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ABSTRACT

The condition of railway tracks needs to be periodically monitored
to ensure passenger safety. Cameras mounted on a moving vehi-
cle such as a hi-rail vehicle or geometry inspection car can generate
large volumes of high resolution images. Extracting accurate infor-
mation from those images has been challenging due to the clutter
in the railroad environment. In this paper we describe a novel ap-
proach to visual track inspection using semantic segmentation with
Deep Convolutional Neural Networks. We show that DCNNs trained
end-to-end for material classification are more accurate than shallow
learning machines with hand-engineered features and are more ro-
bust to noise. Our approach results in a material classification ac-
curacy of 93.35% using 10 classes of materials. This allows for the
detection of crumbling and chipped tie conditions at detection rates
of 86.06% and 92.11%, respectively, at a false positive rate of 10
FP/mile on the 85-mile Northeast Corridor (NEC) 2012-2013 con-
crete tie dataset.

Index Terms— Semantic Segmentation, Deep Convolutional
Neural Networks, Railway Track Inspection, Material Classification.

1. INTRODUCTION

Railway tracks need to be regularly inspected to ensure train safety.
Crossties, also known as sleepers, are responsible for supporting the
rails and maintaing track geometry within safety ranges. Tracks have
been historically built with timber ties, but during the last half cen-
tury, steel reinforced concrete has been the preferred material for
building crossties. Concrete ties have several advantages over wood
ties, such being a more uniform product, with better control of tol-
erances, as well as being well adapted for elastic fasteners, which
control longitudinal forces better than conventional ones. Moreover,
by being heavier than timber ties, concrete ties promote better track
stability [1]. For all these reasons, concrete ties have been widely
adopted, specially in high speed corridors.

Although concrete ties have life expectancies of up to 50 years,
they may fail prematurely for a variety of reasons, such as the result
of alkali-silicone reaction (ASR) [2] or delayed ettringite formation
(DEF) [3]. Ties may also develop fatigue cracks due to normal traf-
fic or by being impacted by flying debris or track maintenance ma-
chinery. Once small cracks develop, repeated cycles of freezing and
thawing will eventually lead to a bigger defects.
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Fig. 1. Definition of basic track elements.

In the United States, regulations enforced by the Federal Rail-
road Administration (FRA)1 prescribe visual inspection of high
speed rail tracks with a frequency of once or twice per week, de-
pending on track speed. These manual inspections are currently
being performed by railroad personnel, either by walking on the
tracks or by riding a hi-rail vehicle at very low speeds. However,
such inspections are subjective and do not produce an auditable
visual record. In addition, railroads usually perform automated track
inspections with specialized track geometry measurement vehicles
at intervals of 30 days or less between inspections. These automated
inspections can directly detect gage widening conditions. However,
it is preferable to discover track problems before they develop into
gage widening conditions. The locations and names of the basic
track elements mentioned in this paper are shown in Figure 1.

Recent advances in CMOS imaging technology, have resulted
in commercial-grade line-scan cameras that are capable of captur-
ing images at resolutions of up to 4,096×1 and line rates of up to
140 KHz. At the same time, high-intensity LED-based illuminators
available in the market, whose life expectancies are in the range of
50,000 hours, enable virtually maintenance-free operation over sev-
eral months. Therefore, technology that enables autonomous visual
track inspection from an unattended vehicle (such as a passenger
train) may become a reality in the not-too-distant future. In our pre-
vious work [4, 5] we addressed the problems of detecting and cate-
gorizing cracks and defective fasteners. The work described in this
paper complements these earlier ones by addressing the problem of
parsing the whole track image and identifying its components, as
well as finding indications of crumbling and chipping on ties.

This paper is organized as follows. In Section 2, we review some
related works on this topic. Details of our approach are given in Sec-
tion 3. Experimental results on 85 miles of tie images are presented
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Fig. 2. Network architecture.

in Section 4. Section 5 concludes the paper with a brief summary
and discussion.

2. PRIOR WORK

During the last two decades, railways have been adopting machine
vision technology to automate the inspection of their track. The very
first systems that allowed recording of images of the track for hu-
man review and were deployed in the late 1990’s[6, 7]. In more
recent years, several vision systems have been developed to address
different types of inspection needs, such as crack detection [8, 9, 4],
defective or missing rail fasteners [10, 11, 12, 5], and missing spikes
on tie plates [13]. In [14], Resendiz et al. introduced a method for
inspecting railway tracks. The system segmented wood ties from
ballast using a combination of Gabor filters and a SVM classifier.

The idea of enforcing translation invariance in neural networks
via weight sharing goes back to Fukoshima’s Neocognitron[15].
Based on this idea, LeCun et al. developed the concept into
Deep Convolutional Neural Networks (DCNN) and used it for
digit recognition[16], and later for more general optical character
recognition (OCR)[17]. During the last two years, DCNN have
become ubiquitous in achieving state-of-the-art results in image
classification[18, 19] and object detection [20]. This resurgence of
DCNNs has been facilitated by the availability of efficient GPU im-
plementations. More recently, DCNNs have been used for semantic
image segmentation. For example, the work of [21] shows how a
DCNN can be converted in to a Fully Convolutional Network (FCN)
by replacing fully-connected layers with convolutional ones.

3. PROPOSED APPROACH

In this section, we describe the proposed approach to track inspec-
tion using material-based semantic segmentation.

3.1. Architecture

Our implementation is a fully convolutional neural network based on
BVLC Caffe[22]. We have a total of 4 convolutional layers between
the input and the output layer. The network uses rectified linear units
(ReLU) as non-linearity activation functions, overlapping max pool-
ing units of size 3× 3 and stride of 2. In our experiments we found
that dropout is not necessary. Since no preprocessing at done in the
sensor, we first apply global gain normalization on the raw image to
reduce the intensity variation across the image. This gain is calcu-
lated by smoothing the signal envelope estimated using a median fil-
ter. We estimate the signal envelope by low-pass filtering the image
with a Gaussian kernel. Although DCNNs are robust to illumination
changes, normalizing the image to make the signal dynamic range
more uniform improves accuracy and convergence speed. We also
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Fig. 3. Material categories. (a) ballast (b) wood (c) rough concrete
(d) medium concrete (e) smooth concrete (f) crumbling concrete (g)
lubricator (h) rail (i) fastener

Fig. 4. Filters learned at first convolutional layer (range normalized
for display).

subtract the mean intensity value calculated on the whole training
set.

This preprocessed image is the input to our network. The ar-
chitecture is illustrated in Figure 2. The first layer takes a globally
normalized image and filters it with 48 filters of size 9× 9. The sec-
ond convolutional layer takes the (pooled) output of the first layer
and filters it with 64 kernels of size 5× 5× 48. The third layer takes
the (rectified, pooled) output of the second layer and filters it with
256 kernels of size 5 × 5 × 48. The forth convolutional layer takes
the (rectified, pooled) output of the third layer and filters it with 10
kernels of size 1× 1× 256.

The output of the network contains 10 score maps at 1/16th of
the original resolution. Each value Φi(x, y) in the score map cor-
responds to the likelihood that pixel location (x, y) contains mate-
rial of class i. The 10 classes of materials are defined in Figure 3.
The network has a total of 493,226 learnable parameters (includ-
ing weights and biases), of which 0.8% correspond to the first layer,
15.6% to the second layer, 83.1% to the third layer, and correspond
to layer and the remaining 0.5% to the output layer.

3.2. Data Annotation

The ground truth data has been annotated using a custom annotation
tool that allows assigning a material category to each tie as well as
its bounding box. The tool also allows defining polygons enclosing
regions containing crumbling, chips or ballast. We used the output
of our fastener detection algorithm[5] to extract fastener examples.
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Fig. 5. Confusion matrix of material classification on 2.5 million 80×80 image patches with (a) Deep Convolutional Neural Networks (b)
LBP-HF with FLANN (c) LBPu28,1 with FLANN (d) Gabor with FLANN.

3.3. Training

We train the network using stochastic gradient descent on mini-
batches of 64 image patches of size 75 × 75. We do data aug-
mentation by randomly mirroring vertically and/or horizontally the
training samples. The patches are cropped randomly among all
regions that contain the texture of interest. To promote a robustness
against adverse environment conditions, such as rain, grease or mud,
we have previously identified images containing such difficult cases
and we automatically resampled the data so that at least 50% of the
data is sampled from such difficult images.

3.4. Score Calculation

To detect whether an image contains a broken tie, we first calculate
the scores at each site as

Sb(x, y) = max
i/∈B

Φi(x, y)− Φb(x, y) (1)

where b ∈ B is a defect class (crumbling or chip). Then we calculate
the score for the whole image as

Sb =
1

β − α

∫ β

α

F̂−1(t)dt (2)

where F̂−1 refers to the t sample quantile calculated from all scores
Sb(x, y) in the image. The detector reports an alarm if S > τ , where
τ is the detection threshold. We used α = 0.9 and β = 1.

4. EXPERIMENTAL RESULTS

We evaluated this approach on the dataset that we introduced in
[5]. This dataset consists of 85 miles of continuous trackbed images

collected on the US Northeast Corridor (NEC) by ENSCO Rail’s
Comprehensive Track Inspection Vehicle (CTIV) between 2012 and
2013. The images were collected using 4 line-scan cameras and were
automatically stitched together and and saved into several files, each
containing a 1-mile image. As we did in our previous work, we re-
sampled the images by a factor of 2, for a pixel size of 0.86 mm.
For the experiments reported in this section, we included all the ties
in this section of track, including 140 wood ties that were excluded
from the experiments reported in [5].

4.1. Material Identification

We divided the dataset into 5 splits and used 80% of the images for
training and 20% for testing and we generated a model for each of
the 5 possible training sets. For each split of the data, we randomly
sampled 50,000 patches of each class. Therefore, for each model
was trained with 2 million patches. We trained the network using a
batch size of 64 for a total of 300,000 iterations with a momentum
of 0.9 and a weight decay of 5× 10−5. The learning rate is initially
set to 0.01 and it decays by a factor of 0.5 every 30,000 iterations.

In addition to the method described in Section 3, we have eval-
uated the classification performance using the following methods:

• LBP-HF with approximate Nearest Neighbor: The Lo-
cal Binary Pattern Histogram Fourier descriptor introduced
in [23] is invariant to global image rotations while preserv-
ing local information. We used the implementation provided
by the authors. To perform approximate nearest neighbor we
used FLANN[24] with the ’autotune’ parameter set to a target
precision of 70%.

• Uniform LBP with approximate Nearest Neighbor The
LBPu28,1 descriptor [25] with FLANN.



10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.4

0.5

0.6

0.7

0.8

0.9

1
Crumbling tie detection

D
e

te
c
ti
o

n
 R

a
te

False Positives per Mile

 

 

overall

≥ 10%

≥ 20%

≥ 30%

≥ 40%

≥ 50%

≥ 60%

≥ 70%

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Chipped tie detection

D
e

te
c
ti
o

n
 R

a
te

False Positives per Mile

 

 

overall

≥ 10%

≥ 20%

≥ 30%

≥ 40%

≥ 50%

(a) (b)
Fig. 6. (a) ROC curve for detecting crumbling tie conditions. (a) ROC curve for detecting chip tie conditions. Each curve is generated
considering conditions at or above a certain severity level. Note: False positive rates are estimated assuming an average of 104 images per
mile. Confusion between chipped and crumbling defects are not counted as false positives.

• Gabor features with approximate Nearest Neighbor: We
filtered each image with a filter bank of 40 filters (4 scales
and 8 orientations) designed using the code from [26]. As
was proposed in [27], we compute the mean and standard
deviation of the output of each filter and we build a feature
descriptor as f = [µ00 σ00 y01 . . . µ47 σ47]. Then, we per-
form approximate nearest neighbor using FLANN with the
same parameters.

The material classification results are summarized in Table 1 and
the confusion matrices in Figure 5.

Table 1. Material classification results.
Method Accuracy

Deep CNN 93.35%
LBP-HF with FLANN 82.05%
LBPu28,1 with FLANN 82.49%
Gabor with FLANN 75.63%

4.2. Semantic segmentation

Since we are using a fully convolutional DCNN, we directly transfer
the parameters learned using small patches to a network that takes
one 4096 × 320 image as an input, and generates 10 score maps
of dimension 252 × 16 each. The segmentation map is generated
by taking the label corresponding to the maximum score. Figure 7
shows several examples of concrete and wood ties, with and without
defects and their corresponding segmentation maps.

4.3. Crumbling Tie Detection

The first 3 rows in Figure 7 show examples of a crumbling ties and
their corresponding segmentation map. Similarly, rows 4 through
6 show examples of chipped ties. To evaluate the accuracy of the
crumbling and chipped tie detector described in Section 3.4 we di-
vide each tie in 4 images and we evaluate the score (2) on each im-
age independently. Due to the large variation in the area affected
by crumbling/chip we assigned a severity level to each ground truth
defect, and for each severity level we plot the ROC curve of finding
a defect when ignoring lower level defects. The severity levels are
defined as the ratio of the inspect able area that is labeled as a defect.

Figure 6 shows the ROC curves for each type of anomaly. Because
of the choice of the fixed α = 0.9 in equation (2) the performance
is not reliable for defects under 10% severity. For defects that are
bigger than the 10% threshold, at a false positive rate of 10 FP/mile
the detection rates are 86.06% for crumbling and 92.11% for chips.

Fig. 7. Semantic segmentation results (images displayed at 1/16 of
original resolution)

5. CONCLUSIONS AND FUTURE WORK

Using the proposed fully-convolutional deep CNN architecture we
have shown that it is possible to accurately localize and inspect the
condition of railway components using grayscale images. We be-
lieve that the reason our method performs better than traditional tex-
ture features is due to the ability of DCNNs to capture more com-
plex patterns, while reusing patterns learned with increasing levels
of abstraction that are shared among all classes. This explains why
there is much less overfitting on the anomalous classes (crumbled
and chip) despite having a relatively limited amount of training data.

We currently run the network in a feed-forward fashion. In the
future, we plan to further explore recursive architectures in order
to discover long-range dependencies among image regions with the
purpose of better separate normal regions from anomalous ones.
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