar and can be
represented using equivalent class axioms (such as disjoint classes, disjoint
union of classes, and domain and range axioms). In these tables, C is a
concept, R is an object property, n is a natural number, i is an individual,
T is a datatype property, v is a datatype value, and D is a datatype.

In order to guarantee the decidability of the logic, there are some restric-
tions in the role hierarchies axioms and some roles are required to be simple
ones. The interested reader may find the formal specification at [HKS06].

18 Chapter 2. Technological Context

A Atomic/primitive concept
C1 or C2 Disjunction
C1 and C2 Conjunction

not C Negation
Thing Universal concept
Nothing Empty concept

{i1, . . . , in} Nominals/Enumeration
R only C Universal restriction
R some C Existential restriction
R value i Value restriction
R self Self concept

R exactly n [C] [Qualified] Exact cardinality restriction
R max n [C] [Qualified] Maximal cardinality restriction
R min n [C] [Qualified] Minimal cardinality restriction
T only D Universal restriction
T some D Existential restriction
T value v Value restriction

T exactly n [D] [Qualified] Exact cardinality restriction
T max n [D] [Qualified] Maximal cardinality restriction
T min n [D] [Qualified] Minimal cardinality restriction

Table 2.3: OWL 2 concepts.

Figures 2.4 and 2.5 show an example of an OWL ontology (proyec-
tos.owl4) visualized with our ontology viewer OntView5. In this example,
we can visualize the following definitions (among others):

jefes EquivalentTo

personas and (ocupacion value "jefe")

superPro EquivalentTo

proyectos and (miembros min 3 personas)

The aim of our viewer is to capture visually the exact meaning of the
loaded ontology. To do so, it uses a DL reasoner to classify the ontology and
to obtain all the relevant information about it. Depending on the ontology
size and amount of visual information that the user wants to be displayed,
we can visualize the ontology in two different modes:

• Not expanded (Figure 2.4), where the definitions and expressions are
presented in a compact way.

4http://sid.cps.unizar.es/ontology/proyectos.owl, last accessed Octo-
ber 3, 2013.

5http://sid.cps.unizar.es/OntView/, last accessed October 3, 2013.

2.1. Knowledge Representation 19

i Types C Concept assertion
i1 Facts R i2 Property assertion

i1 Facts not R i2 Negated property assertion
i Facts T v Property assertion

i Facts not T v Negated property assertion
SameIndividual i1 i2 Equality assertion

DifferentIndividuals i1 i2 Inequality assertion

C1 SubClassOf C2 Subclass axiom
C1 EquivalentTo C2 Equivalent classes
C1 DisjointWith C2 Disjoint classes

C1 DisjointUnionOf C2 . . . Cn Disjoint union of classes
[R1|T1] SubPropertyOf [R2|T2] Subproperty axiom
R0 SubPropertyChain R1 . . . Rn Subproperty chain axiom

[R1|T1] EquivalentTo [R2|T2] Equivalent properties
[R1|T1] DisjointWith [R2|T2] Disjoint object | data properties

[R|T] Domain C Domain of an object | data property
R Range C Range of an object property
T Range D Range of a data property

R1 InverseOf R2 Inverse properties
[R|T] Functional Functional object | data property

R InverseFunctional Inverse functional property
R Transitive Transitive property
R Reflexive Reflexive property
R Irreflexive Irreflexive property
R Symmetric Symmetric property
R Asymmetric Asymmetric property

Table 2.4: OWL 2 axioms.

Figure 2.4: OWL example: simple ontology about project management.

20 Chapter 2. Technological Context

Figure 2.5: OWL example: expanded visualization.

• Expanded (Figure 2.5), where each of the expressions in the ontology
are expanded to show their semantics visually.

In the following section, we turn our focus to the notion of query language
and present the most relevant ones in the context of this thesis.

2.2 Query Languages

In Computer Science, query languages are computer languages that are used
to query databases and information systems. Note the difference that exists
between information need and query [MRS08]:

An information need is the topic about which the user desires
to know more, and is differentiated from a query, which is what
the user conveys to the computer in an attempt to communicate
the information need.

Depending on their formality degree, we can classify query languages
as informal or formal ones. Informal query languages are more related to
information retrieval tasks, where the semantics of the query are not formally
defined. Users express with these query languages their information needs,
so these languages imply an intermediate step to establish their semantics
(query construction) and adapt the query to the underlying data model. On
the other hand, formal query languages have their semantics strictly defined
and users express with them queries with a univocal interpretation.

In this section, we present the query languages that appear in this thesis:
Informal query languages (natural language and keyword queries), and for-

2.2. Query Languages 21

mal ones (SQL-like languages, SPARQL, and logic based ones –in particular,
conjunctive and DL queries).

2.2.1 Informal Query Languages

Under this denomination, we can find our natural languages and the keyword
query language, which is a strong simplification of the former.

Natural Language Natural Language (NL) enables users to express their
information needs in their own language. Its ease of use makes it always a
possible choice for casual users [KB10], but processing it correctly is still
an open problem. Among others, NL as query language faces the following
problems:

• It is inherently ambiguous: The meaning of the query depends heavily
on its context (the discourse), and, even when the context has been
perfectly established, different aspects such as polysemy or the flex-
ibility of the language might make impossible to interpret correctly
the query. Among other linguistic problems, we could find the follow-
ing challenges (examples taken from [ART95]) when dealing with NL
queries:

– Modifier attachment: When modifiers appear in the sentence, it
is not always clear which clause they are modifying. For example,
in List all employees in the company with a driving license, “with
a driving license” could modify the company or the employees
as well. While one could infer that a company could not have a
driving license, this is not straightforward at all. This another
example (taken from [PG88]) is even more ambiguous, List all
employees in the division making shoes.

– Nominal compound problems: Dealing with English language,
nouns are often modified by other nouns and the resulting mean-
ing is quite difficult to be foreseen. For example (based on [PG88],
taken from [ART95]), city department could mean a department
located in a city or a department responsible for the city, research
department probably means a department carrying out research,
and research system is probably a system used in research, and
not a system carrying out research.

– Conjunction and disjunction: Users tend to use and to denote dis-
junction instead of conjunction. For example (fitted from [TB83]),

22 Chapter 2. Technological Context

for List all applicants who live in Zaragoza and Madrid, all the
applicants living either in Zaragoza or Madrid should be returned
instead of those living in both cities at the same time.

– Other linguistic features, such as anaphora (the use of pronouns
and noun phrases to denote entities already mentioned before),
ellipsis (the use of incomplete sentences, very common in oral
communication), quantifier scoping (similar to the modifier at-
tachment problem, but this time concerning logical quantifiers),
etc.

• It is language-dependent: The techniques applied to process NL de-
pend directly on the language being processed as they differ at syntac-
tic, grammatical and semantic levels. Assuming that you could process
and correctly interpret one language solving the linguistic problems as-
sociated to it, moving to another language would require to remake the
interpretation process almost from the beginning as the interpretation
rules would have change completely.

Natural Language was used firstly as interface to databases [ART95].
This kind of interfaces has evolved into what is currently named Query
Answering systems, which are not only focused on accessing databases, but
on accessing different information systems. In particular, in the last few
years, the Semantic Web community has turned its attention to this kind of
techniques to be used to query semantic resources [LUSM11]. While they
are still far from being perfect, there has been a lot of research in the Natural
Language Processing (NLP) field that would help us and vice versa.

Keyword Query Language Keyword queries are a simplification of the
queries that can be expressed using Natural Language. They consist of
a set of plain keywords that represents the user’s information need. For
example, a user could express horror movie to ask for the latest movies that
correspond to the horror genre.

The success and adoption of keyword-based search interfaces have come
along with the success of the main Web search engines, such as Google,
which adopted it as their main query language. The different search tech-
niques used in the field of Information Retrieval, such as the bag of words
representation of Web documents, make keyword queries especially easy to
answer statistically (using different ranking methods) while keeping the pro-
cess scalable enough to deal with huge amounts of information. Moreover,

2.2. Query Languages 23

users have found in keyword queries a quick and easy way to express their
information needs.

However, the ease of use of keyword search comes from the simplicity of
its query model, whose expressivity is low compared with other more com-
plex query models [KB10]. Moreover, keyword queries are in fact projections
of the user’s actual information need. This leads to a much more ambigu-
ous context, where polysemy and lack of information are always present.
Revisiting some of the examples for the NL queries, a user could write the
following queries6:

• List all employees in the company with a driving license could be ex-
pressed as employees driving license, which although gets rid of the
modifier problem, introduces new ambiguity problems: Must the re-
turned employees have a driving license? Must they not? Is there any
other kind of license and we should retrieve the employees that are
currently driving?

• List applicants who live in Zaragoza and Madrid could be expressed
as applicants Zaragoza Madrid : Which applicants should we retrieve?
Those who are living/working in Zaragoza, in Madrid?

However, despite of its inherent ambiguity, keyword-based search inter-
faces have been adopted by different information systems other than Web
search engines as the benefits that they provide in terms of user-friendship
and language independence are worthy enough to do so. In this thesis, we
aim at overcoming their drawbacks with the help of semantic techniques.

2.2.2 Formal Query Languages

We now turn our attention on formal languages, which make it possible to
express the information needed unambiguously thanks to the adoption of
different formalisms.

2.2.2.1 SQL-like Languages

The notion of SQL-like language is quite broad. SQL-like languages are
languages whose syntax resembles the syntax of SQL (Structured Query
Language) [ISO11b], which is the most extended language for querying and
managing data stored in relational databases [Cod70].

6We assume three keywords for the examples as the average number of keywords used
in keyword-based search engines “is somewhere between 2 and 3” [MRS08].

24 Chapter 2. Technological Context

SQL has its formal foundations on relational algebra [Cod71,EN11], and
consists of a data definition language (to create and manage the database
schema) and a data manipulation language (to insert, update, and query
the data in the database). Focusing on SQL as a query language, and
independently of the underlying schema, a SQL query has the following
general structure:

SELECT ListOfProjections

FROM ListOfTables

WHERE ListOfConditions

where:

• ListOfProjections is the list of attributes that have to be retrieved as
an answer for the query.

• ListOfTables is the list of the tables that are involved in the query.

• ListOfConditions is the list of the conditions that the attributes have
to meet to form part of the answer. This conditions can include dif-
ferent kind of relational operators between tables such as the different
kinds of JOIN operators that exist.

For example, assuming that the appropriate tables exist, the examples
from the previous section would look like the following in SQL:

• The list of the employees of a given company that have a driving
license:

SELECT EmployeesTb.employeeID

FROM EmployeesTb, CompaniesTb

WHERE CompaniesTb.companyID = exampleCompanyID

AND EmployeesTb.employeeID = CompaniesTb.employeeID

AND EmployeesTb.hasDrivingLicense = TRUE

• The list of applicants for a position that live in Zaragoza or Madrid:

SELECT ApplicantsTb.applicantID

FROM ApplicantsTb

WHERE ApplicantsTb.applyFor = examplePositionID

AND (ApplicantsTb.livesIn = Zaragoza

OR

ApplicantsTb.livesIn = Madrid)

2.2. Query Languages 25

As we can see in the examples, the values that compose the answer are
unambiguously defined in the query, instead of having to interpret them.

Along all its versions, SQL has been extended with numerous extensions
such as object-oriented capabilities with different semantics [BG08,The13],
and geospatial capabilities [Sto03, ISO11a]. In this thesis, we use the SQL-
like query language used by LOQOMOTION [IMI06] to show how our sys-
tem can handle this kind of languages (see Section 6.3.4).

In the following subsection, we take a look into SPARQL, which, al-
though it can be considered an SQL-like language, is relevant enough to
have its own section in this thesis.

2.2.2.2 SPARQL

SPARQL query language is the W3C recommendation for querying RDF
data [HSP13]. It resembles SQL in its syntax, although their queries are
expressed in terms of pattern matching over the RDF graphs, instead of
dealing with relational tables. There are four different types of SPARQL
queries:

• SELECT, which retrieves directly the answer to a query pattern. This
answer is conformed by the used variables and their bindings to the
answer values.

• CONSTRUCT, which constructs a RDF graph specified by a template
(also in terms of query patterns).

• ASK, which checks whether a query pattern has a feasible solution.

• DESCRIBE, which, given a resource (URI), returns an RDF graph
containing information about it.

In particular, we focus on SELECT queries as they allow us to ask di-
rectly for facts and data. They have the following structure:

’SELECT’ (’DISTINCT’ | ’REDUCED’)? (Var+ | ’*’)

DataSetClause*

WhereClause

SolutionModifier

where:

• Var is the list of free variables that conform the answer.

26 Chapter 2. Technological Context

• DataSetClause is equivalent to the FROM clause in SQL. It establishes
the graph against which the query is posed. In RDF repositories, we
can have the data partitioned into different named graphs (as if they
were different databases). If omitted, the default graph is used.

• WhereClause is the condition that the data retrieved as answer must
meet. It is given in the form of a query pattern, where the free vari-
ables declared in the Var list are used to form a graph along with the
properties that should relate them. The answer is conformed by all
the possible data value tuples that fulfil the pattern.

• SolutionModifier is composed by different functions that can be ap-
plied to the returned tuples (e.g., ORDER BY, LIMIT, etc.).

The examples in the previous sections would be expressed in SPARQL
in the following way:

• The list of the employees of a given company that have a driving
license:

PREFIX ex: <http://sid.cps.unizar.es/Example/>

SELECT ?employeeID

WHERE {?employeeID ex:worksFor ex:exampleCompany.

?employeeID ex:hasDrivingLicence ?driver.

FILTER (?driver = ’TRUE’) }

• The list of applicants for a position that live in Zaragoza or Madrid:

PREFIX ex: <http://sid.cps.unizar.es/Example/>

SELECT ?applicantID

WHERE {?applicantID ex:appliesFor ex:examplePosition.

{?applicantID ex:livesIn ex:Zaragoza.}

UNION

{?applicantID ex:livesIn ex:Madrid. }

}

As we can see in the examples, SPARQL queries resemble SQL queries
where the schema has been blurred to the limit of representing everything
via RDF tuples. This, along with the use of predefined schemas, provides us
with higher levels of flexibility to achieve schema and data interoperability,
among other benefits.

2.2. Query Languages 27

2.2.2.3 Logical Languages

In this section, we present two different query languages that adopt different
subsets of Logic as their founding formalism: Conjunctive queries and DL
queries.

Conjunctive Queries Conjunctive queries are a subset of first order logic
queries that have been thoroughly studied in the context of databases. A
large part of relational algebra expressions can be expressed as conjunctive
queries and vice versa [CM77] (in particular they are included into the select-
project-join queries in relational algebra). They are defined as follows:

Definition 2.2.1 A conjunctive query is an expression of the form

(x1, . . ., xk).∃xk+1, . . ., xm.A1 ∧ . . . ∧Ar

where x1, . . ., xk are called distinguished (free) variables, xk+1, . . ., xm are
called undistinguished (bound) variables, and A1, . . ., Ar are atomic formu-
lae.

If the set of distinguished variables is empty, then the query is a boolean
conjunctive query. Conjunctive queries are often extended with the union
operator to build more complex queries. Besides, a formula comprising
only ∧ and ∨ operators can be rewritten as union of conjunctive queries
after converting it into disjunctive normal form [CM77].

Using conjunctive queries, the examples from previous sections would be
expressed as follows:

• The list of the employees of a given company that have a driving
license:

{x}.worksFor(x, exampleCompany) ∧ hasDrivingLicense(x, true)

• The list of applicants for a position that live in Zaragoza or Madrid:

{x}.(appliesFor(x, examplePosition) ∧ livesIn(x, Zaragoza))

∨ (appliesFor(x, examplePosition) ∧ livesIn(x,Madrid))

This kind of queries covers a frequently used feature of SPARQL, i.e.,
they are its basic graph pattern. So, several of the works related to this
thesis which adopt RDF as their underlying data model focuses on the use
of conjunctive queries to interpret the user’s input as we will see in the next
section.

28 Chapter 2. Technological Context

Description Logics (DL) Queries DL queries [BCM+03] are concept
expressions that are used to interrogate a DL knowledge base, which is done
usually via a DL reasoner (see Section 2.1.2). In particular, we will use the
DL queries to perform instance retrieval, although they can be used also to
query the T-Box of the knowledge base to extract information about the
concept hierarchy.

They are built with the concept construction operators allowed by the
DL language used (see Table 2.3), which defines their expressivity. Being
DL concept expressions as they are, their satisfiability according to a given
ontology can be assessed directly with the help of a DL reasoner, property
which is exploited in this thesis to assess the satisfiability of the possible
user’s queries.

Using Manchester syntax [HP12], the queries of previous sections would
be as follows:

• The list of the employees of a given company that have a driving
license:

Employee and worksFor value exampleCompany

and hasDrivingLicence value true

• The list of applicants for a position that live in Zaragoza or Madrid:

Applicant and appliesFor value examplePosition

and livesIn some {Zaragoza,Madrid}

Regarding their relationship with conjunctive queries, they have different
expressivity, but they complement each other:

• DL queries could extend their expressivity by using the free variables
mechanism to retrieve projected values and other information along
with the instances that belong to the DL expression.

• Conjunctive queries could use DL queries as their atomic formulae to
obtain all the expressivity of the underlying DL language instead of
having to deal with atomic predicates.

In the following section, we move into a presentation of the works that
are the most related ones to this thesis.

2.3. Systems Related to QueryGen 29

2.3 Systems Related to QueryGen

In this section, we present the most relevant works to QueryGen. Due to
the nature of QueryGen, almost any information system that accepts key-
words as input would be related to it. From a general point of view, any
system performing a search follows three main steps: Query construction,
data retrieval, and presentation of results. Out of these three steps, the
first one is crucial because the more accurate the system is able to capture
the user’s information need, the more precise results it will retrieve. How-
ever, the importance of this first step is usually underestimated by adopting
unstructured query models (i.e., keyword bag), making the quick access to
huge amounts of data and the ranking of results the most important steps
of the whole process.

To keep it manageable, we focus on systems that attempt at captur-
ing and interpreting the actual information requirement that is behind the
user’s input before accessing the underlying data. We have grouped them
in three groups according to the approach adopted and their target data
model: Keyword interpretation on semantic data, keyword search on re-
lational databases, and question answering. The first group contains the
works that are the most related ones to the approach presented in this the-
sis, and, therefore, they are analyzed thoroughly. The analysis of the other
two groups is performed in a less detailed way, as they are not so related to
our work as the first group ones.

2.3.1 Keyword Interpretation on Semantic Data

In this section, we group systems that use semantic data to perform the
keyword interpretation. They are presented according to their grade of
relatedness to our work, being QUICK [ZZM+09] the most related approach
to ours. Most of them [GMM03,ZWX+07,WZL+08,THL11] exploit directly
the RDF graph structure to perform different subtasks of the search (such as
interpreting the possible keyword query or augmenting the retrieved results
with relevant ones), which is in fact a data-driven solution. In [FA11] they
propose a similar approach to keyword interpretation but they introduce
the context of the user’s search (the knowledge about previous queries) to
focus the whole search process. SemSearch [LUM06] and QUICK [ZZM+09]
adopt a different approach by using query templates to perform the keyword
interpretation. The former uses a set of predefined query templates, while
the latter derives them from a lightweight ontology provided as domain
definition.

30 Chapter 2. Technological Context

However, as we will see in the following, the expressivity of these ap-
proaches is quite restricted (subsets of conjunctive queries, predefined sets
of queries, etc.). Moreover, although the authors in [GMM03] advocate for
establishing firstly the meaning of the input keywords, the techniques that
these approaches use basically rely on text indexes (some of them slightly
semantically enhanced). Moreover, some of the approaches are constrained
to the use of a single ontology [ZWX+07, ZZM+09], or use an off-line built
one [WZL+08,THL11]. As we will see along this thesis, our system achieves
greater levels of flexibility by adopting a multi-ontology solution for the dis-
covery of the keywords meaning and a flexible semantic mechanism to adopt
potentially any query language. Besides, none of these approaches supports
reasoning capabilities for query reduction and inconsistent query filtering,
as opposed to our system. Regarding these approaches, our approach works
at a higher semantic level, as it exploits the background knowledge not only
to build new queries but also to infer which ones are satisfiable and to avoid
the generation of inconsistent queries.

TAP and Semantic Search

TAP [GM03,GMM03] is a platform to publish and query semantic data that
was developed in the early days of the Semantic Web. In particular, its three
main objectives were: 1) to provide a simple and predictable query interface
to access semantic data, 2) to provide the different data publishers with
mechanisms to reconciliate their possibly different vocabularies, and 3) to
establish a trust network that allows to validate the trustworthiness of the
different accessed data services.

Note that, although the first objective seems to have been correctly ad-
dressed with the wide adoption of SPARQL endpoints, the other two objec-
tives remain being important research fields. Anyway, its authors developed
an application over TAP called Semantic Search, that was meant to be a
demonstration of how the Semantic Web could help and improve the current
search methods.

In brief, the search process was divided in two steps: 1) finding a de-
notation (a resource) for the provided search terms, and 2) retrieve data
that is related to the anchor nodes by exploring the relations in the data
graph. The mapping between the input keywords and their denotations was
done via the TAP search interface, which performed a syntactic match with
the different resources and, when there were more than one possible term
for each keyword, presented them to the user to select the specific resource.
Moreover, they limited the amount of the possible search terms to at most

2.3. Systems Related to QueryGen 31

two ones.

Once they had the nodes in the graph that corresponded to the deno-
tations, they applied different heuristics to retrieve related resources and
enrich the search results. With one anchor term, they focused on retrieving
the resources that were connected to it by different relationships, applying
different selection criteria such as the amount of resources retrieved so far
via that relationship, or the provenance of the data. With two anchor terms,
before applying this heuristic, the possible subgraph connecting them was
to be selected.

SemSearch

One of the first systems whose goal is building formal queries from keywords
in the area of the Semantic Web is SemSearch [LUM06]. They offer a Google-
like user interface where the user has to mark the main subject of the search
and mark the rest of the keywords as mandatory or optional ones. Then,
the input is matched to semantic entities by means of text indexes. The
subject keyword must be mapped to a concept entity (the focus of the user
query, i.e., the type of the expected search results); otherwise, the system
applies several fixed heuristic rules to interpret it correctly depending on
the number of input keywords (for example, with two input keywords, if the
subject keyword matches an instance and the keyword matches a property,
the search results are the values of the matched property for the matched
instance).

The result of the matching process is passed to the Semantic Query
Layer, where the system applies several predefined query templates to inter-
pret the keywords and build formal queries (in particular, they use SeRQL
query language, although SPARQL could also be used). This template-
based approach fixes the possible interpretations and, as not all the possible
queries are considered in those templates, the system could fail generating
the user’s intended query. Regarding Semantic Search on TAP, SemSearch
goes one step further in the keyword interpretation process supporting com-
plex queries (more than two keywords, although it is done via predefined
templates attached to a single query model); however, they do not con-
sider the vocabulary mismatch problem (the indexes SemSearch uses for
the semantic entity mapping are preprocessed on the data repository to be
accessed).

32 Chapter 2. Technological Context

SPARK

SPARK [ZWX+07] relies on graph construction on a semantic model equiv-
alent to RDF-S to achieve a proper keyword interpretation. To do so, they
focus on obtaining a query graph out from the keyword query. They equate
semantic query to a query graph with constrained object nodes and property
arcs, which is directly mapped to conjunctive queries.

The interpretation performed in SPARK is constrained to just one given
domain, which is provided in the form of an ontology. The resources of
this ontology are indexed to perform the term mapping, which associates
each of the input keywords to one or more resources (due to the possible
ambiguity). They use morphological techniques (i.e., substring, stemming,
etc.), and expands the mapping space semantically using general dictionaries
such as WordNet [Mil95].

Once the terms are mapped, the query graph construction step explores
the RDF data to construct complete query graphs applying Minimum Span-
ning Tree algorithm. If there are missing edges needed to connect the
mapped terms, SPARK adds them by consulting the underlying seman-
tic model. The result is a set of SPARQL queries that are ranked according
two different perspectives: According to the keyword input, and accord-
ing to the semantic model. Regarding the previous approaches, SPARK
enables a higher level of expressivity (although it is constrained to simple
conjunctive queries) as they can calculate all the interpretations that can be
derived from the underlying RDF data. However, this comes at the cost of
not scaling well with large data repositories. Moreover, they just work on
one domain, and it has to be previously indexed (SemSearch also indexed
the semantic entities, but it was multi-domain oriented).

Q2Semantic and SemSearchPro

Adopting a similar approach as SPARK, the works of Tran et al. [WZL+08,
TWRC09,THL11] also advocate for graph construction on the RDF data to
perform the keyword interpretation. Concerned by the scalability problems
of general graph-approaches such as SPARK, they perform a clustering op-
eration on the RDF data to “obtain a graph structure that corresponds to
a only a summary of the original ontology”, a lightweight ontology. Once
they have it, they focus on building the top-k queries that are the possi-
ble interpretations for the input keywords. Thus, they adopt a data-driven
approach to obtain the semantics that are behind the keywords/ontologies
used. The techniques were introduced in Q2Semantic [WZL+08], were de-

2.3. Systems Related to QueryGen 33

tailed and improved in [TWRC09], and finally a compilation of the whole
pipeline was presented under the name of SemSearchPro in [THL11].

These approaches, instead of working directly with the underlying RDF
graph as SPARK did, perform an offline preprocessing step to build the
lightweight ontology out from the RDF data. The authors advocate for this
dynamic construction instead of working with predefined ontologies due to
the fact that large scale scenarios at Web scale have to deal with dynamic
evolving generic data, and in that scenarios they argue that “a schema
cannot be defined completely a priori but must also evolve with changes
in usage requirements, and with changes in the underlying data”. This
semantic model is built exploiting the structure similarity of the different
RDF resources, which allows to group different elements. In SemSearchPro,
it is obtained by applying the notion of bisimulation, originating from the
theoretical analysis of state-based dynamic systems. As the authors state,
“intuitively speaking, two vertices are bisimilar when they share the same
structure found in the data graph”. The expressive power of this semantic
model is lower than RDF-S.

The interpretation process in these systems is comprised by two main
steps: A keyword-to-resources mapping step, and a exploration and ranking
step. The first step in Q2Semantic is similar to SPARK’s term mapping.
It searches for the keywords in the RDF literals, which are enriched with
Wikipedia’s terms to try to fill the gap between the RDF repository’s and
user’s vocabularies. In [TWRC09] they improve this matching process by
adding a keyword index that also takes into account the types of the re-
sources that the keywords are matched against. The second step is per-
formed on the built summarized graph/semantic model, which reduces the
search space with respect to generic-graph approaches. They employ a top-k
exploration algorithm [TWRC09] that starts from the matched elements and
explores iteratively the graph looking for all the distinct paths from these
elements. While traversing the graph, they score the paths according to dif-
ferent factors (such as the popularity of the graph elements, among others)
to obtain a ranking of the created queries and focus the search. Eventually,
paths are formed between the initial resources and are added as candidate
queries. In both systems, the queries to be built are constrained to a re-
stricted type of conjunctive queries, which are directly translated into query
graphs in SPARQL.

They achieve a more efficient interpretation method than SPARK. More-
over, they get rid of the need of an ontology describing the domain, as they
build their own. However, this is done offline and it depends completely on
the underlying data. Finally, they still rely mainly on syntactic techniques

34 Chapter 2. Technological Context

for the initial matching (in spite of being partially enhanced), and are at-
tached to just one data model (RDF with a subset of conjunctive queries as
query language).

CoSi

CoSi [FA11, FGA11] adopts a summary graph solution as SemSearchPro
does, using also the top-k approach to obtain the most probable interpre-
tations for the input keywords. The main difference between both systems
relies on the information that their summarization graphs hold.

CoSi introduces the use of user’s query history to achieve a better se-
mantic interpretation. Instead of building their own summarization graph
from scratch directly from the underlying data, CoSi relies on a provided
schema graph (with an expressivity less than RDF-S) to build a context-
aware summary graph, which includes a query history dependent weighting
function. This function takes into account the locality of the resources (re-
gion factor), and the query history (historical impact factor) to weight the
nodes and edges during the top-k exploration.

The interpretation process is similar as the performed by SemSearchPro,
with an extra step to update the weights in the summarization graph. First,
the keywords are matched to the underlying resources using an inverted
index. Then, CoSi uses a graph exploration algorithm to generate the top-k
interpretations. After this, the updating of the weights is carried out. The
top-k exploration algorithm is also adapted to deal with dynamic weight
values and to detect early termination conditions.

QUICK

Finally, QUICK [ZZM+09] adopts a schema-driven approach to perform
the keyword interpretation, instead of a data-driven one as the previous
systems did. Moreover, they involve the user in the keyword interpretation
by allowing him to build the desired query incrementally.

QUICK works on a predefined domain, which is provided by an RDF-S
ontology. It uses this ontology to build the complete set of all possible se-
mantic queries for the given set of input keywords. To do so, first, QUICK
obtains the possible query patterns for that given schema without consider-
ing the input keywords. These query templates are compositions of schema
elements, and their expressivity is limited to acyclic conjunctions of triple
patterns. Then, the actual semantic queries are build by binding keywords
to the appropriate query templates. The keyword matching is done using a

2.3. Systems Related to QueryGen 35

full-text index, extended with synonyms. Then, to help users to select the
intended query, they propose an algorithm to iteratively build it by selecting
different subqueries of the intended one.

Working at schema-level makes QUICK not to be so dependent on the
underlying data. However, QUICK still needs to build an enriched text index
to perform the initial keyword matching, which does not take into account all
the possible semantic aspects of the keywords. Moreover, their expressivity
is constrained to just one data model (RDF with acyclic conjunctions of
triple patterns as query formalism). Finally, they are constrained to just
one domain at a time (their query search space grows directly with the size
of the schema/s considered).

2.3.2 Keyword Search on Relational Databases

There are also some works in the area of databases to provide a keyword-
based interface for databases, i.e., translating a set of keywords into SQL
queries, such as BANKS [BHN+02,ABC+02], DBXplorer [ACD02], and DIS-
COVER [HP02]. However, they focus on how to perform keyword searches
efficiently on the relational data, overcoming the problem of having the rel-
evant data distributed among several tables (mainly due to normalization).
Moreover, as emphasized in [BDG+11], most of these works rely only on
extensional knowledge obtained by applying IR-retrieval techniques, and so,
they do not consider either the intensional knowledge (the structural knowl-
edge), or the semantics of the input keywords.

The graph-based approach adopted by BANKS [BHN+02,ABC+02] has
strongly influenced another works such as SPARK or Q2Semantic. In this
system, the database is modeled as a directed graph with each tuple being
a node in that graph. The foreign-key-primary-key links are the edges be-
tween the different nodes. With this built graph in memory, BANKS uses
disk resident indexes to search for the nodes that exactly match the search
keywords. Once it has obtained them, it builds join-trees that connect all
the matched nodes. These trees are rooted in a information node, which can
be restricted to be from a selected set of nodes of the graph.

Also considering the database as a graph of interconnected tuples, DBX-
plorer [ACD02] and DISCOVER [HP02] work with specially designed data
structures stored in the same database. The former one builds a symbol
table which indexes the database associating keywords with their locations
within it. This makes it possible to determine where the query keywords
appear efficiently (i.e., the tables, columns or rows, depending on the gran-
ularity level chosen). Then, it works out all the subsets of tables that, when

36 Chapter 2. Technological Context

joined, might contain rows with all the keywords. Finally, for each of these
combinations, they build an SQL statement to retrieve the rows with all
the keywords. DISCOVER also relies on a keyword index (Master Index)
at row granularity to perform the initial keyword search on the database.
Then, it works at row level to create candidate networks, sets of tuples that
cover the input keywords. As the authors state, this allows DISCOVER to
consider more solutions than DBXplorer does (e.g., solutions that include
two tuples from the same relation).

More recently, Keymantic [BDG+11] proposes an approach that is the
most related work to ours in this field. In this case, authors focus on mapping
the keywords to entities of the relational schema of a database and inter-
pret them as an SQL query to enable keyword based search over databases
without having to process the extensional data, which is an important im-
provement when we only have access to the database schema. Moreover,
when matching each input keyword to the database elements, they have
also into account the influence that rest of the input keywords has in the
query meaning. Then, once they have obtained the set of most feasible
mappings, they apply a greedy algorithm to derive the whole set of pos-
sible Select-Project-Join (SPJ) queries to be posed to the database. This
approach also helps the user to understand the database schema in a ex-
ploratory way. However, as we will see, our approach is more flexible as it is
capable of: 1) obtaining the semantics of the keywords without specifying a
target schema, 2) interpreting the queries into different query models, taking
into account the semantics of all the elements (keywords, query language,
operators, etc.), and filtering the inconsistent ones; and, finally, 3) accessing
different underlying data models considering the previously well-established
semantics.

2.3.3 Question Answering Systems

Finally, we overview the broad field of Question Answering systems [ART95,
LUSM11]. Although this kind of systems is traditionally more related to the
processing of Natural Language (according to [HG01], their goal is “to allow
a user to ask a question in everyday language and receive an answer quickly
and succinctly, with sufficient context to validate the answer”), in essence,
QueryGen shares their objectives.

According to the classification given in [LUSM11], our system would fall
into the category of ontology-based semantic QA systems, taking keywords
as input. They are traditionally attached to a specific knowledge domain
and/or underlying data source/model , which guides the translation process.

2.3. Systems Related to QueryGen 37

Using several different techniques, we tackle some of the traditional problems
that these systems face [LUSM11]:

1. The vocabulary mismatch between the user’s vocabulary and the un-
derlying repository. As we will see, QueryGen maps the vocabulary of
the user to the vocabulary of the data sources (provided that the data
sources are semantically described, and the ontology is made avail-
able).

2. As we have seen in Section 2.2.1, Natural Language is inherently am-
biguous and, of course, language-dependent. When using keywords,
in spite of introducing ambiguity due to the lack of expressivity of
the keyword model, we provide users with a multilanguage way of
expressing their information needs. Moreover, our approach disam-
biguates the different possible interpretations due to polysemy (and,
in our case, also due to the lack of expressivity of the keyword model).

3. Many QA approaches present domain-specific limitations, a limitation
that can be overcome by using techniques to consult and analyze a
dynamic pool of ontological sources.

4. QA approaches usually need a well formed input to achieve good re-
sults (complete sentences). In this thesis, we deal with this lack of
information by retrieving semantic information relevant to the query.

5. To the best of our knowledge, no QA approach exploits the semantic
knowledge not only to interpret the query, but to filter inconsistent
queries.

However, we have to bear in mind that the premises which QA systems
and QueryGen build on are quite different, and we are aware (and we are
working on it) that we can introduce several techniques from these systems to
improve the whole semantic keyword-search process that we are presenting
in this work.

38 Chapter 2. Technological Context

Chapter 3

Semantic Keyword-based
Search

In this chapter, we firstly present a lightweight approach to perform keyword
search guided by the semantics of a domain on Linked Data repositories.
Then, we move onto our main approach, where we introduce the problem
of interpreting the keywords of the users, and give an overview of our ap-
proach to it. This problem (keyword interpretation) is an ill-posed one due
to different difficulties, such as the lack of expressivity of the keyword query
model, the ambiguity introduced by the polysemy of the keywords, and the
possible omission of implicit keywords. Thus, we advocate for a semantic
keyword-based search, which takes into account the semantics of all the el-
ements that participate in the process to reduce the impact of the main
problems of keyword query model.

3.1 Lightweight Semantic Keyword Search
on Linked Data

In this section, we give an overview of the lightweight semantic keyword
search we have developed to enhance the underlying knowledge of Embodied
Conversational Agents (ECAs) [CSPC00]. ECAs are graphical interfaces
capable of using verbal and non-verbal modes of communication to interact
with users in computer-based environments. The appearance of these agents
varies depending on the application scenario: They might be as simple as
just an animated talking face, displaying simple facial expressions; or they
can be as complex as to have a sophisticated 3D graphical representation,
with complex body movements, and emotional and facial expressions.

39

40 Chapter 3. Semantic Keyword-based Search

In [BEM12,BEM13], we studied the possibility of using the sheer amount
of information available behind Linked Data endpoints to enhance the in-
formation handled by this kind of agents, and, in particular, we focused on
the case of DBpedia. The conversational nature of the interaction with the
ECAs introduced an important constraint: We could not abuse of disam-
biguation dialogues to avoid annoying and distracting the user with them.
As the speech recognition by itself might need disambiguation questions, we
only could use as input the plain keywords that an ECA recognized and
forwarded us without further information. Thus, having no control on any
user’s feedback made us adopt a pragmatic approach.

This approach is based on defining externally the search domain, which
provides a view on the underlying data (similar to views on databases). This
way, we allow the ECA to exploit the structure of the underlying data to
focus its searches, only analyzing semantically related resources. The search
domain is defined by using an annotated ontology provided by the adminis-
trator of the system (see Figure 3.1). This ontology provides an adaptable
view on the underlying data and has to be aligned to the ontology that
describes the actual data repository. In fact, although it can be built from
scratch, we advocate for using ontology extraction techniques [JCS+08] to
obtain a module and, then, make our system work directly with a subontol-
ogy of the repository’s one.

Once it has the Domain Ontology, our system offers two different but
complementary kinds of search depending on the user’s input (see Fig-
ure 3.1):

Admin

Endpoint

1.a

1.b

4.a
3,5.b

2,6.b

User

Ontology
3.a
4.b

2.a

6.a

5.a
Keywords

SPARQL
Lucene

Domain

DBpedia

External Repository

Query
Engine

URI

DL Reasoner

Figure 3.1: Our system provides two complementary search ser-
vices: a) Keyword-based and b) URI refining services.

3.1. Lightweight Semantic Keyword Search on Linked Data 41

1. Keyword-based Search. This search service takes plain keywords as
input (step 1.a) and checks out whether the search has been processed
before (step 2.a). The system has an internal Lucene1 repository that
serves as a cache memory to alleviate the workload of the external
public endpoint (which is not under our control and might have limited
availability). If the search has not been performed before, the keyword
query is forwarded to our Query Engine which consults the concept
hierarchy of the ontology to build a focused SPARQL query (step 3.a).
This hierarchy includes only the objects we want to be searched, that
is, the objects that we define in the search domain. If it is too large,
there exists the possibility of specifying a class of the Domain Ontology
to serve as top node of the focused search. Once the Query Engine has
built the query, it poses the query to the public endpoint to perform
the actual search (step 4.a). When the results are retrieved, they
are stored in our Lucene repository to cache them for future searches
(step 5.a). The Lucene repository acts as a cache and provides the
system with relevance measures and ranking on the results. Finally,
the results (a set of URIs) are returned and ranked according to their
relevance (step 6.a).

2. URI Refining Search. The results of the previous search service is a
ranked set of URIs, which are presented to the user so s/he can explore
them. When the user selects a URI (step 1.b), it is directly forwarded
to the Query Engine (step 2.b). The Query Engine consults the data
repository to obtain the type of the object behind the URI (step 3.b).
Then, it consults the definition of its type (step 4.b) to build a set
of specialized queries for that type of object (it consults the relevant
properties2 to retrieve the appropriate data and suggest other related
objects) with the help of a DL reasoner. Finally, it forwards these
queries to the data endpoint (step 5.b) and returns the data (step 6.b).
This step is not cached as these more specialized queries are not so
time consuming as a general search over the whole domain.

Notice that the Lucene repository is only used to cache and rank the re-
sults obtained from the actual query on the external Linked Data repository.
We assume that the results can be cached as the Linked Data repositories
are in fact quite stable in time (e.g., there was a lapse of seven months from

1http://lucene.apache.org/core/, last accessed October 3, 2013.
2They are marked as being relevant during the ontology definition, so the Query Engine

can be aware of them.

42 Chapter 3. Semantic Keyword-based Search

the release of version 3.6 of DBpedia to the 3.7 one, and a year between 3.7
and the latest one, 3.8). Anyway, our system can be easily adapted to an-
other scenarios where data are more volatile by deactivating the caching
mechanism.

We refer the interested reader to [BEM12, BEM13], where the details
about the used annotations and the adaptation of the system to deal with
DBpedia is thoroughly described. This approach, however, does not super-
seed the main approach that is presented in this thesis, as it stills does not
consider the actual semantics that are behind the input keywords. In fact,
the benefits of this approach comes precisely from considering the seman-
tics of the domain to filter the results that lie within it. As we will see in
the following, there are much more semantic information which we can take
profit from to really perform a semantic keyword-based search.

3.2 Keyword Search vs. Semantic Keyword-based
Search

The usage of keyword search has spread in the last years thanks to its sim-
plicity and its adoption by the main Web search engines. Common users
have found in it an easy way to express their information needs, defining
their searches just by giving a plain set of keywords and letting the sys-
tem do all the work for them. However, the ease of use of keyword search
comes from the simplicity of its query model, whose expressivity is low com-
pared with other more complex query models [KB10], as it can be seen in
Figure 3.2 [KB10,FCOO12].

This implies that the queries that users can pose to the search systems
are limited by this lack of expressivity. In fact, keyword queries are simplifi-
cations of the queries that really express the user’s information need. Thus,
there might be a gap between the posed query and the retrieved informa-
tion that must be filled by the users, e.g., when talking about Web searches,
users usually have to browse the returned Web pages looking for the needed
information.

Moreover, polysemous words introduce ambiguity in the queries that
cannot be solved without the intervention of the user. For example, behind
the keywords ‘apache attack‘, a user might be looking for information about
the Apache helicopter or about how to secure an Apache server. One could
argue that the ambiguity in this example is due to the lack of input key-
words, but experience tells us that the average number of keywords used
in keyword-based search engines “is somewhere between 2 and 3” [MRS08],

3.2. Keyword Search vs. Semantic Keyword-based Search 43

Figure 3.2: Trade-off of between the expressivity of the querying language
and its usability (taken from [FCOO12], and adapted from [KB10]).

which points out another problem of keyword search: Users tend to omit
important keywords, as they consider them implicit in the query.

On the other hand, the use of expressive formal languages (such as SQL
or SPARQL) is far from being easy for common users. Moreover, to ef-
fectively use formal languages, the user must have previous knowledge of
the underlying schema and data s/he is accessing. Thus, the sweet spot
would be to mix the expressivity of formal languages with the ease of use of
keyword queries, while making the user unaware of the data sources being
accessed to solve her/his information needs.

To reach this sweet spot, we advocate for a semantic keyword-based
search, a keyword-based search process in which semantics of both keywords
and query languages play a crucial role during the whole search process.
Our objective is to discover and solve the user’s information need taking
as starting point a set of input keywords. We divide this task into three
sub-objectives:

• To discover the exact meaning of each of the keywords in the set of
input keywords.

• To give them an interpretation and express it into a formal language
to capture the information need accurately.

• To access the proper information system/s transparently to the user,
taking into account the different characteristics that the accessed sys-
tems might exhibit.

44 Chapter 3. Semantic Keyword-based Search

The first objective, the discovery of each keyword’s meaning, allows us to
work during the whole process with keywords with well-established seman-
tics, which we call semantic keywords. The second one implies structuring
a bag of keywords into a structured query, a process which is named key-
word query interpretation [FA11]. The achievement of the last objective
is strongly helped by having the information formally expressed, allowing
our system to access semantically even to non-semantically enhanced data
sources.

3.3 Generalized Keyword Interpretation

In its simplest form, an information system can be characterized as a tuple
ISm =< Qm, Dm, ASm, fm > where:

• Qm is the query model and defines the rules to build queries that the
information system can answer. We will denote as Q′

m as the set of
possible queries that can be built within the query model Qm.

• Dm is the dataset that the system ISm can access to provide answers
to the different queries.

• ASm is the set of possible answers that the information system can
provide.

• fm : Q′
m → P (Dm) is the function of the system that maps a query qi

to the answer set ASi. It can involve different subsystems, processes,
or even people activities.

Note that ASm will usually correspond to P (Dm), i.e., the power set of
Dm, but could not be the case as in Question Answering systems, which can
answer directly true or false. For example, for a Web search engine based
on keyword search, QWSEngine would be easily defined as the well known
bag of keywords model, DWSEngine would be the whole set of URLs in the
Internet, ASWSEngine would be P (DWSEngine), and fWSEngine would be the
process that allows to retrieve the URLs of the documents that are relevant
for the input. Thus, with this characterization, we will abstract completely
from the way that the information system computes the answer set, and the
possible ranking schemes that could be applied to it. We will also consider
that a query model is defined by its associated query language, that is, the
operands and operators that are available to build up queries in that query
model, and their given semantics.

3.4. QueryGen: Architecture of the System 45

To perform a keyword interpretation for a target information system
ISm, we have to provide a relation Kint : Q′

kwd → P (Q′
m) that allows us

to structure the keyword query taking into account the target query model.
Ideally, if both query models would had the same expressivity, this relation
would be a function, that would map a keyword query into just one formal
query. Unfortunately, due to the lack of expressivity of the keyword query
model, there will usually be far more than one interpretation for a given set
of keywords.

Moreover, we do not want just to adopt a single target query model,
but also to generalize the process to be able to perform an interpretation
into several different query languages. To do so, we want to provide a
translation process that works at a meta-description level, i.e., it takes the
description of a target query language and performs the interpretation taking
into account this description. The description of the target query models
will be provided via the specification of their query languages in the form of
augmented grammars, where the properties of their operators are explicitly
stated. Therefore, we are looking for a generalized interpretation relation
K ′

int : Q′
kwdxQm → P (Q′

m) that allows us to adapt the keyword query model
to any more expressive query model.

The search space for such a generalized keyword interpretation process
depends on the number of operands of the target query language and their
semantics, as they will define the means in which we can combine the input
keywords to form a formal query. Orthogonally to other approaches that
relies on ranking schemes and top-k solutions, we advocate for taking into
account both the semantics of the input keywords and of the operators of
the query models to reduce this search space drastically.

In the following section, we describe our approach to obtain this inter-
pretation relation, which is focused on the semantics of all of the elements
that participate during the process.

3.4 QueryGen: Architecture of the System

In this section, we present the whole pipeline that allows us to go from plain
keywords to semantic queries expressed in formal languages and, finally,
access to data stored in different data repositories. The semantics behind
the input set of keywords, the semantics of the different query languages,
and the different semantics of the access models are taken into account to
provide a flexible and efficient way to perform a semantic keyword search on
heterogeneous information systems. In this process, we differentiate three

46 Chapter 3. Semantic Keyword-based Search

main steps (see Figure 3.3):

Keywords

Selected Semantic Keywords

Relevant Data

Intended Query

Pool of Ontologies

USER

Semantic Query Generation

Semantic Info
Discovery of Keyword Senses

Access to Data Repositories

Figure 3.3: An overview of the whole process: from plain keywords to data
access.

1. Discovery of Keyword Senses: First of all, our system obtains the
exact semantics of the input keywords to transform them into se-
mantic keywords (keywords with well-defined semantics). To do so,
it consults a pool of ontologies to discover and extract the possible
meanings of each keyword. During this step, the selected meanings
for each keyword that are similar enough are integrated and merged
to avoid redundancy (when a synonymy value that is calculated is
above a threshold [GdM09]). Then, our system applies different dis-
ambiguation techniques to establish the meaning for each keyword by
taking into account its context (the possible meanings of the rest of the
keywords). This disambiguation process can be run fully automatic
(implying that our system will work with the most feasible interpreta-
tion for each of the keywords in the input set taking into account the
rest of the input); or it can be semi-automatic, where the user might
be required in this step to validate that the actual offered meanings
are satisfactory (the different possible meanings for each keyword are
ranked according to their meaning probability, and presented to the
user to allow him/her to choose the appropriate ones). This disam-
biguation process allows the system to map the input keywords to
ontological terms, namely concepts, roles and instances.

3.4. QueryGen: Architecture of the System 47

However, this is only a first step towards obtaining the semantics of
the input. Several queries might be behind a given set of keywords,
even when their semantics have been properly established individu-
ally. For example, given the keywords “fish” and “person” meaning “a
creature that lives and can breathe in water” and “a human being”,
respectively, the user might be asking for information about either
biologists, fishermen, or even other possible interpretations based on
those individual keyword meanings.

2. Semantic Query Generation: The output of the previous step is a set
of keywords which has its meaning properly attached, which we call
semantic keywords. The ontological information that has been consid-
ered for obtaining the meaning of each keyword comes along with each
of them. Our system automatically integrates this information and,
then, automatically builds a set of formal queries which, combining all
the keywords, represents the possible semantics that could be intended
by the user when s/he wrote the list of plain keywords. The seman-
tic keywords obtained in the previous step are combined according
to certain annotated abstract grammars (there is one for each query
language made available to our system). These grammars lack syntax
sugar and define how to combine the operators of a query language
with typed gaps, i.e., they specify which kind of queries can be built us-
ing concepts, roles, and instances in the corresponding query language
(e.g., And concept concept). The result is a set of abstract queries that
the system materializes into a list of actual queries by substituting the
typed gaps by input keywords. Finally, the set of (syntactically cor-
rect) generated queries are semantically filtered using a DL reasoner
and the integrated information.

When no query satisfies the user, our system performs a semantic en-
richment of the input by adding virtual terms. They are generic typed
gaps (to be replaced by concepts, roles, or instances) that represent
the keywords that the user might have omitted, but without whom
the intended query cannot be built. In a new query generation step,
our system treats them as regular typed gaps but, instead of being
replaced by input keywords, they are substituted by terms obtained
from the ontologies which the input keywords were mapped to (during
the previous discovery step). Thus, any query that the user could have
in mind will be generated as a candidate interpretation as long as the
available query languages are expressive enough.

48 Chapter 3. Semantic Keyword-based Search

This query generation process has both a syntactic and semantic di-
mension: It generates only syntactically correct queries according to
the grammar of each of the query languages, and it takes into account
the semantics of the operators of each language and the semantics
of the keywords to avoid generating either duplicated or incoherent
queries. This process is performed in parallel for each available query
language as their expressivity can differ from each other.

3. Access to Data Repositories: Finally, once the user has validated the
generated query that best fits her/his intended meaning, the system
forwards it to the appropriate underlying structured data repositories
(databases, Linked Data endpoints, etc.) that will retrieve data ac-
cording to the semantics of such a query. This is not a trivial task, as
our system must be capable of adapting itself to their different query
processing capabilities and access methods, and to their different data
models and formats of the retrieved data.

This is done via Adapters, an evolution of the notion of wrappers used
in OBSERVER [MI01]. These Adapters encapsulate both the access
methods and the actual syntaxis of the query languages and data for-
mats, allowing QueryGen to abstract from them. Thus, we can add
new information systems to feed QueryGen just by implementing and
registering an appropriate Adapter in the system.

In the following chapters, we include a detailed description of each of
these three main steps.

3.5 Summary of the Chapter

In this chapter, firstly, we have presented an approach that allowed to per-
form semantics-oriented keyword search on Linked Data repositories. This
lightweight approach was motivated by the actual restrictions that the in-
teraction with ECA’s and the parsed natural language interface imposed.
Anyway, it gave us an important insight on how to exploit already available
Linked Data repositories in a flexible way, without incurring on overloading
the external endpoints.

Then, we have moved onto our main proposal: We have introduced the
problems of translating queries expressed within the keyword query model
into other more expressive query models, the so-called keyword interpre-
tation process. The current approaches that tackle this problem restrict

3.5. Summary of the Chapter 49

themselves to one target query and data model, due to the ill-posed nature
of the problem. This is a limitation that we wanted to get rid of.

Thus, we propose a generalized keyword interpretation approach where
the semantics of all the elements involved in the process are taken into
account. Firstly, the actual semantics behind of each of the keywords is
discovered and associated separately. Then, using the semantic descriptions
of the target query languages, our system generates the possible interpre-
tations for the semantic keywords in the target query models. Finally, our
system, via the use of Adapters, is able to access to the registered underlying
information systems.

50 Chapter 3. Semantic Keyword-based Search

Chapter 4

Discovery of the Semantics
of the Keywords

In this chapter, we explain how QueryGen obtains the meaning of each of
the input keywords, which is the first step towards the correct input inter-
pretation. First, we present the discovery and disambiguation method that
our system uses to obtain the keyword meanings. In this step, the system
builds the senses that are behind each keyword, which are used all along the
process. Then, we explain the inner structure of the disambiguation module
in detail to see how QueryGen keeps all the information updated in an effi-
cient way. Finally, we introduce the method by which the system integrates
all the information obtained during the process to make it available to the
query generation module.

4.1 Disambiguating the Input Keywords

To fully understand our approach, and before giving any further details,
we have to introduce the exact meaning of sense in our system: A sense
is the precise meaning of a keyword in a context, i.e., its surrounding key-
words determine which meaning this keyword has. In particular, a sense
is represented by a tuple formed by the term itself, an ontological context
that comprises a list of possible synonyms (with their URIs) and ontological
information about the term, and a description in natural language. Each
ontological context is built by integrating information from different ontolo-
gies. Figure 4.1 shows some possible senses for user keyword star retrieved
from online ontologies.

So, the first step that our system performs is to discover and build these

51

52 Chapter 4. Discovery of the Semantics of the Keywords

star as property

WN3#principal

star

property
s3 = < {TravelOntology#star}, star , "quality of a hotel">

domain(hotel)

star

class
s2 = < { }, star , "an actor who plays a principal role">

star as class

star

class

celestialBody

supernova...binaryStar

s1 = < {WN1#star}, star , "(astronomy) a celestial body of hot gases ...">

actor

co−star ... filmStar

WN5#star,WN7#lead

Figure 4.1: Possible senses for keyword star.

senses for the plain input keywords. This discovery of the semantics behind
each one of the input keywords is done by taking into account their individual
possible semantics as well as the possible semantics of its context (the rest of
keywords), following the proposal in [TGEM07]. In particular, this process
is divided into three substeps (see Figure 4.2):

Web Lexical Database

WordNet

Other
Lexical

Resources

Selected Semantic Keywords

Ontologies not Indexed

by Watson

+

Possible Keyword Senses

Keyword Senses

Keywords

Discovery of Keyword Senses

USER

Traditional Search Engine

Based on Syntactic Matching

and Removal of Redundancy

Keyword Sense Enrichment

Disambiguation of

Keyword Senses

Extraction of

Keyword Senses

Figure 4.2: Discovery of keyword senses.

• Extraction of Keyword Senses: The system extracts out the possi-

4.1. Disambiguating the Input Keywords 53

ble meanings of each keyword from a dynamic pool of ontologies (in
particular, it queries Watson [dBG+07], DBpedia [BLK+09], Word-
Net [Mil95], and other ontology repositories to find ontological terms
that syntactically match the keywords - or one of their synonyms).
The system builds a sense for each matching obtained, and then, the
extracted senses are semantically enriched with the ontological terms
of their synonyms by also searching in the ontology pool. The result is
a list of candidate keyword senses for each user keyword. In Figure 4.1,
three possible senses (two as a class and one as a property) retrieved
for user keyword star have been shown.

• Keyword Sense Enrichment and Removal of Redundancy: As the ob-
tained senses were built with terms coming from different ontologies,
they could represent the same semantics. An incremental algorithm
is used to align the different keyword senses and merge them when
they are similar enough. To assess the sense similarity, our system
calculates a synonymy probability that considers both linguistic and
structural characteristics of the source ontologies: The linguistic sim-
ilarity is calculated considering the different labels of each term as
strings; and the structural similarity is calculated recursively exploit-
ing the semantics of the semantic keywords (their ontological context,
see Figure 4.1) until a certain depth. Finally, both similarity values
are combined to obtain the resultant synonymy measure1.

Senses are merged when the estimated synonymy probability between
them exceeds a certain threshold2. Thus, the result is a set of different
possible senses for each user keyword entered.

• Disambiguation of Keyword Senses: A disambiguation process is car-
ried out to select the most probable intended sense of each user key-
word by considering the possible senses of the rest of keywords. The
senses are compared by combining [GM09]: a) a Web-based related-
ness measure, that measures the co-occurrence of terms on the Web ac-
cording to traditional search engines such as Google or Yahoo!, b) the
overlap between the words that appear in the context, and the words
that appear in the semantic definition of the sense [BP03], and c) the
frequency of usage of senses (when available, as in WordNet annotated

1The formulae for the synonymy for each type of senses (concepts, roles and instances)
can be found in [TGEM07].

2In [GdM09], the authors proposed several strategies to obtain this threshold and
validated them via thorough experimentation.

54 Chapter 4. Discovery of the Semantics of the Keywords

corpora). Thus, the best sense for each keyword will be selected ac-
cording to its context. Note that this selection can require the user’s
feedback to select the most appropriate sense for each keyword in a
semi-automatic way.

This discovery and disambiguation algorithm, which has been summa-
rized here, is thoroughly described in [TGEM07], and has been applied suc-
cessfully to very different tasks such as ontology matching [GM08], the in-
tegration of senses in semantic repositories [GdM09], or the construction of
multi-sourced ontologies [BMT12].

So, the result of this disambiguation is a set of possible senses for each
keyword, and the probabilities of each of them to be the correct one ac-
cording to the rest of input keywords. In the following section, we explain
how our system manages this information to expedite further searches while
adapting itself to changes in the source ontologies (ontology evolution).

4.2 Architecture of the Disambiguation Module

As we have seen in the previous section, the objective of the first step in
QueryGen is to obtain senses out from the input keywords. As it might
be a costly process, we also want QueryGen to store and manage these
senses efficiently to speed up following interactions. In Figure 4.3, the inner
architecture of the Disambiguation Module is shown. There are two main
components:

1. Multi-Ontology Senses Library: When the user inputs its keyword
query, the Multi-Ontology Senses Library is consulted with it. This
library contains an index of sets of keywords with their possible mean-
ings in the form of senses.

An intelligent agent, Librarian, decides when to build a new entry for
the senses or to update and integrate the possibly existing ones. If the
Librarian has to disambiguate the meaning of the keywords ({ki}) or
to widen the semantic information that it has for each one of them, it
can use the Disambiguator and request the help of the user to choose
the most appropriate meanings ({Si}). More details can be found in
Section 4.3.

2. Ontology Library: Once the system has the senses attached to the
input keywords, the Ontology Library stores an ontology associated to
the set of senses. This ontology is integrated gathering all the semantic

4.3. Multi-Ontology Senses Library 55

Ontology Library

External
Onts

+ Other
Resources

Scarlet &

ProSE

URIs(Si)

{ki}

{Si} Disambiguator
Input keywords

{ki}

{Si}

<{Si}, >

Librarian

Library

Multi−Ontology Senses

Figure 4.3: Overview of the architecture of the Disambiguation Module.

information regarding the senses together, which is extracted from the
ontologies referenced in them. In this step, external services can be
required to extract and discover more information (in particular, our
system uses Scarlet [SdM08] and ProSÈ [JCS+08]). In Section 4.4, the
different possibilities to integrate these ontologies are detailed.

In the rest of the section, we present both modules in detail. In the case of
the Ontology Library, we also explain how the ontological information stored
in the senses is exploited to integrate the ontologies used in QueryGen.

4.3 Multi-Ontology Senses Library

The Multi-Ontology Senses Library is composed of two main blocks (as
shown in Figure 4.4), and an intelligent agent Librarian which takes care
of both. The first block is the Disambiguation Storage. It contains the
different results of disambiguating a set of keywords along with their different
probabilities of being the proper interpretation. When a set of keywords
is looked up, it returns a probability-ordered list of tuples formed by the
probability and a list of corresponding references to the senses. In this
search, the information about the synonyms of the keywords is taken into

56 Chapter 4. Discovery of the Semantics of the Keywords

account to avoid missing any possible interpretation. The library tracks the
senses with unique IDs, so homonym senses cannot be mistaken (otherwise,
the disambiguation process would be useless).

The other block is the Sense Library. It is an storage for the senses
maintained up to date by the Librarian.

{Kj} L<{sj},prob>
OntoCtxtSi

OC book1

OC book2

OC price1

Sense Library

{ki}
sj

Disambiguation Storage

{book, price}
{book1,price1}, 0’64

{book2,price1}, 0’36

book1

book2

price1

......

Figure 4.4: Organization of the information managed by the agent Librarian.

The system can consult this senses library in two ways: Using sense
references or plain keywords as input. When using the former only the
Sense Library is accessed, while when using the latter the Disambiguation
Storage is. When working with keywords as input, if they do not fully
match any keyword set, then partial coverages are considered, and, if the
access fails again (or the user declines all the offered interpretations), then
the Librarian starts a new disambiguation process and the newly obtained
senses are inserted. To insert a new sense:

1. The Librarian obtains possible synonyms of the newly built sense (the
one to be inserted).

2. Then, it looks in the ontological contexts of the already inserted senses
for matches in the list of possible synonyms in order to avoid duplicates
in the Sense Library. The result is a set of senses which are possibly
equivalent.

3. In a parallel way, it checks whether the new sense and the candidates
to be equivalent to it are so. If not all of them are, the new sense is
inserted with a new unique ID. Otherwise:

• The Librarian integrates the senses and inserts a new one in the
Sense Library.

4.4. Ontology Library 57

• All the references to the former sense are updated and the on-
tologies in which the sense participates are tagged as obsolete.

By inserting new senses and updating the existing ones, the system can
minimize the effects of the evolution of the source ontologies, as the Librarian
can take care of the senses being up-to-date.

4.4 Ontology Library

The different senses stored in the Multi-Ontology Sense Library and their
different possible combinations can lead to different knowledge sets about
the domain they are attached to. The Ontology Library is the component
responsible for writing down that multiontology knowledge and storing it in
different local ontologies to be used for interpretation purposes. Each one
of these ontologies is associated to the senses which have taken part in their
creation, and is updated as the senses evolve in time (when introducing new
senses in the Multi-Ontology Sense Library, the already existing senses can
be affected and modified). In Figure 4.5, the information stored is shown.
As in the Disambiguation Storage previously explained, the integrated and
stored ontologies are associated to a set of references to their conforming
senses, and so, the system is able to take into account partial coverages of
the inputs when retrieving the ontologies.

{Si} {Sj}

{book1, price1}

OntLibrary

...

{book2, price1}

Figure 4.5: The ontologies are stored and indexed by their originating senses.

Together, the Multi-Ontology Senses Library and the Ontology Library,
can be seen as a real implementation of the system envisioned in the position
paper [Ala06]. In the rest of the section, we explain how the Ontology

58 Chapter 4. Discovery of the Semantics of the Keywords

Library exploits the information retrieved during the disambiguation process
to integrate these ontologies, and present an example of the process.

4.4.1 Integrating the Ontological Information

As we have seen before, the result of the disambiguation step is a semantic
keyword (a keyword and its selected sense) for each keyword input by the
user. These semantic keywords have inner information about the ontological
context of themselves, this is, the semantic information that has been con-
sulted during their construction and that defines them. This information
is multiontology-sourced and has been merged during the keyword disam-
biguation step. In this section, we present the different levels of information
that are used to enrich and complete the information about the semantic
keywords in the final ontology, and then we give an insight of the method
that is used to integrate it.

4.4.1.1 Ontological Information Considered

Once the input keywords and their corresponding senses have been disam-
biguated, a multi-sourced ontology can be integrated. In Figure 4.6, the
situation that our system confronts is depicted. The information retrieved
to obtain the semantic keywords is stored in their ontological contexts, and,
in principle, they are isolated from each other even when they might share
sources. Thus, the relationships between ontological contexts can be stated
at different levels:

SemKeywordSemKeyword 1

TOP

URI #Term1i i

11 1URI #Term ?

?

SemKeyword n

...

URI #Term

URI #Term

...
21 1

j2j
...

...
2

Figure 4.6: The system has to discover the possible missing relationships.

• Sharing a term from an ontology: It is very frequent that, when dis-
ambiguating a set of keywords, the same ontology is consulted and

4.4. Ontology Library 59

different ontological contexts share terms as they affect different key-
words definitions.

• Sharing source ontologies: When two ontological contexts do not share
ontological terms, they might still share source ontologies. This has to
be taken into account as the keywords that are being disambiguated
might belong to the same domain.

• Sharing concepts: Even when neither a term nor ontology is shared,
there might exist further relationships such as synonymy between the
terms of different ontologies.

So, to avoid the possible isolation, and to find out the possible relation-
ships and enrich the information in the final ontology, the system considers
three levels of ontological information, as suggested in [BM10]:

1. Semantic keyword information. It is the skeleton of the resulting on-
tology, and, as it contains the original URIs of the terms involved
in each sense definition, it allows to extract more information from
the original source ontologies. This information is asserted altogether
in one knowledge base and enriched with the information further re-
trieved. If no more information were available, the resulting ontology
would have to be considered as lightweight one (shallow ontology). If
two ontological contexts share an ontological term, it is stated at this
information level.

2. Automatic modularization and ontology reuse. To obtain the original
definitions of the ontological terms involved in the ontological contexts,
the system uses ontology modularization techniques [dSM06]. In brief,
given a set of terms of an ontology, these techniques enable us to
obtain a module that is equivalent to the whole ontology regarding
what can be inferred about the given set of terms. This allows our
system to obtain the complete definitions of the terms and all the
existing relationships between terms coming from the same ontology
(intra-ontology relationships).

3. Simple inter-ontology relationships. Finally, the system can discover
inter-ontological relationships using Scarlet [SdM08]. Scarlet is able
to obtain disjointness, inheritance and named relations information
(i.e., roles that have the pair of concepts as domain and range or vice
versa). It also gives an explanation about how the relationship has

60 Chapter 4. Discovery of the Semantics of the Keywords

been found, and our system only includes it if the reasoning path uses
ontologies included in the ontological context.

The possible redundancies in the information (information of different
levels may overlap) of the resulting ontology are automatically removed with
the help of a DL reasoner. By asserting all the information and classifying
it, we obtain a final version of the ontology.

4.4.1.2 Insight of the method

We now turn our attention to the integration algorithm itself. To achieve
a better understanding of the algorithm, the general structure of the inte-
grated ontology is shown in Figure 4.7. The semantic keywords set {SKi}
is the result of the keyword disambiguation process, and the input of this
step. The algorithm is shown in Algorithm 1. It assumes the existence of a
global storage that is used to track the source ontologies and the terms that
appear in the ontological contexts of the senses (ontologyURIStorage), an
extractor that encapsulates the modularization techniques, and a reasoner
that is finally used to filter out the possible redundancies.

Imports

1Module (Ont)

2Module (Ont)

mModule (Ont)

SK 1 SK nSK 2

Imports

Scarlet

...

...

Semantic Keywords

Integrated Ontology

Imports

Figure 4.7: Structure of the integrated ontology: our system consults differ-
ent information sources to enrich and integrate our resulting ontology.

First, after initializing the storages (lines 2-3), our system translates each
of the semantic keywords into OWL (lines 4-6) and stores their translation.
During this process, all the URIs of the source ontologies are registered in
the ontologyURIStorage, and, along with each of them, a list of all the terms
that are defined in each ontology is stored. These lists are the signatures

4.4. Ontology Library 61

Algorithm 1 Integration Algorithm

1: procedure sensesToOnt (Array semKeywords, Extractor extractor)

2: ontologyURIStorage.clear()
3: translations.clear()

4: for all sk in semKeywords do
5: translations.add(translateSense(sk, ontologyURIStorage))

6: end for

7: for all uri in ontologyURIStorage.getOntologies() do
8: // each module is stored separatedly

9: tmpModule = extractor.getModule(uri, ontologyStorage.getSignature(uri))

10: writeDownModule(tmpModule)
11: end for

12: writeDown(translations) // we write down all the translations in the main ontology

13: writeDown(importAxioms) // we write the import axioms to include the modules
14: // we finally use Scarlet to obtain inter-ontology relationships

15: scarletInformation = filter(Scarlet.obtainRelationships(ontologyURIStorage));

16: writeDown(scarletInformation)
17: reasoner.classify(newlyIntegreatedOntology)

18: reasoner.writeDown(ontologyWithoutRedundancies)

19: end procedure

(i.e., the list of terms that the module must include) that the extractor uses
to obtain each corresponding ontology module (lines 7-11). In particular,
our prototype uses ProSÉ [JCS+08], although the method is designed to
work with other module extractors. Then, the translations are written in
the main module together with the import axioms that will include the
different modules in the final ontology (lines 12-13).

In this stage, Scarlet is used to discover possible relationships between
terms in different ontology modules (lines 15-16). Scarlet can discover rela-
tionships following paths between different ontologies, establishing the rela-
tionships between terms of two ontologies through relationships with terms
of another ones. To avoid introducing ontologies that our system has not
processed, we filter out paths to only accept direct relationships (source
and target terms belong to ontologies that have been registered in the on-
tologyURIStorage). Finally, we use a DL reasoner to classify the ontology
(lines 17-18) and then write down the classified ontology. This allows us
to: 1) eliminate redundant axioms, and 2) detect possible inconsistencies in
the integrated ontology and inform the user about them.

4.4.2 Example of Ontology Integration from Keywords

QueryGen, apart from using the integrated knowledge to give an interpreta-
tion of the input keywords (as we will see in the following chapter), allows to
access directly to the integrated ontologies and use them in different ways.

62 Chapter 4. Discovery of the Semantics of the Keywords

In this way, a user can be provided with an adhoc integrated ontology that
comprises the concepts that s/he provided in the form of plain keywords.
Moreover, QueryGen could also be used as a source ontology search engine,
where the main search unit would be the sense of the input keywords. The
returned senses contain the ontologies where they appear with the intended
meaning.

In our implementation, thanks to the use of ProSÉ, we can specify further
constraints on the nature of the modules to be extracted depending on the
use we have in mind for the integrated ontology. Following the guidelines
proposed in [JCS+08], we can choose to obtain upper modules (UM) or lower-
upper modules (LUM), among others. In brief, the LUMs will contain the
sub terms of the terms included in the specified signature, while the UMs will
also contain their super terms. In particular, if the ontology is integrated
to give a starting point to build up your own ontology, we advise to use
the UMs as the modules usually contain more information. For QueryGen’s
purposes, we use the UMs to capture also the definitions of the terms, and
therefore, be able to filter the inconsistent queries, as we will see later.

To illustrate the potential of these other uses of our ontology integration,
we chose an example taken from the field of e-commerce. Let us imagine
a user that has an e-book store in the Web. This user wants to have the
contents on her/his page annotated semantically to allow the Web robots to
index them. However, he is not an expert and does not know any ontology
about e-commerce. He introduces the input keywords book and offer because
he wants to start a sales campaign.

Figure 4.8 shows the intermediate results for these keywords, while Fig-
ures 4.9 and 4.10 present a visual representation of the final ontology. In our
prototype, we have used a controlled set of ontologies to trace and repeat
experiments. The set for this integration task contains the test collection
OWLS-TC43 plus the ontology schema.org4. The ontology obtained for
this input can be consulted at http://sid.cps.unizar.es/ontologies/

integration_book_offer.owl.

Note that both semantic keywords share source ontologies (schema.org,
for example), which is exploited by our system to obtain a richer module
from them. The user can now use this ontology to add semantic annotations
to her/his site, and, as the integrated ontology keeps the original sources,
the robots visiting the site will understand these annotations.

3http://projects.semwebcentral.org/projects/owls-tc/, last accessed Octo-
ber 3, 2013.

4This ontology is supported by Google, Yahoo, and Microsoft, in their Web Search
engines.

4.5. Summary of the Chapter 63

view on sense of keyword "offer"

#PrintedMaterial

SCH#CreativeWork

SSUMO#Monograph

SCH,PORT,SSUMO,PROT,...{ }#Book

SSUMO#Novel

WN#best_seller

WN#trade_book SSUMO#ScienceFictionBook

SSUMO#Science−Fiction−NovelSSUMO#RomanticNovel

SCH#AggregateOffer

SCH#Intangible

{WN,SCH} #Offer

#counter_offerWN

#contract_offerWN

#AttemptWN

OWLS−TC/protont.owl (PROT)
OWLS−TC/simplified_SUMO.owl (SSUMO)
OWLS−TC/portal.owl (PORT)

WordNet (WN)
schema.org (SCH)

namespaces

view on sense of keyword "book"

SCH#CreativeWork

SCH#CreativeWork
SSUMO,PORT{ } #Publication

SSUMO

Figure 4.8: Excerpts of the senses obtained for “book” and “offer”.

4.5 Summary of the Chapter

In this chapter, we have presented the details of how QueryGen uses the
disambiguation techniques presented in [TGEM07] to obtain the meaning
of the input keywords, which is the first step to obtain a correct keyword
interpretation. The inner architecture of the module makes it possible to
speed up the different disambiguation steps (as we will see in Chapter 7).
Moreover, the Multi-Ontology Senses Library presented allows to keep the
meanings updated, adapting them to the changes in the source ontologies
and, thus, providing an automatic evolving mechanism.

The information retrieved during the disambiguation process is used to
integrate a multi-ontology sourced ontology, which contains the user’s in-
tended meanings. This integrated information is further enriched using ex-
ternal sources and modularization techniques to fill the possible semantic
gaps existing in the senses. Finally, apart from being used for the keyword
interpretation process, these integrated ontologies can be written down and
be used for different purposes, as we have seen in the presented example.

64 Chapter 4. Discovery of the Semantics of the Keywords

Figure 4.9: Integrated ontology for “book” and “offer” (part 1).

4.5. Summary of the Chapter 65

Figure 4.10: Integrated ontology for “book” and “offer” (part 2).

66 Chapter 4. Discovery of the Semantics of the Keywords

Chapter 5

Semantic Query Generation

In this chapter, first, we overview the main steps that the Semantic Query
Generation module in QueryGen performs to give the semantically possible
interpretations of the input keywords. Secondly, we focus on how query
languages are specified to be used by QueryGen. This is done via special
grammars, which comprise semantic information about the operands of the
query language and about how they can be combined to build formal queries
out from a set of input tokens. Then, we detail how QueryGen uses these
specifications to build the possible queries (interpretations) in the different
available query languages. After this, we explain how QueryGen filters out
the queries that are semantically inconsistent and attempts to discover pos-
sible missing information in the user’s input. Finally, as the search space
of the possible queries is quite large, we explain the different semantic tech-
niques QueryGen applies to reduce the candidate queries shown to the user.

5.1 Overview of the Semantic Query Generation
Module

Once the meaning of each keyword has been established, QueryGen auto-
matically builds a set of formal queries which, combining all the keywords,
represent the possible semantics that could be intended by the user. The
main generation steps are shown in Figure 5.1:

• Analysis Table Constructor: It constructs the analysis tables for the
formal query languages that the generator uses to generate the possible
queries. This is done off-line and just once for each language made
available to our system.

67

68 Chapter 5. Semantic Query Generation

DL Reasoner

Insert

Inconsistent Query
 Filter

Admin

Analysis Table
Constructor

abstract
query language

grammars

User

semantic
keywords

Generator
Query

1..n

queries
possible user

Paralellizable
Step

No

No

semantic queries Semantic Processor

no queries

analysis
tables

lang{1..n}

Yes

lang{1..n}

Yes

Removal
Redundancy

semantic query

Yes

No

virtual terms

valid queries?

user agrees?

Virtual Terms?Virtual Term
Rendering

Figure 5.1: Multi-language query generation process.

• Query Generator: It builds the possible queries for each query lan-
guage according to its syntax. During the generation process, Query-

5.2. Analysis Table Constructor 69

Gen takes into account the semantics of the different operators to avoid
generating semantically equivalent queries.

• Semantic Processor: Once the set of syntactically possible queries is
obtained, the system is able to filter out the inconsistent ones with the
help of a DL reasoner. During this step, it also performs a semantic
enrichment to try to find possible implicit keywords that have been
omitted due to the simplistic nature of the keyword query model. To
do so, our system adds virtual terms (VTs) to the input. They are
generic typed terms (they can be generic concepts, roles, or instances)
that represent the keywords that the user might have omitted, but
without whom the intended query cannot be built. Finally, when the
system uses VTs, an extra step is carried out to substitute them with
appropriate terms taken from the ontologies which the input keywords
were mapped to.

In the following sections, we detail these three main query generation
steps plus a section dedicated to the semantic reduction techniques that are
used to ease the selection of the intended query.

5.2 Analysis Table Constructor

Our system has to be provided with a specification of the different formal
query languages that it will use to express the semantics behind the user key-
words. In our approach, the query languages associated to the query models
that the underlying systems support are specified using extended context-
free grammars. These grammars have their “syntax sugar” removed, and
are semantically annotated, on the one hand, to avoid generating duplicated
queries; and, on the other, to build the expressions that have to be evalu-
ated to conclude if a query is consistent or not according to the knowledge
retrieved by the system. Moreover, instead of working with bare syntacti-
cal tokens, we consider three types of tokens: Concept (C), Role (R), and
Instance (I), which correspond to the three main types of elements in on-
tologies. With these grammars, the system builds the analysis tables1 that
are used by the Query Generator (see Section 5.3) to build all the possible
queries corresponding to the input keywords for each of the available query
languages. Note that these tables are built only once for each new output
query language that is made available to the system, and they are used every
time a new query is posed to the system.

1It builds the Goto and Action tables, as defined in [ALSU07].

70 Chapter 5. Semantic Query Generation

5.2.1 Specifying the Query Languages

So, to make a new query language available to our system, its context-free
grammar G must be transformed into an abstract context-free grammar G′,
where the syntax sugar of such a language has been removed. In this gram-
mar, operators become non terminals, and the right side of their productions
are the operands they accept. Thus, the use of these abstract grammars
makes the translation process independent of the syntax of the query lan-
guages. We define these abstract grammars as tuples G′ =< Q,N , T ,P >,
where:

• Q is the starting symbol of the grammar, and represents the root of
the query.

• N = {Opi}∪{Qps}∪{Rtypes}, with {Opi} containing the set of opera-
tors of the query language; {Qps} being a set of auxiliary nonterminals
needed to build up the different parts of the queries; and {Rtypes} be-
ing the types of the returning values of the query language operators.
Each element Opi is a tuple < OpID, {propj} >, with the id of the
operator and its associated properties.

• T is the set of terminals that we work with, and is conformed by
C, R, and I (corresponding to concept, role, and instance tokens,
respectively), plus the empty token symbol ξ.

• P = {< prodi, localCondi, globalCondi >} is the set of productions
which define: a) if the left-side nonterminal is an operator, an ordered
list of the types of operands it works with, and b) if it is a returning
type ({Rtypes}), the operators that produce the returning values of
that type; localCondi and globalCondi are expressions which define
the semantic conditions that have to be checked to correctly apply the
operator.

We define them to be ambiguous on purpose, as we want to obtain all
the possible derivations for a given input. To do so, we have modified the
classical LR parsing algorithm [ALSU07] to deal with conflicts, as we will see
later. These grammars makes the system able to, once it knows whether the
input keywords are concepts, roles or instances, build semantically correct
interpretations expressed as formal queries in the different query languages
that are available. In Figure 5.2, the extended abstract grammar corre-

5.2. Analysis Table Constructor 71

sponding to a subset of BACK2 query language [Pel91] is shown.

b)

| εProjections
ProjList

Projections

RestList
RestList
Concept
Concept
Concept
Concept

ε

’rf(’ Role ’)’ RestList
’[’ ProjList ’]’ ’for’

ε

’Fill’ ’(’ Role ’,’ Instance ’)’
’All’ ’(’ Role ’,’ Concept ’)’
’Some’ ’(’ Role ’,’ Concept ’)’

Projections ’getall’ Concept

’, rf(’ Role ’)’ RestList
’And’ ’(’ Concept ’,’ Concept ’)’

Fill
Some

All
And

Role
Concept

Projections Concept

And | All | Fill | C | Some
R

Instance I
Concept Concept
Role Concept
Role Instance
Role Concept

Query
Projections Role Projections

a)

Query

Figure 5.2: a) Simple BACK grammar, and b) the resulting abstract gram-
mar (semantic annotations are not included).

In particular, in the BACK example:

• The initial symbol Q is Query.

• {Opi} contains Projections, And, All, Fill, and Some nonterminals;
{Qps} would be empty; and, {Rtypes} contains Concept, Role, and
Instance nonterminals.

• T , as we have defined before, contains C, R, I and ξ tokens.

• P contains each one of the productions in Figure 5.2.b.

In the rest of the section, we explain the rest of the elements that com-
plete the language definition, namely, the properties of the operators, and
the semantic annotations for the productions.

Properties of the Operators

As we have seen in the description of the extended abstract grammars used
in our system, there is a list of its properties along with each of the operators.
In particular, the properties considered are associativity, involution, symme-
try, restrictiveness and inclusiveness. The first three ones are well known
properties, while restrictiveness and inclusiveness are defined in [BTMI10]
as follows:

2Although it is obsolete (discontinued since 1998), we use BACK in the examples for
didactic purposes as it almost lacks syntax sugar, and supports projections.

72 Chapter 5. Semantic Query Generation

Definition 5.2.1 A binary operator op is restrictive if
∃f : K → C, K = {R,C} | f(x) v y ⇒ op(x, y) ≡ op(x, f(x)).

Definition 5.2.2 A binary operator op is inclusive if
∃f : K → C, K = {R,C} | f(x) w y ⇒ op(x, y) ≡ op(x, f(x)).

From these definitions, and according to the semantics of the operators
in BACK, it directly follows that the And, Some, and All operators are
restrictive, and Or is inclusive.

Following with the specification of the excerpt of BACK language, a
summary of the properties of the considered operators is shown in Table 5.1.

Operator Properties

And associativity, symmetry, restrictiveness
Some restrictiveness
All restrictiveness
Fill none

Projections associativity, symmetry

Table 5.1: Properties of the operators of BACK language.

In this example, we consider the Projection operator as associative as
all the roles that are specified in the projections list are applied to the same
concept. Thus, it does not matter the order in which we apply them. The
same reasoning is applied to consider it symmetric.

In the following sections, we will see how our system takes into account
these properties to avoid generating duplicated queries in different steps of
the interpretation process (generation and enrichment steps).

Expressions for Semantic Checking

Each production in the grammar can be annotated with semantic expressions
that are checked with the help of a DL reasoner. These expressions are built
using the operators shown in Table 5.2. There are two types of conditions
for each production, local and global ones, depending on the information
that they comprise:

• A local condition locCondi on a production prodi details semantic
constraints that the nonterminals on the right side of the production
must satisfy for the production being eligible to be fired. This is used
to perform an extended semantic type checking on the operands locally.

5.2. Analysis Table Constructor 73

Operator Meaning
$* It refers the *-th element of the right side of the

production
SubClassOf (cpt1, cpt2) It checks whether cpt1 is subsumed by cpt2

SubPropOf (role1, role2) It checks whether role1 is subproperty of role2
Dom (role) It returns the domain of role

Range (role) It returns the range of role
Class (inst) It returns the class of inst

InstanceOf (inst, cpt) It checks whether inst is instance of cpt
And (cpt1, cpt2) It returns the concept intersection
Or (cpt1, cpt2) It returns the concept union
Satisfiable (cpt) It checks the satisfiability of cpt
∧ (bool1, bool2) It calculates the boolean And of bool1 and bool2
∨ (bool1, bool2) It calculates the boolean Or of bool1 and bool2
¬ (bool) It calculates the boolean Not of bool
Thing It returns the Top concept, which is the identity

element for And operator
Nothing It returns the Bottom concept, which is the identity

element for Or operator
Neutral It lets the system choose which identity element to

use depending on the context

Table 5.2: Operators of the inner specification language to establish what
has to be checked about the operators of the final specified language.

• A global condition globalCondi on a production prodi provides a se-
mantic translation of the production that allows to translate it into
a checkable DL expression (even with non-DL query languages). Us-
ing these conditions, QueryGen can build a global DL expression that
comprises the semantics of the associated query, and check its consis-
tency according to the retrieved knowledge.

Following with the simplified BACK example, there are no local condi-
tions on the different productions due to the fact that the operators do not
impose any special constraint on their operands (apart from their general
type -concept, role or instance- which is explicitly stated in the right part of
the production). Regarding global conditions, there are several annotated
productions, as we can see in Table 5.3.

The first condition tells the system to check the conjunction of the con-
cepts returned by the Projections operator and the rest of the query (Con-
cept). The concept returned by the Projections nonterminal is built accord-
ing to the second condition: It appends the domains of the different roles

74 Chapter 5. Semantic Query Generation

Production Global Condition

Query → Projections Concept And($1, $2)
Projections → Role Projections And(Dom($1), $2)

Projections → ξ Thing
Concept → And $1
Concept → All $1
Concept → Fill $1

Concept → Some $1
Concept → C $1

Role → R $1
Instance → I $1

Table 5.3: Global conditions on the productions of the abstract grammar
for BACK language.

using And operators. With these two global conditions, our system can
check the global consistency of the query. This is done by checking whether
the domains of all the properties that appear in the Projections part of the
query are compatible (not disjoint) with the rest of the query, which defines
the objects retrieved (the ones which the projections have to be made on).

The rest of the global conditions just tell the system not to touch any-
thing about the returned concepts. Note that there are no global conditions
for the productions with the And, Some, All, and Fill operators because
they directly map to DL-expressions and their associated Concept can be
built directly without any given expression.

Although this example does not contain local conditions, the use case
of LOQOMOTION [IMI06] that will be presented in Chapter 6 uses them
thoroughly. However, to illustrate the role of local conditions, let us take an
operator that calculates percentages of instances between concepts (e.g.,
percentage of male people). It could be annotated with the expression
SubClassOf($2, $1) to express that, to be a candidate operator for two
concepts, the second operand has to be subclass of the first one. In this
example, to apply the operator that calculates this percentage to the con-
cepts person and male (e.g., percentage(person,male)), our system would
check SubClassOf(male, person), i.e., whether male is a subclass of per-
son. Otherwise, we could be mixing instances of different types, and, thus,
applying the operator in a wrong way. Another example would be to force
a particular instance/value of an operator to belong to a particular concept,
e.g., an Inside operator that would need an instance of location.

5.3. Query Generator 75

With this semantic annotations, our system is able to generate only both
syntactically and semantically correct queries, as we will see in the following
section.

5.3 Query Generator

For each query language available, a different generation thread is launched
to build the possible queries expressed in such a language. As an example,
let us assume that a user enters keywords “person fish” to find information
about people devoured by fishes, which are mapped to the homonym terms
in the ontology Animals3, and that the previous simplified4 version of BACK
is used as target query language. The query generation process is divided
into three main steps, as shown in Figure 5.3.

Generator

Query

1..n

semantic
keywords

abstract query trees

analysis

tables
lang{1..n}

Generator

Query

semantic
keywords

lang{1..n}

Yes

analysis
tables

No

permutations

i

i

semantic queries

semantic queries
lang i

Query Tree
Generator

Generated?

Query Renderer

Permutations of
Keyword Types

Queries

Figure 5.3: Inner structure of the Query Generator.

3http://www.cs.man.ac.uk/~rector/tutorials/Biomedical-Tutorial/

Tutorial-Ontologies/Animals/Animals-tutorial-complete.owl, last accessed Octo-
ber 3, 2013.

4The simplified version of BACK consists of the projection operation and four concept
defining operators: And, Some, All, and Fill.

76 Chapter 5. Semantic Query Generation

5.3.1 Permutation of Keyword Types

To decouple the generation process of any specific language, its first stage is
syntax-based. So, the system firstly obtains all the possible permutations of
the types of term (concept, role, or instance) corresponding to the semantics
of each input keyword, to discover any syntactically possible query in latter
steps. This allows the system to focus on the kind of knowledge represented
by the user keywords (which will enable it to perform structural analysis of
the generated queries in a schema-agnostic way), and to be independent of
the specific order in which they were entered by the users.

For the set of semantic keywords K = {ki}, we define KT = {ti}, where
ti is the type of ki (C if it is a concept, R if it is a role, and I if it is
an instance). This step calculates all the permutations KP=P|KT | of the
set KT associated to the list of input semantic keywords. In the example,
Person and Fish are concepts, so the output of this step would be <C,C>,
as no more permutations are possible. The results of this step are shared
by all the language threads.

5.3.2 Generation of Abstract Query Trees

For each permutation p ∈ KP obtained in the previous step, the system
generates all the syntactically possible combinations according to the syntax
of the available query languages. We call these combinations abstract queries
because they have gaps that will be filled later with specific concepts, roles,
or instances. These abstract queries are represented as abstract query trees,
this is, syntax trees where the inner nodes are operators and the leaves are
typed gaps (concept, role, or instance gaps).

Let us denote by T p
h , the set of abstract query trees with maximum height

h where the terminals C, R, I appear in preorder in the abstract query tree
in the same order as in permutation p; h is used to limit the complexity of
the generated queries5. This set is built using a modified parser that follows
all the possible paths in the recognition process, performing a bottom-up
analysis LR [ALSU07]. Algorithm 2 shows the modifications that we have
been performed to the general LR-parsing algorithm. Instead of forcing
the ACTION table to have just one action in each cell (as in the classical

5In practice, we have never had to put a strict height limit due to the fact that, so
far, the languages that we have considered have operators that consume operands. This
is, being L → R a production describing how to apply a generic operand, we have that
|L| <= |R| always holds. When we have that |L| = |R|, we apply the involution property
of the operator, if applicable, to limit the query height, and, in the last resort, we limit
by this h parameter.

5.3. Query Generator 77

algorithm), our system deals with the possible action conflicts by spanning
the search space recursively for each possibility.

Algorithm 2 LR Modified parsing algorithm

1: procedure generateQueries (List remainingInput, Stack stateStack)

2: // the initial values for the arguments:
3: // remainingInput = input

4: // stateStack contains only s0
5: let currentTerm be the first symbol of remainingInput
6: while true do

7: // repeat forever, one of the possible actions is to exit

8: let currentState be the state on top of stateStack
9: if ACTION[currentState,currentTerminal].size = 1) then

10: // the algorithm is the usual one
11: execute the corresponding action

12: else

13: for all act in ACTION[currentState,currentTerminal] do
14: clone remainingInput as remainingInputNew

15: clone stateStack as stateStackNew

16: execute act on cloned variables
17: generateQueries(remainingInputNew, stateStackNew)

18: end for

19: end if
20: end while

21: end procedure

Following the previous example, with the input <C,C> and simplified
BACK as query language, And(C,C) would be built as an abstract query.
Depending on the expressivity of each query language (i.e., their operators),
the system is able to generate different query trees. For example, in Fig-
ure 5.4.b we can see two different query trees generated for permutation
<R,C,C> using Relational Algebra (RA) as query language; these trees
represent queries “ΠR(C ∩ C)” and “C ./R C”, respectively.

During the generation of the query trees, the semantics of the opera-
tors are considered to avoid generating equivalent query trees, as it will be
explained in Section 5.5.1.1, which leads to an important reduction of the
query search space.

5.3.3 Query Rendering

During this step, concurrently for each abstract query tree t ∈ T p
h , the

system creates a set of query trees Qt. Each q ∈ Qt is the result of using
each user keyword k to replace a gap g in t, g ∈ {C,R, I}, verifying that
the type of k is g. The result of this step for the running example would be
And(Person, Fish), i.e., entities which are a person and a fish, which in this

78 Chapter 5. Semantic Query Generation

a)

ConceptConcept

All

ConceptRole

And

ConceptConcept

And

ConceptConcept

CSome

ConceptRole

Concept Concept

Join

Concept ConceptRole

Projection

IntersectionRole

R Concept Concept

C

R C C

R C

R

C C

C

b)

Figure 5.4: Sample abstract query trees for permutation <R,C,C>: a) in
BACK, and b) in Relational Algebra (RA).

case we know that do not represent what the user had in mind although, for
the system, it is a syntactically possible query to consider.

The decision of introducing an intermediate generation step (abstract
query trees) instead of working with the actual keywords from the beginning
allows our system to apply the reduction techniques that will be presented
in Section 5.5 more efficiently. Intuitively, an abstract query tree is a canon-
ical representation that will generate a set of queries after this rendering
step; so, the semantics of the different operators are considered to avoid
generating semantically equivalent trees (in particular, our system considers
the properties specified in the extended grammar of each of the languages).
This leads to a reduction of the number of possible abstract queries and,
consequently, to a more important reduction in the number of final possible
queries.

Thus, at the end of this step, our system has built all the syntacti-
cally possible queries in each of the languages. However, being syntactically
correct does not imply that all of them are semantically consistent. In the
following section, we present the techniques that our system applies to: a) de-
tect and filter the queries that are not semantically consistent according to

5.4. Semantic Processor 79

the retrieved knowledge, and b) when no query satisfies the user (or no
query has been generated due to an incomplete input), enrich the input se-
mantically to fill the gap between the user’s input and her/his information
need.

5.4 Semantic Processor

Once the system has obtained all the syntactically possible queries, the Se-
mantic Processor comes into play. As aforementioned, it has two main tasks:
To check the queries semantically according to the available knowledge; and
to perform a semantic enrichment of the input to suggest further interpre-
tations when the intended query cannot be found by the user (e.g., due to
an incomplete input). In the rest of the section, we detail these processes.

5.4.1 Inconsistent Query Filtering

During the previous steps, all the user keywords have been combined into
queries that are syntactically correct according to the different available
query languages. However, some of these queries might not be semantically
correct according to the semantics of keywords. Fortunately, we have their
semantic information integrated altogether in a local ontology.

Our system takes advantage of capabilities of DL reasoners [BCM+03] to,
once the available knowledge has been classified, detect the queries that are
inconsistent according to it by testing their satisfiability. In mathematical
logic, a formula is satisfiable if it is possible to find an interpretation (model)
that makes the formula true [BJ07]. Intuitively, and applied to DLs, a DL
expression is satisfiable iff the concept that it defines can have instances.
In our example, And(Person, Fish) would be removed in this step as it
is classified as being inconsistent (Person and Fish are defined as disjoint
classes in ontology Animals), and consequently will not lead to any result.

This consistency evaluation is direct when dealing with DL languages as
they can be directly translated into concepts and the reasoner can be asked
about their consistency. However, when it comes to non-DL languages, we
have to tell the system how to check them via the specification of the lan-
guage. As seen in Section 5.2.1, there are two types of conditions associated
to each of the productions, local and global ones:

• Local conditions: They provide semantic checkings that have to be
performed on the operands of the production. A query must hold all
the local conditions constraints; otherwise, it must be filtered out as

80 Chapter 5. Semantic Query Generation

inconsistent one because there would be any production that should
not have been fired. In Figure 5.5, an example of a percentage operator
is shown.

SubClassOf(Male,Person) ?

Concept Concept

C C

Instance

...

PersonMale

Percentage Percentage($1,$2)
SubClassOf($1,$2)

Figure 5.5: Example of semantic checking on the local conditions of a non-
DL operator (only local conditions are shown).

The definition of this operator tells the system that their operands
must hold that the first one is subclass of the second one to be appli-
cable. In this case, if Male was a subclass of Person then this part
of the query would be locally consistent. All the nodes of a query
have to be locally consistent for the query to be considered for global
consistency. Note that, otherwise, there would be a part of the query
that had been built incorrectly.

• Global conditions: A query holding all the local conditions only probes
that it is syntactically correct (by construction), and that all the op-
erators have been correctly applied. However, the query might still
be inconsistent due to its whole meaning. As mentioned before, the
global meaning is obtained easily for DL-languages, as queries can be
seen as concepts and therefore, directly translated and semantically
checked. However, for non-DL languages (e.g., SQL-like languages)
or for extensions of DL-languages (e.g., the projection operator of the
simplified BACK language), this is not directly applicable. Global
conditions provide a translation of each of the productions of the lan-
guage to build a semantic expression that comprise the global meaning
of the query.

Our system translates the query into a checkable DL-expression by
traversing recursively its associated query tree and applying the global
conditions expressions to each node. This traversal is performed in a
depth-first way. During it, our system applies the different condition

5.4. Semantic Processor 81

operators with the help of a DL-reasoner. Following with the example
in the query generation, if we added the keyword owns to the input,
mapped to the homonym term in ontology Animals, the system could
form the query [owns](And(Person, Fish)), that is, the entities that
are owned by a (Person and Fish). In Figure 5.6, an example of the
global checking on this query involving a projection is shown.

And($1,$2)

C C
Person Fish

And(And(Dom(owns), Thing),

And(Person, And(Person, Fish))

And(And(Person, Thing),

 And(Person, Fish))

 And(Person, Fish))

Query
And($1,$2)

ConceptProjections
And(Dom($1), $2)

Role
$1

R
owns

Projections

ε
Thing

And

$1

Concept Concept
$1 $1

Figure 5.6: Example of the global semantic checking on a DL-query involving
projections (only global conditions are shown).

Going from the leafs to the root node, our system is able to form the
global expression applying the global conditions on the productions.
In particular, the conditions on Projections operator establishes that,
to be able to ask for the value of a property for the instances of a par-
ticular instance, the domain of the property must be compatible with
the concept (i.e., not disjoint, which can be checked out by evaluating
their conjunction). So, the system applies the specification to translate
the query tree into And(Dom(owns), And(Person, Fish)). Resolving
the different operators with the use of the DL reasoner, this expression
leads to And(Person, And(Person, Fish)), which is inconsistent as we
cannot ask for the properties of a concept that is not satisfiable.

Note that all these checks cannot be performed before: Until the ren-
dering step, the system is working just taking into account the structure of
the queries. It is not until the system substitutes the typed gaps on the
abstract queries with the input terms, that the actual query is built (along
with its meaning). Due to the size of the query search space, we priori-
tized its reduction. Removing firstly all the possible abstract queries (each
of which results on a set of actual queries after the query rendering step)

82 Chapter 5. Semantic Query Generation

pruned the search space and lead to a lower number of queries to be checked
than working with the actual terms from the beginning.

Finally, the performance of this step is greatly boosted by the fact that
the set of generated queries forms a conservative extension [CHKS08] of
the original ontologies. Once an ontology has been classified, this property
makes it possible to evaluate the satisfiability of the queries without reclas-
sifying the ontology, as each query does not assert new knowledge into that
ontology.

5.4.2 Semantic Enrichment

When no query either is generated or satisfies the user, our system con-
siders that something could be implicit in the user input. The average
number of keywords used in keyword-based search engines “is somewhere
between 2 and 3” [MRS08], so there is a high chance that the user might
have simplified too much its information need, specially when it comes to
expressing complex queries.

To deal with this lack of information, our system adds virtual terms (VTs)
to the original list of user keywords (Insert Virtual Terms step in Figure 5.1).
These VTs represent possible keywords that the user may have omitted
as part of her/his query, as a keyword query is a simplification of her/his
actual information need. Then, the previous steps are executed again to
generate queries considering these VTs. In our example, the extended in-
puts considered would be “person fish V Tconcept” and “person fish V Trole”,
which allows the system to build, among others, the enriched abstract query
And(Person (Some(V Trole, Fish))6 (see Figure 5.7). This process is slightly
different to query expansion [CR12], as our system works at structural level,
aiming at building the exact query, instead of broadening/narrowing the
search itself by adding actual keywords to the input.

These queries with VTs have to be rendered again (Virtual Term Ren-
dering step in Figure 5.1). Our system replaces any existing VT by com-
patible terms (i.e., terms of the same type: concept, role, or instance)
extracted from the ontologies which the input keywords were mapped to
in the disambiguation process (see Section 4.1). To build only seman-
tically correct queries in an efficient way, the system narrows the set of
candidate terms by using the ontology modularization techniques described
in [JCS+08]. In the example, the previous enriched abstract query is ren-
dered into And(Person (Some (is eaten by, Fish)), which actually represents

6Here, V Trole is the VT to be rendered with a compatible role.

5.4. Semantic Processor 83

R

C

VTR

Insert Virtual Terms

<C,C,C>

<Person, Fish, VT >

And

Person And

Fish

...

<Person, Fish>

Query Generation

C

And

Person Some<C,C,R>

<Person, Fish, VT >

Fish

...

VT

Figure 5.7: Our system enriches the input set of keywords to generate un-
derspecified queries.

the exact semantics intended by the user when s/he entered the keywords
“person fish”. This query enrichment process can be repeated iteratively
by adding new VTs in order to deal with situations where the user did not
enter a very descriptive set of keywords.

Note that how, in the example, our system considered only VTs for
concepts and roles. At first, we did not considered instances for the semantic
enrichment as ontologies themselves usually do not have them (it happens
frequently [WPH06]). Moreover, it seemed pretty safe to assume that when
a user is looking for information about something very specific, the implicit
keywords might be roles or concepts, rather than instances. For example,
a user looking for information about terror movies (a possible query might
be And(Movie, Fill(genre,terror)), will input “horror movies” instead of
“movies genre”. However, our approach can effectively deal with instances as
well, but we advocate for asking the user to explicitly fill the instance value
when appropriate instead of showing her/him all the possibilities (which
might be even unfeasible, for instance, when we are dealing with datatypes
such as strings or integers).

Anyway, a general keyword interpretation process that involves filling a
semantic gap will generate many queries. Even when the meaning of each
keyword has been perfectly established (and thus, its polysemy avoided), the
number of possible interpretations will grow as the number of user keywords
increases and the output query language allows to combine them in more
ways. Besides, we do not want to limit our approach to provide the most
popular results (syntactic search engines do that already), so we aim at not
missing any possible interpretation (according to the accessible knowledge).
We are aware that this may lead to the generation of a high number of
queries (as there are many possible interpretations), and in the following
section we propose different semantic techniques to deal with this problem.

84 Chapter 5. Semantic Query Generation

5.5 Reduction Techniques

As stated in the previous section, the search space for the possible interpre-
tations of a keyword query into a formal language grows quickly with the
number of input keywords and the expressivity of the language. Fortunately,
we can reduce this search space by applying several semantic techniques that
allows our system to provide the user with an easier-to-handle set of possible
interpretations.

5.5.1 Avoiding the Generation of Redundant Queries

Trying to guess the user’s information need is a hard task due to the high
number of possible interpretations. In our example, for the input “person
fish” and one extra VT, there exist 780 syntactically possible queries for
simplified BACK and 2832 for simplified DIG7. So, it is critical to reduce
the number of generated queries. Apart from the number of input keywords,
there are two main elements that lead to this high number of possible queries:
The expressivity of the output query language, and the semantic enrichment
step with VTs performed to fill the semantic gap.

On the one hand, expressive query languages are very valuable, as they
are more likely to be able to represent the user’s intended query. However,
the higher the number of operators, the higher the number of possible queries
(the operands can be combined in more different ways). On the other hand,
adding new terms to the user’s input can help to discover the intention of
the user. However, this will also increase the number of possible queries,
mainly for two reasons: 1) new possible interpretations appear, and 2) there
may be a high number of candidates to replace a given VT (some of them
probably irrelevant).

Along this section, we show how our system deals with these two issues.
Then, in Section 5.5.2, we present a semantic technique that is applied to
further simplify the output of the query generation.

5.5.1.1 Considering the Expressivity of the Query Language

For expressivity of a query language, we understand its set of operators and
the possible ways in which they can be combined to form a proper query.
The more operators the language has and the more ways to combine them
exist, the more queries will be possible. For example, if you add the Or
operator to a language that had the And operator, the number of possible

7Simplified DIG is equivalent to simplified BACK plus the Or operator.

5.5. Reduction Techniques 85

queries for a user input considering both operators will be larger than the
double. There is apparently no way to reduce this number because the
different options express different queries. However, we can avoid building
equivalent queries along the generation process by considering the semantic
properties of the operators. In particular:

• associativity : It is used by the Query Tree Generator to avoid, for
example, building And(And(c1, c2),c3) if it has already generated
And(c1,And(c2, c3)).

• involution: It is used by the Query Tree Generator, for example, to
avoid building Not(Not(c)), which is equal to c.

• symmetry : It is used by the Query Renderer to avoid, for example,
building And(c2,c1) if it has already generated And(c1,c2).

Apart from those well-known properties, we saw in Section 5.2.1 that
our system consider two other properties of the operators: Restrictiveness
and inclusiveness. These properties are used in the Virtual Term Rendering
step to avoid substituting the VTs by terms that would result in equivalent
queries. For example, for the restrictiveness, if we have And(c1, concept),
all the candidates that subsume c1 can be avoided as (any of them And c1)
would result in c1.

Following with the running example, let us suppose that a user enters
“person fish” to find information about people devoured by fishes. Adding
one VT to that input, the system generates 780 queries using simplified
BACK and 2832 queries using simplified DIG, which are reduced to 72
queries (90, 77% reduction) and 364 (87, 15% reduction), respectively, by
considering the semantics of the operators. In both cases the intended query
Person And Some(is eaten by, Fish)) is among the final results.

5.5.1.2 Reducing the Number of Candidate Terms for Query En-
richment

Usually, users simplify the expression of their information needs when they
write keyword queries, which contributes to the semantic gap. Thus, a user
may omit terms that form part of the actual information need. As we have
seen before, to deal with the problem of possible information loss, some VTs
can be added to the input, in order to generate the possible queries as if
these VTs were proper terms introduced by the user. Then, the system
performs a substitution of those VTs with actual terms extracted from the
ontologies considered.

86 Chapter 5. Semantic Query Generation

Following this idea, one can think about using each term of the same
type as the inserted virtual one. For example, if the VT was a concept, the
system could substitute it with all the concepts of the input ontologies (and
generate one query for each different candidate concept). However, as the
number of queries with VTs could also be high, considering all the terms of
the input ontologies to render each VT for each query is too expensive.

In order to reduce the number of candidates for rendering a VT while
avoiding losing any possible related term, we apply the modularization and
re-using techniques explained in [JCS+08]. More specifically, the system
uses ProSÉ, which, given a set of terms of an ontology (signature), makes it
possible to extract different modules that can be used for different purposes.
Our system uses the user input terms as signature and extracts a module
such that the same information can be inferred from the extracted module
as from the whole ontology, as shown in [JCS+08]. This allows the discovery
process to focus only on what is related to the input terms.

After applying the modularization techniques for the user query “person
fish”, the system generates 32 queries using BACK (15 after filtering, 98.07%
less than the 780 original possible ones), and 148 queries using DIG (73 after
filtering, 97.42% less than the 2832 original possible ones). The intended
query is still among the final results, as the system does not miss any possible
interpretation. Note that, in the example, we have used a single ontology to
depict the impact of the technique. However, the modularization is already
applied during the integration of the local ontology. Anyway, applying this
technique again, with different parameters for ProSÉ, might lead to a further
narrowing of the search space.

5.5.2 Extraction of Relevant Query Patterns

Besides reducing the number of generated queries, the way in which they are
presented to the user also makes a difference. Users’ attention is a capital
resource and they can get easily tired if they are forced to browse over too
many options to select their intended query.

In this stage of the search process, recall seems to be crucial as only one
interpretation will fit the user’s information need. Ranking the generated
queries according to their probability of reflecting the user’s interest can be
an approach to minimize the interaction with the user. However, it is not
clear how to identify the query that a specific user had in mind when writing
a set of keywords, even though the meanings of the individual keywords in
the input have been identified previously. For example, with the input “per-
son fish” the user might be looking for information about people devoured by

5.5. Reduction Techniques 87

fishes, but also about people who work with fishes (e.g., biologists, fishermen,
etc.), among other interpretations. Besides, a statistics-based approach may
be not suitable for ranking queries, as it would hide possible interpretations
that are no popular in the community. Approaches based on semantic and
graph distances would also hide possible meanings.

Due to these reasons, we advocate a different and orthogonal approach
to ranking. Our approach tries to minimize the amount of information that
will be presented to the user by identifying query patterns, and could be
combined with any query ranking approach if it is available. The semantic
technique that we propose takes advantage of the syntactic similarity of
the generated queries and of the ontological classification of the terms that
compose the queries. A small example is shown in Table 5.4, where we can
see that several queries may have a similar syntactic structure.

Queries Patterns

All(drives, Person) And bus
All(Role, Concept) And Concept

All(drives, Bus) And person
...

Some(drives, Person) And bus
Some(Role, Concept) And Concept

Some(drives, Bus) And person
...

All(drives, Bus And Person) All(Role, Concept And Concept)
...

Some(drives, Bus And Person) Some(Role, Concept And Concept)
...

Table 5.4: Queries and patterns generated for “person bus”8using BACK.

Thus, the system analyzes the structure of the queries to extract common
query patterns which lead to a compact representation of the queries. This
is especially useful when the system tries to find out the user’s intention
by adding VTs. A query pattern shows an expression with the VTs not
substituted (i.e., with gaps) and the system maintains a list of potential
candidates for each gap.

At this point, a new challenge arises: How can the candidates for a gap
be organized to facilitate their selection by the user? We advocate the use of
a DL reasoner to show the candidates and allow users to navigate through
their taxonomy. The interface shows a list of candidate terms and three
buttons for each gap in each pattern (see Figure 5.8):

8Mapped to homonym terms in People+Pets, http://www.cs.man.ac.uk/~horrocks/
ISWC2003/Tutorial/people+pets.owl.rdf, last accessed October 3, 2013.

88 Chapter 5. Semantic Query Generation

Figure 5.8: Example of query patterns for “person drives” and “person fish”.

• Fix: Performs the substitution with the candidate term selected.

• Subsumers: Enables the user to generalize the candidate term selected.

• Subsumees: Enables the user to refine the candidate term selected.

This allows to show a high number of queries in a really compact way
and provide a navigation in a top-down style through the terms of the on-
tology. Thus, the most general terms are initially presented to the user,
who can then move through the taxonomy by accessing each time a direct
subsumers/subsumees level. Users are allowed to select only terms that are
relevant for the corresponding gap, i.e., their selections will never lead to an
inconsistent query.

Thus, for example, for the input “person fish”, the system is able to
show the 15 final queries obtained using BACK under 7 patterns, and the 73
obtained using DIG under 20 patterns. Moreover, this representation allows
the system to establish an upper bound on the number of user clicks needed
to select their query, which is equal to the depth of the taxonomy of the
ontology multiplied by the number of substitutions to be performed (number
of gaps).

5.6 Summary of the Chapter

In this chapter, we have presented the core of our proposal for interpreting
keywords in different query languages. First, we have detailed how we can
specify different query languages through the use of specially annotated
grammars, which comprise the semantics of the different operators of the
language. These grammars lack syntax completely, and allow QueryGen
to be completely syntax agnostic. Moreover, they allow to semantically

5.6. Summary of the Chapter 89

describe the language even when it is not a DL query language, thanks to
the use of local and global conditions.

Then, we have detailed how QueryGen, with the help of the provided
grammars, is able to generate different queries that provide the different
possible interpretations of the input keywords. This generation is guided
both by the semantics of the input keywords and the semantics of the oper-
ators. Our system is able to filter out inconsistent queries with the help of a
DL reasoner. Moreover, when the input is insufficient to reach the intended
query, our system performs a semantic enrichment of the input that allows
to further explore the possibilities taking into account the semantics of the
added terms.

As the search space for a generalized interpretation might be quite large,
we have presented the reduction techniques that QueryGen applies to limit
the generated queries without losing possible interpretations. On the one
hand, the semantics of the operators (their properties) are considered all
along the process, making it possible to avoid generating queries that would
be semantically redundant. On the other hand, QueryGen applies modu-
larization techniques to reduce the search space when using virtual terms.
Finally, the similar syntactic structure of the queries is exploited to present
them in a compact way (patterns), reducing the shown options and, thus,
not overwhelming the user.

90 Chapter 5. Semantic Query Generation

Chapter 6

Accessing Data

In this chapter, we describe the strategy adopted by our system to deal
with the different characteristics of the underlying information systems. We
present an architecture based on Adapters, an evolution of the wrappers
of OBSERVER [MI01], that enables the system to manage the different
characteristics that an information system might exhibit (e.g., different types
of query processing -snapshot vs. continuous ones-, different strategies to
obtain the underlying data, heterogeneous data formats, etc.) in a flexible
and extensible way. Finally, we present two different use cases that have
been successfully integrated in QueryGen: DBpedia [BLK+09] (its SPARQL
endpoint), and LOQOMOTION [IMI06]. Regarding this last system, we also
will discuss how we have extended the semantics of its location model.

6.1 Using the Adapters

Recalling the characterization of information systems in Section 3.3, we
have focused on how to adapt the keyword query model to the different
query models Qm that are made available to our system. However, when
it comes to accessing the actual data in each of the underlying informa-
tion systems, the characteristics of both the underlying data model Dm,
and the answer calculation function fm have to be taken into account and
unified. So, once our system has the intended semantic query, it has to
access the underlying data corresponding to such semantics. These under-
lying data might be stored in different data repositories, with different data
organizations, and with different query capabilities (query languages and
formats of answers) [VP97]. Moreover, the accessed data repositories might
support queries of different nature, e.g., some repositories process only snap-

91

92 Chapter 6. Accessing Data

shot queries, while others might be capable of processing continuous ones,
refreshing the answers continually and requiring a different communication
schema.

To provide QueryGen with enough flexibility to deal with this data het-
erogeneity, we advocate for the architecture shown in Figure 6.1, whose main
modules are the following:

• Dispatcher: Once the user selects her/his intended query from those
generated by QueryGen, the Dispatcher poses the query to the un-
derlying data repositories that are able to process it. It consults the
characteristics of their query processing services that their Adapters
expose, and, depending on them, creates the appropriate communica-
tion channels. For example, a snapshot query only implies one answer,
while a continuous query needs answer refreshments along the time.
Finally, it correlates the data coming from the different systems and
presents them to the user.

• Adapter: It wraps the access to the data stored in information sys-
tems with a certain data organization (e.g., there is an Adapter for
relational databases, a different one for SPARQL endpoints, etc.). It
registers itself in QueryGen providing information about the query-
ing capabilities of the accessed information system, and making itself
available to the Dispatcher. There is one instance of the appropriate
kind of Adapter for each system accessed by QueryGen.

User Adapter

Adapter

Dispatcher
selects

semantic query

QueryGen

SPARQL Endpoint

LOQOMOTION

DBPedia

... ...

Figure 6.1: Our system can retrieve data from different channels and data
models.

Each Adapter Adi is characterized by a tuple

< {< langid, lang
spec
id >}, {Qtype}, {dformat} >

where:

6.1. Using the Adapters 93

• {< langid, lang
spec
id >} is the set of languages that the Adapter Adi

is able to process. When the Adapter registers itself, the Dispatcher
checks whether the language has been already added to the system. If
it was, it adds Adi to the list of systems that are capable of processing
langid. Otherwise, it adds the new language to the system, requiring
the Analysis Table Constructor to build the information needed to
enable QueryGen to use it.

• {Qtype} is the type of queries that the Adapter Adi supports. In
particular, QueryGen is able to deal with the following types:

– Snapshot queries: They are posed and answered once, in a pull
way (e.g., a SQL query against a relational DB).

– Monitoring queries: They are posed once, but the answer is up-
dated continually in a pull way (the Dispatcher is responsible for
retrieving the new data). This type of queries is useful when,
independently of the frequency at which the answer/data might
change, the updates are not critical and, therefore, the system
might relax the resources requirements, executing a snapshot pe-
riodically (e.g., a Web service providing information about the
weather, invoked every hour).

– Continuous queries: They are posed once, but the answer is up-
dated continually via update events in a push way (e.g., a loca-
tion dependent query where the position of the mobile objects
is continuously changing [IMI06]). It is the underlying system,
via its Adapter, who updates the answer at the requested query
refreshment frequency.

• {dformat} is the set of data formats that the Adapter Adi is able to
offer (e.g., CSV values, RDF/XML, etc).

Adapters are in charge of performing the translation of the syntax-free
semantic queries into the final languages that their underlying systems pro-
cess. This architecture is an evolution of the wrappers proposed in OB-
SERVER [MI01], which adapted the queries to the different answering ca-
pabilities of the data repositories. In particular, the main capabilities that
our system inherits from OBSERVER are the data integration capabilities
and the ability of processing incomplete queries, this is, accessing several
sources to obtain an appropriate answer (this is done at Adapters level).
The separation into two elements allows us to increase the flexibility and

94 Chapter 6. Accessing Data

integrate systems that have different query processing capabilities, not only
concerning the language expressivity, but also concerning both the query
types and data models.

Note that, independently of the underlying data repository accessed,
the system only access to data that corresponds to the semantics stated by
the user, which have been maintained all along the process, thanks to the
transformation of plain input keywords into a semantic query representing
exactly what the user wanted to retrieve.

Finally, an important remark: Adapters also hold information about the
data schemas of their underlying information systems. In particular, they
must hold information about how to map the input senses to their actual
schemas. Regarding this issue, currently, Adapters are hard coded for each
of the adapted systems. However, we advocate (and leave it as future work)
for using the synonymy measures used for the disambiguation to align the
queries with the underlying data.

In the following sections, we present how we have integrated success-
fully the data access to two very different information systems such as the
location-dependent query processor LOQOMOTION [IMI06] (which pro-
cesses queries continuously) and DBpedia [BLK+09] (as SPARQL End-
point). In the case of LOQOMOTION, we also present the semantic models
that we have developed for extending its semantic capabilities.

6.2 Accessing DBpedia from DL Queries

DBpedia is a huge repository of structured data that provides a semantic
entry point to Wikipedia. It uses several different types of information ex-
tractors to convert the information in Wikipedia’s articles into structured in-
formation which is published under the principles of Linked Data [BHBL09]
using RDF, SKOS1, and OWL. This extraction is performed automatically
by exploiting the structure of the information stored in Wikipedia. How-
ever, the nature of the results of this extraction process differs from the
sources in more ways than barely structural and format ones. The arti-
cles extracted from Wikipedia, once in DBpedia, become resources. Each
resource is represented by a URI and has a direct correspondence to its
original Wikipedia’s article, inheriting its categorization. The Wikipedia’s
categorization is extracted and included in DBpedia as a SKOS taxonomy
(see Figure 6.2).

1SKOS Simple Knowledge Organization System, http://www.w3.org/TR/

skos-primer/, last accessed October 3, 2013.

6.2. Accessing DBpedia from DL Queries 95

Figure 6.2: Articles in Wikipedia become resources in DBpedia, inheriting
the URI of the article and its categorization.

When moving from the article world of Wikipedia to the semantic re-
sources in DBpedia, there are objects that might augment their descriptions
as the new semantic model can represent more information about them.
The articles extracted from Wikipedia, once in DBpedia, become resources.
Each resource is represented by an URI and has a direct correspondence
to its original Wikipedia’s article, inheriting its categorization. The whole
taxonomy of article categories of Wikipedia is included as a SKOS ontology
in DBpedia; thus, DBpedia provides a first view on the resources according
to their category (see Figure 6.2).

Class

dbo:Person

Class

yago:Person10007846

Resource

dbr:Albert_Einstein

Resource

dbr:Viscosity

Category

cat:Theoretical_physicists

Category

cat:Fundamental_physics_concepts

Category

cat:Viscosity

dcterms:subject dcterms:subject

rdf:type

classifying

resources

categorizing

articles

dbo:

yago:

dbr:

cat:

http://dbpedia.org/ontology/

http://dbpedia.org/class/yago/

http://dbpedia.org/resource/

http://dbpedia.org/resource/Category:

Namespace

Figure 6.3: DBpedia excerpt of the descriptions of Albert Einstein and Vis-
cosity resources.

Depending on the content of its corresponding article, a DBpedia re-
source might also be representing an object (see Figure 6.3). The classifi-
cation of this object dimension of the resources is done via several general

96 Chapter 6. Accessing Data

domain ontologies, being DBpedia Ontology2 and YAGO3 the most impor-
tant ones. In this way, independently of the article categorization, DBpedia
offers a second different view based on the nature of the underlying resources.
However, this view does not cover all DBpedia. There exist resources that,
despite being categorized, do not have these descriptions as they are not
defined in the used ontologies, as shown in Figure 6.3.

Summing up, DBpedia organizes knowledge in two major ways: The
SKOS categorization, and an ontological classification; and exposes this
knowledge through an SPARQL endpoint. In this thesis, we have added
this endpoint using the DBpedia ontology as entry point. However, the
SKOS categorization could also be used without an adaptation effort.

6.2.1 DBpedia Adapter

The Adapter for DBpedia we have developed is characterized by the follow-
ing tuple:

< {< SBack, SBackGrammar >}, Snapshot, {RDF} >

That is, it supports the simplified version of BACK that we have used in
the previous chapter, processes snapshots queries, and returns the data in
RDF. As DBpedia offers a public SPARQL endpoint to access its data, the
Adapter has to translate the DL queries into SPARQL to properly forward
the possible queries. To do so, the Adapter traverses recursively the selected
query (in fact, its associated query tree) applying the query rewriting rules4

shown in Table 6.1. For simplicity’s sake, only a binary version of And
operator has been considered, altough the actual algorithm considers that
And can have more than two operands. Moreover, during the traversal, new
variable names are created to bind the resources appropriately.

In these rules, obtainGraph is the entry point for the recursion, as it ex-
pands the concept expression that is passed as an argument until it reaches
the leafs of the query tree. We assume that the underlying RDF repository
has materialized, at least, the hierarchy inferences. Note how the transla-
tions of the operators that are applied on a role bind the answer resources

2The DBpedia Ontology, http://wiki.dbpedia.org/Ontology, last accessed Octo-
ber 3, 2013.

3YAGO Ontology, http://www.mpi-inf.mpg.de/yago-naga/yago/, last accessed Oc-
tober 3, 2013.

4We consider SPARQL v1.1, where the filter NOT EXISTS was added. The status of
SPARQL v1.1 has changed from Proposed Recommendation to Recommendation during
the writing of this thesis. Besides, repositories such as VirtuosoDB currently supports it.

6.2. Accessing DBpedia from DL Queries 97

And(C1,C2) ⇒
[
{ ?x a obtainGraph(C1, ?x).

?x a obtainGraph (C2, ?x) }

Some(R1,C2) ⇒

 { { ?x a Dom(R1).
?x R1 ?y }.

?y a obtainGraph(C2, ?y) }

All(R1,C2) ⇒


{ ?x a Dom(R1).

F ILTER NOT EXISTS
{ ?x R1 ?y .

FILTER NOT EXISTS
{ ?y a obtainGraph(C2, ?y) } } }

Fill(R1,I1) ⇒
[
{ ?x a Dom(R1).

?x R1 I1 }

C1 ⇒ { ?x a C1.}

Table 6.1: Rewriting rules applied by the DBpedia Adapter.

to belong to the domain of the role. If such an assumption cannot be made,
we should relax these constraints. Otherwise, operators such as Some or All
would return none results unless the direct assertions would have been made
(the RDF statements of the resources belonging to the domain of a prop-
erty would not be present, and therefore any subgraph would be matched).
Finally, the obtained graph expression is extended by adding the different
bindings needed to retrieve the properties that are considered in the Projec-
tions operator.

In the following subsection, we present a complete example of accessing
data from DBpedia.

6.2.2 A Complete Example with Data from DBpedia

To illustrate how our system works, we will give a complete example from
the input of the user to the data retrieved by our system from DBpedia5.
We restrict the semantics to the different ontologies used in DBpedia for
the sake of simplicity in the explanations. As an illustrative example, let

5The namespaces used in this section are dbpedia http://dbpedia.org/, dbo http:

//dbpedia.org/ontology/, and dbpprop http://dbpedia.org/property/.

98 Chapter 6. Accessing Data

us assume that a user watched old cartoons starred by a dumb tall black
dog many years ago. S/he does not recall its name (in fact, s/he is thinking
about Goofy, the Disney character), but s/he wants to know since when this
character exists. As s/he cannot provide more specific input, s/he inputs
the keywords “Fictional Dog Appearance”:

1. In the disambiguation process, our system offers the user several in-
terpretations for each keyword:

• For “Fictional”, one of the proposed meanings is the concept
dbo:FictionalCharacter.

• For “Dog”, one of the proposed meaning is an integrated sense
containing DBpedia URL dbpedia:resource/Dog, considered as
an instance of Animal in the DBpedia ontology.

• For “Appearance”, one of the proposed meanings is the role dbo:
firstAppearance.

2. In the generation process, the user cannot find the intended query,
as no combinations of FictionalCharacter, Dog and firstAppearance
represents her/his intended query. However, by considering one VT
during the semantic enrichment step, the system can try adding the
role dbpprop:species. This allows the system to find out the query
intended by the user:

[firstAppearance](FictionalCharacter And (Fill species Dog))

which has to be read as “retrieve the first appearance of the fictional
characters whose species is dog”.

3. The system detects that the query can be processed by the DBpedia
Adapter as it supports the language of the query, so it forwards the
query to it, which translates the query into the corresponding under-
lying query language (a SPARQL sentence):

SELECT * FROM <http://dbpedia.org>

WHERE { ?x a dbo:FictionalCharacter.

?x dbpprop:species

<http://dbpedia.org/resource/Dog>.

?x dbo:firstAppearance ?y. }

6.2. Accessing DBpedia from DL Queries 99

which retrieves the first appearance of several fictional dogs (see Ta-
ble 6.2), among which Goofy’s can be found6.

Character
FirstAppearance

http://dbpedia.org/resource/Max_Goof

http://dbpedia.org/resource/Goof_Troop

http://dbpedia.org/resource/Max_Goof

http://dbpedia.org/resource/Fathers_Are_People

http://dbpedia.org/resource/Bolt_(character)

http://dbpedia.org/resource/Bolt_(2008_film)

http: // dbpedia. org/ resource/ Goofy

http: // dbpedia. org/ resource/ Mickey’s_ Revue

http://dbpedia.org/resource/Spike_and_Tyke_(characters)

http://dbpedia.org/resource/Dog_Trouble

http://dbpedia.org/resource/Huckleberry_Hound

http://dbpedia.org/resource/Huckleberry_Hound_Meets_Wee_Willie

http://dbpedia.org/resource/Droopy)

http://dbpedia.org/resource/Dumb-Hounded

Table 6.2: Results for the first appearance of fictional dogs returned by
DBpedia (including Goofy’s).

In this example, the system presented an average of five senses for each
input keyword, which resulted in 14 query patterns representing 172 queries.
If we search Google using the same input (“Fictional Dog Appearance”), it
returns 12.800.000 results, without any reference to Goofy in the ten first
pages. The first result returned by Google links a list of famous fictional
dogs in Wikipedia. But in that list there is no answer to the user query
(first appearance of Goofy): S/he has to browse the whole list of 65 dogs
to find Goofy (and recall its name, hopefully), and click its page to look
for the information inside the text. Notice that the list returned by our
system contains the first appearances of dog characters, while the list in
Wikipedia links to dog characters pages (not necessarily containing their
first appearance). Thus, taking the same input as starting point, our system
has performed a semantic search returning the first appearance of fictional
dogs, while using a search engine we can just obtain information about dogs.

If we replace in the input “Appearance” by “series”, our system is able
to answer, for example, in which series Odie and Scrappy Doo appear.

6The amount of results that the public SPARQL endpoint of DBpedia provides depends
on the current workload. The results presented are from June 21, 2013.

100 Chapter 6. Accessing Data

6.3 Accessing LOQOMOTION with Extended Se-
mantics

LOQOMOTION [IMI06] processes continuous location-based queries in a
distributed and efficient way using mobile agents. During this thesis, we
have extended its query language by adding semantics to the locations it
was able to deal with. This bridges the semantic gap that there exists
from GPS locations to the user’s vocabulary, and extends the semantics of
location constraints.

In this section, we firstly present an overview of the network of agents
that LOQOMOTION deploys to process the queries. Secondly, we present
the notion of semantic location granules, and we propose two complemen-
tary models for them. Then, we analyze the influence of using location
granules on the expressivity of location-dependent queries, and how they
can be integrated into the query model of LOQOMOTION. Finally, we
present the Adapter that allows QueryGen to process queries using LOQO-
MOTION. The language used is the SQL-like query language presented in
Section 6.3.3, and we will see how, through the use of the local and global
conditions, QueryGen is able to perform the semantic checking even with
non-DL query languages, such as this one.

6.3.1 LOQOMOTION Architecture

Firstly, we present the basics of LOQOMOTION without considering lo-
cation granules. No attempt is made to justify the use of mobile agents
or the relation between LOQOMOTION and other systems for location-
dependent query processing (for details about this, see [IMI06] and/or the
survey in [IMI10]). To clarify the explanations, the scenario shown in Fig-
ure 6.4, and a query that retrieves the interesting objects within the (inner)
moving query circles (relevant areas) centered on the reference objects car38
and policeCar5, will be considered7. In LOQOMOTION there is a static
agent called QueryMonitor, executing on the mobile device of the user, and
three different types of agents (two of them, mobile agents [TIM07,BIM10a])
are in charge of processing the query on the fixed network:

• A mobile agent MonitorTracker on the fixed network (initially, on
Proxy6 in Figure 6.4) is in charge of communicating, to the user de-
vice, the updated data about moving objects relevant to the query

7The areas shown in Figure 6.4 are circles, but this will not be necessarily the case
when location granules are used.

6.3. Accessing LOQOMOTION with Extended Semantics 101

Target class: policeUnit

policeman2

policeCar5

car15

policeCar4

policeman1

policeCar1

Proxy1

Proxy2

Proxy3

Proxy4

Proxy6

Proxy5

policeStation19

policeCar2

policeCar3 policeStation2

car38

policeStation3

(extended area, 0.87 miles)
objects to watch

(relevant area, 0.42 miles)
query circle

objects to watch
(extended area, 0.75 miles)

radius extension
0.33 miles

user

radius extension
0.31 miles

Target class: policeCar

MonitorTracker

Tracker

Updater

query circle
(relevant area, 0.56 miles)

policeCar15

Figure 6.4: Query processing in LOQOMOTION: sample scenario.

(target objects). This agent always executes on the proxy correspond-
ing to the proxy area where the user is, following the user, to optimize
communications with the mobile user device.

• For each reference object, a mobile agent Tracker keeps itself on the
proxy that handles the location of that reference object to track it (e.g.,
in Figure 6.4 the Tracker for car38 is initially executing on Proxy4, as
car38 is within the coverage of that proxy), and computes the area
that contains the objects that must be communicated to the Monitor-
Tracker (called extended area).

• For each proxy whose area intersects the extended area (the relevant
proxies), a static Updater agent is created by such a Tracker (e.g., in
Figure 6.4, the Tracker on Proxy4 sends Updaters to Proxy3, Proxy4,
and Proxy5). An Updater is in charge of retrieving the interesting ob-
jects within its area by executing standard queries (i.e., queries without

102 Chapter 6. Accessing Data

location-dependent constraints such as inside) on its proxy.

The different mobile agents maintain themselves on the relevant proxies,
to keep track of the interesting objects. In this way, they support an efficient
continuous query processing, as results can be ready when a refreshment is
needed. The use of mobile agents in LOQOMOTION facilitates: 1) tracking
the positions of relevant objects efficiently, 2) optimizing the wireless com-
munications, and 3) supporting the distributed query processing efficiently.
For further details about this system, see [IMI06].

6.3.2 Semantic Location Granules

The existing work on location-dependent query processing implicitly as-
sumes GPS locations for the objects in a scenario (e.g., [SWCD97,PXK+02,
MXHA05, CHCX06, GL06, DTS08, IMI10]). However, some applications do
not require location data at GPS resolution, and a coarser representation
may be more appropriate for them. For example, a train tracking applica-
tion would need to just consider in which city a train is currently in, and
not its exact coordinates. For such applications, it is useful to define the
concept of location granule as a set of physical locations [IMB07, ICBM09,
BIM10b, IBM11, BBMI13]. This concept is similar to the concept of place
in [Hig03,HS07,HS09] or spatial granule in [BCP09].

However, when we group a set of locations and give them a name, we are
implicitly giving them also a meaning. For example, the set of locations that
compose Madrid, when grouped under the name Madrid, become a city, the
capital of Spain. Thus, the grouped locations become a new different entity
as a whole, which could be related to other entities in different ways besides
spatial relations. So, to model them, semantic location granules [BIM10b,
BBMI13] are introduced (as defined in [BIM10b]):

Definition 6.3.1 A semantic location granule is a location granule with
well-defined semantics, i.e., explicitly stated.

Their semantics can be modeled using ontologies and, depending on the
role that the locations are having in the system, we advocate for two com-
plementary models for them. The former one considers the location granules
as instances of a concept Granule, and allows us to extend the query model
using logical rules on the ABox. The latter one, on the other hand, considers
that the granules themselves are concepts, as they subsume a set of locations
(which now become the instances). As we will see, this latter model allows
the DL reasoner to make intensive use of the TBox to infer the containment
relationships.

6.3. Accessing LOQOMOTION with Extended Semantics 103

6.3.2.1 Modeling Semantic Location Granules as Instances

From an object-oriented point of view, one could argue that the location
granules are instances of different types of classes, that would be the ones
that define their characteristics [BIM10b]. Thus, modeling them in this
way, we proposed the ontology in Figure 6.5. In this model, the notion of
semantic granule map appears explicitly:

Definition 6.3.2 A semantic granule map is a set of semantic granules
identified by a common name. It provides the global semantics of the location
granules that participate in it.

Thus, semantic location granules are also grouped to provide an inter-
pretation of the location space, conforming semantic layers.

This ontology is not meant to be complete, but a starting point to be
extended and adapted to particular scenarios. The most basic properties
that we identified are the following (see Figure 6.5):

isEncapsulated

Granule

URI

String Concept

Datatype

Role

Domain
Range

GrMap

encapsulates groups contains
TT

Name

physicalSet

identifier

Additional Properties

T = Transitive Role

−1

−1

−1participates groups
contains
encapsulates

isContained

Figure 6.5: Semantic location granules as instances: base ontology.

• Contains: It represents the physical inclusion of a granule inside an-
other. For example, the granule Spain (the country) contains, among
others, the granules Madrid and Barcelona (the cities). This prop-
erty permits to establish a spatial hierarchy to organize the granule
instances. Its inverse property is isContained.

• Groups: It represents the relationship that there exists between a
granule map and the granules that make it up. For example, the

104 Chapter 6. Accessing Data

granule map Countries would group the granules Spain, France, etc.
Its inverse property is participates. Note that a granule can participate
in several granule maps.

• Encapsulates: It allows to establish hierarchies between granule maps
according to the granularity level. For example, the granule map
provincesOfSpain could encapsulate citiesOfSpain. Its inverse prop-
erty is isEncapsulated.

The rest of the properties are used to identify the granules (name) and
the granule maps (identifier), and to associate a granule to one or several
sets of physical coordinates (physicalSet). The physical coordinates are also
accessible at the semantic level to allow including statements about them
in the asserted knowledge and, therefore, to allow the system to perform
spatial reasoning (for example, using RCC [GSBM08,RCC92]).

Although this basic ontology may seem too simple, direct benefits can
be obtained out of it. For example, even without any additional extension
in the semantics, the presentation of results of the queries can be enhanced
by exploiting the inclusion relationships to offer different views of the same
answer set. Besides, we wanted to keep the model as simple as possible to
make it easier to adapt it to the desired semantics.

6.3.2.2 Modeling Semantic Location Granules as Concepts

On the other hand, if we consider that each of the locations themselves are
instances, a semantic location granule must be modeled as a concept, as it
subsumes geometrically their components [BBMI13].

To formalize the concepts of semantic granules and semantic granule
maps with DLs, we will consider that a transitive role named isContained
and concrete features locx1 , . . . , locxn are defined in our model. Intuitively,
the role isContained will be used to express that a granule is geographically
contained in another one by subsumption and participation in the relation-
ship, (e.g., NewY ork v ∃isContained.EEUU), and locx1, . . . , locxn will be
the coordinates of a point. These concrete features allow us to define areas,
for example, locx ≥ 10∧ locx ≤ 20∧ locy ≥ 20∧ locy ≤ 30 (if we work in R2,
we write locx, locy instead of locx1 , locx2).

Definition 6.3.3 An area concept f(locx1 , . . . , locxn) is a concept built with
operators ∩ and ∪, and a combination of path-free compositions using con-
crete features locx1 , . . . , locxn. An area concept name A is a concept name

6.3. Accessing LOQOMOTION with Extended Semantics 105

such that A ≡ f(locx1 , . . . , locxn), where f is an area concept. The set of
names of area concepts is denoted by NA.

For example, f(locx, locy) = ∃locx.≥10 u∃locx.≤20 u∃locy.≥10 u∃locy.≤15

is an area concept, while ∃locx. ≥10 u∃locx. ≤20 u∃locy. ≥10 u∃locy. ≤15

uCity is not.

Definition 6.3.4 Given K = (T ,A) a knowledge representation and M a
granule map, a semantic granule map is a tuple (M,K, area, semGranule),
where area and semGranule are functions from the set of granules of M to
the concept names of T ; that is, area, semGranule : MG → NC , such that
the following must be satisfied for all G ∈MG:

1. semGranule(G) v area(G)

2. area(G) v ∃isContained.semGranule(G)

The concept names semGranules(G) are called semantic granules.
Let us show an example to explain the definition. Let M be a gran-

ule map with location granules M = {ZaragozaGr,AragonGr,MadridGr,
SpainGr, FranceGr, PortugalGr,EuropeGr}, and let T be the following
TBox8 of a knowledge representation K:

Zaragoza Area ≡ ∃locx.≥25 u∃locx.≤30 u∃locy.≥23 u∃locy.≤30 (6.1)

Aragon Area ≡ ∃locx.≥25 u∃locx.≤30 u∃locy.≥20 u∃locy.≤32 (6.2)

Madrid Area ≡ ∃locx.≥15 u∃locx.≤20 u∃locy.≥17 u∃locy.≤23 (6.3)

Spain Area ≡ ∃locx.≥5 u∃locx.≤35 u∃locy.≥0 u∃locy.≤35 (6.4)

France Area ≡ ∃locx.≥20 u∃locx.≤60 u∃locy.≥35 u∃locy.≤85 (6.5)

Portugal Area ≡ ∃locx.≥0 u∃locx.≤5 u∃locy.≥5 u∃locy.≤30 (6.6)

Europe Area ≡ ∃locx.≥0 u∃locx.≤250 u∃locy.≥0 u∃locy.≤250 (6.7)

Zaragoza ≡ Zaragoza Area u City (6.8)

Aragon ≡ Aragon Area uRegion (6.9)

Madrid ≡Madrid Area u City (6.10)

Spain ≡ Spain Area u Country u ∃vat.=21 (6.11)

France ≡ France Area u Country u ∃vat.=19 (6.12)

Portugal ≡ Portugal Area u Country u ∃vat.=23 (6.13)

Europe ≡ Europe Area u Continent (6.14)

8To keep explanations easier to follow, we represent geographic areas in the TBox by
simple rectangles instead of the real geographic limits.

106 Chapter 6. Accessing Data

Zaragoza Area v ∃isContained.Zaragoza (6.15)

Aragon Area v ∃isContained.Aragon (6.16)

Madrid Area v ∃isContained.Madrid (6.17)

Spain Area v ∃isContained.Spain (6.18)

France Area v ∃isContained.France (6.19)

Portugal Area v ∃isContained.Portugal (6.20)

Europe Area v ∃isContained.Europe (6.21)

Region,Country, Continent, City are mutually disjoint (6.22)

RedWine vWine (6.23)

RedWine v ∃isTypical.∃isContained.Aragon (6.24)

RedWine v ∃isTypical.∃isContained.France (6.25)

MadridShop ≡ Shop u ∃isContained.Madrid (6.26)

AragonWine ≡Wine u ∃isContained.Aragon (6.27)

We define a semantic granule map, (M,K, area, semGranule), where
area and semGranule are the functions area(SpainGr) = Spain Area,
etc., and semGranule(SpainGr) = Spain, etc. We can ensure that this is
a semantic granule map since it holds the conditions (1) and (2) of Defi-
nition 6.3.4 from axioms (6.8)-(6.14), and (6.15)-(6.21), respectively. Fig-
ure 6.6 shows the map corresponding to the modeled area.

Figure 6.6: Sample granule map.

Intuitively, the condition (1) of Definition 6.3.4 says that a semantic
granule is not only its geographic area, but it could also have more attributes

6.3. Accessing LOQOMOTION with Extended Semantics 107

(semGranule(G) = area(G) u C). For example, Zaragoza is an area and
a City, and Spain is an area and a Country. The condition (2) allows to
establish qualitative relations between granules such as “Zaragoza is a city
in Spain”, i.e., Zaragoza v ∃isContained.Spain, or to express the concept
“Aragon’s wines”, Aragon Wine ≡ Wine u ∃isContained.Aragon. Note
that we do not express the concept Aragon’s wine as WineuAragon, since
Aragon is a Region and wines are not regions; and similarly, Aragon’s wines
are not defined as Wine u Aragon Area as wines could not have location
information. We have divided the containment relationship in two parts:
One to make calculations about areas (quantitative reasoning) using the
subsumption relationship, and another one to establish relationships with
other concepts (qualitative reasoning) using the isContained relationship.

We emphasize that two different functions are needed in the definition of
semantic granule map to distinguish the area of a granule from the semantic
granule. Usually, granules have attributes which are incompatible. For
example, Zaragoza is a city and Spain is a country, and a city cannot be
a country. So, let us suppose that we do not differentiate between the area
of a granule and the granule itself. In this case, for example, it would be
held that Zaragoza Area ≡ Zaragoza and Spain Area ≡ Spain. Thus,
the TBox T would be inconsistent since Zaragoza v City and Zaragoza v
Spain v Country, and Zaragoza is not a country.

From this model, a DL reasoner can deduce a number of facts, as we
explain in the following.

Proposition 6.3.5 A reasoner under conditions of Definition 6.3.4 can in-
fer that:

1. a granule G is contained in a granule G′, i.e., it can be deduced that
semGranule(G) v ∃isContained.semGranule(G′)

2. a granule G intersects a granule G′

Proof From the definition of the area concept, using concrete domains, a
reasoner can infer that area(G) v area(G′), and therefore that:

semGranule(G)varea(G)varea(G′)v∃isContained.semGranule(G′)

In the example above, it can be inferred that Zaragoza is contained in
Spain, Zaragoza v Zaragoza Area v Spain Area v ∃isContained.Spain.

The second statement is obvious since it is equivalent to asking if the
area concept area(G) u area(G′) is satisfiable.

108 Chapter 6. Accessing Data

Another interesting remark is that the content of a granule only de-
pends on its area. What does this mean? For example, let us suppose that
we define two different semantic granules with the same area, V aticanCity
and V aticanCountry, defined as V atican AreauCity and V atican Areau
Country, respectively. We would like that the content of Vatican as a
city, ∃isContained.V aticanCity, be equal to the content of the Vatican
as a country, ∃isContained.V aticanCountry, even when a country is not
a city. Due to the conditions (1) and (2) of the Definition 6.3.4 and the
transitivity of the role isContained, we can conclude that in our model
∃isContained.V aticanCity ≡ ∃isContained.V aticanCountry, as it is shown
in the following proposition.

Proposition 6.3.6 Let G be a granule under conditions of Definition 6.3.4.
Then it holds that

∃isContained.semGranule(G) ≡ ∃isContained.area(G).

And therefore, if G1 and G2 are granules such that area(G1) ≡ area(G2),
then

∃isContained.semGranule(G1) ≡ ∃isContained.semGranule(G2).

Proof By condition (1) of Definition 6.3.4, semGranule(G) v area(G),
and so ∃isContained.semGranule(G) v ∃isContained.area(G). Now, let
us prove that ∃isContained.area(G) v ∃isContained.semGranule(G), ob-
taining the desired result. Using condition (2) of Definition 6.3.4 and the
transitivity of role isContained, we can deduce

∃isContained.area(G) v ∃isContained.∃isContained.semGranule(G) v
v ∃isContained.semGranule(G).

The second part of the proposition is trivial.

We are currently extending this model to make it possible to infer auto-
matically another different topological relationships, thus further enriching
both qualitative and quantitative reasoning on the model.

6.3.3 Location-dependent Queries with Location Granules

In this thesis, we consider a location-dependent query any query whose an-
swer depends on the locations of certain objects (the mobile user and/or

6.3. Accessing LOQOMOTION with Extended Semantics 109

other interesting objects). For example, a query that retrieves the loca-
tions of the taxis around a person who is searching for a cab is an example
of a location-dependent query. In comparison with other proposals, such
as [SDK01], the above mentioned definition of location-dependent query is
quite general [IMI10]. We also contribute to extend the expressivity of this
kind of queries by enabling the use of the locations at different granular-
ity levels, which extends the range of location-dependent queries that can
be expressed. For example, a continuous query such as “retrieve the cars
that are within 100 miles of the city where car38 is, showing their locations
with city granularity” (i.e., indicating the city where each retrieved car is)
could be submitted to keep track of the interesting moving objects and their
current cities.

The use of location granules in location-dependent queries, as presented
in [IMB07, IBM11], can have an impact on: 1) the presentation of results
(location granules can be represented by using graphics, text, sounds, etc.,
depending on the requirements of the user), 2) the semantics of the queries
(the user expresses the queries according to her/his own location terminol-
ogy, and therefore the answers to those queries will depend on the interpre-
tation of location granules), and 3) the performance of the query processing
(the location tracking overload is alleviated when coarse location granules,
instead of precise GPS locations, are used).

For the moment, in order to ease the explanations, we leave aside the
semantic dimension of location granules. In [IBM11], we defined an inside
constraint using granules and granule maps which is used to ask for objects o
of a certain type (e.g., cars, ambulances) that have an attribute o.loc which
defines its location. There are three types of inside constraints as defined
in [IBM11]; in the following, r ∈ R, l is a location point, G is a granule, M
is a granule map (a set of granules grouped under a common name), and d
is a distance function defined for locations and granules:

inside(r,G, type) = {o ∈ type | d(o.loc,G) ≤ r}
inside(r, l,M, type) = {o ∈ type | o.loc ∈ Gi, d(l, Gi) ≤ r,Gi ∈M}
inside(r,G,M, type) = {o ∈ type | o.loc ∈ Gi, d(Gi, G) ≤ r,Gi ∈M}

Examples of these queries are: Retrieve museums within 10 miles of a given
province, museums in provinces which are within 10 miles from a given point,
and museums in provinces which are within 10 miles from a given province.
We illustrate the different types of inside constraints in Figure 6.7.

An SQL-like syntax is used to express the queries (the justification for
this can be found in [IBM11]). The detailed syntax of the types of queries

110 Chapter 6. Accessing Data

inside(r,G, type) inside(r, g,M, type) inside(r,G,M, type)

Figure 6.7: Examples of different types of inside constraints.

considered in this work is shown in Figure 6.8, where it can be seen how
location granules can be used in the queries. Nonterminals in the grammar
are represented with initial uppercase and terminals are in lowercase (key-
words) or surrounded by single quotes (literals). The start symbol of the
grammar is Query. The symbol gr stands for granule: gr(map-id, obj-id)
indicates that the location of the object named obj-id must be interpreted
as a granule in the location granule map identified by map-id, and simi-
larly gr(map-id, class) generalizes this to all the objects of class. It should
be noted that there is a difference between a location appearing in the SE-
LECT clause (identified with Loc-Select) and a location appearing as part of
a location-dependent constraint (Loc-Ref or Loc-Target). In the first case
the second argument of gr must be a class name, whereas in the second
case it can be a class name (for Loc-Target) or an object identifier (for Loc-
Ref). This difference is consistent with the way projections are performed
in standard SQL. For example, gr(“city”, Car) in a SELECT clause would
imply retrieving the granule (of the location granule map named “city”) for
each object of class Car retrieved by the query. The non-terminal Object-id
represents a value of the attribute id of Object. Thus, it is not an object
identifier (OID) in the object-oriented sense; the same can be said about the
non-terminal Map-id regarding the attribute id of a Location Granule Map.

As indicated in Figure 6.8, location granule maps can be referenced in the
SELECT and/or in the WHERE clause of a query, depending on whether
their corresponding location granules must be used for the visualization
of results and/or for the processing of constraints, respectively (of course,
both usages can also appear simultaneously in the same query). Moreover,
only the Inside operator has been included in the grammar for the sake of
simplicity in the explanations of the language.

6.3. Accessing LOQOMOTION with Extended Semantics 111

General query structure

Query → select Projections from Class-names (where Conds)?
Class-names → Class-name (‘,’ Class-name)*
Projections → Attr-Loc-Select (‘,’ Attr-Loc-Select)*
Attr-Loc-Select → attribute | Loc-Select
attribute → Qualified-attr | Unqualified-attr
Qualified-attr → Class-name ‘.’ Unqualified-attr
Loc-Select → Object-id ‘.’ ‘loc’ | gr ‘(’ Map-id ‘,’ Class-name ‘)’

Conditions can be standard conditions on attributes or location-dependent conditions

Conds → Cond ((and | or) Cond)*
Cond → (Bool-Cond | LDQ-Cond)
Bool-Cond → attribute Comp Value

Location-dependent conditions /* The focus is on inside constraints */

LDQ-Cond → inside ‘(’ Args-Inside ‘)’ | ...
Args-Inside → Radius ‘,’ Loc-Ref ‘,’ Loc-Target
Loc-Ref → Object-id | GPS-coord |

gr ‘(’ Map-id ‘,’ Object-id ‘)’ |
gr-map ‘(’ Map-id ’,’ Gr-id ‘)’

Loc-Target → Class-name | gr ‘(’ Map-id ‘,’ Class-name ‘)’
Radius → Real Units

Basic grammar productions

String → ([a-z] | [A-Z] | [0-9])+
Real → ([0-9]+) (‘.’ [0-9]+)?
Class-name → String /* Name of a class of objects */
Unqualified-attr → String /* Name of an attribute for a selected class */
Object-id → “ String ” /* Identifier of an object */
Map-id → “ String ” /* Identifier of a granule map */
Gr-id → “ String ” /* Identifier of a granule */
GPS-coord → ‘(’ Real ‘,’ Real ‘)’ /* Two dimensions are assumed */
Units → meters | kilometers | miles | ...
Comp → ‘=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘<>’
Value → ([0-9]+) | “ String ”

Figure 6.8: Syntax of location-dependent queries with location granules.

6.3.4 LOQOMOTION Adapter

While being complementary, the Adapter for LOQOMOTION adopts the
location model where the location granules are represented as instances. In
this section, assuming this location model, we present how its query language
is adapted to work with QueryGen.

The LOQOMOTION Adapter that we have developed is characterized

112 Chapter 6. Accessing Data

by the following tuple:

< {< KeyLOQO,KeyLOQOGrammar >},
{Snapshot,Monitoring, Continuous}, {CSV } >

That is, it supports an adaptation of the SQL-like query language that
we have presented in the previous section, it can process the three types of
queries that QueryGen supports, and it returns the data in comma-separated
values format. In Table 6.3, the adapted grammar is presented. According
to the grammar definition presented in Section 5.2.1, the elements of this
grammar are as follows:

• The initial symbol Q is Query.

• {Opi} contains Projections, GrM, GrG, And, Or, Inside, and Comp
nonterminals; {Qps} contains Projection, Attrib, LocSelect, LocRefer-
ence, LocTarget, and Loc; and {Rtypes} contains Concept, Role, and
Instance nonterminals.

• T , as we have defined before, contains C, R, I, and ξ tokens.

• P contains each one of the productions in Table 6.3.

Note that there are additional elements: In this case, the operator that
translates a location into a granule according to a map (gr operator, ex-
plained in Section 6.3.3) is separated into two different nonterminals de-
pending on the arguments it takes (GrM and GrG), and, to be applicable,
they need that the operators belong to specific concepts defined in the loca-
tion model presented in Section 6.3.2.1, where location granules are modeled
as instances.

In this language, there exist operands whose semantics are not directly
checkable with a DL-reasoner. In particular, let us focus on Inside, GrM,
GrG, and Comp operators, the most complex ones:

• Inside imposes a condition on the location attribute of the returned
objects. The type of the returned objects is specified in the LocTarget
production, and therefore, that is the concept that is propagated as
global condition.

• GrG returns a granule object. It might take two different operands
(along with the mapping to be used): A location point or the name
of a granule in the mapping (in this case, an instance of granule). To

6.3. Accessing LOQOMOTION with Extended Semantics 113

Production Global
Conditions

Local Conditions

Query → And($1, $2)
Projections Concept

Projections → And($1, $2)
Projection Projections
Projections → ξ Neutral

Projection → Attrib $1
Projection → LocSelect $1

Attrib → R Dom($1)
Attrib → C R And($1, Dom($2)) Satisfiable(And ($1, Dom($2)))

LocSelect → Loc
LocSelect → GrM $1

LocReference → Loc
LocReference → GrG

LocTarget → C $1 Satisfiable($1)
LocTarget → GrM $1

Loc → I
GrM → I C $2 InstanceOf($1, GrMap) ∧

Satisfiable($2)
GrG → I I InstanceOf($1, GrMap) ∧

InstanceOf($2, Granule)
GrG → I Loc InstanceOf($1, GrMap)
Concept → C $1

Concept → And $1
Concept → Or $1

Concept → Inside $1
Concept → Comp $1

And → Concept Concept And($1, $2)
Or → Concept Concept Or($1, $2)

Inside →
LocReference LocTarget $2

Comp → C R C R Or($1,$3) Satisfiable(And($1, Dom($2))) ∧
Satisfiable(And($3, Dom($4))) ∧

Satisfiable(And(Range($2),
Range($4)))

Comp → R R Or(Dom($1),
Dom($2))

Satisfiable(And(Range($1),
Range($2)))

Comp → R C C Or($2, $3) Satisfiable(And($2, Dom($1))) ∧
Satisfiable(And($3, Dom($1)))

Table 6.3: Annotated grammar for a subset of the query language of LO-
QOMOTION (KeyLOQO).

check that it is properly applied, the system has to check that the first
operand is an instance of GrMap, and that the second operand (when

114 Chapter 6. Accessing Data

it is not derived from a Loc production) is an instance of Granule. This
way, our system can perform a semantic checking on the operands. It
does not impose a global condition, as it only affects to the interpre-
tation of the reference position to define the interest area, and it does
not constraint semantically the nature of the objects to be returned.

• GrM changes the way that the location constraint has to be processed.
As we have seen in Section 6.3.3, it has different meanings depending
on the position of the query. Anyway, the semantic checkings to be per-
formed are the same ones for both situations. It needs two operands, a
mapping and the concept of the target objects (the ones to be returned
by the constraint). The checking is performed locally, and this time,
it returns the concept of the target objects as global condition. This
way, it can be propagated and its consistency checked along the rest of
operands. For example, if we specified an inside constraint with Dogs
as target objects, and the rest of the concept definition is about peo-
ple (we assume that Dog and Person are stated as disjoint concepts),
when the Inside or the LocSelect productions return the concept Dog,
it will be checked against the rest of the expression.

• Finally, Comp is the comparison operator. It allows the system to
generate JOINs, for example. We have modeled it in three flavors,
depending on the number of concepts and roles that we had in the
input:

– Only two properties are specified: We establish via the local con-
ditions that the range of both the properties has to be compat-
ible. On the other hand, we let the result of the comparison be
the union of both domains. We assume that the rest of the query
constrains the resulting set.

– Two concepts and a property: We are comparing the instances
of two different concepts according to the value of a property.
Thus, we establish that the property has to be applicable9 to both
concepts (local condition). In this case, the resulting concept is
the union of both compared concepts.

– Two concepts and two properties: The comparison is made on
an arbitrary property of each of the concepts. This case is the

9We consider a property applicable to a concept when its domain its not disjoint with
it. We check it by testing the satisfiability of their intersection.

6.3. Accessing LOQOMOTION with Extended Semantics 115

combination of the two previous ones, as the ranges of the prop-
erties have to be compatible, and the properties applicable to its
corresponding concept (local conditions). As with the previous
one, the resulting set is the union of the participating concepts.

Once the query has been semantically checked, we let the responsibility
for its correct translation into the actual language syntax to the Adapter
implementation. In the following subsection, we give a complete example of
QueryGen using LOQOMOTION as backend.

6.3.5 A Complete Example with LOQOMOTION as Back-
end System

In this section, we present a synthetic example to illustrate the keyword
interpretation process with LOQOMOTION as target information system.
In this case, we focus on how QueryGen is able to work with location-
dependent operators such as Inside operator adding the semantics of the
granules. Let us take a user that wants to monitor information about buses
nearby Zaragoza. Thus, to do so, s/he inputs the keywords “Zaragoza bus
passengers location”.

The model for the location granules that we are using is the one shown
in Figure 6.5. To populate it, we could easily reuse the information avail-
able in several Linked Data initiatives such as Linked GeoData [SLHA12],
GeoLinkedData [VBVTS+10], or GeoNames10. Thus, we extend the model
by adding the subconcept City, that is subsumed by Granule, and we group
the cities of Spain under a mapping that is identified by SpanishCities.

1. In the disambiguation process, our system offers the user several in-
terpretations for each keyword:

• For “Zaragoza”, the proposed meaning is the instance of City.

• For “bus”, one of the proposed meanings is the concept Bus from
the OWL version of OntoSem ontology [BGK06].

• For “passenger”, one of the proposed meanings is the homonym
property from OntoSem.

• For “location”, one of the proposed meanings is the integrated
sense of the location property from the DBpedia ontology,
schema.org and OntoSem.

10http://www.geonames.org/, last accessed October 3, 2013.

116 Chapter 6. Accessing Data

2. In the generation process, at first, our system cannot build the in-
tended query because it needs an extra instance to assign Zaragoza
the correct granularity interpretation according to the SpanishCities
mapping. As we have seen in Section 5.4.2, despite the fact that in-
stances were not considered from the beginning, our system can add
a VT of instance type. This allows the system to find out the query
intended by the user:

[location, passenger] Inside(GrG(Zaragoza, SpanishCities), Bus)

which would retrieve the location and the passengers of the buses that
are inside a radius from Zaragoza considered as a City.

During the generation, QueryGen checks that Zaragoza is an instance of
Granule, and that SpanishCities is an existing GrMap thanks to the local
conditions established in the language definition. Moreover, passenger and
location are projected because they are semantically applicable. However,
the responsible for the modeling of the scenario has to take into account the
need of a correct alignment between the properties defined in the ontologies
used for the disambiguation and the properties defined in the LOQOMO-
TION scenario. Otherwise, the Adapter has not enough information to know
how to access the data.

6.4 Summary of the Chapter

In this chapter, we have explained the solution adopted to attach different
data models to QueryGen. Thanks to the use of Adapters, QueryGen can
forward the selected query to the appropriate underlying information sys-
tem, adapting both the data model and the query execution model. These
Adapters are an evolution of the wrappers proposed in OBSERVER [MI01],
which adapted the queries to the different answering capabilities of the data
repositories. In particular, the main capabilities that our system inherits
from OBSERVER are the data integration capabilities and the ability of
processing incomplete queries.

Then, we have presented two successful use cases that have been im-
plemented and registered into QueryGen: DBpedia (its SPARQL endpoint)
and LOQOMOTION.

• The first case provides a complete example of a semantic data access
pipeline, going from plain keywords to the semantic data available in
DBpedia in the form of Linked Data.

6.4. Summary of the Chapter 117

• The second case provides an example of how a system that, in princi-
ple, did not take into account any kind of semantics can be adapted
and added to QueryGen to perform a semantic search on it.

Last but not least, in this chapter, we have introduced two different
semantic models for representing location granularities. They are comple-
mentary, as they are oriented for different tasks: The former is aimed at
extending the capabilities of location dependent queries through the addi-
tion of semantics to location constraints [BIM10b], while the latter is aimed
at providing automatic reasoning on the location model [BBMI13]. In fact,
the second model can be used to feed the first one.

118 Chapter 6. Accessing Data

Chapter 7

Experimental Results

In this chapter, we present an evaluation of our approach from different
points of view. We start by presenting a qualitative evaluation of the whole
process, accessing data from DBpedia, and analyzing the current advantages
and shortcomings that we have detected. Then, we analyze the performance
of the different steps of the approach and the reduction rate achieved by the
reduction techniques that QueryGen applies in the query generation process.

7.1 Evaluating the Semantic Capabilities of Query-
Gen

To evaluate the semantic capabilities of our system, we have performed two
different evaluations. First, we have focused only on the quality of the dis-
covery of the user’s intended meaning, regardless of the source ontologies for
the different meanings. Secondly, we have turned our focus on the evaluation
of our current prototype accessing data from DBpedia, which has brought
up several issues that conform the main lines of future work in this thesis.

In the rest of the section, we present firstly the query set that we have
selected, and then we present and analyze the results of both performed
evaluations.

7.1.1 Selected Query Set

To evaluate qualitatively the semantic capabilities of QueryGen, we consid-
ered at first two different query sets that are currently being used in different
search contests:

119

120 Chapter 7. Experimental Results

• Text REtrieval Conference (TREC)1 - Web Track

The Web Track of this conference focused on Information Retrieval
evaluation was discontinued in 2004, and it returned in 2009. In order
to assess the quality of different Web Search engines, they provide a
set of packages of 50 queries2 expressed in keywords. Each of these
queries has several retrieval tasks associated to it.

• Query Answering over Linked Data (QALD)3 [LUCM13]

This contest/track is more recent than the TREC one, and it focuses on
Linked Data resources. It is used to assess natural language interfaces
and different keyword interpretation techniques over Linked Data, and
up to now, there have been three contests held on a year basis. It
considers DBpedia along with a RDF export of MusicBrainz4 as data
sets, and provides 100 queries with the expected results for each of
them. Excepting the first year (QALD-1 query set), the queries are
expressed both in natural language and keywords as well. QALD-2 and
QALD-3 are equivalent, as the latter is just an extension of the former
to address multilingual issues. We selected the set for the 2013 contest,
QALD-3, to perform the evaluation, and in the following we will refer
to it as the QALD query set.

We discarded the first one as, in fact, the keyword sets that TREC pro-
vides for the Web Track are not oriented to search on structured information,
thus, the semantic gap from the expressed keywords to the real meaning is
huge. One could argue that this is the kind of input you have to expect from
the users, but this gap seems to be the result of the users’ training over the
years, who have learnt that Web Search engines do not retrieve what they
were looking for, and therefore, they just relax their inputs to begin with
the navigation on the first results as soon as possible [MMZ09]. Thus, we
focused on evaluating our approach against the second query set.

Moreover, in the QALD query set, for each query, they provide a SPARQL
query that expresses the exact semantics corresponding to the input (natural
language or keywords). Thus, it provides a mean to compare our results ob-
jectively. To properly evaluate the results of each of the steps of QueryGen,

1http://trec.nist.gov/, last accessed September 30, 2013.
2There is one package for each of the years that this track has been held, this is,

200 queries considering the 2009-2012 conferences.
3http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/, last accessed

October 3, 2013.
4http://musicbrainz.org/, last accessed October 3, 2013.

7.1. Evaluating the Semantic Capabilities of QueryGen 121

human assessment was required to analyze the intermediate data generated.
This process is quite costly, so, to alleviate the work load of analyzing each
of them step by step, we decided to select 25 queries randomly out of the 100
total ones of the QALD query set over DBpedia. The same set of queries
has been used for both performed evaluations (semantic capabilities and
prototype one).

7.1.2 Evaluation of Discovery of Users Intended Query

The objective of this evaluation is to assess the semantic capabilities of
QueryGen to discover the meaning of the input keywords and achieve their
correct interpretation comprising the user’s information need.

To ease the explanations, despite the fact that QueryGen is able to use
different query languages to interpret the input, we selected the simplified
BACK language extended with: 1) the inverse version of Some and Fill
operators, and 2) aggregation operators. We have used a controlled set
of 55 ontologies to be able to trace and repeat the experiments (the test
collection OWLS-TC45 plus the ontologies dbpedia 3.6.owl6, schema.org7,
People+Pets8, Koala9, Animals10, and WordNet)11.

In this test, we consider a success if QueryGen obtains a query that ex-
presses the same semantics as the attached SPARQL query. In Table 7.1, we
show the quantitative information about the results: QueryGen achieves the
correct interpretation in a 76% of the cases. The reasons for not achieving a
suitable query for the input keywords were: 1) the lack of proper knowledge
in the provided ontologies (5 out of 6 cases), and 2) the lack of expressivity
of the language (3 out of 6 cases).

In the following, we detail 7 of the 25 cases (see Table 7.2) which cover
the different issues that we have found performing the test:

• For the input keywords “female Russian Astronaut”, our system maps:
astronaut to the concept from DBpedia, among other sources (merged);
Russian to the concept/instance from WNet, offering also Russia as
an instance of country; and female to the instance in Animals, among

5http://projects.semwebcentral.org/projects/owls-tc/
6http://downloads.dbpedia.org/3.6/dbpedia_3.6.owl
7http://schema.org/docs/schemaorg.owl
8http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/people+pets.owl.rdf
9http://protege.stanford.edu/plugins/owl/owl-library/koala.owl

10http://www.cs.man.ac.uk/~rector/tutorials/Biomedical-Tutorial/

Tutorial-Ontologies/Animals/Animals-tutorial-complete.owl
11All URIs accessed on October 3, 2013.

122 Chapter 7. Experimental Results

Intended Query Number of cases Rate
Generated with 0 VTs 10

76%Generated with 1 VT 7
Generated with 2 VTs 2

Not Generated 6 24%

Table 7.1: Success rate of QueryGen against the QALD excerpt.

Question Keywords Query VTs

Give me all female
Russian astronauts

astronaut, 3 Astronaut
2 rolesfemale, And (Fill(birthPlace,Russia))

Russian And (Fill(gender, female))

Which river does the
Brooklyn Bridge cross

Brooklyn 3 River
0 VTsBridge, And Inv-fill(crosses,

river, cross BrooklynBridge)

How many
monarchical countries
are there in Europe?

Europe, 7 no query
monarchical (due to lack of knowledge)
country

Which countries have
places with more than
two caves?

cave, 7 no query
country, (due to lack of knowledge and
place, two expressivity)

Which mountain is
the highest after the
Annapurna?

mountain, 7 no query
highest, (due to lack of expressivity)
after,
Annapurna

Which
telecommunications
organizations are
located in Belgium?

Belgium, 3 Organization

1 role
telecommu- And Fill(location,Belgium)
nications, And Fill(industry,
organization, Telecommunications)
located

Give all the movies
with Tom Cruise

Tom Cruise, 3 Movie
1 role

movie And Fill(starring, Tom Cruise)

Table 7.2: Question, input keywords, generated query, and number of VTs
needed for an excerpt of the QALD questions.

other sources (merged). With two extra roles, QueryGen can build
Astronaut And (Fill(birthPlace, Russia)) And (Fill(gender, female))
which is the intended query.

• For the input keywords “Brooklyn Bridge, river, cross”, our system
maps: cross to SUMO:crosses and dbpedia:crosses (due to the dif-
ference in the domain and range of the properties, our system does not
assume that are equivalent), and River to dbpedia:River. With those
terms, and treating BrooklynBridge as an instance, QueryGen can

7.1. Evaluating the Semantic Capabilities of QueryGen 123

build the intended query River And Inv-fill(crosses, BrooklynBridge)
with no extra term.

• For the input keywords “Europe monarchical country”, our system
cannot find the intended query. Although Europe is well disambiguated,
there is no way to establish in the DBpedia ontology that a coun-
try belongs to Europe (the continent). This fact is stated via yago:

EuropeanCountries, which is out of the knowledge consulted for dis-
ambiguating purposes12. Monarchical is mapped to WNet:Monarchy,
and, enriching the input with one extra role, QueryGen would be able
to add dbo:governmentType to achieve the intended query.

• For the input keywords “cave, country, place, two”, cave, place and
country are mapped to their homonym concepts in the DBpedia on-
tology (among others). The keyword two is considered to be an inte-
ger. In this case, QueryGen is not able to find the intended query as
there is no property in the consulted knowledge that expresses that
a place is the location of something (we would need the inverse of
dbprop:location). Provided that such a property would have been
obtained, QueryGen could build the query if it had the At-least oper-
ator, which is very common in DL query languages.

• For the input keywords “mountain highest after Annapurna”, our sys-
tem has not been able to achieve the intended query. Although it
disambiguates mountain mapping it to dbpedia:Mountain (among
others), and it also detects the fact that Annapurna is a particular
instance of dbpedia:Mountain; the “highest after” keywords are not
correctly interpreted: They should be mapped to a particular operator
that does not exist in the selected query language.

• For the input keywords “Belgium, telecommunications organization,
located”, our system maps: telecommunications and Belgium to in-
stances in WNet; organization to its homonym in the DBpedia on-
tology (among others); and located to protont:LocatedIn property
(equivalent to dbprop:location). With one extra role (in this case,
industry from the DBpedia ontology) our system is able to build Or-

12We discarded using YAGO as a disambiguation source in this test due to their
complex categories, which introduce ambiguity. For example, concepts such as yago:

PresidentsOfTheUnitedStates or yago:SchoolTypes are especially difficult to handle, as
explicitly stated by the QALD authors in [LUCM13]. Nevertheless, we are working on
how to introduce this kind of sources in QueryGen without being affected by the noise.

124 Chapter 7. Experimental Results

ganization And Fill(location, Belgium) And Fill (industry, Telecom-
munications), which is the intended query.

• For the input keywords “Tom Cruise, movie”, our system consid-
ers TomCruise altogether as a single instance and it maps movie to
schema.org:Movie, among other sources (merged). Thus, QueryGen
can build with one extra term (starring from the DBpedia ontology)
the query Movie And Fill (starring, Tom Cruise), which is the in-
tended query.

Evaluation Conclusions In spite of the lack of knowledge and expressiv-
ity of the query language selected, QueryGen has been able to generate the
intended queries with exactly the semantics needed for most of the queries:

• The disambiguation process has been successful almost in all the cases,
detecting correctly the meanings, and merging and enriching the senses
of the keywords.

• The generation process reaches the user’s intended query whenever the
expressivity of the query language allows to build it (76% of the cases
for the query language selected in the evaluation).

• The usage of virtual terms to discover implicit meanings is present
in the 47% of the queries that we have been able to generate with
our system. The rest of the successful queries have been generated
with 0 virtual terms.

• Anyway, there are still times when QueryGen fails to generate the
intended query (6 out of the 25 selected queries) due to two main rea-
sons: 1) the lack of knowledge, which could be addressed by upgrading
the dynamic pool of ontologies; and 2) the lack of expressivity of the
query language selected for the test, which can be addressed by adding
languages expressive enough to express the user’s query.

Thus, the flexibility of QueryGen regarding the sources of knowledge
consulted and the query models supported makes it possible to alleviate the
problems detected in the evaluation. On the one hand, the more ontolo-
gies available in the pool of ontologies consulted by QueryGen, the more
semantic interpretations can be considered. On the other hand, despite we
have performed this test with just one selected query language, notice that
QueryGen searches for the intended query taking into account all the avail-
able languages: For a given input it could express the intended query in

7.1. Evaluating the Semantic Capabilities of QueryGen 125

some query language, for the next input another query language could be
used, automatically.

7.1.3 Evaluating QueryGen Accessing Data: From Keywords
to Data in DBpedia

Now we turn our attention into evaluating QueryGen accessing DBpedia
using the Adapter presented in Section 6.2.1. The set of consulted ontologies
in the disambiguation process is the same as in the previous evaluation.

While in the previous evaluation any discovered meaning would suffice
to discover the user’s intended meaning (regardless the source ontology),
when it comes to accessing data in a particular data repository, we need
a mechanism to reconciliate the discovered meanings with the vocabulary
used in such a repository. Currently, as stated in Section 6.1, we rely on the
Adapter to do this task (we consider this as one of the main points of our
future work).

Moreover, we have to bear in mind that the landscape of ontologies and
semantic data has evolved dramatically in the last few years. The explosion
of Linked Data has raised the need of considering the data behind SPARQL
endpoints (such as DBpedia’s one) to perform the keyword disambiguation;
and, thus, taking into account the instances associated to each of the con-
cepts in the ontologies. This is not currently addressed by our prototype, as
the disambiguation is performed on the retrieved ontologies, a set of stati-
cally provided ontologies, and WordNet. The addition of SPARQL endpoints
to enhance the disambiguation is part of the ongoing work of this thesis.

Thus, we have evaluated the approach by assuming that DBpedia’s
SPARQL endpoint has been correctly added to the disambiguation process
(we could add it using several SPARQL templates to obtain the information
about the involved resources, or even use directly the lookup service13 that
DBpedia provides us with).

In the following, we firstly detail 5 of the 25 cases (out from the same
query set as in the previous section) focused on the access to DBpedia, and
then we present the conclusions about our prototype, which mark different
lines of future work. The queries are as follows:

• For the input keywords “female Russian Astronaut”, as we have seen
before, our system maps: astronaut to the concept from DBpedia,
among other sources (merged); Russian to the concept/instance from
WNet, offering also Russia as an instance of country; and female to the

13http://wiki.dbpedia.org/lookup/, last accessed October 3, 2013.

126 Chapter 7. Experimental Results

instance in Animals, among other sources (merged). With two extra
roles, QueryGen can build Astronaut And (Fill(birthPlace, Russia))
And (Fill(gender, female)) which is the intended query.

This query is posed to the corresponding Adapter, and DBpedia ac-
cessed. The results are not the expected, because the gender of the
different people is not asserted in DBpedia, as we can see if we pose
the following query:

[birthP lace, gender] Astronaut

PREFIX dbpedia:<http://dbpedia.org/ontology/>

SELECT DISTINCT ?pr_birthplace_0 ?pr_gender_1 ?id0

WHERE { { ?id0 a dbpedia:Astronaut . }

OPTIONAL { ?id0 dbpedia:birthPlace ?pr_birthplace_0 . }

OPTIONAL { ?id0 dbpedia:gender ?pr_gender_1 . } }

A solution for this could be to include the instances of DBpedia in
the disambiguation process via the lookup service. Another way to
improve the disambiguation process would be to add YAGO ontol-
ogy, but its special characteristics (automatically built, composed out
of 400.000 concept/instances) would introduce noise in our system.
However, we will study how to use both the ABox of the DBpedia and
the YAGO ontology itself.

• For the input keywords “cave, country, place, two”, cave, place and
country are mapped to their homonym concepts in the DBpedia on-
tology (among others). The keyword two is considered to be an inte-
ger. In this case, QueryGen is not able to find the intended query as
there is no property in the consulted knowledge that expresses that
a place is the location of something (we would need the inverse of
dbprop:location).

That is, we would need: On the one hand, aggregation operators to
express the “more than two” clause; and, on the other hand, an inverse
existential operator that would give us the instances of their range that
are related (being the object) to an instance of the concept (which
should be a subclass of the property domain). This is needed due to
the lack of an inverse property for dbprop:location, if there were

7.1. Evaluating the Semantic Capabilities of QueryGen 127

such as property (e.g., isLocated), we wouldn’t need this operator to
build this query.

• For the input keywords “Yenisei, river, flow, through, country” rep-
resenting the query “Through which countries does the Yenisei river
flow?”, QueryGen maps correctly all the keywords to terms in several
ontologies, but flow one. It is mapped to a concept, while the prop-
erty that we were looking for querying correctly DBpedia is dbpedia:
country. This property is hidden by the fact that we are looking for
countries and the user might choose Country as concept instead of
choosing the dbpedia:country property as it is not intuitive.

As in the previous query, an inverse of one of the operators is needed
(in this case, the Fill operator) to get the instances that are related
to the Yenisei river via the inverse property (which in this case does
not exist in DBpedia).

• For input keywords “school, type” meaning “Give me all school types”,
our system obtains dbpedia:School and the property dbprop:type

from the DBpedia ontology. These meanings (among others) do not
allow our system to generate the desired query because of their seman-
tics and how they are used in the DBpedia dataset. Although is quite
counterintuitive, is not possible to access from the School concept, to
the SchoolTypes concept. This is due to the fact that the YAGO’s
concept comes from the SKOS categorization of the Wikipedia arti-
cles, which is left aside in the DBpedia ontology (as it is explained in
Section 6.2, more details can be found in [BEM13]). YAGO is built
extracting automatically all the information and introduces a lot of
semantic noise. This case is a good example of it: Instead of classi-
fying the different schools as subclasses of School, YAGO enumerates
the types of school that there are, as directly extracted from the SKOS
taxonomy of article’s subjects.

This query could be directly answered if we added the YAGO tax-
onomy to our system, considering the fact that both keywords were
mapped just to one concept: yago:SchoolTypes.

• For the input keywords “Tom Cruise, movie”, as we have seen before,
our system disambiguates correctly Movie, discovering and merging
the senses from different ontologies. However, it is not mapped to be
equivalent to the DBpedia’s Film concept, in spite of being able to

128 Chapter 7. Experimental Results

find the synonym Film for Movie with the extraction techniques in
other ontologies. So, when our system, with an extra term, builds:

Movie And Dill(starring, Tom Cruise)

it does not retrieve the desired results. If we had input just Tom Cruise
in our system, it would have retrieved results, as the Adapter for
DBpedia adds the domain of the property and builds:

PREFIX dbpedia:<http://dbpedia.org/ontology/>

PREFIX dbres:<http://dbpedia.org/resource/>

SELECT DISTINCT ?id0

WHERE { ?id0 a dbpedia:Work .

?id0 dbpedia:starring dbres:Tom_Cruise . }

which retrieves all the movies that are starred by Tom Cruise. If the
Film concept would have been correctly evaluated as equivalent to
dbpedia:Movie (recall that our system disambiguates and merges it
correctly), the Adapter would have added an extra constraint that
refines further the results (we have checked the results of adding
“id0 a dbpedia:Film” to the query by hand).

Evaluation Conclusions Analyzing the results of the prototype access-
ing DBpedia, we detected several issues that our current prototype does
not address and that affects the answering capabilities of our system, which
might constitute the main lines of future work. We detail them in the fol-
lowing, ordered by importance (number of queries affected by the issue):

• Multiple keywords must be mapped to just one term: It is usual to
have several keywords to be mapped to just one term or resource.
For example, keywords Yenisei and river should be mapped together
to the resource Yenisei river, or school and type mapped to YAGO’s
concept SchoolType.

• Need to run the discovering and disambiguation process on DBpedia’s
resources: We have to take into account the new landscape of seman-
tic data regarding the disambiguation process and include DBpedia’s

7.1. Evaluating the Semantic Capabilities of QueryGen 129

resources (in fact, we have to be able to include any SPARQL end-
point). This would allow, in addition to the previous point, to detect
the resource Yenisei river or Tom Cruise directly in DBpedia.

• Lack of expressivity of simplified BACK: The query language we used
for the evaluation lacked some needed operators such as aggregation
ones, operators for answering yes/no questions, etc. However, as we
have seen, the addition of new operators comes at a cost, so this aspect
would have to be carefully evaluated. For example, the more than two
clause in the query “which countries have places with more than two
caves?” implies being able to apply an aggregation operator (in this
case, Count) on the intermediate results.

• Ambiguous names of properties: There are times that the keyword
query itself includes keywords that are too far from their actual mean-
ing to be mapped to it in the disambiguation. For example, country is
used in DBpedia to denote the fact that a river flows through a coun-
try, while Country is used to denote the concept country. Both of the
meanings are part of the considered query, it is quite difficult to infer
that flows keyword should be mapped to country. We find another
example when considering married vs spouse: DBpedia uses the latter
one to express the relationship of being married. We have to advance
further in the disambiguation to be able to stretch the semantic gaps.

• Not enough data/knowledge to answer the query: DBpedia itself might
have not have enough information to be able to answer the posed query.
This can happen at schema (properties that are not defined), and at
data level (data that is missing). We can see these missed data in,
among others, the query of the female astronauts, where their gender
data is not stated in DBpedia.

• Use of a keyword/property to name its inverse one: Users might un-
awarely use a keyword to name the inverse property (which might
not even exist in the consulted ontologies). This could be tackled by
adding inverse operators as we have seen in the query examples (in
fact, this issue is subsumed by the lack of expressivity of the selected
language, but we think it is important enough to be pointed out). In
the query of the caves, as DBpedia only offers location as property
(and not isLocated), we would need to apply the inverse of the Some
operator to obtain the desired semantics.

130 Chapter 7. Experimental Results

• Redundant keywords: The behaviour of current keyword search sys-
tems has modified how users express their keyword queries [MMZ09],
and it is quite usual to have redundant keywords in the queries, such
as an instance and its class (Yenisei and River), or two classes that
one subsumes the another one (Place and Cave).

• Keyword must be mapped to an operator or to a datatype value rather
than to an ontological term: We have to be able to detect when a key-
word/set of keywords have to be mapped to a particular operator, or a
datatype instance. This would affect directly to the query generation
process, as we could force the usage of a particular operator, narrow-
ing the interpretation space. In the example of the caves, our system
should have disambiguated two as a number, and therefore only con-
sider the operands that would take a number as operand (this currently
can be restricted by giving the corresponding local conditions on the
operators).

Note that these are current limitations of our prototype that we have
detected while accessing DBpedia. However, assuming that the two first
points were correctly addressed, we have been able to generate the proper
queries with exactly the semantics needed for most of the queries. So, there
exists a long road for improvements in our approach, but we think we are
on the correct way.

7.2 System Performance

In this section, we focus on the performance of the different steps of our
system. On the one hand, we measure the performance of the disambigua-
tion process taking into account different depths when comparing ontolog-
ical contexts. On the other hand, we evaluate the impact of the reduction
techniques we apply during the semantic query generation; and, finally, the
performance of the generation step along with the semantic filtering (it in-
cludes both the local and global checks).

7.2.1 Keyword Disambiguation Performance

To test the feasibility of our disambiguation techniques, we have performed
a set of tests to evaluate its performance in a detailed and systematic way.
The tests were executed on a Sunfire X2200 (2 x AMD Dual Core 2600 MHz,
with 8GB RAM). We have used the same set of ontologies as in the previous

7.2. System Performance 131

section (the test collection OWLS-TC4 plus the ontologies dbpedia 3.6.owl,
schema.org, People+Pets, Koala, Animals, and WordNet). Thus, a total of
55 ontologies were consulted by our prototype.

The input keywords were not selected randomly but based on actual
queries proposed by students of different degrees with skills in Computer
Science. We considered fifty sets of input keywords to perform the tests, ten
for each number of keywords. In Figure 7.1, the results for different sizes of
the inputs are shown.

Figure 7.1: Keyword disambiguation performance evaluation.

As it can be seen, the disambiguation times depend on which depth is
considered for matching (i.e., how many levels of parent and children terms
in the ontological context). From the experiments, we have seen that using
a depth greater than two lead to wrong results. This is due to the fact
that the closer you get to the TOP concept in the ontologies, the more
false positives appear, as too general subsumer terms are considered. So,
a depth of two levels is considered to be semantically optimal. The cached
results corresponds to executions on which the extraction procedures had
been already performed and stored, as at first, it was the most expensive
task.

132 Chapter 7. Experimental Results

7.2.2 Evaluation of Query Generation

We turn our focus now on the performance of the query generation step. The
tests have been carried out using Pellet14 1.5 as background DL reasoner.
They were performed with the same settings, that is, on a Sunfire X2200
(2 x AMD Dual Core 2600 MHz, with 8GB RAM). For the sake’s of exper-
iments repeatability, we selected two well-known ontologies: People+Pets
and Koala. They are two popular ontologies of similar size to those used in
well-known benchmarks such as the OAEI15. We only show the experimental
results obtained with simplified BACK as output query language because
most search approaches are based only on conjunctive queries. Nevertheless,
we have also performed the experiments with another non-DL languages, and
we obtained similar execution times and conclusions.

For the experiments, we considered different sample sets of input key-
words (selected from the terms of the above ontologies) and measured av-
erage values grouped by the number of keywords in the set. As in the
evaluation of the performance of the disambiguation process, these inputs
were based on actual queries proposed by students of different degrees with
skills in Computer Science. The sets were chosen according to the following
distribution: 10 sets with a single keyword (5 selecting a role and 5 selecting
a concept), 15 sets with two keywords (5 sets where both keywords are
roles, 5 sets where both keywords are concepts, and 5 sets where one key-
word is a role and the other one is a concept), 20 sets with three keywords
(5 with 2 concepts and 1 role, 5 with 1 concept and 2 roles, 5 with 3 con-
cepts, and 5 with 3 roles) and, following the same idea, 25 sets with four
keywords and 30 sets with five keywords. Notice that, even though our ap-
proach can effectively deal with instances as well, we do not consider sets
with instances because the selected ontologies do not have instances (as it
happens frequently [WPH06]). We set the maximum number of keywords
to 5, as the average number of keywords used in keyword-based search en-
gines “is somewhere between 2 and 3” [MRS08], and thus we can see how
our system performs with inputs below and above this average number of
keywords.

We conducted four experiments: 1) no VTs added, the system works
only with the user keywords; 2) one VT added, to try to find a possible
missing keyword; 3) two VTs (1+1), is the same situation as 2) with an
extra refinement step once the user has selected a candidate for the first
VT to be rendered; and 4) two VTs added, to find two possible missing

14http://clarkparsia.com/pellet, last accessed October 3, 2013.
15http://oaei.ontologymatching.org/, last accessed October 3, 2013.

7.2. System Performance 133

keywords at the same time16. We have also considered that the user inputs
at least one keyword. The X-axis in Figures 7.2 and 7.3 represents the total
keywords considered, i.e., the input and the VTs added by the system. Thus,
considering 3 keywords, the results are for 3 user keywords (no VTs), 2 user
keywords and 1 VT (one VT), and 1 user keyword and 2 VTs.

Figure 7.2 shows the average number of generated queries and the av-
erage number of patterns that are presented to the user (notice that the
Y-axis is in log scale).

Figure 7.2: Performance evaluation: average number of queries and shown
patterns.

As expected, the number of queries generated rapidly increases with the
number of input terms, as the more operands there are, the more queries
can be built. Moreover, performing the semantic enrichment leads also to a
significant increase in the number of queries because many new interpreta-
tions appear. However, the use of query patterns reduces up to an average
92% the options that the user is presented with. Figure 7.2 also shows that,
despite generating a higher number of queries, the system compresses the
queries more when it has two VTs at once than in the other situations. This
may be beneficial to the user, but it might require her/him more time navi-

16We do not consider adding more than 2 VTs because we do not aim at discovering
the user’s intended query when too many keywords were missed in the input.

134 Chapter 7. Experimental Results

gating through the candidate keywords for the VTs. The number of queries
is lower for two VTs (1+1) as, in the refinement step, the user has fixed a
VT and there are less options. Last but not least, no possible interpretation
(according the query language) is discarded.

Finally, the average times that the generation process takes are shown
in Figure 7.3. They include the generation and the semantic filtering time.
Being the low they are makes the system suitable to be a responsive front-
end (note that we would have to add the times of the sense discovery module,
but this module can be use in a standalone mode as well). As it can be seen
in Figure 7.3 (notice that the Y-axis is in log scale), the average times for 3
and 4 keywords are similar and really low (recall that the average number
of input keywords was between 2 and 3).

Figure 7.3: Performance evaluation: processing time of the query generation
step.

7.3 Summary of the Chapter

In this chapter, we have analyzed QueryGen in a qualitative and a quantita-
tive way. Firstly, adopting a standard that is being used to query DBpedia
from keywords, we have evaluated the semantic capabilities of our approach
discovering the user’s intended meaning. Secondly, we have evaluated our
system working with the DBpedia Adapter, which uses our simplified ver-

7.3. Summary of the Chapter 135

sion of BACK as query language. The results of both evaluations show the
potential of our techniques. Moreover, the analysis of the queries that pre-
sented problems has raised several issues that, far from being a dead end for
the approach, will guide our future work regarding keyword interpretation.
In particular, exploiting the knowledge in Linked Data repositories and de-
tecting the operators to be used are specially well positioned to be good
lines of improvement.

Then, we have moved into performance related aspects of the system. At
first, the disambiguation procedure might be seen as quite expensive so as to
be used in a system with user interaction. Thanks to the inner structure and
the reimplementation of several parts of the original code, we have managed
to lower the times while not compromising the quality of the keyword dis-
ambiguation. Regarding the query generation, our system presents a good
performance. In particular, the inconsistent query filtering is fast enough
thanks to the fact that, once we have the original ontology classified, the
reasoners can assess the satisfiability of the expressions without reclassifying
this ontology.

Finally, the impact of the reduction techniques has also been evaluated.
The results show that the reduction rates that are managed reduce the pos-
sibilities presented to the user dramatically, which is an remarkable achieve-
ment as it is done without losing any possible interpretation.

136 Chapter 7. Experimental Results

Chapter 8

Conclusions

In this chapter, we present different conclusions about our work. Due to
the broad aspects dealt with during the thesis’ period, first, we present the
main contributions of QueryGen as a whole system, and then, we present
the secondary contributions to different fields such as location-dependent
queries. After this, we present the publications related to the work presented
in this thesis, analyzing their quality according to different quality index
rankings. Finally, we are aware that there is plenty of work ahead and, so,
we present some future work.

8.1 QueryGen: Main Contributions

In this thesis, we have presented QueryGen, a system that enables semantic
keyword-based search over heterogeneous information systems. We have ex-
plored the problem of keyword interpretation in depth, providing a solution
that, exploiting the semantics of all the elements that participate all along
the search process, is flexible enough to deal with different data schemas
(ontologies), different query languages, and different execution semantics.

We have got rid of the ties that other keyword interpretation approaches
have to the specific data model that they are accessing. However, flexibility
comes at the cost of having to explore a bigger search space to find the
intended interpretation; but, thanks to several semantic techniques that
we apply, we also reduce dramatically this search space without losing any
possible query. Moreover, the visualization technique we use further reduces
the efforts that the user should make to select their intended query.

We have done an initial step towards the modeling of query languages
in DL, making it possible to establish the consistency of a query accord-

137

138 Chapter 8. Conclusions

ing to the knowledge stored in an ontology even with non-DL languages,
such as our extended SQL-like language for location-dependent queries. Us-
ing QueryGen, users can turn their information needs into formal queries
without having to master the formal languages which they are written in.
Having formal queries instead of information needs removes the ambiguity,
and enables the systems to focus on answering the specific query that users
would have posed if they knew how to write it.

QueryGen automatically accesses the information systems which are ca-
pable of answering the selected query, transparently to the user, and giving
a single entry point to a heterogeneous set of systems. In this access, not
only the data is integrated, but the execution semantics, integrating also
continuous queries.

Main Features of QueryGen

Summing up the whole system, the main features of QueryGen are:

• The discovery of the meaning of the input keywords is done by con-
sulting a dynamic pool of ontologies. This allows QueryGen to handle
very different domains, and not being constrained to a fixed source
of semantic information. During this process, our system merges the
meanings that are considered similar enough and proposes the most
probable semantics for each of the input keywords. To do so, it per-
forms a disambiguation process that takes into account the semantics
of all them as a whole.

• Regarding the disambiguation process and the posterior ontology in-
tegration, we have introduced an intelligent sense library whose goal is
two-fold: 1) to speed-up this process, achieving execution times that
makes it possible to use the system in real-time; and 2) to manage the
evolution of the source ontologies and adapt QueryGen to the possible
changes in the ontologies, and therefore, in the schemas describing the
underlying data sources.

• Our approach performs the keyword interpretation via a query gen-
eration process independent of the available query languages. In this
interpretation process, our system can handle any associated query
language whenever it is specified via a semantically annotated gram-
mar. Moreover, it takes into account the semantic properties of the
query languages to avoid generating semantically equivalent queries.
Finally, the user is not aware of the different underlying query models,

8.2. Other Contributions 139

as the system performs the generation in all the available ones (they
correspond to different data repositories).

• With the help of a DL reasoner, it is able to filter out inconsistent
queries according to the knowledge retrieved. This is not only appli-
cable to DL queries, but also to non-DL languages, which makes our
approach very flexible. This filtering is greatly boosted by the fact that
the set of generated queries are a conservative extension of the source
ontologies, and therefore, their satisfiability can be assessed without
having to reclassify the knowledge.

• It performs internally a semantic enrichment of the input to fill the
possible gap between the user keywords and the user’s intended query.
This is done by using virtual terms, which allows the system to explore
further meanings when the user’s input is incomplete. To render them,
the system considers the semantic information dynamically obtained
and integrated during the disambiguation process.

• The process is independent of the underlying data models and makes
the access to them transparent to the user, providing a unique point
of entry to heterogeneous systems. In our prototype, we have success-
fully integrated the system to query, using plain keywords, two very
different information systems such as LOQOMOTION and DBpedia
(its SPARQL Endpoint).

However, the contributions of this thesis are not limited to the keyword
search field. The different lines of research of our group and the know-how
acquired developing the different modules of QueryGen, have allowed to
make contributions to other different fields as we present in the following
section.

8.2 Other Contributions

The work done during this thesis has also made contributions to other as-
pects apart from semantic keyword-based search. They are mainly related to
the semantics of locations, and their influence on location-dependent queries
and their processing. In particular:

• We have introduced the notion of location granule in the context of
location-dependent queries, studying how their use affects to the se-
mantics of different well-known constraints such as inside and nearest

140 Chapter 8. Conclusions

neighbour queries. The use of location granules greatly increases the
expressiveness of the location-dependent queries and the range of ap-
plications that can benefit from the query processing.

• We have extended LOQOMOTION with support for these location
granules, achieving higher query expressivity while benefiting of the
distributed query processing that LOQOMOTION provides us with.
Due to the use of location granules it is now possible to define queries
that otherwise would not be possible. Moreover, the advantages of
their use do not come at the expense of performance (we performed
an extensive experimental evaluation that can be found in [IBM11]).

• We have extended the notion of location granules to semantic location
granules, where they become more than simple areas. For this pur-
pose, we have proposed two complementary semantic models that fit
different needs:

– Modelling them as instances to exploit ABox reasoning: This
model allows us to extend dynamically expressivity of the query
language with the help of a DL reasoner and support for Horn
rules.

– Modelling them as concepts to exploit TBox reasoning: This
model makes it possible to infer new knowledge with the help
of a DL reasoner, while avoiding wrong conclusions due to the
geographic inclusion of concepts. Moreover, it allows us to ex-
press non-geographical information about the different locations
and reason about it along with the spatial information.

Far from being a handicap, the heterogeneity of the work developed has
given me a broad view on information systems. In particular, working in
the intersection of Mobile Computing and the Semantic Web (its associated
technologies) has opened a new line of research close to semantic datastreams
(to reconciliate the use of volatile knowledge with static/intensional one),
which is one of our current works [BBIM13]. Moreover, we also have started
a line of research on how to exploit semantics in mobile environments, which
first step has been to study how to use DL reasoners in Android-based
devices [YBE+13].

8.3. Evaluation of Results 141

8.3 Evaluation of Results

In this section, we present the contributions of each of the publications re-
lated to this thesis, grouped by issue and providing several quality measures
of each of them.

• Publications related strictly to QueryGen and semantic keyword-based
search:

– In [BTMB08], we presented our approach to keyword interpreta-
tion for the first time. Based on syntax-free grammars, we could
build the desired query from selected ontological terms into any
target query language. This conference was ranked as B in 2008
in CORE Conference Ranking, and 0.82 at CSCR (top 23% in
Artificial Intelligence category). Currently, is ranked as CORE C.

– In [BM10], we introduced the Multi-Ontology Sense Library in
the context of the Semantic Web Services. Via the integration
of senses, we reconciliated the different vocabularies used in the
descriptions of the services provided by the service providers and
the service requesters. The conference is ranked as CORE B, and
has a CSCR score of 0.81 (top 43% in Architecture / Hardware
category).

– In [BTMI10], we extended the work in [BTMB08], redefining the
approach to achieve an scalable solution, defining and taking into
account the properties of the operators to avoid generating dupli-
cated queries, and reducing the search space dramatically. More-
over, we introduced the pattern-based presentation. The confer-
ence is ranked as CORE A.

– In [BMT12], we revisited the idea of integrating an ontology out
from a definition of the domain expressed by keywords. This ap-
proach could be used as a starting point in an ontology-engineering
process as it acts also as an ontology-search tool (it searches for
meanings instead of plain keywords). The conference is ranked
as CORE B.

– Finally, in [BEM12] and [BEM13], we presented our approach to
provide an ECA with semantic keyword search on Linked Data.
The work in [BEM13] is an extended version of [BEM12] as we
were invited to submit it to an special issue comprising the best
papers of the conference. The conference is ranked as CORE B,
and the journal is also ranked as B in the CORE journal ranking.

142 Chapter 8. Conclusions

Moreover, we have submitted the work presented in this thesis to a spe-
cial issue on Semantic Search of the Journal of Web Semantics [BM13],
and it is currently under review.

• Publications related to Mobile Computing and location-dependent query
processing:

– In [IMB07] and [IBM11], we introduced the notion of location
granules, as well as the implications and benefits of their use in
location-dependent queries. While the conference is not ranked,
the extended journal version is published in JSS journal, which
had a JCR impact factor of 1.135 (top 33% in Computer Science,
Theory and Methods category) in 2012. On the other hand, it is
ranked as CORE A in CORE journal ranking, and it has a SJR
impact factor of 1.164 in 2011 (top 15% in Computer Science
Applications category).

– In [ICBM09], we extended the semantics of location granule-based
queries by adding new constraints (nearest neighbour) and new
types of granules (probabilistic ones). The conference is ranked
as CORE B and has a CSCR score of 0.79.

– In [BIM10a], we explained how the use of mobile agents in our
systems had helped us in the development of robust and adapt-
able distributed information systems. This conference is ranked
as CORE B, and has a CSCR score of 0.81 (top 43% in Architec-
ture / Hardware category).

– In [BIM10b], we presented the first of the semantic models of
location granules (modeling location granules as instances) and
an extension of location-based constraints which had into account
the semantics of the model to calculate the relevant objects. This
conference is ranked as CORE B and has a CSCR score of 0.79.

– Finally, in [BBMI13], we presented the other semantic model of
location granules (modeling location granules as concepts), com-
plementary to the one presented in [BIM10b]. This model allows
the DL reasoner to make intensive use of the TBox to infer the
containment relationships. We are currently working on both
models. This journal has a JCR impact factor of 1.613 in 2012
(top 21% in Computer Science, Information Systems category)
and is ranked as CORE A in CORE journal ranking. On the
other hand, it has a SJR score of 0.933 (top 8% in Geography,

8.4. Future Work 143

Planning and Development category, and top 12% in Library and
Information Sciences category) in 2012.

There has been a quite extensive work in both Mobile Computing and
Semantic Web fields. As we have said before, the result of this has been
a new line of research close to semantic datastreams, to handle volatile
knowledge with the help of DL reasoners. We have currently submitted
our seminal work to the IJSWIS journal, and it is under review [BBIM13].
Moreover, we have also published a preliminary study on how to use DL rea-
soners on Android-based devices in the OWL Reasoner Evaluation Workshop
(ORE) [YBE+13].

8.4 Future Work

Being the keyword-interpretation problem an ill-posed problem as it is, there
are many lines of improvement that could be explored in the context of
QueryGen. Out from the analysis of the results presented in Sections 7.1.2
and 7.1.3, we can point out the following ones as the most relevant:

Regarding the Discovery and Disambiguation Process

• We should study the possibility of mapping multiple keywords to just
one term: It is usual to have several keywords to be mapped to just one
term or resource, and in its current state, this issue is not addressed,
which introduces noise in the keyword interpretation process.

• We cannot turn our back on the huge amount of information provided
by DBpedia’s resources, and the Linked Data repositories in general.
We should include them as information sources for the discovery and
disambiguation processes; however, this must be done carefully as we
will not be longer dealing with intensional data, but extensional one,
and therefore the volumes of information dealt with will grow heavily.

Regarding the Integration Process

• We should study the impact of the quality of the source ontologies used
in the quality of the integrated ontology. To do so, we are planning to
apply different quality measures that there exist for ontologies (there
is no a single value that express how useful an ontology is) and study
their influence depending on the tasks that the integrated ontologies
are oriented to. We could start by analyzing the influence of different

144 Chapter 8. Conclusions

ontology metrics provided by several works, such as [ABS06, TA07],
to assess the robustness of our method regarding the maintenance or
improvement of quality metrics in the resulting ontologies.

• We also want to further research on more different techniques to fill
the possible semantic gaps generated by the extraction techniques used
during the discovery and disambiguation. Currently, we use Scarlet
and ProSÉ, but we want to evaluate other possibilities.

Regarding the Query Generation Process

• As we said before, the way that current keyword search systems be-
have have changed the way users express their keyword queries, and
in the queries is quite usual to have redundant keywords. Although
QueryGen is able to handle it automatically when the language has
the appropriate operators (e.g., the And operator, being restrictive
as it is, can help to get rid of redundant concepts), we could detect
it before and use less words for the query generation, resulting in an
initial smaller set of possible interpretations.

• Another possible research line would be how to map keywords to op-
erators in the language, and include this information in the query
generation process. We could force the usage of a particular operator,
narrowing the interpretation space.

• We want to further research in the user interaction issue. In partic-
ular, we are planning to apply visual techniques to help the user to
select their intended query, and perform massive tests with different
kinds of final users to measure the semantic accuracy of our prototype.
Moreover, we have to still analyse the possibility of providing a rank-
ing even on the patterns presented to the user. To this end, we could
use the n-grams provided by Google, but it is not clear how to address
this issue without attaching our solution to a particular language.

• We also want to advance in the analysis of the modeling of languages
with DLs, analyzing the expressiveness needed, and enabling semantic
filters for different systems.

Relevant Publications
Related to the Thesis

[BBIM13] Carlos Bobed, Fernando Bobillo, Sergio Ilarri, and Eduardo
Mena. Answering Continuous Description Logic Queries: Man-
aging Static and Volatile Knowledge in Ontologies. International
Journal on Semantic Web and Information Systems, Under Re-
view, 2013.

[BBMI13] Jorge Bernad, Carlos Bobed, Eduardo Mena, and Sergio Ilarri.
A Formalization for Semantic Location Granules. International
Journal of Geographical Information Science, 27(6):1090–1108,
2013.

[BEM12] Carlos Bobed, Guillermo Esteban, and Eduardo Mena.
Ontology-Driven Keyword-Based Search on Linked Data. In
Proc. of the 16th International Conference on Knowledge-Based
and Intelligent Information and Engineering Systems (KES’12),
San Sebastián (Spain), pages 1899–1908. IOS Press, September
2012.

[BEM13] Carlos Bobed, Guillermo Esteban, and Eduardo Mena. Enabling
Keyword Search on Linked Data Repositories: An Ontology-
Based Approach. International Journal of Knowledge-based and
Intelligent Engineering Systems, 17(1):67–77, 2013.

[BIM10a] Carlos Bobed, Sergio Ilarri, and Eduardo Mena. Distributed
Mobile Computing: Development of Distributed Applications
Using Mobile Agents. In Proc. of the 16th International Confer-
ence on Parallel and Distributed Computing (PDPTA’10), Las
Vegas (Nevada, USA), pages 562–568. CSREA Press, July 2010.

145

146 Relevant Publications Related to the Thesis

[BIM10b] Carlos Bobed, Sergio Ilarri, and Eduardo Mena. Exploiting the
Semantics of Location Granules in Location-Dependent Queries.
In Proc. of the 14th East-European Conference on Advances
in Databases and Information Systems (ADBIS’10), Novi Sad
(Serbia), pages 79–93. Springer LNCS, September 2010.

[BM10] Carlos Bobed and Eduardo Mena. Enhancing the Discovery of
Web Services: A Keyword-Oriented Multiontology Reconcilia-
tion. In Proc. of the 16th International Conference on Parallel
and Distributed Computing (PDPTA’10), Las Vegas (Nevada,
USA), pages 724–730. CSREA Press, July 2010.

[BM13] Carlos Bobed and Eduardo Mena. QueryGen: Semantic
Keyword-Based Search on Heterogeneous Information Systems.
Web Semantics: Science, Services and Agents on the World
Wide Web (Special Issue on Semantic Search), Under Review,
2013.

[BMT12] Carlos Bobed, Eduardo Mena, and Raquel Trillo. FirstOnt: Au-
tomatic Construction of Ontologies out of Multiple Ontologi-
cal Resources. In Proc. of the 16th International Conference
on Knowledge-Based and Intelligent Information and Engineer-
ing Systems (KES’12), San Sebastián (Spain), pages 1909–1919.
IOS Press, September 2012.

[BTMB08] Carlos Bobed, Raquel Trillo, Eduardo Mena, and Jorge Bernad.
Semantic Discovery of the User Intended Query in a Selectable
Target Query Language. In Proc. of 7th International Confer-
ence on Web Intelligence (WI’08), Sydney (Australia), pages
579–582. IEEE Computer Society, December 2008.

[BTMI10] Carlos Bobed, Raquel Trillo, Eduardo Mena, and Sergio Ilarri.
From Keywords to Queries: Discovering the User’s Intended
Meaning. In Proc. of 11th International Conference on Web In-
formation System Engineering (WISE’10), Hong Kong (China),
pages 190–203. Springer LNCS, December 2010.

[IBM11] Sergio Ilarri, Carlos Bobed, and Eduardo Mena. An Approach
to Process Continuous Location-Dependent Queries on Moving
Objects with Support for Location Granules. Journal of Systems
and Software, 84(8):1327–1350, 2011.

Relevant Publications Related to the Thesis 147

[ICBM09] Sergio Ilarri, Antonio Corral, Carlos Bobed, and Eduardo
Mena. Probabilistic Granule-Based Inside and Nearest Neigh-
bor Queries. In Proc. of the 13th East-European Conference on
Advances in Databases and Information Systems (ADBIS’09),
Riga (Latvia), pages 103–117. Springer LNCS, September 2009.

[IMB07] Sergio Ilarri, Eduardo Mena, and Carlos Bobed. Processing
Location-Dependent Queries with Location Granules. In On the
Move to Meaningful Internet Systems 2007: OTM 2007 Work-
shops (PerSys’07), Vilamoura, Algarve (Portugal), pages 856–
866. Springer LNCS, November 2007.

[YBE+13] Roberto Yus, Carlos Bobed, Guillermo Esteban, Fernando Bo-
billo, and Eduardo Mena. Android Goes Semantic: DL Reason-
ers on Smartphones. In Proc. of 2nd International Workshop on
OWL Reasoner Evaluation (ORE’13), Ulm (Germany), pages
46–52. CEUR-WS, July 2013.

148 Relevant Publications Related to the Thesis

Bibliography

[ABC+02] B. Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind
Hulgeri, Charuta Nakhe, Parag, and S. Sudarshan. BANKS:
Browsing and Keyword Searching in Relational Databases. In
Proc. of 28th International Conference on Very Large Data
Bases (VLDB’02), Hong Kong (China), pages 1083–1086.
Morgan Kaufman, August 2002.

[ABS06] Harith Alani, Christopher Brewster, and Nigel Shadbolt.
Ranking Ontologies with AKTiveRank. In Proc. of 5th In-
ternational Semantic Web Conference, (ISWC’06), Athens
(Georgia, USA), pages 1–15. Springer LNCS, November 2006.

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBX-
plorer: A System for Keyword-Based Search over Relational
Databases. In Proc. of 18th International Conference on Data
Engineering (ICDE’02), San Jose (California, USA), pages
5–15. IEEE Computer Society, March 2002.

[Ala06] Harith Alani. Ontology Construction from Online On-
tologies. In Proc. of the 15th International World Wide
Web (WWW’06), Edinburgh (Scotland, UK), pages 491–495.
ACM, May 2006.

[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 2007.

[ART95] Ion Androutsopoulos, Graeme D. Ritchie, and Peter
Thanisch. Natural Language Interfaces to Databases – An In-
troduction. Natural Language Engineering, 1(1):29–81, 1995.

149

150 Bibliography

[BBIM13] Carlos Bobed, Fernando Bobillo, Sergio Ilarri, and Eduardo
Mena. Answering Continuous Description Logic Queries:
Managing Static and Volatile Knowledge in Ontologies. Inter-
national Journal on Semantic Web and Information Systems,
Under Review, 2013.

[BBMI13] Jorge Bernad, Carlos Bobed, Eduardo Mena, and Sergio
Ilarri. A Formalization for Semantic Location Granules.
International Journal of Geographical Information Science,
27(6):1090–1108, 2013.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Scheneider. The Description
Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

[BCP09] Alberto Belussi, Carlo Combi, and Gabriele Pozzani. Formal
and Conceptual Modeling of Spatio-Temporal Granularities.
In Proc. of the 13th International Database Engineering & Ap-
plications Symposium (IDEAS’09), Cetraro, Calabria (Italy),
pages 275–283. ACM, September 2009.

[BDG+11] Sonia Bergamaschi, Elton Domnori, Francesco Guerra,
Raquel Trillo-Lado, and Yannis Velegrakis. Keyword Search
over Relational Databases: A Metadata Approach. In Proc.
of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’11), Athens (Greece), pages 565–576.
ACM, June 2011.

[BEM12] Carlos Bobed, Guillermo Esteban, and Eduardo Mena.
Ontology-Driven Keyword-Based Search on Linked Data. In
Proc. of the 16th International Conference on Knowledge-
Based and Intelligent Information and Engineering Systems
(KES’12), San Sebastián (Spain), pages 1899–1908. IOS
Press, September 2012.

[BEM13] Carlos Bobed, Guillermo Esteban, and Eduardo Mena.
Enabling Keyword Search on Linked Data Repositories:
An Ontology-Based Approach. International Journal
of Knowledge-based and Intelligent Engineering Systems,
17(1):67–77, 2013.

Bibliography 151

[BG04] Dan Brickley and R.V. Guha. RDF Vocabulary Description
Language 1.0: RDF Schema, 2004. http://www.w3.org/TR/

rdf-schema/, last accessed October 3, 2013.

[BG08] Eric Belden and Janis Greenberg. Oracle Database
Object-Relational Developer’s Guide 11g Release 1 (11.1),
2008. http://docs.oracle.com/cd/B28359_01/appdev.

111/b28371/toc.htm, last accessed October 3, 2013.

[BGK06] Guntis Barzdins, Normunds Gruzitis, and Renars Kudins. Re-
Engineering OntoSem Ontology Towards OWL DL Compli-
ance. In Proc. of the 7th Joint Conference on Knowledge-
Based Software Engineering (JCKBSE’06), Tallinn (Esto-
nia), pages 157–166. IOS Press, August 2006.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked
Data - The Story So Far. International Journal on Semantic
Web and Information Systems, 5(3):1–22, 2009.

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, and S. Sudarshan. Keyword Searching and
Browsing in Databases using BANKS. In Proc. of 18th In-
ternational Conference on Data Engineering (ICDE’02), San
Jose (California, USA), pages 431–440. IEEE Computer So-
ciety, March 2002.

[BIM10a] Carlos Bobed, Sergio Ilarri, and Eduardo Mena. Distributed
Mobile Computing: Development of Distributed Applications
Using Mobile Agents. In Proc. of the 16th International Con-
ference on Parallel and Distributed Computing (PDPTA’10),
Las Vegas (Nevada, USA), pages 562–568. CSREA Press, July
2010.

[BIM10b] Carlos Bobed, Sergio Ilarri, and Eduardo Mena. Exploiting
the Semantics of Location Granules in Location-Dependent
Queries. In Proc. of the 14th East-European Conference on
Advances in Databases and Information Systems (ADBIS’10),
Novi Sad (Serbia), pages 79–93. Springer LNCS, September
2010.

[BJ07] George Boolos and Richard Jeffrey. Computability and Logic.
Cambridge University Press, 1974, 2007.

152 Bibliography

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Se-
mantic Web. Scientific American, 284(5):34–43, 2001.

[BLK+09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören
Auer, Christian Becker, Richard Cyganiak, and Sebastian
Hellmann. DBpedia - A Crystallization Point for the Web
of Data. Web Semantics: Science, Services and Agents on
the World Wide Web, 7(3):154–165, 2009.

[BM10] Carlos Bobed and Eduardo Mena. Enhancing the Discovery
of Web Services: A Keyword-Oriented Multiontology Recon-
ciliation. In Proc. of the 16th International Conference on
Parallel and Distributed Computing (PDPTA’10), Las Vegas
(Nevada, USA), pages 724–730. CSREA Press, July 2010.

[BM13] Carlos Bobed and Eduardo Mena. QueryGen: Semantic
Keyword-Based Search on Heterogeneous Information Sys-
tems. Web Semantics: Science, Services and Agents on the
World Wide Web (Special Issue on Semantic Search), Under
Review, 2013.

[BMT12] Carlos Bobed, Eduardo Mena, and Raquel Trillo. FirstOnt:
Automatic Construction of Ontologies out of Multiple Onto-
logical Resources. In Proc. of the 16th International Con-
ference on Knowledge-Based and Intelligent Information and
Engineering Systems (KES’12), San Sebastián (Spain), pages
1909–1919. IOS Press, September 2012.

[Bor97] Willem Nico Borst. Construction of Engineering Ontologies
for Knowledge Sharing and Reuse. CTIT, 1997.

[BP03] Satanjeev Banerjee and Ted Pedersen. Extended Gloss Over-
laps as a Measure of Semantic Relatedness. In Proc. of the
18th International Joint Conference on Artificial Intelligence
(IJCAI’03), Acapulco (Mexico), pages 805–810. Morgan Kauf-
mann, August 2003.

[BTMB08] Carlos Bobed, Raquel Trillo, Eduardo Mena, and Jorge
Bernad. Semantic Discovery of the User Intended Query in a
Selectable Target Query Language. In Proc. of 7th Interna-
tional Conference on Web Intelligence (WI’08), Sydney (Aus-
tralia), pages 579–582. IEEE Computer Society, December
2008.

Bibliography 153

[BTMI10] Carlos Bobed, Raquel Trillo, Eduardo Mena, and Sergio
Ilarri. From Keywords to Queries: Discovering the User’s In-
tended Meaning. In Proc. of 11th International Conference on
Web Information System Engineering (WISE’10), Hong Kong
(China), pages 190–203. Springer LNCS, December 2010.

[CHCX06] Ying Cai, Kien A. Hua, Guohong Cao, and Toby Xu. Real-
Time Processing of Range-Monitoring Queries in Heteroge-
neous Mobile Databases. IEEE Transactions on Mobile Com-
puting, 5(7):931–942, 2006.

[CHKS08] Bernardo Cuenca, Ian Horrocks, Yevgeny Kazakov, and Ul-
rike Sattler. Modular Reuse of Ontologies: Theory and Prac-
tice. Journal of Artificial Intelligence Research, 31(1):273–
318, 2008.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal Implemen-
tation of Conjunctive Queries in Relational Data Bases. In
Proc. of the 9th Annual ACM Symposium on Theory of Com-
puting (STOC’77), Boulder (Colorado, USA), pages 77–90.
ACM, May 1977.

[Cod70] Edgar F. Codd. A Relational Model of Data for Large Shared
Data Banks. Communications of the ACM, 13(6):377–387,
1970.

[Cod71] Edgar F. Codd. A Data Base Sublanguage Founded on
the Relational Calculus. In Proc. of the 1971 ACM SIG-
FIDET Workshop on Data Description, Access and Control
(SIGFIDET’71), San Diego (California, USA), pages 35–68.
ACM, November 1971.

[CR12] Claudio Carpineto and Giovanni Romano. A Survey of Auto-
matic Query Expansion in Information Retrieval. ACM Com-
puting Surveys, 44(1):1–50, 2012.

[CSPC00] Justine Cassell, Joseph Sullivan, Scott Prevost, and Eliza-
beth F. Churchill. Embodied Conversational Agents. MIT
Press, 2000.

[dBG+07] Mathieu d’Aquin, Claudio Baldassarre, Laurian Gridinoc,
Sofia Angeletou, Marta Sabou, and Enrico Motta. Charac-
terizing Knowledge on the Semantic Web with Watson. In

154 Bibliography

Proc. of 5th International Workshop on Evaluation of On-
tologies and Ontology-based Tools (EON’07), Busan (South
Korea), pages 1–10. CEUR-WS, November 2007.

[dSM06] Mathieu d’Aquin, Marta Sabou, and Enrico Motta. Mod-
ularization: A Key for the Dynamic Selection of Relevant
Knowledge Components. In Proc. of the 1st International
Workshop on Modular Ontologies (WoMO’06), at ISWC’06,
Athens (Georgia, USA). CEUR-WS, November 2006.

[DTS08] Hui Ding, Goce Trajcevski, and Peter Scheuermann. Efficient
Maintenance of Continuous Queries for Trajectories. Geoin-
formatica, 12(3):255–288, 2008.

[EN11] Ramez Elmasri and Shamkant Navathe. Fundamentals of
Database Systems. Addison-Wesley, 2011.

[FA11] Haizhou Fu and Kemafor Anyanwu. Effectively Interpret-
ing Keyword Queries on RDF Databases with a Rear View.
In Proc. of the 10th International Semantic Web Conference
(ISWC’11), Koblenz (Germany), pages 193–208. Springer
LNCS, October 2011.

[FCOO12] André Freitas, Edward Curry, Joao Gabriel Oliveira, and Sean
O’Riain. Querying Heterogeneous Datasets on the Linked
Data Web: Challenges, Approaches, and Trends. IEEE In-
ternet Computing, 16(1):24–33, 2012.

[FGA11] Haizhou Fu, Sidan Gao, and Kemafor Anyanwu. CoSi:
Context-Sensitive Keyword Query Interpretation on RDF
Databases. In Proc. of 20th International World Wide Con-
ference (WWW’11), Hydebarad (India) (Companion Volume),
pages 209–212. ACM, March 2011.

[GdM09] Jorge Gracia, Mathieu d’Aquin, and Eduardo Mena. Large
Scale Integration of Senses for the Semantic Web. In Proc. of
18th International World Wide Web Conference (WWW’09),
Madrid (Spain), pages 611–620. ACM, April 2009.

[GL06] Bugra Gedik and Ling Liu. MobiEyes: A Distributed Location
Monitoring Service Using Moving Location Queries. IEEE
Transactions on Mobile Computing, 5(10):1384–1402, 2006.

Bibliography 155

[GM03] Ramanathan Guha and Rob McCool. TAP: A Semantic Web
Platform. Computer Networks, 42(5):557–577, 2003.

[GM08] Jorge Gracia and Eduardo Mena. Ontology Matching with
CIDER: Evaluation Report for the OAEI 2008. In Proc. of
3rd Ontology Matching Workshop (OM’08), Karlsruhe (Ger-
many), pages 140–146. CEUR-WS, October 2008.

[GM09] Jorge Gracia and Eduardo Mena. Multiontology Semantic
Disambiguation in Unstructured Web Contexts. In Proc.
of Workshop on Collective Knowledge Capturing and Rep-
resentation (CKCaR’09), Redondo Beach (California, USA),
September 2009.

[GMM03] Ramanathan Guha, Rob McCool, and Eric Miller. Semantic
Search. In Proc. of the 12th International World Wide Web
Conference (WWW’03), Budapest (Hungary), pages 700–709.
ACM, May 2003.

[GPFLC04] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar
Corcho. Ontological Engineering. Springer, 2004.

[Gru93] Thomas R. Gruber. A Translation Approach to Portable On-
tology Specifications. Knowledge Acquisition, 5(2):199–220,
1993.

[Gru95] Thomas R. Gruber. Toward Principles for the Design of On-
tologies Used for Knowledge Sharing. International Journal
of Human-Computer Studies, 43(5-6):907–928, 1995.

[GSBM08] Rolf Grütter, Thomas Scharrenbach, and Bettina Bauer-
Messmer. Improving an RCC-Derived Geospatial Approxi-
mation by OWL Axioms. In Proc. of the 7th International
Semantic Web Conference (ISWC’08), Karlsruhe (Germany),
pages 293–306. Springer LNCS, October 2008.

[Gua98] Nicola Guarino. Formal Ontology and Information Systems.
In Proc. of the 1st International Conference on Formal Ontol-
ogy in Information Systems (FOIS’98), Trento (Italy), pages
3–15. IOS Press, June 1998.

[HG01] Lynette Hirschman and Rob Gaizauskas. Natural Language
Question Answering: The View from Here. Natural Language
Engineering, 7(4):275–300, 2001.

156 Bibliography

[Hig03] Jeffrey Hightower. From Position to Place. In 2003 Workshop
on Location-Aware Computing, Seattle (Washington, USA),
pages 10–12. Springer, October 2003.

[HKP+12] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph. OWL 2 Web Ontology
Language Primer (Second Edition), 2012. http://www.w3.

org/TR/owl-primer/, last accessed October 3, 2013.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More
Irresistible SROIQ. In Proc. of the 10th International Con-
ference of Knowledge Representation and Reasoning (KR’06),
Lake District (UK), pages 452–457. AAAI Press, June 2006.

[HM85] Dennis Heimbigner and Dennis McLeod. A Federated Archi-
tecture for Information Management. ACM Transactions on
Information Systems, 3(3):253–278, 1985.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In Proc. of
28th International Conference on Very Large Data Bases
(VLDB’02), Hong Kong (China), pages 670–681. Morgan
Kaufman, August 2002.

[HP12] Matthew Horridge and Peter F. Patel-Schneider.
OWL 2: Web Ontology Language Manchester Syn-
tax (Second Edition), 2012. http://www.w3.org/TR/

owl2-manchester-syntax, last accessed October 3, 2013.

[HS07] Christian Hoareau and Ichiro Satoh. A Model Checking-Based
Approach for Location Query Processing in Pervasive Com-
puting Environments. In On the Move to Meaningful Inter-
net Systems 2007: OTM 2007 Workshops (PerSys’07), Vil-
amoura, Algarve (Portugal), pages 866–875. Springer LNCS,
November 2007.

[HS09] Christian Hoareau and Ichiro Satoh. From Model Checking
to Data Management in Pervasive Computing: A Location-
Based Query-Processing Framework. In ACM International
Conference on Pervasive Services (ICPS’09), London (UK),
pages 41–48. ACM, July 2009.

Bibliography 157

[HSP13] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux.
SPARQL 1.1 Query Language, 2013. http://www.w3.org/

TR/sparql11-query/, last accessed October 3, 2013.

[IBM11] Sergio Ilarri, Carlos Bobed, and Eduardo Mena. An Approach
to Process Continuous Location-Dependent Queries on Mov-
ing Objects with Support for Location Granules. Journal of
Systems and Software, 84(8):1327–1350, 2011.

[ICBM09] Sergio Ilarri, Antonio Corral, Carlos Bobed, and Eduardo
Mena. Probabilistic Granule-Based Inside and Nearest Neigh-
bor Queries. In Proc. of the 13th East-European Conference on
Advances in Databases and Information Systems (ADBIS’09),
Riga (Latvia), pages 103–117. Springer LNCS, September
2009.

[IMB07] Sergio Ilarri, Eduardo Mena, and Carlos Bobed. Process-
ing Location-Dependent Queries with Location Granules. In
On the Move to Meaningful Internet Systems 2007: OTM
2007 Workshops (PerSys’07), Vilamoura, Algarve (Portugal),
pages 856–866. Springer LNCS, November 2007.

[IMI06] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi.
Location-Dependent Queries in Mobile Contexts: Distributed
Processing Using Mobile Agents. IEEE Transactions on Mo-
bile Computing, 5(8):1029–1043, 2006.

[IMI10] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi.
Location-Dependent Query Processing: Where We Are and
Where We Are Heading. ACM Computing Surveys, 42(3):1–
73, 2010.

[ISO11a] ISO/IEC. ISO/IEC 13249-3:2011 Standard, “Information
Technology - Database Languages - SQL Multimedia and Ap-
plication Packages – Part 3: Spatial”, 2011.

[ISO11b] ISO/IEC. ISO/IEC 9075:2011 Standard, “Information Tech-
nology - Database Languages - SQL”, 2011.

[JCS+08] Ernesto Jimenez, Bernardo Cuenca, Ulrike Sattler, Thomas
Schneider, and Rafael Berlanga. Safe and Economic Re-
Use of Ontologies: A Logic-Based Methodology and Tool

158 Bibliography

Support. In Proc. of 5th European Semantic Web Confer-
ence (ESWC’08), Tenerife (Spain), pages 185–199. Springer
LNCS, June 2008.

[KB10] Esther Kaufmann and Abraham Bernstein. Evaluating the
Usability of Natural Language Query Languages and In-
terfaces to Semantic Web Knowledge Bases. Web Seman-
tics: Science, Services and Agents on the World Wide Web,
8(4):377–393, 2010.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical Founda-
tions of Object-Oriented and Frame-Based Languages. Jour-
nal of the ACM, 42(4):741–843, 1995.

[LM01] Ora Lassila and Deborah McGuinness. The Role of Frame-
Based Representation on the Semantic Web. Linköping Elec-
tronic Articles in Computer and Information Science, 6(5),
2001.

[LUCM13] Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico
Motta. Evaluating Question Answering Over Linked Data.
Web Semantics: Science, Services and Agents on the World
Wide Web, page To appear, 2013.

[LUM06] Yuangui Lei, Victoria S. Uren, and Enrico Motta. SemSearch:
A Search Engine for the Semantic Web. In Proc. of 15th Inter-
national Conference on Knowledge Engineering and Knowl-
edge Management (EKAW’06), Podebrady (Czech Republic),
pages 238–245. Springer LNCS, October 2006.

[LUSM11] Vanessa Lopez, Victoria S. Uren, Marta Sabou, and Enrico
Motta. Is Question Answering Fit for the Semantic Web?: A
Survey. Semantic Web - Interoperability, Usability, Applica-
bility, 2(2):125–155, 2011.

[MI01] Eduardo Mena and Arantza Illarramendi. Ontology-Based
Query Processing for Global Information Systems. Kluwer
Academic Publishers, 2001.

[Mil95] George A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, 38(11):39–41, 1995.

[MM04] Frank Manola and Eric Miller. RDF Primer, 2004. http://

www.w3.org/TR/rdf-primer/, last accessed October 3, 2013.

Bibliography 159

[MMZ09] Peter Mika, Edgar Meij, and Hugo Zaragoza. Investigating
the Semantic Gap through Query Log Analysis. In Proc. of
the 8th International Semantic Web Conference (ISWC’09),
Chantilly (Virginia, USA), pages 441–455, October 2009.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge
University Press, 2008.

[MSH07] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Rea-
soning in Description Logics using Hypertableaux. In Proc.
of the 21st Conference on Automated Deduction (CADE-21),
Bremen (Germany), pages 67–83. Springer, July 2007.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau
Reasoning for Description Logics. Journal of Artificial Intel-
ligence Research, 36(1):165–228, 2009.

[MVI95] Riichiro Mizoguchi, Johan Vanwelkenhuysen, and Mitsuru
Ikeda. Towards Very Large Knowledge Bases: Knowledge
Building & Knowledge Sharing, chapter Task Ontology for
Reuse of Problem Solving Knowledge, pages 46–59. IOS Press
Amsterdam, 1995.

[MXHA05] Mohamed F. Mokbel, Xiaopeng Xiong, Moustafa A. Ham-
mad, and Walid G. Aref. Continuous Query Processing of
Spatio-Temporal Data Streams in PLACE. Geoinformatica,
9(4):343–365, 2005.

[Pel91] Christof Peltason. The BACK System – An Overview. ACM
SIGART Bulletin, 2(3):114–119, 1991.

[PG88] Raymond C. Perrault and Barbara J. Grosz. Exploring Artifi-
cial Intelligence, chapter Natural-Language Interfaces, pages
133–172. Morgan Kaufmann, 1988.

[PXK+02] Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G.
Aref, and Susanne E. Hambrusch. Query Indexing and Veloc-
ity Constrained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects. IEEE Transactions on Comput-
ers, 51(10):1124–1140, 2002.

160 Bibliography

[RCC92] David A. Randell, Zhan Cui, and Anthony G. Cohn. A Spa-
tial Logic Based on Regions and Connection. In Proc. of
the 3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR’92), Cambridge (Mas-
sachusetts, USA), pages 165–176. Morgan Kaufmann, Octo-
ber 1992.

[RS06] Wararat Rungworawut and Twittie Senivongse. Using On-
tology Search in the Design of Class Diagram from Business
Process Model. In Proc. of International Conference on Com-
puter Science (ICCS’06), Vienna (Austria), pages 165–170,
March 2006.

[SBF98] Rudi Studer, Richard Benjamins, and Dieter Fensel. Knowl-
edge Engineering: Principles and Methods. Data & Knowl-
edge Engineering, 25(1-2):161–197, 1998.

[SDK01] Ayse Y. Seydim, Margaret H. Dunham, and Vijay Kumar.
Location Dependent Query Processing. In Proc. of 2nd ACM
International Workshop on Data Engineering for Wireless
and Mobile Access (MobiDe’01), Santa Barbara (California,
USA), pages 47–53. ACM, May 2001.

[SdM08] Marta Sabou, Mathieu d’Aquin, and Enrico Motta. SCAR-
LET: SemantiC relAtion discoveRy by harvesting onLinE on-
Tologies. In Proc. of the 5th European Semantic Web Confer-
ence (ESWC’08), Tenerife (Spain), pages 854–858. Springer
LNCS, June 2008.

[SHBL06] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The Se-
mantic Web Revisited. IEEE Intelligent Systems, 21(3):96–
101, 2006.

[SL90] Amit P. Sheth and James A. Larson. Federated Database
Systems for Managing Distributed, Heterogeneous, and Au-
tonomous Databases. ACM Computing Surveys, 22(3):183–
236, 1990.

[SLHA12] Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören
Auer. LinkedGeoData: A Core for a Web of Spatial Open
Data. Semantic Web - Interoperability, Usability, Applicabil-
ity, 3(4):333–354, 2012.

Bibliography 161

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya
Kalyanpur, and Yarden Katz. Pellet: A Practical OWL-DL
Reasoner. Web Semantics: Science, Services and Agents on
the World Wide Web, 5(2):51–53, 2007.

[Sto03] Knut Stolze. SQL/MM Spatial – The Standard to Manage
Spatial Data in a Relational Database System. In Proc. of
BTW-Konferenz (BTW’03), Leipzig (Germany), pages 247–
264. GI, February 2003.

[SWCD97] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son
Dao. Modeling and Querying Moving Objects. In Proc.
of the 13th International Conference on Data Engineering
(ICDE’97), Birmingham (UK), pages 422–432. IEEE Com-
puter Society, April 1997.

[TA07] Samir Tartir and I. Budak Arpinar. Ontology Evaluation
and Ranking Using OntoQA. In Proc. of the 1st Interna-
tional Conference on Semantic Computing (ICSC’07), Irvine
(California, USA), pages 185–192. IEEE Computer Society,
September 2007.

[TB83] Marjorie Templeton and John D. Burger. Problems in
Natural-Language Interface to DBMS with Examples from
EUFID. In Proc. of the 1st Conference on Applied Natural
Language Processing (ANLP’83), Santa Monica (California,
USA), pages 3–16, February 1983.

[TGEM07] Raquel Trillo, Jorge Gracia, Mauricio Espinoza, and Eduardo
Mena. Discovering the Semantics of User Keywords. Journal
on Universal Computer Science, 13(12):1908–1935, 2007.

[The13] The PostgreSQL Global Development Group. PostgreSQL
Documentation, 2013. http://www.postgresql.org/docs/

manuals/, last accessed October 3, 2013.

[THL11] Thanh Tran, Daniel M. Herzig, and Günter Ladwig. Sem-
SearchPro: Using Semantics Throughout the Search Process.
Web Semantics: Science, Services and Agents on the World
Wide Web, 9(4):349–364, 2011.

[TIM07] Raquel Trillo, Sergio Ilarri, and Eduardo Mena. Comparison
and Performance Evaluation of Mobile Agent Platforms. In

162 Bibliography

Proc. of 3rd International Conference on Autonomic and Au-
tonomous Systems (ICAS’07), Athens (Greece), pages 41–46.
IEEE Computer Society, June 2007.

[TWRC09] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp
Cimiano. Top-k Exploration of Query Candidates for Ef-
ficient Keyword Search on Graph-Shaped (RDF) Data. In
Proc. of the 25th International Conference on Data Engineer-
ing (ICDE’09), Shangai (China), pages 405–416. IEEE Com-
puter Society, March 2009.

[VBVTS+10] Luis M. Vilches-Blázquez, Boris Villazón-Terrazas, Victor
Saquicela, Alexander de León, Oscar Corcho, and Asunción
Gómez-Pérez. GeoLinked Data and INSPIRE through an
Application Case. In Proc. of the 18th SIGSPATIAL Inter-
national Conference on Advances in Geographic Information
Systems (GIS’10), San Jose (California, USA), pages 446–
449. ACM, November 2010.

[vHSW97] Gertjan van Heijst, Guus Schreiber, and Bob J. Wielinga.
Using Explicit Ontologies in KBS development. International
Journal of Human-Computer Studies, 46(2):183–292, 1997.

[VP97] Vasilis Vassalos and Yannis Papakonstantinou. Describing
and Using Query Capabilities of Heterogeneous Sources. In
Proc. of 23rd International Conference on Very Large Data
Bases (VLDB’97), Athens (Greece), pages 256–265. Morgan
Kaufmann, August 1997.

[WPH06] Taowei David Wang, Bijan Parsia, and James A. Hendler.
A Survey of the Web Ontology Landscape. In Proc. of 5th
International Semantic Web Conference (ISWC’06), Athens
(Georgia, USA), pages 682–694. Springer LNCS, November
2006.

[WZL+08] Haofen Wang, Kang Zhang, Qiaoling Liu, Duc Thanh Tran,
and Yong Yu. Q2Semantic: A Lightweight Keyword Inter-
face to Semantic Search. In Proc. of 5th European Semantic
Web Conference (ESWC’08), Tenerife (Spain), pages 584–
598. Springer LNCS, June 2008.

Bibliography 163

[YBE+13] Roberto Yus, Carlos Bobed, Guillermo Esteban, Fernando Bo-
billo, and Eduardo Mena. Android Goes Semantic: DL Rea-
soners on Smartphones. In Proc. of 2nd International Work-
shop on OWL Reasoner Evaluation (ORE’13), Ulm (Ger-
many), pages 46–52. CEUR-WS, July 2013.

[ZWX+07] Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and
Yong Yu. SPARK: Adapting Keyword Query to Semantic
Search. In Proc. of 6th International Semantic Web Con-
ference (ISWC’07), Busan (South Korea), pages 687–700.
Springer LNCS, November 2007.

[ZZM+09] Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, and
Wolfgang Nejdl. From Keywords to Semantic Queries – In-
cremental Query Construction on the Semantic Web. Web
Semantics: Science, Services and Agents on the World Wide
Web, 7(3):166–176, 2009.

