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Predicate Transformer Semantics of
Quantum Programs

Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji

Abstract

This chapter presents a systematic exposition of predicate transformer semantics
for quantum programs. It is divided into two parts: The first part reviews the state
transformer (forward) semantics of quantum programs according to Selinger’s
suggestion of representing quantum programs by superoperators and elucidates
D’Hondt-Panangaden’s theory of quantum weakest preconditions in detail. In
the second part, we develop a quite complete predicate transformer semantics of
quantur programs based on Birkhoff-von Neumann quantum legic by considering
only quantum predicates expressed by projection operators. In particular, the

universal conjunctivity and termination law of quantum programs are proved, and

Hoare’s induction rule is established in the quantum setting.

8.1 Introduction

In the mid-1990s Shor and Grover discovered, respectively, the famous quantum
factoring and searching algorithms. Their discoveries indicated that in principle
quantum computers offer a way to accomplish certain computational tasks much
more efficiently than classical computers, and thus stimulated an intensive inves-
tigation in quantum computation. Since then a substantial effort has been made
to develop the theory of quantum computation, to find new quantum algorithms,
and to exploit the physical techniques needed in building functional quantum
computers, including in particular fault tolerance techniques.

Currently, quantum algorithms are expressed mainly at the very low level of
quantum circuits. In the history of classical computation, however, it was realized
long time ago that programming languages provide a technique that allows us to
think about a problem that we intend to solve in a high-level, conceptual way,
rather than the details of implementation, Recently, in order to offer a similar
technique in quantum computation, people began to study the principles, design
and semantics of quantum programming tanguages; for excellent surveys see Gay
{2006) and Selinger (2004).
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Since it provides a goal-directed program development strategy and nondeter-
minacy can be accommodated well in it (Dijkstra 1976; Hesselink 1992), predicate
transformer semantics has a very wide influence in classical programming method-
ology. With the prospect of goal-directed quantum programming, two approaches
to predicate transformer semantics of quantum programs have been proposed in
the literature. The first approach is to treat an observation (a measurement) proce-
dure as a probabilistic choice. Thus, a quantum computation is naturally reduced
to a probabilistic computation, and predicate transformer semantics developed for
probabilistic programs (Kozen 1981; Morgan et al. 1996) can be conveniently used
for quantum programs. For example, Butler and Hartel (1999) used the probabilis-
tic weakest precondition calculus (Morgan et al. 1996) to model and reason about
Grover’s algorithm. In particular, Sanders and Zuliani (2000) designed a quan-
tum extension gGCL of the guarded-command language GCL and established a
refinement calculus supporting verification and derivation of quantum programs.

The second approach was proposed by D"Hondt and Panangaden (2006), where
the notion of predicate is directly taken from quantum mechanics; that is, a quantum
predicate is defined to be an observable (a Hermitian operator) with eigenvalues
within the unit interval. In this approach, forward operational semantics of quantum
programs is described by superoperators, as suggested by Selinger (2004), and
an elegant Stone-type duality between the state-transformer (forward) semantics

and the predicate-transformer (backward) semantics of quantum programs can be
established by employing the Kraus representation theorem for superoperators.
A further development of the second approach requires us to tackle some prob-

lems that would not arise in the realm of classical and probabilistic programming,

One of such problems is to well define various logical operations of quantum
predicates, since they will be needed to combine different quantum weakest pre-
conditions in reasoning about complicated quantum programs. For example, con-
junction and disjunction are two of the most frequently used logical operations,
and it is natural to define conjunction and disjunction of quantum predicates as the
greatest lower bound and the least upper bound of them, respectively, according to
the Lowner order. Unfortunately, it is known that the set of quantum predicates is
not a laitice, and thus the greatest lower bound and the least upper bound of certain
quantum predicates do not exist, except in the trivial case of one-dimensional state
spaces (Kadison 1951). Moreover, the problem of finding necessary and sufficient
conditions for the existence of the greatest lower bound and the least upper bound
of quantum predicates is still unsolved for state spaces with dimension greater
than 3 (Gudder 1996). Only some sufficient conditions have been discovered, and
most of them are related to commutativity of quantum predicates (for a more
general exposition on commutativity required in defining operations of quantum
predicates, see Varadarajan 1985, Section 7.3.6). As noticed in Ying et al. (2007),
however, the weakest preconditions of two commutative quantum predicates do
not necessarily commute. This is an obvious obstacle in the further development
of predicate transformer semantics for quantum programs, and it seems o be very
difficult to overcome in the general setting.
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A way to avoid the‘precedjng difficulty is to focus our attention on a special
class of quantum pred1c§tes, namely projection operators. There are at least two
further reasons for choosing to consider only projectors as quantum predicates:

+ The first one is conceptual, and it comes from the following observation:
The q}l?mtum predicates dealt with in D’Hondt and Panangaden (2006) are;
Hermitian operators whose eigenvalues are within the unit interval, and in
a sense, they can be envisaged as quantization of probabilistic pre’dicates
On the o.theT hand, projection operators are Hermitian operators with 0 01;
1 as .thelr eigenvalues, and they should be thought of as quantization of
f:lassmal (Boolean) predicates. Physically, the simplest type of measuring
mstrument is one performing so-called ves-no measurement. Only a single
change may be triggered on such an instrument, and it is often called an
effect by physicists. Indeed, Kraus (1983) presented an elegant reformulation
of quantum mechanics in terms of effects, which are represented by projection
operators.

The second reason is technical: Projection operators in a Hilbert space corre-
sponfi one-onto-one to closed subspaces of this space, and the Léwner order
restricted on projection operators coincides with the inclusion between the
corresponding subspaces. The set of closed subspaces of a Hilbert space was
recognized by Birkhoff and von Neumann (1936) as (the algebraic counter-
part of) the logic of quantum mechanics, and its structure has been thoroughly
investigated in the development of quantum logic for over 70 years. Thus

we are able to exploit the power of quantum logic in our research on predij
cate transformer semantics of quantum logic. In particular, the greatest lower

bound and least upper bound of projection operators always exist no matter
whether they commute or not.

This chapter presents a systematic exposition of the second approach to predi-
cate transformer semantics of quantum programs, and in particular, we try to build
a mathematical foundation for it. The chapter is organized as follows: Section 8.2
reviews the state transformer (forwards) semantics of quantum programs accor(;l-
Ing to Selinger’s suggestion (Selinger 2004) of representing quantum programs by
super-operators. D"Hondt-Panangaden’s theory (D"Hondt and Panangaden 2006)
of quantum weakest preconditions is elucidated in detail in Section 8.3, where
the problem of commutativity of quantum wealkest preconditions is also ex:anﬁned
base(-i on the authors’ previous work (Ying et al. 2007). In Section 8.4, we develop
a qu1‘te complete predicate transformer semantics of quantum proggrams based
on Birkhoff-von Neumann quantum logic by considering only quantum predi-
catt?s expressed by projection operators. More concretely, we define the notion of
p?(?]ective (quantum) predicate transformer and introduce various healthiness con-
dltlons. for quantum programs in Subsection 8.4.3. In Subsection 8.4.4, the notion
of pI‘O_]f:{.:ti.VB weakest precondition is proposed, and Subsection 8.4.5 is devoted
FO examining the relationship between the D’Hondt-Panangaden quantum pred-
tcate transformer semantics and projective predicate transformer semantics. The
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syntax and semantics of quantum commands are then presented in Subsec-

tions 8.4.6 and 8.4.8. The universal conjunctivity and termination law of quantum

programs are proved in Subsection 8.4.9. The termination law is one of the main
results of the present paper, and its proof requires essential applications of math-

ematical tools developed in quantum logic, in particular, Takeuti’s technique of
strong commutator {Takeuti 1981). In Subsection 8.4.10, Hoare’s induction rule
is established in the quantum setting. The main results of Section 8.4 have not

been published before. We draw a brief conclusion and peint out some topics for

further studies in Section 8.5. To make the chapter as self-contained as possible,
we briefly present preliminaries when needed.

8.2 Quantum State Transformers

We recall that in the state transformer semantics of a classical imperative language
a state space is simply assumed to be a nonempty set of states. Then a command
in the language is interpreted as a state transformer that is a mapping from the

state space into itself. To define the state transformer semantics of a quantum -

programming language, we need to introduce the notien of quantum state space
and to give suitable interpretations of the quantum commands in the language.

8.2.1 Quantum States

According to a basic postulate of quantum mechanics, the state space of an isolated
quantumn system is a Hilbert space. For convenience of the reader, we briefly recall
some basic notions from Hilbert space theory. We write C for the set of complex
numbers. For each complex number & € C, A* stands for the conjugate of A. A
(complex) vector space is a nonempty set M together with two operations: vector
addition 4+ : H x H — M and scalar multiplication - : C x H — H, satisfying
the following conditions:

(i) (H, +) is an Abelian group, its zero element 0 is called the zero vector;
(i) le) = lo);
(1) Aule)) = Awle);
V) (& + wle) = M) + ulp); and
) Mle) + ¥} = Aoy + M)

forany &, ;€ C and ig), |¢) € H.
An inner product over a vector space H is a mapping {|):H x H — C
satisfying the following properties:

(i) {¢lg} = 0 with equality if and only if j¢) = 0;

(ii) {glyr) = (Jrig)"; and
(111 {plrrdhr + Ao} = Aileld) + Aa{elyn)

forany |}, i}, [vn}, [¢n) € Hand forany A1, A, € C. Sometimes, we also write
(g}, Iry) for the inner product {(@{y) of |@) and [v}. Two vectors (@}, |v) in H

8  Predicate Transformer Semantics of Quantum Programs 315

are Sgid to be orthogonal and we write l@) L hr} if {@hy) = 0. For any vector
W? in H, its length |1v)| is defined to be VT, A vector |¢) is called a
unit vector‘ if [l =1. Let H be an inner product space, {{v,)} a sequence
of vectors in H, and |} € H. If for any ¢ > 0 there exists a positive integer
N such that |1y, — (] < € for all m,n = N, then {|1\,,)] is called a Cauchy
sequence. If for any € > 0 there exists a positive integer N such that || Py —
1’.”” < ¢ forall n > N, then [¥} is called a limit of {|Yn,)} and we write hb‘; =
limy— o0 147,). A family {I:)hier of vectors in H is summable with the sum |yr)

Ei]d we write [¢) =" _ |4} if for any € > 0 there is a finite subset J of 7 such
that

=2 Wil <e

ek

for every finite subset & of 7 containing J. A family {|3,)};c; of unit vectors is
calied an orthonormal basis of 7 if

(1) [¥i) L ;) for any i, j € I withi # j; and
(1) 1) = 3, (W) 1) for each 1) e A

A Hﬂbert space 1s a complete inner product space; that is, an inner product
space in which each Cauchy sequence of vectors has a limit. Let X be a subset
of Hilbert space H. If for any |r) € 7 and any ¢ > 0, there exists fo) € X such
that [|[4 — ¢|| < €, then we say that X is dense in H. A Hilbert space M is said
to be separable if it has a countable subset dense in H. Each orthonormal basis
of a separable Hilbert space must be countable. In this chapter, we consider only
separable Hilbert spaces. If a Hilbert space 71 is the state space of a quantum
system, then a pure state of the system is described by a unit vector in 7.

A (linear) operator on a Hilbert space H is a mapping 4 : H — H satisfyin
the following conditions: :

W) Alle) + [vr)) = Alp) + A|y);
(1) AAly)) = 2dly)

for all |}, [vr € H and A € C. If {lI¥:}} is an orthonormal basis of H, then an
operator A is uniguely determined by {A|y}}. An operator 4 on ' is said to be
bOU.Ildf.:d if there is a constant C' > 0 such that 4| < C - ol for all ¥y e H.
We write £{H) for the set of bounded operators on . In this chapter we consider
only bounded operators. The zero operator that maps every vector in 7{ to the
Zero vector is in L(H). It is obvious that 4, B L£(H) implies the composition
4B e L(H). Moreover, L(H}is a vector space in which vector addition and scalar
multiplication are defined as follows: Let A, B € L(H)and ) € C. Then

(A4 +B)r} = Al + Blyr)
Gl) = r4ly)
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foreach |y) € H. For any operator 4 € £(7{), there exists a unique inear operator
AY on H such that

(I}, Al = (AT, 1o

for all |@}, v} € ‘H. The operator AT is called the adjoint of 4. Let 4, 4; € L(H)
for all real numbers ¢. If

Jim (4, — Al = 0

for all |¥) € H, then 4 is called a (strong) limit of {4,} for { — fo+ and we
write 4 = limy_, 4 4;. Similarly, we can define lim,., o A,, imy oo A, and
limy,— 00 Ay for a sequence {4,} of operators. The norm of a bounded operator 4
on H is defined to be

A
LAl = sup 1A
w0 1l

To describe a quantum systemn whose state is not completely known, we need
the notion of density operator. An operator 4 on a Hilbert space M is said to be
positive if (| 4|y) = 0 for all states [/} € H. An operator 4 is said to be a trace
operator if {{(1;] A\ }}ies 18 summable for any orthonormal basis i) bier of H;
in this case, the trace t7(A4) of 4 is defined to be

()= (il dli]

I

where {|4;}} is an orthonormal basis of H. It can be shown that t7(4) is indepen-
dent of the choice of {|v;}}. A density operator p on a Hilbert space H is defined
to be a positive operator with ¢r(p) = 1. Then a mixed state of a quantum system
with state space H is described by a density operator on 7{. We shall take a slightly
generalized notion of density operator in the sequel: A partial density operator p
is a positive with #7(p) < 1. In particular, the zero operator is a partial density
operator.

We can define a partial order between operators, called the Lowner partial
order: Let 4, B € £L(H). Then 4 T B if B — A is a positive operator. Recall that
a complete partial order (CPO for short) is a partially ordered set (L., <) such that
\/% %, € L for any increasing sequence {x,} in L.

Proposition 8.2.1 (Selinger 2004, Proposition 3.6). The set of partial density
operators on M, denoted by D(H), with the Lowner partial order is a CPO, with
the zevo density operator as its least element.

Selinger (2004) gave a proof of the preceding proposition in the case of finite-
dimensional 7. Here we present a proof for the general case, which is essentially
a modification of the proof of Theorem II1.6.2 in Prugovedki (1981). To this
end, we need the notion of square root of a positive operator, which in turn
requires the spectral decomposition theorem for Hermitian operators. An operator
M € L{H) is said to be Hermitian if Mt = M. Hermitian operators are used to
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represent observables in quantum mechanics. Projectors are a special class of
Hermitian operators. Let X' € . If we have |@) + |/) € X and A|g) € X for any
lo}, |1/f)_e X and A € C, then X is called a subspace of H. For each X € H. the
closure X of X is defined to be the set of limits lim,_ I} of sequenc;; {i;’f I
in X. A subspace X of a Hilbert space # is said to be closed if ¥ = X LetnX
be & closed subspace of H and |¥) € H. Then there exist uniquely fyr) € X and
[yr1) € X" such that |y} = |} + |4r). The vector 1Yo} is called the projection of
¥} onto X and written (o) = Py|v). Thus, an operator Py on 7 is defined and
it is called the projector onto X'. A spectral family on H is a family { &, }
of projectors on 7{ satisfying the following conditions:

—oQ<wh <400

(i) £, C E;, whenever A; < },;
(11) Ey =limy,_,,; E, for each 1; and
(111) llm;\_,.)_oo E, = OH and liHl;h,_,_oo £, = [dH.

Thgorem 8.2:2 (Prugovecki 1981, Theorem II1.6.3) (Spectral decomposition). Jf
M is a Hermitian operator with spec(M) < [a, b], then there is a spectral familj/

{E.} such that
b
M:/ AE,,

where the integral in the right-hand side is defined to be an operator satisfying
the following condition: for any € > 0, there exists 8 > 0 such thai Jor anjf H >
1 and Xo, X1, ..., Xy 1, X, V1, s Yoly ¥n With @ = xp <y <x1 < .. <y, <
Xl X Vn <Xy = b, It holds that B

b n
1] 2B = 3w — Eol <
a i=i

whenever max!_ | (x; — x;_1) < &.

NOW' we are able to define the square root of a positive operator 4. Since A is
a Hermitian operator, it enjoys a spectral decomposition:

A :/AdEl.

Then its square root is defined to be

«/Ezf«/):dEl.

With these preliminaries, we can give:
- Proof of Proposition 8.2.1. For any positive operator 4, we get:

Heldl¥)1? = [(VAlp), VAN < (| Alg) (| A))
by the Cauchy-Schwarz inequality.

8.1
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Let {p,} be an increasing sequence in D(H, ). For any |¥} € H, let
A = pn— p and ) = A1y}, Then

(LAl < @rlonly) < Y17 - tr(on) < Il 117,

and similarly we have {¢|4|@) < ll@!l?. Thus, it follows from Equation (8.1) that -

o] 419 < |¢]? - ll¢))?. Furthermore, we obtain:

A
1417 = S0

sup (| Al

o IR

< sup llli*

0 12

~ sup |4 I _
w0 P

IA4)?

and || 4| < 1. This leads to

(| dlp) = (AVAIY). AVAIY))
= AV Al
< APV Al
= (VAW VAl
= (Yl A]y).

Using Equation (8.1) once again we get:

1pnl) — )N = Hepl AP = (A1 = 100 leald) — (\Iflme)!é-z)

Note that { (¥ | o, 1)} is an increasing sequence of real numbers bounded by || ¢ 12,
and thus it is a Cauchy sequence. This together with Equation (8.2) implies that
{ps1¥}} is a Cauchy sequence in H. So, we can define:

(im ply) = lim puli).
For any A, k2 € C and 1yn}, hir) € H, it holds that
(lim )i} + Aal)) = lim puCialyn) + Aal2))
= lim (i alt) + Aol )
=y fim pylt) + A2 T puli)

= il(nlinolo Ladl¥rd + lz(nlingo Pn)ld2},
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and iy, o0 0y 18 4 linear operator. For any |yr) € H, we have:
(| Bm p, %) = (|9}, lim_p, |y} = lim {r|on|r) = 0.
R—CO A=+ 00 H— 00
Thus, lifMy, 00 0 18 positive. Let {l4;}} be an orthonormal basis of H. Then

tr(lim p) = ) (0] lim py (9}

> (s, Tim o))

Tim ) (9 10al4s)
i
lim tr(pn) < 1,

and 1im,_, o0 ps € D(H). So, it suffices to show that lim,—.o0 on = /g 0n5 that
is, () o = limy—s oo p, for all m = 0; and (ii) if p & p for all m > 0, then
Jiffipso00 £n = 0. Note that for any positive operators B and C, BE C if and only
if (| BIYr) < (4 |C|yr) forall |4} € H. Then both (i) and (i) follow immediately
from (yr| Mo 00 0 19} == 1Moo (W0 1) 0

Intuitively, each p € D(H) may be interpreted as a partially computed result,
and thus 1 — #r(p) is the probability that the result is still not computed at the
stage represented by p. Note that if o T p; then tr(p;) = tr(p2). This fact fits
Scott’s interpretation (Scott 1970) of the partial order in a computational domain
very well: p; = p, means that more computation might improve p; to a possibly
better-computed result pq.

8.2.2 Unitary Transformations

We now turn to consider interpretations of quantum commands. There are two
classes of basic quantum commands: unitary transformations and quantum mea-
surements. An operator I/ on 7 is called a unitary transformation if U1U = Idy,
where Idy, is the identity operator on H; that is, 7dy|yr) = [4r) forall |y} € H.

The basic postulate of quantum mechanics about evolution of systems may be
stated as follows: Suppose that the states of a closed quantum system at times
ty and ¢ are |V} and [}, respectively. Then they are related to each other by a
unitary operator U that depends only on the times fo and ¢,

) = Ultro)-

This postulate can be reformulated in the language of density operators as follows:
The state p of a closed quantum system at time / is related to its state g at time
fy by a unitary operator U that depends only on the times ¢ and #,

p = UpU".
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8.2.3 Quantum Measurements

A quantum measurement on a system with state space 7 is described by a collec-
tion { M,,} of operators on H satistying

> MM, = Idy,

i3

where M,, are called measurement operators, and the index m stands for the mea-
surement outcomnes that may occur in the experiment. If the state of a quantum sys-
term is |y) immediately before the measurement, then the probability that result m
ocours 18

p(m) = (WM}, My |¥)
and the state of the system after the measurerment is

Mnlih)
v pm)

We can also formulate the quantum measurement postulate in the language of
density operators. If the state of a quantum system was p immediately be-
fore measurement {M,,} is performed on it, then the probability that result m
oceur is

[Vrm} =

plm)= l‘?"(M; M. p),
and the state of the system after the measurement is

MmPM:?[I

P = o)

8.2.4 Superoperators

Unitary transformations are suited to describe the dynamics of closed quantum
systems. For open quantum systems, however, one of the key mathematical for-
malisms for the description of their state transformations is the notion of superop-
erator. To define this notion, we need to introduce tensor product of Hilbert spaces.
Let H be a Hilbert space with orthonormal basis {J¢;)} and K a Hilbert space with
orthonormal basis {|4;}}. Then their tensor product is defined to be

HOK ={Y aylgiy;) : oy € Cwith D eyl = ool
i L

Vector addition, scalar multiplication, and inner product are defined on H ® X
in a natural way: Let |®) = 3, olendrs), (W) =35, Bisloiyry) e H® K and
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A € C. Then

D) + | W) = Z(ai, + B,
A DY = Zmui@%

@M=Z%%
i
It ist easy to show that H @ K is a Hilbert space with {|¢; v 71} as an orthonormal
basis. Forany |¢) =} a;|g;) € H and |y) = 2.5 Bilry) € K, we define:

o) ® 1) = ) Blentr).

Ly
If4 € L(H)and B ¢ L(K), then 4 ® B € £(H ® K) is defined by

(A4 ® B)lgi;y = Alp:) ® Blyr;)

for all 7, 7. Suppose that £ is an operator on £(H) and JF an operator on L(K).
Then £ ® F is defined to be an operator on £(H ® X)) and it is given as follows;
Foreach C € L(H ® K), we can write:

C= ay(d;® By)
i

where 4; ¢ L(H) and B; € L(K) for all k, and we define:
(E@FNC) =Y au(E(Ar) ® F(By)).

k
By linearity we may assert that £ ® F is well defined; that is, (£ ® FNCY is
independent of the choice of 4, and B,.

A superoperator on H is a linear operator £ from the space L(H) into 1tself that
satisfies the following two conditions:

(i) tr[E(p)] < tr(p) for each p € D(H);

(i) (Complete positivity) For any extra Hilbert space Mz, (Zr®EWA is
positive provided 4 is a positive operator on Hz & H, where T is the
1dentity operator on £(7 ); that is, Tp(4) = A for each operator 4 on H R

We write SO(H) for the set of superoperators on H. The Kraus theorem gives
some useful representations of superoperators,

Theorem 8.2.3 (Kraus 1983, Theorems 3.1 and 5.2; Nielsen and Chuang 2000,
Section 8.2.3, Theorem 8.1). The following statements are equivalent:

(i) & is a superoperator on H;
(i) (System-environment model) There are an environment system E with state
space Hy and a unitary transformation U on H @ Hy and a projector P
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onto some closed subspace of H @ Hy such that _
E(p) = trel PU(p ® |eo)(eoh) U P) (8.3)

Jor any p € D(H), where |ey) is a fixed state in Hg.
(iil) (Operator-sum representation) There exists a finite or countably infinite
set of operators {E;} on H such that 3, E:E,- I and

&)=Y EipE] (8.4)

Jor all density operators p & D(H). We often say that £ is represented by
the set [E;} of operators, or {E;} are operation elements giving vise to £
when £ is given by Equation (8.4).
The proof of the foregoing theorem is omitted here, and the reader can find it
in Kraus (1983), Chapters 3 and 5, or Nielsen and Chuang (2000), Chapter 8,
A basic principle of Scoit’s theory of computation (Scott 1970) is that com-
putable finctions on domains are continuous. Let (L, <) be a CPO. Then a function
f from L into itself is said to be continuous if

VAVESERVIIEH

for any increasing sequence {x,} in L.

Proposition 8.2.4 Fach superoperator is a continuous function from (D(H), C)
into itself.

Proof Suppose that £ is a superoperator whose operation elements are {£;}, and
[ o} is an increasing sequence in D{H). Then by Proposition 8.2.1 we obtain:

EC\/ po) = E(lim p,)

=Y Ei(lim p,)E]

lim Z EipnE!
H—r OO

=\ €on).

|

The preceding lemma guarantees that it is reasonable to interpret a program
as a superoperator in the state transformer (forward) semantics of a quantum
programming language.

For any real number A > 0, and £, F € SC(H), A€ and £ + F are completely
positive, but they may not be superoperators because they do not necessarily satisty
the first condition in the definition of superoperator. On the other hand, it is easy
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to see that £ o F is a superoperator. The Lowner partial order induces a partial
order between superoperators in a natural way: Let £, F € SO(H). Then £ T F
if £(0) © F(p) for all p & D(H). N

Proposition 8.2.5 (Selinger 2004, Lemma 0.4). The set (SO(H), C) of super-
operators on 'H is a CPQ. B

Proof. Let {£,} be an increasing sequence in (SO(H), C). Then forany p D(H)

{8%(,0)} is an increasing sequence in (D(H), ©). With Proposition 8.2.1 we can
define:

V&) =\ &up) = 1im £,(0).

- and it holds that

r((\ E)o) = tr(lim £,(0)) = lim 1r(&,(0)) < 1

because tlj‘ () is continuous. Furthermore, \,, & can be defined on the whole of
L(H) by linearity. The defining equation of V., & implies: (1} &, = \, En for all

- m > 0;and (i) if £, T F for all m > Othen \/, &, C F. So, it suffices to show

that \/, &, is completely positive. Suppose that Hp is an extra Hilbert space. For
any C € L(Hpz)and D € L(H), we have:

Ze® \/ EXC®DY=C & (\/ &)(D)
=C@ lim £(D)
= lim (C ® £,()
= lim (Z; © £,)(C ® D).
Then for any 4 € £L(Hz ® H) we get:

Zx® \/ £)(d) = lim (Zx ® £,)(4)

by linearity. Thus, if 4 is positive, then (Zg ® £,)(4) is positive for all #, and
2z ® \/,, £,)(4) is positive. o
The preceding proposition allows us to introduce recursion in the setting of

superoperators. Let F be a continuous function from (S O(H), E) into itself. Then
we define: ‘

o0
pX F(X) = \/ FO0);
=0
tha.t is, A F(X') is the least fixed point of F, where 0 is the zero superoperator,
Wh.lC}.l maps all elements of D(H) to the zero density operator and corresponds to
the divergent program, F(0) = 0, and F@+1(0) = F(F(0)) forall n > 0.




Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji

8.3 Quantum Weakest Preconditions:
D’Hondt-Panangaden Approach

8.3.1 Hermitian Operators as Quantum Predicates

The first step to present predicate transformer semantics of a quantum program-
ming language is to define the notion of quantum predicate. By a careful analysis
and comparison with the classical and probabilistic cases, D*Hondt and Panan-
gaden (2006) argued that quantum predicates should be physical observables,
Their approach was originally presented in the sefting of finite-dimensional state
spaces, but it can be easily generalized to the case of infinite-dimensional state
spaces. To motivate the definition of quantum predicate in an easier way,
we first consider a finite-dimensional Hilbert space M. According to a basic
postulate, an observable of a quantum system is described by a Hermitian op-
erator on its state space. An eigenvector of an operator 4 on H is a nonzero
vector |} € H such that A|y) = Aly) for some & € C, where A is called the
eigenvatue of 4 corresponding to |v). It is easy to see that all eigenvalues of a
Hermitian operator are real numbers. The set of eigenvalues of A4 is called ihe
(point) spectrum of 4 and denoted spec(4). For each eigenvalue 2 of an operator
A, the set {|v) € M : Alyr) = A|y)} is a closed subspace of H and it is called the
eigenspace corresponding to A. It is well known that an observable (a Hermitian
operator) M determines a so-called projective measurement {P,,}, where m ranges
over spec{M), and P, is the projector onto the eigenspace of M corresponding to
m for each eigenvalue m. The eigenvalues m stand for the possible outcomes ofthe
measurement. As to quantum predicates, their eigenvalues should be understood
as the truth values of certain propositions about quantum systems. Note that the
truth value of a classical proposition is either 0 (false) or 1 (true), and the truth
value of a probabilistic proposition is given as a real number between 0 and 1.
This observation leads to the following:

Definition 8.3.1 (D’Hondt and Panangaden 2006, Definition 2.2). 4 (quantum)
predicate on M is a Hermitian opevator M on H with all ils eigenvalues lying
within the unit interval [0, 11,

_ The set of predicates on  is denoted P(7{). The state space H in the foregoing
definition and the following development can be infinite-dimensional unless it is
explicitly stated to be finite-dimensional. For any M € P(H), we have On & M &
Idy, where 0y is the zero operator on H; that is, O|y) = 0 for all ) € H.
Recall that t7(Mp) is the expectation value of measurement outcomes when a
quantum system is in the mixed state p and we perform the projective measurement
determined by observable M on it. Thus, if A is a quantum predicate, then
tr(Mp) may be interpreted as the degree to which quantum state p satisfies
quantum predicate M, or more precisely the average truth value of the proposition
represented by M in a quantum system of the state o. The reasonableness of
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the precedixllg definition is further indicated by the following fact: A Hermitian
operator M is a quantum predicate if and only if 0 < #r (Mp) < 1forall p € D(H).

The following proposition examines the structure of quantum predicates with
respect to the Lowner partial order,

Proposition 8.3.2 (Sclinger 2004, Proposition 3.6; D’Hondt and Panangaden

2006., Proposition 2.3). The set (P(H), ©) of quantum predicates with the Lowner
partial order is a CPO.

Proof. Similar to the proof of Proposition 8.2.1. 0

As mentioged in T:he introduction, (P(H), C) is not a lattice except in the trivial
case of one-dimensional state space; that is, the greatest lower bound and least
upper bound of elements in (P(H), ) are not always defined,

8.3.2 Quantum Weakest Preconditions: Definitions and Representations

Now we are ready to define the two key notions in this section, L.e, quantum
generalization of Hoare assertion and quantum weakest precondition.

Deﬁniti()fl 8.3.3 (D’Hondt and Panangaden 2006, Definition 3.1). For any quan-
tum predicates M, N € P(H), and for any quanium program £ € SO(H), M is
called a precondition of N with respect to £, written M {EIN, if

tr(Mp) < tr(NE(p)) (8.5)

- for all density operators p € D(H).

.The inmifcive n?eaning of condition (8.5) comes immediately from the interpre-
tation of satisfaction relation between quantum states and quantum predicates: if
state o satisfies predicate M then the state after transformation £ from p satisfies

' predicate N.

Definition 8.3.4 (D’Hondt and Panangaden 2006, Definition 32). Let M € P(H)
be a quantum predicate and £ ¢ SO(H) a quantum program. Then the weakest

- precondition of M with respect io £ is a quantum pred; ek
' predicate wp(EY M) sat
the following conditions: P(ENM) satisfring

() wp(EXMEM;
(i1) for all quantum predicates N, N{EYM implies N = wp(EWM).

For each £ € SO(TH), the foregoing definition gives a quantum predicate trans-

:' former wp(€) : P(H) — P(H). An operator-sum representation of wp(£) was

found in D Hondt and Panangaden (2006) by exploiting a Stone-type duality bet-

: Ween 1forward state transformers and backward predicate transformers when £ is
; given in the form of operator-sum.




326 Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji

Proposition 8.3.5 (I’Hondt and Panangaden 2006, Proposition 3.3). Suppose thay
program £ € SO(H} is represented by the set {E;} of operators. Then for each
predicate M € P(H), we have:

wp(E)M) =Y EIME;. (8.6)

Proof. We see from Definition 8.3.4 that weakest precondition wp(£)(M) is unique
when it exists. Then we only need to check that wp(£)(M) given by Equation (8.6)
satisfies the two conditions in Definition 8.3 .4.

(i) Since tr(AB) = tr(B 4) forany 4, B € L(H), we have:
tr(wp(EXM)p) = tr((Y | E]ME;)p)

=Y tr(E]ME;p)

=Y tr(ME;pE])

H

= tr(M()_ E;pED)

= ir{(ME(p))

for each p € D(H). Thus, wp(EXM){EIM.

(ii) It is easy to show that for any M, N < P(H), M = N if and only
if tr(Mp) < tr(Np) for all p € D(H). Thus, if N{E}M, then for any
p € D(H) we have tr(Np) < tr(ME(p)) = tr(wp(EXM)p). Therefore,
it follows immediately that ¥ £ wp(&)(M). O

We can also give an intrinsic characterization of wp(£) in the case that £ is
given by a system-environment model.

Proposition 8.3.6 (Ying et al. 2007, Proposition 2.2}. If £ is given by Equation
(8.3), then we have:

wp(E)(M) = (eolU' P(M & I£)PUleo)
Jor each M & P(H), where Ig is the identity operator in the environment system.

Proof. Let {|e;)} be an orthonormal basis of Hg. Then
E(p) =Y _lex| PUleo)ples| U Plex),
k
and using Proposition 8.3.5 we obtain;
wpE)(M) =Y (eo|UT Plex) M (ex| PUleo)
k
= {eglU'P(Y _ ley) Miex[) PU e}
k
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N Z:k 'ék>M(e}C’ - 1“ ® jE bBCauSG {le i an o ONorm. ba i e
' k)} al SIS fHk.

0O

To conclude Fl?is section, we collect basic algebraic properties of quantum
weakest preconditions in the following proposition.

Proposition 8.3.7 Let A > 0 and £ F e SOH d let 3 ;
ehonmo n SO (M), and let {£,} be an increasing

(1) wp(AE) = Awp(E) provided L& SO(H);

(11) wpl€ + F) = wp(€) + wp(F) provided £ + F € SO(H),
(i) wp(€ o F) = wp(F) o wp(E);
() wp(\V2y Ea) = Volo wp(E,), where

O/ wpE0) E N/ wp(e, )
n=(}

n=l

Jor any M € P(H).
Proof.

(1) anfl (ii) are immediately from Proposition 8.3.5.
(iii) It is easy to see that LIEIM{FIN implies L{& o FIN. Thus, we have
Wp(ENwp(FYMME o FYM. On the other hand, we need to show

that & u.)p(c‘,’)(wp(f‘)(ﬁ/[)) whenever N{€ o FIM. Tn fact, for any
£ € D(H), it follows from Equation (8.7) that

tr(Np) < tr(M(€ o FYo))
= tr(MF(E(e))
= tr(wp(F)M)E(p))
= tr(wp(EXwp(F)M))p).

Therefore, we obtain w (£ ocFYM) = £ =
B P YM) = wp(EXwp(FYM)) = (wp(F) o

(iv) We note that the following two equalities follow immediately from the
proof of Proposition 8.2.1:

MO\ )= \/ M,
=0

=0

r(\ M) = \/ v,

n=f) n=0
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First, we prove that \/,;“;(] wp(gn)(M){\/zio &n}M. Indeed, for any p e
D(H}, we have:

tr(\f wp(€)(d)p) = \/ tr(wp(£,)(M)p)

n=0 n=0

<\ 1r(ME,(p))

=0

= tr(\/ M&,(0))

n=0
= tr(M(\/ E:Xp)).
=0

Second, we show that N{\/7, £,}M implies N T /o2, wp(E,)(M). Tt
suffices to note that

ir(Np) < tr(M(\/ ENp))
n=0

= 1r(\/ M&(p)

nu=0

= \/ tV(Mgn(p))

=0

= \/ tr(wp(E)(M)p)

n=0
o
= tr((\/ wp(EN(M)p)
=0
for all p&D(H). Thus, it holds that wp(\/ "y EN(M) = \/,?‘;Do
wp(EN(M).
Corollary 8.3.8. LetF be a continuous function from (SO(H), T) into itself. Then

wp(uX F(X) = \/ wp(F(0)).

n=0
Proof. Immediate from Proposition 8.3.7(iv).
8.3.3 Commutativity of Quantum Weakest Preconditions

Quantum predicate transformer semantics is not a simpl.e generalization of pred-
icate transformer semantics for classical and probabilistic programs. It ha§ to
answer some important problems that would not arise in the re':a¥m of classical
and probabilistic programming. One such problem is commutativity of quantum
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weakest preconditions. The significance of this problem comes from the follow-
ing observation: Quantum weakest preconditions are quantum predicates and in
turn they are observables on the state space. Thus, their physical simultaneous
verifiability depends on commutativity between them according to the Heisenberg
uncertainty principle (see Nielsen and Chuang 2000, page 89). The aim of this
subsection is to find some conditions under which quantum weakest preconditions
commute,

Recall that for any two operators 4 and B on H, itis said that 4 and B commute
il 4B = B 4. What concerns us in this subsection is the following:

Question 8.3.9. Given a quantum program £ € SO(H). When do wp(EWM) and
wp(EXNN) commte?

This question seems very difficult to answer for a general superoperator £. We
first see a simple example from quantum communication.

Example 8.3.10 (Nielsen and Chuang 2000, Section 8.3) (Bit flip and phase flip
channels). A qubit is a quantum state of the form | ) = a|0) + 111}, where |O)
and |1} are two basix States, and «y and «, are complex mumbers with ot |? -+
lon 1> = 1. Thus, the state space of qubits is the 2-dimensional Hilbert space
Hy = C?, and linear operators on Ha can be represented by 2 x 2 matrices.

Bit flip and phase flip are quantum operations on a single qubit, and they are
widely used in the theory of quantum error-correction. We write the Pauli matrices:

1o 0 1
=l V)= (00),

0 —i 1 0
=(05) 2= )
Then the bit flip is defined by

E(p) = EopEl + E1pE], (8.8)

where Eq = /pI and E| = /1 — pX. It is easy to see that E(M) and E(N)
commute when MN = NM and MXN = NXM.

If Ey in Equation (8.8} is replaced by /T — pPZ (resp. /T = pY), then £ is the

. phase flip (resp. bit-phase Slip), and E(M) and E(N) commute when MN — NM
and MZN = NZM (resp. MYN = NYM).

Now we consider the simplest superoperators; unitary transformations and

- projective measurements.

Proposition 8.3.11.

() Let € € SO(H) be a unitary transformation, i.e., E(p) = UpUt for any
p € D(H), where UU' = UNU = Idy,. Then wp(EXM) and wp(E)N)
commute if and only if M and N commute.
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L . _ = - For a general superoperator £, we are only able to give some sufficient condi-
s tive measurement, i.e., Py Py, = 8,1, Py, and Y, Py AN ’ &
(1) Let {Fy} be a projective o e tions for commutativity of wp(E)(M) and wp(EXN). We first consider the case

where L .
{dr, where £ is given in a operator-sum form.,

Proposition 8.3.12. Suppose that 'H is findte-dimensional Let M N e P(H) and
they commute, i.e., theve exists an orthonormal basis (i)} of H such that

If € is given by this measurement, with the result of the measurement | M= ZMI%)(%L N= ZM;J%)(WJ
unknown, ie., p -

1! lj‘k} = kZ?
Sty = .
0, otherwise.

£(p) = Z PP, where A;, ji; are reals for each i (Nielsen and Chuang 2000, Theorem 2.2), and
- ' let £ € SO(H) be represented by the set {E;} of operators. Ifforanyi, j k1, we

. have either lklu'f = )\,In,u";‘_ or
Jor each p € D(H), then wp(EYM) and wp(EYN) commute if and only

if PyMP, and PpN Py commute for all k. In particular, let {|i}} be an - wak{Einm)(l/fllEij) ~0,
orthonormal basis of H. If £ is given by the measurement in the basis {|i}}, -
Le . then wp(EX M) and wp(EYNY commute,

£(p) = Z P.pP, Proof. We consider the matrix representations of the involved operators with
p respect to the basis {|¥,}]. For any i, f, a routine calculation leads to

where Py = |i}{i| for each i, then wp{E) M) and wp{EXN) commute for MEjE;N = (Axpien ) and NEiE;M = (,u,ucl,;ek,g)k,;,
any M, N € P(H). _ where

Proof '_ e = 3 W Exli) (| B )

(i) From Proposition 8.3.5 we obtain:
TMUUINU = UTMNU for all £,1. Then the condition given in this proposition implies M, EIN =
wp(EYMywp(EXN) = UTMU = X | NE,-E}'M. i follows o Pramoten g e o]
Then MN = Uwp(E)YMywp(E)N)UT, and the conclusion follows.

(i) We first obtain:

wp(EXM) - wp(EYN) = () EJME;)(Z EINE) = > EIMEE'NE,,
i i i

wp(EYMywp(EXNY =Y PMPPNP =Y  PMPNP;. g (8.9)

and wp(EYM)wp(E)N) = wp(EXN)wp(E)M). =

To present another sufficient condition for conunutativity of quantum weakest
Similarly, it holds that preconditions, we need to introduce commutativity between a quantum program

and a quantum predicate.
wpEXNYwp(EYM) = PN PLMPy. q p
k

k1 k

Definition 8.3.13. fet £ S O(H) be represented by the set {E:} of operators,

that  wp(EYM)wpEYN) = wp(E) Ny wp(EYM) it and let M & P(H). Then we say that quantum predicate M and quantum program

It is clear & commute if M and E; commute for each i.

P MP, and P NP, commute. Conversely, if wp(EXMwp(EXN) =

wp(ENN wp(EN M), then by muitiplying Py in the both sides we obtain: It seems that in the foregoing definition commutativity between quantum predi-
cate M and quantum program £ depends on the choice of operators E; in the Kraus
PAMPNP, = Pk(Z PMPNFP)= Pk(z PNPMP)= P"NPkMPk' representatign of £. I"i'hl;gs, one mef; wonder if this deﬁnitlijon is intrinsic because
! d - such operators are not unique. To address this probiem, we need the following;

For the case of P, = |i){i| for each i, it holds that PMPNP = -
li} (| M0} ({1 ¥]i}{i . Note that (| M|i) and (7| M|i) are complex numbers,
and they commute. Thus, P,MP,NP; = P; N P, M F; always holds. H

Lemma 8.3.14 {Nielsen and Chuang 2000, Theorem 8.2) (Unitary freedom in the
Operator-sum representation). Suppose that {E;} and {F;} ave operation elements
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giving rise to quantum operations £ and F, respectively. By appending zero
operators to the shortest list of operation elements we may ensure that the numbers
of E; and F; are the same. Then £ = F if and only if there exist complex numbers
Ui such thar

E = Z”iij
j

Sorall i, and U = (uy;) is {the matrix representation of) a unitary operator.

As a simple corollary, we can see that commutativity between M and £ is
irrelevant to the choice of the Kraus representation operators of £.

Lemma 8.3.15. The notion of commutativity between observables and quantum
operations is well-defined. More precisely, suppose that £ is represented by both
{E:Y and {F;}. Then M and E; commuie for all i if and only if M and F; commute
Jorall j.

Proof, ITmmediate from Lemma 8.3.14, O

Commutativity between observables and quantum opetations is preserved by
composition of quantum operations.

Proposition 8.3.16. Ler M € P(H) be a quantum predicate, and lei &1, & €
SO(H) be two guantum programs. If M and & commute for i = 1,2, then M
committes with the composition £1 0 £ of €1 and &;.

Proof. Suppose that £ is represented by {E;} and &, is represented by {£}. Then
for any p € D(H), we have:

Tt

(10 E(p) = EaEr(p)) = Y FyEipE[F).
i
With Lemma 8.3.15 it suffices to note that M(F; E;) = F;ME; = (F; E;)M for
all i, ;. ]
The following proposition gives another sufficient condition for commutativity

of wp(EXM) and wp(EXN).

Proposition 8.3.17. Let M, N € P(H) be two quantum predicates, and let £ €
SO(H) bea quanium program. If M and N commute, M and £ commute, and N
and £ commute, then wp(E) M) and wp(EYN) commute.

Proof. Since M and E; commute, N and £; commute for all 4, j, and N is
Hermitian, 7.e., NT = N, we have:

MEE'N = E;MEN' = E;M(NE;)!
= E;M(E;NY = E;MN'E} = E,MNE]
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and from Equation (8.9) we obtain:

wp(EXM) - wp(EYN)y = Y £} E;MNEE,.
L
Similarly, it holds that

wp(EXN) - wp(E)M) = E! E;NMEE,.
Ly
Then commutativity between M and N implies wp(E)(M) - wp(E)N) =
wp(EXN) - wp(EXM). o
It is easy to see from Proposition 8.3.11 that the condition for conmmutativity
of wp(EX M) and wp(E)(N) given in Proposition 8.3.17 is not necessary.
Now we turn to consider the system-environment model of superoperator.

To this end, we need two generalized notions of commutativity between linear
operators,

Definition 8.3.18. Let M, N, A, B, C & L(H).

(1) f AMBNC = ANBMC, then we say that M and N (A, B, C)-commute.

In particular, it is simply said that M and N A-commute when M and N
(A4, 4, A-commute;

(i) If AB' = BA', then we say that A and B conjugate-commute.

Obviously, commutativity is exactly 7 dy-commmtativity.
The next two propositions presents several conditions for commutativity of

quantum weakest preconditions when quantum programs atre given in the system-
environment model.

Proposition 8.3.19. Let £ be given by Equation (8.3), and we write A = P Ulegp;.

() wp(E) M) and wp(EYN) commute if and only if M® Ig and N ® Iy
(AT, AAT, A)—commute;

(i) If (M ® Ig)A and (N ® Ip)A conjugate-commute, then wp(ENM) and
wp(EXN) commute.

Proof. Immediate from Proposition 8.3.6. ]

Proposition 8.3.20. Suppose that H is finite-dimensional. Let € be given by Equa-
tion (8.3), and let M, N € P(H) and they commute, i.c., there exists an orthonor-
mal basis {|Y;)} of H such that

M:Zlilw,;)(l,lfff, N=Zuilv’fi)(‘ffﬂ

Where A;, j1; ave reals for each i. If for any i, j, k.1, we have hu; = At or
(eo UPlyer) Leol U Pliysey),
then wp(EY M) and wp(E)N) commute.
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Proof. Forany i, f, k,/, it holds that

(rexl(M @ [)PUleo}leo| U P(N & Ix)lfer)
= Aipt; (Yrier | PU leo) leo|UT Pipryen).

If hajay = Ay of (eolUT P e} LieoiUT Pljer), ie.,
(We:|UPleo) (ea|UT Plijser) = 0,

then we have:
(ierl(M ® I5)PU\eq) (el UTP(N ® Ig)|vre)
= (Yrex| (N ® I5)PU\ep) el U P(M ® Ip)|¥ser).

This means that
(M @ Tg)PUle} (el UTP(N ® I5) = (N ® Ip)PUleg) {e| U P(M ® Ip).

Thus, the conclusion follows immediately from Proposition 8.3.19. i

To conclude this section, we would like to point out that some sufficient con-
ditions for commutativity of quantum weakest preconditions have been presented
here, but the problem of finding a sufficient and necessary condition for this com-
mutativity for a general quantum program is still open and seems very difficult. A
even more general topic for further studies would be:

Question 8.3.21. How fo characterize [wp(E} M), wp(NYN)Y] in terms of
[M, N, where for any operators X and ¥, [ X, Y] stands for their commutator,
e, [X,¥Y]= XY - YX?

The foregoing question might interest mathematicians working in the area of
operator algebras (Putnam 1967).

8.4 Quantum Predicate Transformers:
Projection Operators = Predicates

The last section was devoted to an exposition of the D’Hondt-Panangaden approach
to quantum weakest preconditions where quantum predicates are represented by
Hermitian operators with their eigenvalues in the unit interval. This broad defini-
tion of quantum predicates allows us to establish an elegant duality between the
state-transformer (forward} semantics and the predicate-transformer (backward)
semantics of quantum programs. However, it also causes certain difficulties in the
further development of gquantum predicate-transformer semantics; for example,
some logical operations of quantum predicates are not always well defined. To
avoid these obstacles, we choose to congider a special class of quantum predi-
cates, namely projection operators, in this section. Since the notion of projection
operator is equivalent to that of closed subspace in a Hilbert space, we do not
distinguish a closed subspace from the projector onto it, and for the most part we
directly deal with closed subspaces in the sequel for simplicity of presentation.

8  Predicate Transformer Semantics of Quantum Programs

8.4.1 Orthomodular Lattices

To describe the algebraic structure of the set of closed subspaces of a Hilbert space
we briefly recall some basic notions from the theory of orthomodular lattices; for,
more details we refer to Bruns and Harding (2000) and Kalmbach (1983;. A
complete ortholattice is a S-tuple £ = (L, =, A, v, 1), where:

(@) (L, =, A, V) is a complete [attice, Here, = is the partial ordering on /., and
forany M C I, A\ M and \/ M stand for the greatest lower bound and the
least upper bound of M, respectively. We use 0, 1 to denote the Teast and
greatest elements of 7, respectively.

(ii) L is a unary operation on L, called orthocomplement, and required to
satisfy the following conditions:
(@arnat =0 aval = 1;
(b) att =a; and
(¢) a < b implies b < g+

forany a, b < I.

It is easy to see that the condition (i1)(c) is equivalent to one of the De Morgan
lav;s: (@Ab)yt =atvibtand(a v eyt =gt A bt for any a, b € L. A complete
orthomodular lattice is a complete ortholattice £ = (L, =, A v, L) satistyi
=L, =, AV, L satisfying th
orthomodular law: ) ine the

a < bimpliesa v (a* A b) = b

toralla, b & L. The orthomodular law can be replaced by the following equation:

- i
aviag-A{avb)=avb for any a,b € L. A complete Boolean algebra is a

complete ortholattice £ = (£, <, A, v, L} fulfilling the distributive law of join
over meet;

avbrg=@vbyaiave

for gll a, b, ¢ € L. With the De Morgan law it is easy to know that this condition is
equivalent to the distributive law of meet over JjoinaA(bve)=(aAb)v (a Ac)
forany a, b, ¢ € L. Obviously, the distributive law implies the orthomodular law,
and so a complete Boolean algebra is a complete orthomodular lattice. 7

A central notion in the theory of orthomodular lattices is commutativity of
elements. Let £ = (L, <, A, v, 1) be a complete ortholattice, and let a,bel,
We say that @ commutes with b, in symbols aCh, if we have:

a=(@Ab)v(anbb).

The following lemma indicates that commutativity is preserved by lattice-theoretic
operations.

Lemma 8.4.1 (Bruns and Harding 2000). Let £ = (L, <, A, v, 1} be an ortho-
modulur lattice, and let a € L and bieL (iel) IfaCb; for all i € I, then
aC(/\;.; b:) and aC(\/,.; b;) provided Nier bi and \/ ., b; exist.
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The major difference between a Boolean algebra and an orthomodular lattice is
that in general distributivity is not valid in the latter. However, 2 local distributivity .
can be recovered for orthomodular lattices by attaching commutativity.

We shall need the following lemma, which was proved by the author in Ying

(2005) and extensively used in antomata theory based on ; .
tum 1
2000, 2005, 2007). y quantum logic (Ying

Lemma 8.4.5 (Ying 2005). Let £ = (L, <, A, Vv, 1} be an orthomodular lattice
and let A C L. Then for any B C [4] we have '(d) < T(B), where [ A] stands
Jor the subalgebra of L generated by A.

Lemma 8.4.2 (Bruns and Harding 2000). Let £ = (L, <, A, V, LY be an ortho-
modular lattice. For anya € L andb; € L (i € I), ifaCb; for all i € 1, then

an(\/ by =\[(a rby),

il ief
avi /\ by) = /\( av b 8.4.2 Subspaces of a Hilbert Space
icl iel We now are ready to examine the algebraic structure of closed subspaces of a

provided N\, ; by and \/,; b; exist. Hilbert space. Let 1 be a Hilbert space. For any Y C 7¢, we write:

span(X) = ﬂ{Y ' X € Y is a subspace of H}.
Then span (X) is the smallest subspace of M containing X, and it is called the

subsp'ace‘of H generated by X. It is obvious that span(X) is the set of linear
combinations of vectors in X7 that is,

Furthermore, the foregoing lemma can be generalized considerably by intro-
ducing the notion of commutator. Let £ ={L, =<, A, V,1l) be an orthomodular
lattice, and let A € L. The strong commutator I'(4) of 4 is defined by

T4 = \/{b: aChforalla € 4, and (a1 AB)Claz Ab) forall ar, a € A). "
span(X) = {Y " Ail@i} :n > 1, € Cand i) € X forall 1 < < n},
fa=]

The set of closed subspaces of # is denoted by S(H). If we identify each closed
subspace X of 7{ with the projector Py, then S(H) can be seen as a subset of
P(H). Moreover, the inclusion relation coincides with the Iowner partial order in
S(H): forany X, ¥ e S(H), X C Y ifand only if Py T Py. Forany X, ¥ C 7, if
\go)_f_]g.[r) for all I?o) € Xand [¢) € ¥, then X and ¥ are said to be orthogonal, and
we write X 1Y, in particular we simply write |@) LY if X is the singleton {|e)}.
The orthocomplement of X is defined to be

If A is finite, then the commutator y(4) of 4 is defined by

y(4) = \/{/\ a/@ £ A4 — {1, —1} is a mapping},

acA

where a! denotes g itself and ¢! denotes al. The relation between commutator
and strong comnmutator is clarified by the following lemma. Tn addition, the third
item of the following lemma shows that commutator is a relativization of the
notion of commutativity.

Lemma 8.4.3 (Takeuti 1981). Let £ ={L, <, A, Vv, 1} be an orthomodular
lattice and let A € L. Then

(L) T'(4) = y(4)
(i) If A is finite, then T'(A) = y(A).
(iii} ¥(A4) = 1 if and only if all the members of A are mutually commutable.

Xt ={lp) e M [g)lX).

The foliowing theorem clarifies algebraic structures of the set of closed subspaces
of a Hilbert space.

Theorem 8.4.6 (Sasaki) (Kalmbach 1983). (S(H), C, A, Vv, L) is a complete or-
thomodular lattice, where the partial order  is the set inclusion, the smallest

element is the O-dimensional subspace {0}, the lar }
, west element is H, and for
M < S(H), we have: foram

AM=[]x

XeM

The following is a generalization of Lemma 8.4.2 given m terms of strong
commutator.

Lemma 8.4.4 (Takeuti 1981). Let £ = (L, <, A,v, L} be an orthomodidar
lattice and let A C L. Then

P AGan\ by = \ianby, VM= eS(H): XS forall X & M) = span(_J M),
iel ief
['(4) A /\(a vh)<av /\ b, 8.4.3 Projective Predicate Transformers
iel iel

With the preliminaries given in the previous subsections, we are able to deal
with the special class of quantum predicate transformers where only projection

Joranya € Aandb; € A € 1)
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operators are considered as guantum predicates. Assume that 7 is a Hilbert
space. Then a closed subspace of 7 is called a projective predicate on H. A
projective predicate transformer on # is a mapping from the set S(7{) of projective
predicates into itself. The set of projective predicate transformers on H is denoted
by QPT(H), ie.,

(Vi) f'is said to be positively disjunctive if

JN M=\ r (8.11)

XeM

Jor any nonempty M < 8 (H);

(vii) [ is said to he universally disjunctive
JUHOD = {0},

{viii} f is said to be upper-continuous if Equation (8.1 O holds whenever
B# MCS(H) is a chain, ie, it always holds that X T Y or ¥ cX
Jorany X, ¥ & M;

(ix) f is said to be lower-continuous if Equation (8.11) holds whenever
B £ M C S(H) is a chain.

OPTGD def e, it is positively disjunctive and

We may introduce a partial order on @P7(H) in a pointwise way: for any quantum
predicate transformers f, g € QPT(H),

< gif f(X) C g(X) forall X € S(H).

The next lemma follows immediately from Theorem 8.4.6,

Lemma 8.4.7. The set (QPT (M), ) of quanium predicate transformers on H is

We write QMT(H), QMCECH), QMP(H), and QMU(H) for the sets of
a complete orthomodular lattice.

monotone, finitely conjunctive, positively conjunctive, and universally conjunc-
tive projective predicate transformers on H, respectively. In addition, we write
QMD(H), QUC(H), QLC(H), QPD(H), and QUD(H) for the sets of finitely
disjunctive, upper-continuous, lower-continuous, positively disjunctive, and uni-

versally disjunctive projective predicate transformers on H, respectively. Obvi-
ously, we have:

(1) Its smallest and largest elements are denoted by (), 1, respectively, and
they are defined by 0(X) = {0} (the O-dimensional subspace of H), and
1(X) = H for each X € S(H).

(i) For any F € QPT(H) and X € S(H), we have:

AN\PD =N\ 1o,

« QMU(H) € QMP(H) < QMC(H),

rer » QUD(H) © QPD(H) © QMD(H), QUC(H);
VAHD =V 1. and
feF

© QMCOH), QMD(H), QUC(H), QLC(H) © CMT(H) € QPT(H).

The following lemma clarifies further the relationship
of projective predicate transformers.

A reward of focusing our attention on projection operators is that quantum
predicates constitute a lattice in a natural way. Thus, various healthiness condi-
tions (Dijkstra 1976; Hesselink 1992) can be casily generalized to the case of
quantum predicate transformers,

among the preceding spaces

Lemma 8.4.9.

Definition 8.4.8. Let 1 be a projective predicate iransformer on 'H. Then

1) QMT(H) is a complete sublattice of QPT(H).

(i) [ is said to be monotone if X C Y implies JXOC f(Nforany X, Y ¢ @ eMc(r), QMP(H), QLECH) and QMUTL) are all inf-closed in

QPT(H).
S(H), .
(i) f is said to be finitely conjunctive if f(X AY) = f(X) A F(Y) for any (i) QMD(H), QPD(H), QUCCH) and QUD(H) are all sup-closed in
LPT(H).
X. ¥ e S(H),
(iii) f is said to be positively conjunctive if

Wenow present a simple example to illustrate the notions previously introduced.

SAM= N\ 10 (8.10)

Example 8.4.10. Let 4 : H — H be a bounded linear operator. We define map-
XeM

ping A7 S(H) — S(H) by

Jor any nonempty M C S(H);

. A7(X) = :
(iv) f is said to be universally conjunctive if it is positively conjunctive and () ={le) € 1: 4lg) € X

FOHY = H; Jor each X € S(H). For any X ¢ S(H), it is easy to check thar A YX) is a
(V) f is said to be finitely disjunctive if f(X Vv ¥) = f(X)v f(¥) for any subspace of H, and closeness of ATYX) follows immediately from continuity of
X, Y e S(H),

A Thus, A7 is a projective predicate transformer. It is easy to see that A~ is
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universally conjunctive. At the same time, A7 is universally disjunctive, iLe.,
A7\ Xy =\ 47(x)
i i

Jorany X; € S(H). In fact,
AN Xy =47 (Y e S(H) : x; S Y forall i))

= J ' X € ¥ e S(H) forall i),

Note that ¥ € S(H) implies A7(Y) € S(H), and X; C Y implies A™HX)) C
A™NYY). Thus, we have:

AN x|z esty: a7 (x) < Z foralli} = \/ 47'(X)).

(i) For any unitary operator U, we have.
UTNX) ={U" g} : |9} € X}

In particular, we consider some single qubit gates. Let 'Hy be the 2-
dimensional Hilbert space. Then

S(Ha)y = ({0}, Ho} U (Haler, ) 120, B € C}

where Hi(o, B) = {y(a|0} -+ B8I1)) 1 y € C} is a 1-dimensional subspacte
of Hy for each o, B. We first look at the most frequently used single qubit
gates, Pauli matrices X, Y, and Z, the Hadamard gate:

111
H_E L 1)
0
S=(0 i)’
1 0
(L 9),

The predicate transformers XLyvz-t gl 85V and T1 are given
by

the phase gate:

and the g gate:

XY Hila, B)) = X(Hi(a, B)) = Ha(B. @),
Y ' (Male, B = Y(Hi(e, B)) = Hi(—B. @),
Z 7 Hole, BY) = Z(Hale, B)) = Hs (@, — ),
S~ Hyle, B)) = Hi(et, ~if),

T~ (Hi(e, ) = Hiler, ™5 )
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Jor all o, B. In general, each unitary operation on a single qubit can be
written in the form of U = e R ()R, (VIR (5), where A, W, v, and § are
real numbers,
g B Ji:
cosy —sing ez 0
R6)y={ " i ] R(6) = o

sing  coss 0 e:
are the rotation operators about y and z axes, respectively (Nielsen and
Chuang 2000). Then the predicate transformer U™ is given by

U N (Hi(a, B)) = Hy(a cos % + Bett sin % BeOH) g g wé?sin g).
For any quantum measurement {M,,), if X e S(H), then
M, Q) ={19) € H : ym) € X)

is the set of quantum states such that the postmeasurement states will lie in
X whenever we perform measurement {M,,} on them and the outcome m is
reported. In particular, we consider the computational basis measurement

P = 0001, Py = [1)(1}

on the first qubit of a 2-qubit system. For | = 0,1, if we hope that the
measurement outcome is i and the posimeasurement state is in the 1-
dimensional space H\(wx, B), then the state of the system before the mea-
surement should be in

Py, B)) = [y («li0) + B)i1)) : v € C).

8.4.4 Projective Weakest Preconditions

In Section 8.3 the forward semantics of quantum programs is given in terms of
superoperators. The backward semantics of a quantum program is defined to be
a mapping from the set of Hermitian operators bounded by 0y, and Iy into it-
self. In particular, it follows from Proposition 8.3.5 that the weakest precondition
semantics of a quantum program is also a superoperator. In the present section,
we decided to consider only projective predicates, and then backward semantics
of quantum programs is represented by mappings from the set of closed sub-
spaces of the state space into itself. What is the corresponding forward semantics
of quantum programs? Quantum programs are constiucted from two kinds of
quantum commands: unitary transformations and quantum measurements. A yni-
tary transformation is a bijection from the state space onto itself, On the other

- hand, a quantum measurement introduces certain probabilism. Roughly speaking,

a quantum measurement transforms a quantim state to a set of quantum states,
namely the postmeasurement states. Thus, a measurement can be Seen as a one-
to-many mapping from the state space into itself if the vectors used to represent

 the postmeasurement states are allowed to be not normalized and the probabilities
- of measurement outcomes are encoded into the lengths of these vectors. Further-

more, nondeterminate choice is a basic program constructor, and we hope it can
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be accommodated well in the forward semantics of quantum programs. Again,
nondeterminate choice leads us to consider one-to-many mappings from the state
space into itself. Note that a one-to-many mapping from a set X into itself can be
equivalently treated as a mapping from the power set of X into itself. This, together
with the consideration of preserving algebraic and topological structures in the
state space, motivates us to define (the forward semantics of) a quantum program
as a mapping from the set of closed subspaces of the state space into itself.

Definition 8.4.11. 4 mapping  from S(H) into itselfis called a quantum program
if it is lower-continuous, i.e., for any increasing sequences {X,}°2, of closed
subspaces of H,
je.u] 0
1\ Xa) = \/ t(X,).
n=0 n=0
At first glance, the foregoing definition coincides with the definition of lower-
continuous projective predicate transformer (see Definition 8.4.8(ix)). However, an
essential difference exists between them: a quantum program in Definition 8.4.11
is forward, whereas a projective predicate transformer is backward. More precisely,
let Hy = H, = ‘H. Then amapping # : S(Hy) — S(H,) is seen as a quantum pro-
gram from Hy to Hy, but a mapping f : S(Hy) — S(Hy) is treated as a predicate
transformer from H; to Hy. This is similar to the case of classical programs.
The notions of Hoare assertion and weakest precondition can be defined in the
setting of projective predicates in a familiar way.

Definition 8.4.12. Let t be a mapping from S(H) into itself

() Forany X, Y € S(H), we write X{1}¥ if t(X) < Y.
(i) For any X € S(H), the weakest precondition of X with respect o t is
defined to be a closed subspace wp(t{(X) of H satisfving the following
conditions:

(a) wp(H)(X)(F)X;

(b} for any ¥ € S(H), Y{t}X implies T C wp(t)(X).

8.4.5 The D’Hondt-Panangaden Weakest Preconditions versus
' Projective Weakest Preconditions

In this subsection we deviate from the right path to examine the relationship be-
tween projective weakest preconditions and the D*Hondt and Panangaden weakest
preconditions defined in Section 8.3. We first consider a special class of quantum
programs that are represented by superoperators preserving projectors.

Definition 8.4.13.

(1) Let £ € SO(H). If for any X € S(H), there exists ¥ € S(H) such that

E(Px) = APy for some 0 < L < 1, then we say that € preserves projectors.
(i) Let & € SO(H) preserves projectors. Then the restriction te of € on S(H) is
defined as follows: For each X € S(H), if E(Px) = APy, then ts(X) =Y.
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We note that if £(Py) = APy and E(Py} = uPy then ¥ = Z. So, 1z is well-
defined.

To simplify the presentation, we introduce an auxiliary notion. For any X, ¥ «
S(H), we define the cosine of the angle between ¥ and ¥ as follows:

dim X dim ¥

200 Hedw2,

=1 j=1

cos{X, ¥} =

where {l¢:)}{28 7 is an orthonormal basis of H such that loi} € X foralli < dim X

1 o i
and |¢;) € X" for all i > dim X, and {l¥;)}9m % is an orthonormal basis of

such that {;) € ¥ forall j < dim ¥ and [¥;) € ¥+ forall j > dim ¥, It is easy
to show that cos{X, ¥} does not depend on the choices of {los )} and {1y 3}

The following two technical lemmas will be used in the t
results in this subsection.

Lemma 84.14. Let X, X, X2, Y € S(H). Then we have:
(1) cos{X, ¥} = cos(¥, X) = Vir(Py - Py),
(i) X1 € X, implies cos({ X, Y} <cos(X,, ¥).

(iil) cos(X, ¥} < min(+/dim X, VdimY), and cos{X, ¥) = /dim X if and
enlyif X C Y.

proofs of the main

Proof. .Supp.ose that both {|¢;}} and {1} are orthonormal bases of H gt e X
forall i < dim X, jg;) ¢ X* for all i > dim X, [} € ¥ forall j < dim¥, and
[¥;) € T+ forall j > dim ¥, Then

dim ¥ dim ¥

r(PPr) =1tr(Y ool - 3 [0 ()
=1 P— )
dim X dim ¥ jl

=D D e lelv) ;)

=1l j=l
dim X dim ¥

=3 > el

i=1 j=1
= cos{X, ¥}?
dim X dim H

=20 D HelyyP

i=l j=I
dimX

= llw!P
i=1
=dim X,
Kcos(X, ¥} = +/dim X, then

dim ¥

Dol =1
J=1

_ forall/ < dim X This implies |¢;) € ¥ forall i < dim X, and X C Y.
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Lemma 8.4.15. Let & € SO(H) preserve projectors, let X, ¥ € S(H), and let X
be finite-dimensional. If for all p € D(H), we have.

tr{Pxp) < tr(PyE{p)),

thente(X) C Y.

Proof. (<=) Suppose that £(Px} = APz. Since X is a finite-dimensional subspace
of H, we have:
djml(X) Py e D(H),
where dim(X) is the dimension of X. Then we obtain:
(ot Py) = tr(E (e PY) < (o Py) = 1
dim(X) dim(X) dim( X}

from the definition of superoperator. This implies that Z is finite-dimensional,
Thus, it follows that

Adim(Z)

A
—m_zr( Pz =1

dim(X)

. dim(X)
= dim(2)

1
fd P .
P dimx) *

1

tr (PXPX)

1
~ dim(X)
= tr(Pxp)
< tr(PrE(p))

1
= Gm(X) tr(PxE(Px))

A
== mtr(PYPZ)

1
< tr(Py P
= dim(2) r(FrFz)

and dim(Z) < ir(Py Pz). Therefore, using Lemma 8.4.14 we obtain #z(X) =
ZCY, O
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Suppose that £ € SO(H) is a quantum program preserving projectors. Of
course, the ’Hondt-Panangaden weakest precondition wp(E) of € can be defined
in (P(H), ) according to Definition 8.3.4. On the other hand, the weakest pre-
condition wp(zg) can be defined in (S(H), <) according to Definition 8.4.12. An
interesting problem is to compare the restriction of wp(€) on S(H) with wp(te).

Proposition 8.4.16. Let & € SO(H) preserve projectors,

(1) For any X € S(H), if Z is a finite-dimensional subspace of H, and Pz C
‘ wp(E)(Px), then Z C wp(te X X) provided wp(te X X) is defined. -
(i) If & satisfies the condition: p = wplENE(P)) for all p € D(H), then for
any X € S(H), we have:
Pupyr) E wp(E)( Py).
Proof.

(i) Forany p € D(H), we have:

1r(Pzp) < tr(wp(E)(Px)p) < tr(PxE(p)).

Then it follows from Lemma 8.4.15 that t#(Z) € X, and by definition we
obtain Z C wp(te)}(X).

(i) Assume that ¥ = wp(fe)(X). Then ie(Y) C X, ie, E(Py) = APz for some
Aand Z with 0 < A < |l and X 2 Z e S(H). Now for any p € D(H), by
Proposition 8.3.5 we obtain:

1r(Pyp) = tr(Prwp(EXE(P)))
=ir(Py- Y ElE JOFLE)
iJ
=) tr(PyE] E;0ElE;)
i
=Y ir(E:PyE|£;pEl)
LF

=tr(Q_EPyE[- Y E;pE))
i j

= 1r(E(Pr)E(p))
< tr(PzE(p))
= tr(Px&(p)).
Therefore, it holds that Pr{£} Py, and Py T wp(E) Py) follows, O

_ Now we consider a partial inverse of the problem dealt with in the above propo-
sttion. Let ¢ be a mapping from S(H) into itself satisfying the upper continuity:

() ED = [ #EL

A<pt A< ih
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for any family {%,.},<, of closed subspaces of H with E,, € E,, whenever -
p1 < peo. Then ¢ induces an operator & on L(H) in the following way: Each
bounded positive operator 4 can be written in the form of

b
A:/ ME,
0

by the spectral decomposition theorem, where b > 0, and E, € S(H) for any -
0 < 4 = b. Then it follows from the upper continuity of t that {#(£,)} is a spectral
family, and we can define

where 4 is a positive operator, and the ri
Lebesgue-Stieltjes integral,

Now for any M e P(H), we show that wp(r)*
we only need to prove that wp(ty (MIEIM, e,

ght-hand side of Equation (8.15) is the

(M) E wp(€,)(M). To this end,

tr(wp(t)' (M)p) < tr(ME&(p))
for all o € D(7). Suppose that

1 1
M:L A.dE)” p:f ,LLdF’M
0

are the spectral decompositions of 3/ and o,
(8.13) and (8.14) we obtain:

b
£4A) = fu rdi(Ey).

Furthermore, & (4) can be defined forall 4 ¢ L£(H) by linearity, It is easy to check
that £ is a superoperator if dim(t(X)) < dim(X) for any X € S(H). On the other
hand, if /€ QUC(7)is a upper-continuous projective predicate transformer, they
we can define the extension f* : P(H) — P(H) of f in a similar way: for any
M e P(H),

respectively. Then with Equations

1
wp(ty (M) = [ f@ Adwp()ED] - p

1
_ /D rd[wp(t)(Ey) - p]

1
. 3 1 1
7o) = [ arem) (8.2 = [ satupixey. [ war
G

when M = fol Ad F) is the spectral decomposition of A7,

1 i
= [ Ad d i .
Proposition 8.4.17. Let t be a mapping from S(H) into itself satisfying the upper fo {fo udlwp()E,) - Fuj).
continuily and preserving the cosine of the angle between two closed subspaces

Similarly, we have:
of H:

cos(X, ¥} < cos{t(X), t(¥))

Jorany X, Y € S(H). Thenwe have wp(i)* & wp(£,), where wp(-) in the left-hand
side and wp(-) in the right-hand side are given according to Definitions 8.4.12 and
8.3.4, respectively, and the extension % in the left-hand side is defined according
fo Equation (8.12).

1 1
MEp) = fo rdf [0 ndlE; - 6(E, ).

Therefore, it follows from Equation (8.15) that

1 1
r(wp (6 (M)p) = [G x| fo udltr(wp()(E,) - F)),

Progf (Outline). The theory of spectral measures and integrals (see Prugovecki
1981, Chapter II1.5) can be generalized to the case of positive operator-valued
measures and integrals (Diestel and Uhl 1977) so that

[ 24,

is well defined, where {4, } is a family of positive operators. Furthermore, we have:

A f rdA,) = / Ad(AA;), (8.13)

1 i
tr(ME(p)) = /O Ad| fo ud[tr(Ey - t(F))).

Consequently, it suffices to show that

tr(wp(NE,) - F) < tr(By - 1(F,),

Infact, since wp((E )t} Ey, we have Hwp(t)E,)) € E,. Then by Lemma 8.4.14
and the assumption that ¢ preserves the cosine of the ang
spaces of H, we obtain:

le between closed sub-

r(wp(NEy) - Fy) = cos{wp(t)(E)), F,)?
< cos{t{wp(t)(EL)), 1(F, )
< cos{Ey, 1(F,))?
< tr(Ey - ({F,)).

( f AdAy) - A= f Ad(A; 4), (8.14)

rr([ AdA) = f)udtr(Al), (8.13)
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8.4.6 Quantum Commands

The remaining part of this section is mainly devoted to defining the semantics
of recursive procedures in the setting of projective predicates and to establish .
some of the fundamental properties of recursive procedures. We adopt the abstract
syntax of commands with procedures and unbounded choices used in Hesselink
(1992). The results obtained in the following subsections generalize the main
results in Hesselink (1992) to the case of quanturm programs by replacing classical
predicates with projective predicates in the semantics of commands. This can
be clearly seen from a comparison between the results presented later and the
corresponding ones in Hesselink (1992). Following Hesselink (1992), let . and
H be two sets of symbols. Tt is required that SN H = @. The elements of § are
called simple commands, and the elements of  are called procedure names.
Put 4 = S U H and assume that 4 does not contain the symbol € and “;”. The
set of strings over A is denoted by 4*. We shall use ¢ to denote the empty
string, and concatenation of strings will be expressed by the infix operator “;”.
Intuitively, the concatenation “;” is used to denote sequential composition of
commands. Furthermore, we write 4% for the set of nonempty subsets of 4%,
ie., A% = P(A%) — (@}, where P(-) stands for power set. The elements of A® are
called commands. A command C & A% stands for the choice among the elements
of C, which are also commands, whenever C contains more than one elements.

The recursive procedures are declared by a function

bedy : H — A°.

For each procedure name /2 € H, the body finction body associates it to its body
body(#), which is a command expression that may contain occurrences of & or
other procedure names. Intuitively, the behavior of procedure % is given by the
defining equation 2 = body(h). It is worth noting that recursive calls may happen
because # is allowed to appear in body(k).

We can define two operations of commands. The sequential composition of two
commands C, [} € A® is defined to be

C;D=|s;t:5eCandt € D},

and the (unbounded) choice of a nonempty family ¢ € 4® of commands is defined
to be

(Jceczo=]c

cel

Semaniics of commands is given in terms of homomorphisms from commands
to quantum predicate transformers.

Definition 8.4.18. 4 homomorphism is amapping ¢ : A — QPT(H) satisfying
the following conditions:
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() ¢(c) = Idssy (the identity mapping on S(H));
(i) (C; D) = p(C) o p(DY;
(i) ¢(LIC €C: C) = Apee 9(C)

forany C, D ¢ A and C € A°.

A homomorphism can be obtained by extending a mapping from simple com-
mands and procedure names to projective predicate transformers in a natural way.

Definition 8.4.19. Let v : 4 — QPT(H) be a mapping. Then:

(1) The extension v* of v on A* is defined inductively as jollows:
) v*(e) = Idspy, and v*(a;s) = via) o v*(s) foreacha € A and s € A*.
(i) The extension v® of v on A® is defined by

(0 = \v'6)

seC

for any C € 4°.

Some basic properties of the preceding extensicn are p'resented in the following
lemma, and their routine proofs are omitted.

ELemma 8.4.20.

(D) If range(v) € QMT(H), then range(v®) € OMT (H). The same holds
Jor QMC(H), QMP(H) and QMUCH).
(i) Ifrange(vy G QMU(H), then v° is a homomorphism.

8.4.7 Knaster-Tarski Fixed Point Theorem

To define semantics of quantum procedures, we need the Knaster-Tarsld fixed point
theorem. For convenience of the reader, we briefly review it in this subsection. Let
L be alattice and D a mapping from L into itself. If

DU = {Dw) : w € U} € U;

then U7 is said to be D-invariant.

Theorem 8.4.21 (Knaster-Tarski) (Hesselink 1992). Let L be a complete lattice,
and let D : L. — L be a monotone function. Then

{0y D has a least fixed point fp( D} and a greatest fixed point g fp(D).
(i) For any D-invariant subset U of L, we have:
(a) fp(D) € U if U is sup-closed, ie, \/ V c U forall V C U;
(b) gfp(D) € U if U is inf -closed, i.e, NV e U forall V C U.

The upper and lower ordinal powers of a mapping 13 : I — [ are defined as
follows:
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s DHY0=0,D)0=1 ‘ :
. DT(a+1)=D(DTa),D¢(oc—|—1)=D(D¢oz)f0reachordmalnmn-

ber «; and . . o
e Dta=\{DtB: 8 <ul Dia=AD|B:p<e)ifaisa limt
ordinal number.
The next proposition gives an explicit representation of fixed points in terms of
ordinal powers.
Proposition 8.4.22 (Lloyd 1987). Let I, be a complete lattice, and let D : L — L
be monotone. Then
i < nd DY < D |« for any ordinal number «;
(Eg ?hjrj e;islfpo(:;gnil nfﬁlgerz o anti a{such that D 1 o = Hp(D) for all
o> o and D o= gip(D) for all o = o1
The following proposition will be used in proving the termination law of quan-
tum programs.

Proposition 8.4.23 (Hesselink 1992). Let L be a complete lattice and K a com-
plete sublattice of L, let f, g+ L — L he monotone mappings, and let f\K be the

restriction of | on K. Then
(i) (a) p(f1K) = Hp(/f) #f1p(f) € K-
(b) efp(f1K) = glp(f) if efp(f) € K.
(i) p(f) < ip(g). gfp(f) < eflg)if f <gie, fla) = gla)joralla € L.

8.4.8 Semantics of Recursive Quantum Commands

Now we are able to define semantics of recursion expressed by procedure names
and their declarations. Letw : § — QPT(H)andu : H — QPT(H). Then their

merging wUu : A — QPT(H}is defined by
w(a) ifa<s,

(wUnla) = lu(a) ifaeH.

Note that w U # is well defined because it was assumed that § M H = . As an
immediate corollary of Lemma 8.4.20(i), we have:
Lemma 8.4.24. If for any a € 8, w(a) is universally conjunctive, and for an.y
a € H, u(a) is universally conjunctive, then for any C & A®, (wUw)P(C) is
universally conjunctive.

For each mapping w : § — QMT(H), it induces a mapping D[w] from
OMT (H) into itself as follows:

Dlw](n) = (w U u)° o bedy

for any 1 1 H — QMT(H). It follows directly from the definition of w U u and
Lemma 8.4.20() that D{w](u)(h) € QMT(H) for every % € H. Then we are
ready to present the key definition of this secticn.
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Definition 8.4.25. Letw : § > QMT(H). Then:
(&) The weakest precondition function generated by w is defined to be
wplw] = (w U lp(D{w]))®.
(i) The weakest liberal precondition function generated by w is defined to be
wiplw] = (w U gfp(D[w])®,

where Up(D[w]) and gfp(D[w]) stand for the least and greatest fixed points of
D[w], respectively.

It is easy to see that D[w] is monotone. Then we know that Ifp(D[w]) and
gip(D[w]) always exist from Lemma 8.4.9(1) and Theorem 8.4.21(1), and wp[w]
and wip[w] are well defined.

Lemma 8.4.26. Foranyw : S — QMT(H)and h € H, we have:

(1) wplwl(h) = wplw](body(h)) and wip[wl(h) = wip[wl(body(k));
(i) If range(w) C€ QMU(H), then wiplw] is a homomorphism,

Proof.

(i} is obvicus from the definition of D[w] and Definition 8.4.25.
(ii} Tt follows from Lemma 8.4.9(ii) that QM (H)¥ is inf-closed. On the other
hand, we see that D[w] is QMU(H)? —invariant by a routine calculation.
Then we have gfp(D[w]) € QMU(H)YT by Theorem 8.4.21(ii), and it
follows from Definition 8.4.25(ii} and Lemma 8.4.20(ii) that wip[w] is a
homomorphism. |

8.4.9 Healthiness Laws for Quantum Commands

Healthiness conditions were first introduced by Dijkstra (1976) and then thor-
oughly investigated by Dijkstra and Scholten (1990) among others, and they pre-
scribe certain properties of predicate transformers. The aim of this section is to
establish the quantum generalizations of some healthiness laws.

Universal conjunctivity is one of the most important healthiness laws for predi-
cate transformers, and it asserts that the predicate transformers under consideration
preserve arbitrary meets of predicates. Universal conjunctivity of classical weakest
liberat preconditions can be generalized to the quantum case in a straightforward
way.

Theorem 8.4.27 (Universal conjunctivity of weakest liberal precondition). i/ w(a)
is universally conjunctive for all a € 8, then wlp|w](C) is universaily conjunctive
Joreach C ¢ A%,

Proof. We see that gfp(D[w]) € QMIU(H)T from the proof of Lemma 8.4.26(ii).
Thus, it immediately follows from Lemma 8.4.24 and Definition 8.4.25(ii) that
wip[w] (C) € QMIU(H) forall C € 4%, I
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Amnother important healthiness condition is termination law, which asserts that
the total correctness of a program is the conjunction of the termination and the
partial correctness of the program. It has been widely used in reasoning about total
correctness of classical programs. The quantum version of termination law is not
a straightforward generalization of the classical termination law. It requires some
new insights from quantum logic, and its proof is much more skillful than that for
classical programs (Hesselink 1992). To establish the quantum termination law,
we first need to give two technical lemmas:

Lemma 8.4.28. Let X € S(H), and let w: S — QMT(H) and u: H —
OMT(H). Ifforalla € S and h € H, we have X C w(a)}( X} and X C u(h)(X),
then for all C e A9, it holds that

X C (wUu)(CHX).

Proof. We proceed by induction on the structure of C. For the case of C = a ¢ 4,
it is obvious. If C = a;s, where ¢ ¢ A and s € 4%, then we obtain:

(w U ) (ONX) = (w U u)(a; $)(X)
= (w Uu)a)((w U u) (s)(X))
= (w Uu)(a)X)
o X

from the induction hypothesis: X < (w U u)®(s)(X). In general, it follows that

(w U)2(C)X) = N\ (w Uu)s)X) 2 X

seC

from the induction hypothesis that X € (w U ) (s)}(X) foralls € 4™. o

Lemma 8.4.29. Let X € S(H). If X € w(a)}X) for alla € S, then for alla € 4
we have:

X < wip[wl(a)(X).
Proof. From Definition 8.4.25 we obtain:

wiplw](a)(X) = (w U gfp(DfwD)a)(X)
- w(a)(X) ifae s,
gp(D[wa)X) ifaeci

Therefore, it suffices to show that X € gfp(D[w]){(#)(X). By Theorem 8.4.27,
we only need to prove X G (D[w] | a)(A)(X) for all ordinal numbers o, where
DJ[w] | « is an ordinal power of D[w].

We proceed by transfinite induction on ¢. If @ == 0, then

(Dlw] § )X =H
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and the conclusion holds. Now assume that X < (Dlw] | a)(RNX). Then
(Dlw] i (e + DYANX) = D[w](D[w] | a)(h)(X)
= (w U (D[w] | &))®(body(h))(X)
and it follows from Lemma 8.4.28 that
X < (Dlw] { (o + )X,
Finally, if & is a limit ordinal and X' C (D[w] | BYA)NX) forall B < , then

X < A\@Iwl | HGNX) = (Dlw] | a)i)).

Bz

a
To pr_esent the quantum termination law in a compact way, we need to introduce
an auxiliary notation. For any w ; § — QMT (H), we write:

Range(w) = |_Jlw(a)(X): X e S(0)}.

aes
Theorem 8.4.30 (Termination law). Suppose that w,w- : S — QMT(H) sat-
isfy the following condition:
wi(@)(X) = wi{a)(H) A wy(a)(X)

Joranya € Sand X € S(H). Then

(i) For any C € A® and X € S(H), we have:

wp[wi J(CAX) S wplwi (CWH) A wip[w {CHX).
(1i) Let M < S(H). If
(a) Range(un), Range(w,) € M,

(b} I'{AM) € wola)( (M) for all a € S, and
{¢) ws(a) is universally conjunctive for all a € §,

then we have:
wplun HOXH) A wip[w2 J(CHX) A TIM) C wp[w J(C)X),
where T'(M) stands for the strong commutator of M.

Note that if all the elements of A commute mutually then M'{AM) = H, and
condition (ii)(b) becomes a part of condition (ii)(c). Furthermore, we have:

wplun J(C)H) A wip[wa XOHX) = wplw J(CHX)
by combining the two parts of the theorem.

Proof.

(1) It is obvious that wp[u KCHX) S wplwJ(C)(H). So, we only need to
show that

wplw J(CNX) € wip{w,1(C)(X).
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Since un C wz, we have D[w:] € Diwp]. Then we obtain:
Ifp(Pw ] € gfp(Dlwr]) € gfp(Dw2])
by Proposition 8.4.23, and it follows that
wplwi] = (w; Up(DlunD)® € (w2 U gfp(Dlw2]))® = wipws]-

(ii) The proof of part (i) consists of five claims. First, we write [A4] for the

complete sublattice of S(*) generated by M. Put
W = {u € QMTH) : u(h)(X) e [M]forallh € H and X € S(H)}.
It is easy to see that W is a complete sublattice of QM T (H).

« Claim 1. D[w] 1 a, Dlwz] L a e W for all ordinal numbers o, where

Diwi1 1 a, Dlw:] { a are ordinal powers of D[w] and Dw;], respec-
tively.

The proof of this claim can be carried out by transfinite induction on «, and
it is routine and so omitted here. We only need to note that here the condition
Range(w,), Range(w,) € M is required.

Let ifp(D[w;]) and Lip(D[w]) stand for the least fixed points of D{wq] in
OMT(H)" and W, respectively. In addition, let gfp(D{w,]) and Gfp(Dfw,]) be
the greatest fixed points of D{wz] in OMT(H)™ and W, respectively. Then we
have:

« Claim 2. 1fp(D{w1]) = Lip(Dlw1]) and gfp(D[w,]) = Gip(D[w2])

In fact, we see that Ifp(D[w1]), gfip(D[w2]) € W by combining claim 1 and
Proposition 8.4.22. Then claim 2 follows immediately from Proposition 8.4.23.
Now we set

U = {ueW:u(h(H)rwlp[w](h)(X) A T(M)
C u(h) Xforall h € Hand X € S(H)-

« Claim 3. For eachu € U, we have:
(w1 Uu)2(CNH) A wlp{un](CHX) A TM) € (w1 Uu)(CHE)
forall C € A° and X ¢ S(H).
The proof of this claim is carried out by induction on the structure of C.

« Case 1. C = a € S. Then we have:

(w1 Y ) (ONX) = wi(a)(X),
(w; Uw)(O)H) = wia)(H),

wlplwa)(C)(X) = (w2 U gfp(Dw2])(CHX) = wa(a)(X).

Thus, claim 3 follows from the assumption about u, and wo.
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« Case 2. C=h € H. Then
(w1 Uu)*(C)Y(H) = u(h)(H),

(w1 U ) (CHX) = u(m)(X),
and claim 3 follows from the fact that v < 4.
» Case 3. C = a;s, where a € 4 ands € 4*. For simplicity, We write:
LHS = (w1 Uu)®(C)H) A wip[wHCHX) A T(M).
Then we obtain;
LHS = (w1 Uu}a){wi Uw)'($)H)) A wiplwy @) wip[ws(s)(X)) A T(M)
€ (w V)@ H) A wiplw2l(a) (w1 U u)™(s)(H))
A wiplw:J(a)(wip[w2](s)(X) A T(M).

Using Lemma 8.4.29 we assert that I'(M) < wip[w,(a)T{M)), and it
follows that ’

LHS < (w1 Vu)a)(H) A wip[wala)(wr Uu)*(s)(H))
A wiplwal(@)wip[w2)(s)X) A wip[w, (T (M) A T (M).

Since ws(a) is universally conjunctive, we have:

LHS C (v Yula)H) ~ wiplw W a)(wy U u)(s)H)
A wlp[w2]()(X) A T(M)) AT (M)
€ (wi Vuda)(H) A wiplwa J(@)({wy U )" (s)X)) A T(M)
G (wr U a)(a)((wr U u) (s (X))
= (w1 Uu){a:s)(X)
= (w1 Vu)°(C)(X)
by using Theorem 8.4.27 and the induction hypothesis on 5 and a.

In general, the induction hypothesis on s € A* leads to

LHS = [\(or U)X A [\ wiplwa)(s)(X) A T(M)

seC seC

= ALy U (s)(H) A wiplwa](s)(X) A T(M)]

seC

€ A Uy )0

seC
= (wy Uu)*{(CYX)

and this completes the proof of claim 3.

« claim 4. U is D[w, -invariant.
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In fact, for any u € U, claim 3, together with Lemma 8.4.26, yields: (ii) If I £ B then it holds that

Dlwn 1()(UH) A wip[w2)(BHX) AT (M)
= (w1 Uu)? (body())(H) A wiplun](body(i))(X) AT(M)
< (wy Y u)®(body(h))(X)
< Dlun J@)(h)(X).

This means D{w J{u) € U,

N\ wPwlO&) A TM) € wplwl(CHN X)),

iel iel

8.4.1¢ Induction Rules

Hoare’s induction rule (Hoare 1971} is a basic tool of establishing partial correct-
ness of recursive procedures. It may be easily generalized to quantum programs
with the projective predicate transformer semantics.

o Claim 5. U is sup-closed.

Theorem 8.4.32 (Hoare’s induction rule). Let h; ¢ H (iel) fet w:85—

QMI(H), andlet X;, Y; € S(H) (i € I). Suppose that for all homomorphisms ¢ ‘ :
with ¢|S = w, s

It follows from Theorem 8.4.27 that

wip[wy] = (w2 U ghp(D[w2]))® o body = (w2 U (Dlwe] { @))” o body

for some ordinal number o. Then claim 1 implies wip[w,1(A)}X) € [M] for all
he Hand X € S(H).
For any u; € I (i € I), we obtain:

(\/ un)BYH) A wiplws](R)(X) A TEM)

iel

Xi © @(h)(Y;) foreveryi € 1 ‘

implies

X: € p(body(h))(Y;) for every i € I.
Then X; C wipfw](h: )T;) for everyi € 1.

= (\/ w:(R)(HD) A wip[w2)()(X) A T(M) Proof. Put
iel ‘
U={u: QMTHY : X; C u(h)(Y) i j )
< \/ (s (h)(H) A wiplun](RYX) A T(M)) fu: QMTONT 2 X C uhi)Y;) forall i € 1} i
iel It is obvious that 2{ is inf-closed. For any u ¢ U, we see from Lemma 8.4.20 that
c \/ 2w, (WYX (w U 1) is a homomorphism, In addition, we have:
N (w U (ha)(T) = u(h () 2 X,
= (\/ B . ° :
h foralli € I, and (w U 2)®|§ = w. Then the assumption yields:

by Lemmas 8.4.4 and 8.4.5. Thus, \/, ., u; € 4. D[w]@)(h:)(¥5) = (w U w)®(body(h))(¥;) D X,
Finally, combining claims 3, 4 and 5 and Theorem 8.4.27 we assert that
fp( D[w1])} = Lip(D[w1]) € U, and we complete the prool by using Claim 3 once

again and by noting that

for all £ € I. Hence, U is D{w]—invariant. With Theorem 8.4.21 we obtain
efp(D[w]) « I4; that is,

wip[w (e )X¥;) = gf(Dlwlh X¥) 2 X i

foralli e I. o il

wplwi] = (w1 Up(Dwi])®.

o o . :
Similarly, we are able to prove the following quantum generalization of Hes- B

selink’s necessity rule, which is useful for proving that a recursive procedure does “I
not satisfy a specification (see Hesselink 1992, Section 2.7). \

A weak version of universal conjunctivity of quantum weakest preconditions
can be derived from universal conjunctivity of quantum weakest liberal precondi-
tions and termination law.

Theorem 8.4.33 (Hesselink’s necessity rule). Let h; e H (i € ), let w: 8§ — g ?;
QMT(H), and let X;, ¥; € S(H) (i € I). Suppose that for all homomorphisms ¢ H
with | S = w,

Corollary 8.4.31. Let w1, wy and M be as in Theorem 8.4.30. Then for each
C € A9 we have:

(@) wplwl W Nser X1) € Niey wp[w](CXX).

(¥ C X, foreveryi € 1
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implies
@(body(h))¥;) C X; foreveryi € I.
Then wp[wi(h;)(Y:) € X foreveryi ¢ 1.

8.5 Conclusion

This chapter presents a systematic exposition of predicate transformer seman-
tics of quantum programs. The chapter is divided to two main parts. The first
part is devoted into a thorough review of the D’Hondt-Panangaden approach to
quantum predicate transformer semantics where quantum predicates are treated
as observables with their eigenvalues within the unit interval. In the second part,
we choose to deal with a special class of quantum predicates, nately projection
operators. This allows us to establish a quite complete predicate transformer se-
mantics for quantum programs by employing some powerful mathematical tools
from Bitkhoffvon Neumann quantum logic. In particular, various healthiness
conditions are introduced, and the universal conjunctivity, termination law, and
Hoare’s induction rule are generalized into the quantum setting. The relationship
between projective weakest preconditions and the D'Hondt-Panangaden quantam
weakest preconditions are carefully examined.

An interesting topic for further studies would be to establish a link between
quantum predicate transformer semantics and Kozen’s probabilistic predicate
transformer semantics (Kozen 1981) through the Gleason theorem {Dvurecenskij
1993).

This chapter focuses on establishing a mathematical foundation of quantum
predicate transformer semantics. So, a more important topic for further studies
would be to apply the abstract mechanism developed in the present chapter to
guantum program verification or development. In fact, D’Hondt and Panangaden
(2006) used their approach to give a semantics of Selinger’s QPL (Selinger 2004),
and the D’Hondt-Panangaden approach to quantum predicate transformer seman-
tics was also used by the authors of the present chapter (Feng et al, 2007) to
give proof rules for the correctness of programs written in a simple language
fragment that may describe the quantum part of a future quantum computer
in Knill’s architecture (Knill 1996). In a forthcoming paper, we will systemat-
ically use the projective predicate transformer semantics developed in the second
part of this chapter in reasoning about programs written in the existing quantum
programming languages, €.g., Omer’s QCL (Omer 2003), Sander and Zuliani’s
qGCL (Sanders and Zuliani 2000), and Selinger’s QPL (Selinger 2004), as well as
quantum loops defined in Ying and Feng (2006). In Zuliani (2004}, Zuliani initi-
ated a study of nondeterministic quantum programming. In the future studies, we
hope to define the notion of refinement relation between quantum programs based
on quantum predicate transformer semantics and eventually build a refinement
calculus for supporting stepwise refinement strategy in quantum programs devel-
opment by combining the work reported in this chapter with that of Zuliani (2004).
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Furthermore, we believe that quantum backward semantic techniques and quan-
tum refinement calculus will even find their applications in quanturn engineering
design, an area much wider than quantum programming.
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The Structure of Partial Isometries

Peter Hines and Samuel L. Braunstein

Abstract

Itis well known that the “quantum logic™ approach to the foundations of quantum
mechanics is based on the subspace ordering of projectors on a Hilbert space. In
this paper, we show that this is a special case of an ordering on partial isometries,
introduced by Halmos and McLaughlin, Partial isometries have a natural physical
interpretation, however, they are notoriously not closed under composition, In or-
der to take a categorical approach, we demonstrate that the Halmos-McLaughiin
partial ordering, together with tools from both categorical logic and inverse cate-
gories, allows us to form a category of partial isometries.

This category can reasonably be considered a “categorification” of quantum
logic — we therefore compare this category with Abramsky and Coecke’s “com-
pact closed categories” approach to foundations and with the “monoidal closed
categories™ view of categorical logic. This comparison illustrates a fundamen-
tal incompatibility between these two distinct approaches to the foundations of
quantum mechanics.

9.1 Introduction

As early as 1936, von Neumann and Birkhoff proposed treating projectors on
Hilbert space as propositions about quantum systems (Birkhoff and von Neumann
1936), by direct analogy with classical order-theoretic approaches to logic. Boolean
lattices arise as the Lindenbaum-Tarski algebras of propositional logics, and as the
set of all projectors on a Hilbert space also forms an orthocomplemented lattice,
the operations meet, join, and complement were analogously interpreted as the
logical connectives conjunction, disjunction, and negation.

However, the lattice of projectors is not a Boolean lattice, so this interpretation
requires modifications to the rules of propositional logic (notably the distributive
law, A A(BV ) = (AAB)v(4AC) fails and is replaced by the weaker
condition 4 < C = A A (A1 v C) = C). The resulting system of orthomodular
lattices has become known as guantum logic, and a number of authors (Finkelstein

361




	20100611162411343.pdf
	20100611162646945.pdf
	20100611162901868.pdf

