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Predicate Transformer Semantics of 
Quantum Programs 

Mingsheng Ying, Rnnyao Duan, Yuan Feng, and Zhengfeng Ji 

Abstract 

This chapter presents a systematic exposition of predicate transformer semantics 
for quantum programs. It is divided into two parts: The first part reviews the state 
transformer (forward) semantics of quantum programs according to Selinger's 
suggestion of representing quantum programs by superoperators and elucidates 
D'Hondt-Panangaden's theory of quantum weakest preconditions in detail. In 
the second part, we develop a quite complete predicate transformer semantics of 
quantum programs based on Birkhoff-von Newnann quantum logic by considering 
only quantum predicates expressed by projection operators. In particular, the 
·universal conjunctivity and termination law of quantum programs are proved, and 
Hoare's induction rule is established in the quantum setting. 

8.1 Introduction 

In the mid-1990s Shor and Grover discovered, respectively, the famous quantum 
factoring and searching algorithms. Their discoveries indicated that in principle 
quantum computers offer a way to accomplish certain computational tasks much 
more efficiently than classical computers, and thus stimulated an intensive inves
tigation in quantum computation. Since then a substantial effort has been made 
to develop the theory of quantum computation, to find new quantum algorithms, 
and to exploit the physical techniques needed in building functional quantum 
computers, including in particular fault tolerance techniques. 

Currently, quantum algorithms are expressed mainly at the very low level of 
quantum circuits. In the history of classical computation, however, it was realized 
long time ago that programming languages provide a technique that allows us to 
think about a problem that we intend to solve in a high-level, conceptual way, 
rather than the details of implementation. Recently, in order to offer a similar 
technique in quantum computation, people began to study the principles, design 
and semantics of quantum programming languages; for excellent surveys see Gay 
(2006) and Selinger (2004). 
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Since it provides a goal-directed program development strategy and nondeter
minacy can be accommodated well in it (Dijkstra 1976; Hesse link 1992), predicate 
transformer semantics has a very wide influence in classical programming method
ology. With the prospect of goal-directed quantum programming, two approaches 
to predicate transformer semantics of quantum programs have been proposed in 
the literature. The first approach is to treat an observation (a measurement) proce
dure as a probabilistic choice. Thus, a quantum computation is naturally reduced 
to a probabilistic computation, and predicate transformer semantics developed for 
probabilistic programs (Kozen 1981; Morgan et al. 1996) can be conveniently used 
for quantum programs. For example, Butler and Hartel (1999) used the probabilis
tic weakest precondition calculus (Morgan et al. 1996) to model and reason about 
Grover's algorithm. In particular, Sanders and Zuliani (2000) designed a quan
tum extension qGCL of the guarded-command language GCL and established a 
refinement calculus supporting verification and derivation of quantum programs. 

The second approach was proposed by D'Hondt and Panangaden (2006), where 
the notion of predicate is directly taken from quantum mechanics; that is, a quantum 
predicate is defined to be an observable (a Hermitian operator) with eigenvalues 
within the unit interval. In this approach, forward operational semantics of quantum 
programs is described by superoperators, as suggested by Selinger (2004), and 
an elegant Stone-type duality between the state-transformer (forward) semantics 
and the predicate-transformer (backward) semantics of quantum programs can be 
established by employing the Kraus representation theorem for superoperaiors. 

A further development ofthe second approach requires us to tackle some prob
lems that would not arise in the realm of classical and probabilistic progranuning. 
One of such problems is to well define various logical operations of quantum 
predicates, since they will be needed to combine different quantnm weakest pre
conditions in reasoning about complicated quantum programs. For example, con
junction and disjunction are two of the most frequently used logical operations, 
and it is natural to define conjunction and disjunction of quantum predicates as the 
greatest lower bound and the least upper bound of them, respectively, according to 
the Lowner order. Unfortunately, it is known that the set of quantum predicates is 
not a lattice, and thus the greatest lower bound and the least upper bound of certain 
quantum predicates do not exist, except in the trivial case of one-dimensional state 
spaces (Kadison 1951). Moreover, the problem of finding necessary and sufficient 
conditions for the existence of the greatest lower bound and the least upper bound 
of quantum predicates is still unsolved for state spaces with dimension greater 
than 3 (Gudder 1996). Only some sufficient conditions have been discovered, and 
most of them are related to commutativity of quantum predicates (for a more 
general exposition on commutativity required in defining operations of quantum 
predicates, see Varadarajan 1985, Section 7.3.6). As noticed in Ying et al. (2007), 
however, the weakest preconditions of hvo commutative quantum predicates do 
not necessarily commute. This is an obvious obstacle in the further development 
of predicate transformer semantics for quantum programs, and it seems to be very 
difficult to overcome in the general setting. 
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A way to avoid the preceding difficulty is to focus our attention on a special 
class of quantum predicates, namely projection operators. There are at least hvo 
further reasons for choosing to consider only projectors as quantum predicates: 

The first one is conceptual, and it comes from the following observation: 
The quantum predicates dealt with in D'Hondt and Panangaden (2006) are 
Henmt1an operators whose eigenvalues are within the unit interval and in 
a sense, they can be e~vis~ged as quantization of probabilistic pr:dicates. 
On the other hand, projectiOn operators are Hermitian operators with 0 or 
1 as _their eigenvalues, and they should be thought of as quantization of 
classical (Boolean) predicates. Physically, the simplest type of measuring 
mstrument IS one ?erforming so-called yes-no measurement. Only a single 
change may be tnggered on such an instrument, and it is often called an 
effect by physicists. Indeed, Kraus (1983) presented an elegant reformulation 
of quantum mechanics in terms of effects, which are represented by projection 
operators. 

The second reason is technical: Projection operators in a Hilbert space corre
spon~ one-onto-one to closed subspaces of this space, and the LOwner order 
restncted on projection operators coincides with the inclusion between the 
corresponding subspaces. The set of closed subspaces of a Hilbert space was 
recognized by Birkhoff and von Neumann (1936) as (the algebraic counter
part of) the logic of quantum mechanics, and its structure has been thoroughly 
mvesl!gated m the development of quantum logic for over 70 years. Thus, 
we are able to explOit the power of quantnm logic in our research on predi
cate transformer semantics of quantum logic. In particular, the greatest lower 
bound and least upper bound of projection operators always exist no matter 
whether they commute or not. 

This chapter presents a systematic exposition of the second approach to predi
cate transfo~er seman~ICS of q~antum programs, and in particular, we try to build 
a mathemal!cal foundatiOn for It. The chapter is organized as follows: Section 8.2 
~evtews t~e sta~e transfo:rner (f~n:vards) semantics of quantum programs accord
Ing to Selmger s suggestiOn (Selmger 2004) of representing quantum programs by 
super-operators. D'Hondt-Panangaden's theory (D'Hondt and Panangaden 2006) 
of quantum weakest preconditiOns IS elucidated in detail in Section 8.3 where 
the problem of commutativity of quantnm weakest preconditions is also e;amined 
based on the authors' previous work (Ying et al. 2007). In Section 8.4, we develop 
a qmte complete predicate transformer semantics of quantum programs based 
on B1rkhoff-von Neumann quantum logic by considering only quantnm predi
cat~s e~pressed by projection operators. More concretely, we define the notion of 
P~~Jechve (quantum) predicate transformer and introduce various healthiness con
ditwns for quantnm programs in Subsection 8.4.3. In Subsection 8.4.4, the notion 
of projective weakest precondition is proposed, and Subsection 8.4.5 is devoted 
to exammmg the relationship between the D'Hondt-Panangaden quantnm pred
Icate transformer semantics and projective predicate transformer semantics. The 

! . 
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syntax and semantics of quantum commands are then presented in Subsec
tions 8.4.6 and 8.4.8. The universal conjunctivity and termination law of quantum 
programs are proved in Subsection 8.4.9. The termination law is one of the main 
results of the present paper, and its proof reqillres essential applications of math
ematical tools developed in quantum logic, in particular, Takeuti's technique of 
strong commutator (Takeuti 1981). In Subsection 8.4.10, Hoare's induction rule 
is established in the quantum setting. The main results of Section 8.4 have not 
been published before. We draw a brief conclusion and point out some topics for 
further studies in Section 8.5. To make the chapter as self-contained as possible, 
we briefly present preliminaries when needed. 

8.2 Quantum State Transformers 

We recall that in the state transformer semantics of a classical imperative language 
a state space is simply assumed to be a nonempty set of states. Then a command 
in the language is interpreted as a state transformer that is a mapping from the 
state space into itself. To define the state transformer semantics of a quantum 
programming language, we need to introduce the notion of q~antum state space 
and to give suitable interpretations of the quantum commands m the language. 

8.2.1 Quantum States 

According to a basic postulate of quantum mechanics, the state space of an isolated 
quantum system is a Hilbert space. For convenience of the reader, we briefly recall 
some basic notions from Hilbert space theory. We write C for the set of complex 
numbers. For each complex number A E C, A' stands for the conjugate of A. A 
(complex) vector space is a nonempty set 1i together with two operations:.vec.tor 
addition + : 'H x 'H --> 'H and scalar multiplication · : C x 'H -+ 'H, sahsfymg 
the following conditions: 

(i) ('H, +)is an Abelian group, its zero element 0 is called the zero vector; 
(ii) llq;)=lq;); 

(iii) A(f.<i\0)) = A!LI\0); 
(iv) (A+ !L)Iq;) = Alq;) +ILl'!'); and 
(v) A(l'l') + 1'/r)) = Alq;) + Al'/r) 

for any A, !L E C and lq;), 1'/r) E 'H. 
An inner product over a vector space 'H is a mapping (·I·) : 'H x 'H -+ C 

satisfying the following properties: 

(i) (q;lq;) 2: 0 with equality if and only if lq;) = 0; 
(ii) (q;l'fr) = ('frlq;)*; and 

(iii) (q;IA! 1'1 + A2Vr2) = AJ (q;l'fri) + A2(\0IVr2) 

for any l\0), 1'/r), 11'1), 11'2) E 'Hand for any AJ, A2 E C. Sometimes, we also write 
(l<p), 11')) for the inner product (q;l'fr) of l\0) and 1'/r). Two vectors lq;), 1'/r) in 'H 
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are said to be orthogonal and we write lq;) j_ 11') if (q;l'fr) = 0. For any vector 
11') in 'H, its length 111'11 is defined to be ~(1'1'/r). A vector 11') is called a 
unit vector if II 1' II = I. Let 'H be an inner product space, {I 'fr")} a sequence 
of vectors in 'H, and I 1') E 'H. If for any E > 0 there exists a positive integer 
N such that IIVrm- 'fr,ll < E for all m, n ~ N, then {1'/r,)} is called a Cauchy 
sequence. If for any E > 0 there exists a positive integer N such that 11'/r,-
1'11 < E for all n 2: N, then 1'/r) is called a limit of {IVrn)} and we write 11') = 
limHoo IVrn). A family {/'/r;)ltEI of vectors in 'His summable with the sum 11') 
and we write 1'/r) =LiEf 1'/r;) if for any E > 0 there is a finite subset J of I such 
that 

111'- L 'frill< E 

iEK 

for every finite subset K of I containing J. A family { 1 'fr1)}; El of unit vectors is 
called an orthonormal basis of'H if 

(i) l'fr,) _l IVrJ) for any i, j E I with i 7" }; and 
(ii) 11') = L 1Er(Vri1Vr)l'/r;) for each 11') E 'H. 

A Hilbert space is a complete inner product space; that is, an inner product 
space in which each Cauchy sequence of vectors has a limit. Let X be a subset 
of Hilbert space 'H. If for any 11') E 'Hand any E > 0, there exists lq;) EX such 
that II 1' - q; II < E, then we say that X is dense in 'H. A Hilbert space 'H is said 
to be separable if it has a countable subset dense in 'H. Each orthonormal basis 
of a separable Hilbert space must be countable. In this chapter, we consider only 
separable Hilbert spaces. If a Hilbert space 'H is the state space of a quantum 
system, then a pure state of the system is described by a unit vector in 'H. 

A (linear) operator on a Hilbert space 'His a mapping A : 'H --> 'H satisfying 
the following conditions: 

(i) A(lq;) + 1'/r)) = Alq;) + Al'fr); 
(ii) A(AI'/r)) = AAI'fr) 

for all lq;), 11' E 'Hand A E C. If {11'1)} is an orthonormal basis of 'H, then an 
operator A is uniquely determined by {A I 1'1)}. An operator A on 'H is said to be 
bounded if there is a constant C 2: 0 such that IIA 11') II S C · 111' II for alll'fr) E 'H. 
We write £('H) for the set of bounded operators on 'H. In this chapter we consider 
only bounded operators. The zero operator that maps every vector in 'H to the 
zero vector is in £('H). It is obvious that A, B E £('H) implies the composition 
AB E £('H). Moreover, L.('H) is a vector space in which vector addition and scalar 
multiplication are defined as follows: Let A, B E L.('H) and A E C. Then 

(A+ B)l'fr) = Al'fr) + Bl'fr) 

(AA)I'/r) = AAI'fr) 
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for each 11/r) E 'H. For any operator A E £(7-1), there exists a unique linear operator 

At on H such that 

(II'), All/r)) = (A111/r), II')) 

for alllq>), 11/r) E 'H. The operator AI is called the adjoint of A. Let A, A1 E £(7-1) 
for all real numbers t. If 

lim II(A,- A)ll/r) II = 0 
t---;.t0+ 

for all 11/r) E 7-1, !ben A is called a (strong) limit of [At} for t--> to+ and we 
Mite A= limt-+to+ At. Similarly, we can define limt--...-oo A~, limt-++oo Ar. and 
limn~oo An for a sequence [An) of operators. The norm of a bounded operator A 

on 7-1 is defined to be 

IIAII = sup IIAil/r)ll_ 
lti#O II 1/r II 

To describe a quantum system whose state is not completely known, we need 
the notion of density operator. An operator A on a Hilbert space 7-1 is said to be 
positive if ( 1/r I A I 1jr) :=: 0 for all states I 1/r) E 'H. An operator A is said to be a trace 
operator if { (1/r;IA 11/r1) }1E1 is summable for any orthonormal basis {11/ri) hE I ofH; 
in this case, the trace tr(A) of A is defined to be 

tr(A) = L (1/rfiAil/r!) 

where {11/r1)} is an orthonormal basis of H. It can be shown that tr(A) is indepen
dent of the choice of {11/r1)}. A density operator p on a Hilbert space 7-1 is defined 
to be a positive operator with tr(p) = I. Then a mixed state of a quantrnn system 
with state space H is described by a density operator on 'H. We shall !alee a slightly 
generalized notion of density operator in the sequel: A partial density operator p 
is a positive with tr(p) S I. In particular, the zero operator is a partial density 

operator. 
We can define a partial order between operators, called the L6wner partial 

order: Let A, B E £(7-1). Then A ~ B if B - A is a positive operator. Recall that 
a complete partial order (CPO for short) is a partially ordered set (L, S) such that 

V~o Xn E L for any increasing sequence {xn} in L. 

Proposition 8,2,1 (Selinger 2004, Proposition 3.6). The set of partial density 
operators on 7-1, denoted by D(H), with the Lowner partial order is a CPO, with 

the zero density operator as its least element. 

Selinger (2004) gave a proof of the preceding proposition in the case of finite
dimensional 7-1. Here we present a proof for the general case, which is essentially 
a modification of the proof of Theorem 111.6.2 in Prugovecki (1981). To this 
end, we need the notion of square root of a positive operator, which in turn 
requires the spectral decomposition theorem for Hermitian operators. An operator 
M E £(7-1) is said to be Hermitian if Ml = M. Hermitian operators are used to 

8 Predicate Transformer Semantics of Quantum Programs 317 

repres.e~t observables in quantum mechanics. Projectors are a special class of 
Herm1t1an operators. Let X<; H. If we have II')+ 11/r) EX and!clq>) EX for any 
II'), 11/r)_E' X and A E C, then X is called a subspace of H. For each X c 7-1 the 
closure X of X is defined to be the set oflimits limn~oo 11/rn) of sequenc~ [l~n)} 
m X. A subspace X of a H!lbert space H is said to be closed if X = X. Let x 
be a close: subspace ofH and 11/r) E H. Then there exist uniquely 11/ro) Ex and 
11/rJ) E X such that 11/r) = 11/ro) + ll/r1 ). The vector 11/ro) is called the projection of 
11/r) onto X and wntlen 11/ro) = Pxll/r). Thus, an operator Px on His defined and 
it is called the projector onto X. A spectral family on H is a family {Ed -oo<A<+oo 
of projectors on 7-1 satlsfymg the following conditions: 

(i) £1, ~ E1, whenever !c 1 s Jc2 ; 

(ii) E" = limM~A+ E~ for each !c; and 
(iii) lim1~-oo E" = 01t andlina1~+oo £ 1 = IdJt. 

Theorem 8.2.2 (Prugovecki 1981, Theorem 111.6.3) (Spectral decomposition). If 

M IS a Herm1tzan operator with spec(M) <; [a, b ], then there is a spectral family 
[E1l such that 

M= 1b !cd£1, 

where the integral in the right-hand side is defined to be an operator satisfYing 
the followmg condition: for any E > 0, there exists 8 > 0 such that for any n > 

1 and xo, Xt, ... , Xn-1, Xn, YI, ····Yn-J, Yn with a= xo::::; y 1 ::::; x 1 :::=; ••• ::::; y
11

_ 1 ~ 
Xn-1 ::::; Yn ::::; Xn = b, it holds that -

whenever max;=l (xi - xi-1) < 0. 

Now we are able to define the square root of a positive operator A. Since A is 
a Hermitian operator, it enjoys a spectral decomposition: 

A= f !cdE1. 

Then its square root is defined to be 

With these preliminaries, we can give: 
Proof of Proposition 8.2.1. For any positive operator A, we get: 

l(lf!IA11/r)l
2 

= I(VAI<p), VAI1/r))l 2 s (<piAI<p)(l/riAil/r) 

by the Cauchy-Schwarz inequality. 

(8.1) 

~ i I 
I' 
,, 
ir. 

! 

1.' 

ii ' 

' " I , 

I 

I' 
I 

! 
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Let {Pnl be an increasing sequence in V(Ji, c;). For any 11/r) E Ji, let 

A= Pn- Pm and I<P) = A11fr). Then 

(1/r1A11/r) :" (1/r1Pnl1/r) :" 111/rf · tr(pn) :" 111/!11
2

, 

and similarly we have (qoiAiqo) :" II<PII 2 Thus, it follows from Equation (8.1) that 

l(qoiA11/r)l2 :" 111/!11 2 ·II<PII 2 Furthermore, we obtain: 

IIAII• = sup IIA11/r)t 
lt)#O 111/r II 

and II All:" 1. This leads to 

=sup 
lti#O 

(qo1AI1/r) 2 

111/r 11 4 

II<PII
2 

<sup--
- l'fr);fO 111/!11 2 

= sup IIAI1/r)ll' = IIAII 2 

lv,i#O 111/r II' 

(qoiAiqo) = (Av'AI1fr), Av'::tl1/r)) 

= 11Av':411/r)ll
2 

:" IIAII'IIv'AI1/r)ll
2 

= (v'AI1fr), v'AI1/r)) 

= (1/riAI1/r). 

Using Equation (8.1) once again we get: 

11Pnl1/r)- Pml1/r)ll 4 = l(qoiA11/r)l 2 
:" (1/riA11/r)

2 
= 1(1/riPniVr)- (1/riPmlo/)1

2 

(8.2) 

N ole that { ( 1fr 1 Pn 11/r)} is an increasing sequence of real numbers bounded by 111/r 11
2

, 

and thus it is a Cauchy sequence. This together with Equation (8.2) implies that 

{Pn 11/r)} is a Cauchy sequence in Ji. So, we can define: 

For any )q, !c2 E C and 11/rJ), 11/rz) E Ji, it holds that 

( lim Pn)(;1.,11fr,) + !czl1/r2)) = lim Pn(AJIVrl) + !czl1/r2)) 
n---+00 n---+oo 
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and limn~oo Pn is a linear operator. For any [lj!) E 1i, we have: 

(1/rl lim Pnl1/r) = (11/r), lim Pnl1/r)) = lim (1/r1Pnl1/r) >: 0. 
n---+oo n-+oo n---+oo 

Thus, limn~oo Pn is positive. Let {11/!1)} be an orthonormal basis of Ji. Then 

= lim '\'(1/rtiPniVrt) 
n-1-oo L 

= lim tr(Pn) :" 1, 
n~oo 

and limn-HXJ Pn E 1J(H). So, it suffices to show that limn---+oo Pn = V:o Pn; that 
is, (i) Pm c; limn~oo Pn for all m >: 0; and (ii) if Pm c; p for all m >: 0, then 
limn~oo Pn c; p. Note that for any positive operators B and C, B c; C if and only 
if(1/riBI1/r) :" (1/r1CI1/r) foralll1/r) E Ji. Thenboth(i)and(ii)followimmediately 

from (1/rllimn~oo Pnl1/r) = limHoo(1/riPnl1/r). D 

Intuitively, each p E V(Ji) may be interpreted as a partially computed result, 
and thus 1 - tr(p) is the probability that the result is still not computed at the 
stage represented by p. Note that if P1 c; pz then tr(p,) :" tr(pz). This fact fits 
Scott's interpretation (Scott 1970) of the partial order in a computational domain 
very well: p1 ~ P2 means that more computation might improve p 1 to a possibly 

better-computed result P2· 

8.2.2 Unitary Transformations 

We now turn to consider interpretations of quantum commands. There are two 
classes of basic quantum commands: unitary transformations and quantum mea
surements. An operator U on 1i is called a unitary transformation if ut U = I d'/t, 
where Id'lt is the identity operator on Ji; that is, Id1t11/r) = 11/r) for all11/r) E 7-i. 

The basic postulate of quantum mechanics about evolution of systems may be 
stated as follows: Suppose that the states of a closed quantum system at times 
to and t are 11/ro) and 11/r), respectively. Then they are related to each other by a 

unitary operator U that depends only on the times to and t, 

11/r) = Ul1/ro). 

This postulate can be reformulated in the language of density operators as follows: 
The state p of a closed quantum system at time t is related to its state Po at time 
to by a unitary operator U that depends only on the times t and t0 , 

I' 
I 
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8.2.3 Quantum Measurements 

A quantum measurement on a system with state space H is described by a collec

tion {Mml of operators on H satisfYing 

m 

where Mm are called measurement operators, and the index m stands for the mea~ 
surement outcomes that may occur in the experiment. If the state of a quantum sys
tem is 11/r) immediately before the measurement, then the probability that result m 

occurs is 

and the state of the system after the measurement is 

We can also formulate the quantum measurement postulate in the language of 
density operators. If the state of a quantum system was p immediately be
fore measurement { Mm} is performed on it, then the probability that result m 

occur is 

p(m) = tr(M~Mmp), 

and the state of the system after the measurement is 

8.2.4 Superoperators 

Unitary transformations are suited to describe the dynamics of closed quantum 
systems. For open quantum systems, however, one of the key mathematical for~ 
rnalisms for the description of their state transformations is the notion of superop
erator. To define this notion, we need to introduce tensor product of Hilbert spaces. 

Let H be a Hilbert space with orthonormal basis (]<P;)} and/( a Hilbert space with 
orthonormal basis { 11/r 1)}. Then their tensor product is defined to be 

H 0 /C = ti:>iJ]<P;VrJ) : a,J E C with L ]aiJ]
2 

< oo]. 
i,j i,j 

Vector addition, scalar multiplication, and inner product are defined on H 0 /C 

in a natural way: Let ]<D)= Li,J aiJI<PiVrJ), I'll)= L.1 fJlJI<PiVrJ) E H 0 /C and 

A E C. Then 
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]<D)+ I'll)= L(ct;j + fJij)I<PiVrJ), 
i.j 

A]<D) = L!caiJ]<P;VrJ), 
i,j 

(<D]W) = L aijfJ11 . 
i,j 
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It is easy to show that H 0 /(is a Hilbert space with (]op11jr1)} as an orthonormal 
basis. For any i<P) = L; a!]op1) E Hand ]1/r) = '£1 fJJ IVrJ) E /C, we define: 

i<P) 0]1/r) = La;fJJI<PiVrJ). 
i,j 

If A E J:.(H) and B E £(/C), then A 0 B E J:.(H 0 /C) is defined by 

(A 0 B)]op,1frJ) =A lop;) 0 B]1frJ) 

for all i, j. Suppose that E is an operator on J:.(H) and F an operator on £(/C). 
Then E 0 F is defined to be an operator on J:.(H 0 /C) and it is given as follows: 
For each C E J:.(H 0 /C), we can write: 

C = La,(A, 0 B,) 
k 

where Ak E J:.(H) and B~c E £(/C) for all k, and we define: 

(E 0 F)( C)= L a,(E(Ak) 0 F(B,)). 
k 

By linearity we may assert that E 0 F is well defined; that is, ( E 0 F)( C) is 
independent of the choice of Ak and Bk. 

A superoperator on His a linear operator E from the space J:.(H) into itself that 
satisfies the following two conditions: 

(i) tr[E(p)] <0 tr(p)foreachp E D(H); 
(ii) (Complete positivity) For any extra Hilbert space HR, (IR 0 E)( A) is 

positive provided A is a positive operator on HR 0 H, where IR is the 
identity operator on J:.(HR); that is, I 11 (A) = A for each operator A on HR. 

We write SO( H) for the set of superoperators on H. The Kraus theorem gives 
some useful representations of superoperators. 

Theorem 8.2.3 (Kraus 1983, Theorems 3.1 and 5.2; Nielsen and Chuang 2000, 
Section 8.2.3, Theorem 8.1). The following statements are equivalent: 

(i) E is a superoperator on H; 

(ii) (System-environment model) There are an environment system E with state 

space 7-lE and a unitary transformation U on 'H ®'HE and a projector P 

I' 

; !I 

I' 
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onto some closed subspace of'H 0 'HE such that 

E(p) = tre[PU(p 0leo)(eoi)U1PJ (8.3) 

for any p E D('H), where leo) is a fixed state in He. 
(iii) (Operator-sum representation) There exists a finite or countably infinite 

set of operators (Et} on 'H such that I:, E! E, t; I and 

(8.4) 

for all density operators p E D('H). We often say that E is represented by 
the set {Ed of operators, or {Ei} are operation elements giving rise toE 
when E is given by Equation (8. 4). 

The proof of the foregoing theorem is omitted here, and the reader can find it 
in Kraus (1983), Chapters 3 and 5, or Nielsen and Chuang (2000), Chapter 8. 

A basic principle of Scott's theory of computation (Scott 1970) is that com
putable functions on domains are continuous. Let (L, :")be a CPO. Then a function 
f from L into itself is said to be continuous if 

!CV xn) = V f(xn) 

for any increasing sequence {xn} in L. 

Proposition 8.2.4 Each superoperator is a continuous function from (D('H), t;) 
into itself 

Proof Suppose that Eisa superoperator whose operation elements are {Et}, and 
{Pnl is an increasing sequence in D('H). Tben by Proposition 8.2.1 we obtain: 

E(V Pn) = I'( lim Pn) 
n~oo 

n 

= lim E(Pn) 
n~oo 

= V E(pn). 

D 

The preceding lemma guarantees that it is reasonable to interpret a program 
as a superoperator in the state transformer (forward) semantics of a quantum 
progranuning language. 

For any real number A ;:: 0, and E, F E SO( H), AE and E + F are completely 
positive, but they may not be superoperators because they do not necessarily satisfy 
the first condition in the definition of superoperator. On the other hand, it is easy 
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to see that E o F is a superoperator. The Lowner partial order induces a partial 
order between superoperators in a natural way: Let E, FE SO('H). Then E t; F 
if E(p) t; F(p) for all p E D('H). 

Proposition 8.2.5 (Selinger 2004, Lemma 6.4). The set (SO('H), t;) of super
operators on 1i is a CPO. 

Proof Let(En) beanincreasingsequencein(SO('H), t;). Then for any p E D('H), 
(En (p)) is an increasing sequence in (D(H), t;). With Proposition 8.2.1 we can 
define: 

CV En)(p) = V En(P) = lim En(P), 
n~oo 

n n 

and it holds that 

tr((V l'n)(p )) = tr( lim En(P )) = lim tr(l'n(P )) <( I 
n-+oo n--+oo n 

because tr(-) is continuous. Furthermore, V n En can be defined on the whole of 
£(H) by linearity. The defining equation of V n En implies: (i) Em t; V n En for all 
m 0:: 0; and (ii) if I'm t; F for all m 0:: 0 then V n En t; F. So, it suffices to show 
!hat V n En is completely positive. Suppose that 'HR is an extra Hilbert space. For 
any C E £('HR) and D E £(H), we have: 

(IR 0 v En)(C 0 D)= C 0 (v En)( D) 

= C 0 lim En(D) 
n~oo 

= lim (C 01'n(D)) 
n~oo 

= lim (IR 0 En)(C 0 D). 
n~oo 

Then for any A E £(HR 0 H) we get: 

(IR 0 v l'n)(A) = lim (IR 01'n)(A) 
n~oo 

by linearity. Thus, if A is positive, then (IR 0 En)(A) is positive for all n, and 
(IR 0 Vn l'n)(A) is positive. o 

The preceding proposition allows us to introduce recursion in the setting of 
superoperators. Let F be a continuous function from (SO('H), t;) into itself. Then 
we define: 

00 

,uX.F(X) = V pC"l(O); 
n=O 

that is, ,uX.F(X) is the least fixed point ofF, where 0 is the zero superoperator, 
which maps all elements ofD(H) to the zero density operator and corresponds to 
!he divergent program, F(O) = 0, and p(n+Il(O) = F(FC"l(O)) for all n ;:: 0. 

' i' 

,·' 
;, I 

I 

I' 
:.! 

i.:.i 

i.l 
I'' 
i'l 
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8.3 Quantum Weakest Preconditions: 
D'Hondt-Panangaden Approach 

8.3.1 Hermitian Operators as Quantnm Predicates 

The first step to present predicate transformer semantics of a quaotum program
ming laoguage is to define the notion of quantum predicate. By a careful analysis 
and comparison with the classical and probabilistic cases, D'Hondt and Panan
gaden (2006) argued that quantum predicates should be physical observables. 
Their approach was originally presented in the setting of finite-dimensional state 
spaces, but it can be easily generalized to the case of infinite-dimensional state 
spaces. To motivate the definition of quantum predicate in an easier way, 
we first consider a finite-dimensional Hilbert space H.. According to a basic 
postulate, an observable of a quantum system is described by a Hermitian op
erator on its state space. An eigenvector of an operator A on 'H is a nonzero 
vector 11/r) E }{such that A11/r) = !cl1/r) for some A E C, where A is called the 
eigenvalue of A corresponding to 11/r). It is easy to see that all eigenvalues of a 
Hermitian operator are real numbers. The set of eigenvalues of A is called the 
(point) spectrum of A and denoted spec( A). For each eigenvalue A of an operator 
A, the set ( 11/r) E H. : A 11/r) = A 11/r)} is a closed subspace of H. and it is called the 
eigenspace corresponding to A. It is well known that an observable (a Hermitian 
operator) M determines a so-called projective measurement (Pm), where m ranges 
over spec(M), and Pm is the projector onto the eigenspace of M corresponding to 
m for each eigenvalue m. The eigenvalues m stand for the possible outcomes of the 
measurement. As to quantum predicates, their eigenvalues should be understood 
as the truth values of certain propositions about quantum systems. Note that the 
truth value of a classical proposition is either 0 (false) or I (true), and the truth 
value of a probabilistic proposition is given as a real number between 0 and I. 
This observation leads to the following: 

Definition 8.3.1 (D'Hondt and Panangaden 2006, Definition 2.2). A (quantum) 
predicate on '}{ is a Hermitian operator M on 1i with all its eigenvalues lying 

within the unit interval [0, 1]. 

The set of predicates on H. is denoted P(H.). The state space H. in the foregoing 
definition and the following development can be infinite-dimensional unless it is 
explicitly stated to be finite-dimensional. For any M E P(H.), we have Oct C:: M C:: 
ldct, where Oct is the zero operator on H.; that is, Octl1/r) = 0 for all 11/r) E H. 
Recall that tr(Mp) is the expectation value of measurement outcomes when a 
quantum system is in the mixed state p and we perfonn the projective measurement 
determined by observable M on it. Thus, if M is a quantum predicate, then 
tr(Mp) may be interpreted as the degree to which quantum state p satisfies 
quantum predicate M, or more precisely the average truth value of the proposition 
represented by M in a quantum system of the state p. The reasonableness of 
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the preceding definition is further indicated by the following fact: A Hermitian 
operator M Is a quantum predicate if and only ifO :::: tr(Mp) :::: 1 for all p E D(H.). 

The followmg propos1t10n examines the structure of quantum predicates with 
respect to the Lowner partial order. 

Proposition 8.3.2 (Selinger 2004, Proposition 3.6; D'Hondt and Panangaden 
2006, Propositwn 2.3). The set (P(1t), C::) of quantum predicates with the Lijwner 
partial order is a CPO. 

Proof Similar to the proof of Proposition 8.2.1. 0 

As mentioned in the introduction, (P(H.), C::) is not a lattice except in the trivial 
case of one-dimenswnal state space; that is, the greatest lower bound and least 
upper bound of elements in (P(H.), C::) are not always defined. 

8.3.2 Quantum Weakest Preconditions: Definitions and Representations 

Now w~ a~e ready to define the two key notions in this section, i.e., quantum 
generalizatiOn of Hoare assertion and quantum weakest precondition. 

Definition 8.3.3 (D'Hondt and Panangaden 2006 Definition 3 J) D , . . ror any quan-
tum predicates M,_ N E P(H.), and for any quantum program E E SO( H.), M is 
called a preconditiOn of N with respect toE, written M(E)N, if 

tr(Mp) :::: tr(NE(p )) 

for all density operators p E D(H.). 

(8.5) 

The intuitive meaning of condition (8.5) comes immediately from the interpre
tatwn of satisfaction relation between quantum states and quantum pr di t . ·f . e ca es. 1 

state P sal!sfies predicate M then the state after transformation E from p satisfies 
predicate N. 

Definition 8.3.4 (D'Hondt and Panangaden 2006, Definition 3.2). Let M E P(H.) 
be a quantum predicate and E E SO(H.) a quantum program. Then the weakest 
precondition of M with respect toE is a quantum predicate wp(E)(M) satisfying 
the following conditions: 

(i) wp(E)(M){E)M; 

(ii) for all quantum predicates N, N {E)M implies N c; wp(E)(M). 

For each E E SO( H.), the foregoing definition gives a quantum predicate trans
former wp,(E) : P(H.) -+ P(H.). An operator-sum representation of wp(E) was 
found m D Hondt and Panangaden (2006) by exploiting a Stone-type duality bet
~een ~orward state transformers and backward predicate transformers when £ is 
given m the form of operator-sum. 

I 
1,: 

! ! 
i 

I'! 

'.i' 

ui; 

" 
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Proposition 8.3.5 (D'Hondt and Panangaden 2006, Proposition 3.3). Suppose that 
program E E SO(H) is represented by the set{£;} of operators. Then for each 
predicate M E P('H), we have: 

wp(E)(M) = L;EJME,. (8.6) 

Proof We see from Definition 8.3.4 that weakest precondition wp(E)(M) is unique 
when it exists. Then we only need to check that wp(E)(M) given by Equation (8.6) 
satisfies the two conditions in Definition 8.3.4. 

(i) Since tr(AB) = tr(BA) for any A, B E £(H), we have: 

tr(wp(E)(M)p) = tr((L EJ ME;)p) 

'\' I = tr(M(L- E1pE1 )) 

= tr(ME(p)) 

for each p E D('H). Thus, wp(E)(M){E)M. 

(8.7) 

(ii) It is easy to show that for any M, N E P('H), M E;: N if and only 
if tr(Mp) :5 tr(Np) for all p E D('H). Thus, if N{E)M, then for any 
p E D(H) we have tr(Np) :5 tr(ME(p)) = tr(wp(E)(M)p). Therefore, 
it follows immediately that N E;: wp(E)(M). o 

We can also give an intrinsic characterization of wp(E) in the case that E is 
given by a system-environment model. 

Proposition 8.3.6 (Ying et al. 2007, Proposition 2.2). If E is given by Equation 
(8. 3), then we have: 

wp(E)(M) = (eo lUi P(M 0 h)PUieo) 

for each M E P('H), where h is the identity operator in the environment system. 

Proof Let {lek)} be an orthonormal basis of'H£. Then 

E(p) = L;(ekiPUieo)p(eoiU1 Plek), 
k 

and using Proposition 8.3.5 we obtain: 

wp(E)(M) = L (eoiUt Plek)M(ekiPUieo) 
k 

= (eoiU1 P(L lek)M(eki)PUieo). 
k 
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Note that Lk lek)M(ekl = M 0 Ie because {lek)} is an orthonormal basis of'H.k. 
This completes the proof. 

0 

To conclude this sectiou, we collect basic algebraic properties of quantum 
weakest preconditiOns m the following proposition. 

Proposition 8.3.7 Let !c > 0 and E FE SO('H.) and let {E } b · · - , ' n e an mcreasmg sequence in S O('H.). Then 

(i) wp(!cE) = !cwp(E) provided AE E SO( 'H.); 

(ii) wp(E +F) = wp(E) + wp(F) provided E + F E SO('H.); 
(m) wp(E oF)= wp(F) o wp(E); 
(iv) wp(V~o E,) = V~o wp(E,), where 

00 

CV wp(E,))(M) d;f V wp(E,)(M) 
n=O n=O 

for any M E P('H.). 

Proof 

(i) and (ii) are immediately from Proposition 8.3.5. 

(iii) It is easy to see that L{E)M{F)N implies L{E o F)N. Thus, we have 
wp(E)(wp(F)(M)){E o F)M. On the other hand, we need to show 

that N E;: wp(E)(wp(F)(M)) whenever N{E o F)M. In fact, for any 
P E D('H.), It follows from Equation (8. 7) that 

tr(Np) :5 tr(M(E o F)(p)) 

= tr(MF(E(p ))) 

= tr(wp(F)(M)E(p)) 

= tr(wp(E)(wp(F)(M))p). 

Therefore, we obtain wp(E o F)(M) = wp(E)(wp(F)(M)) = (w (F) 
0 wp(E))(M). P 

(iv) We note that the following two equalities follow immediately from the 
proof of Proposition 8.2.1: 

n=O n=O 

00 00 

tr(V M,) = V tr(M,,). 
n=O n=O 

,, 

' '' ;.' 

q' 
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First, we prove that V~o wp(En)(M){V~o En)M. Indeed, for any P E 

D(Ji), we have: 

00 00 

tr(V wp(En)(M)p) = V tr(wp(En)(M)p) 
n=O n=O 

00 

:<: V tr(MEn(P )) 
n=O 

00 

= tr(V MEn(P )) 
n=O 

00 

= tr(M(V En)(p )). 
n=O 

Second, we show that N{V~o En)M implies N ~ V~o wp(En)(M). It 
suffices to note that 

00 

tr(Np) :<: tr(M(V En)(p)) 
n=O 

00 

= tr(V MEn(P)) 
n=O 

00 

= V tr(MEn(P )) 
n=O 
00 

= V tr(wp(En)(M)p) 

00 

= tr((v wp(En))(M)p) 
n=O 

for all p E D(Ji). Thus, it holds that wp(V~o En)(M) = V~o 
wp(En)(M). D 

Corollary 8.3.8. Let F be a continuous function from (SO(Ji), ~)into itself Then 

00 

wp(/LX.F(X)) = V wp(F(nl(O)). 
n=O 

Proof Immediate from Proposition 8.3.7(iv). D 

8.3.3 Commutativity of Quantum Weakest Preconditions 

Quantum predicate transformer semantics is not a simple generalization of pred
icate transformer semantics for classical and probabilistic programs. It has to 
answer some important problems that would not arise in the realm of classical 
and probabilistic programming. One such problem is commutativity of quantum 
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weakest preconditions. The significance of this problem comes from the follow
ing observation: Quantum weakest preconditions are quantum predicates and in 
turn they are observables on the state space. Thus, their physical simultaneous 
verifiability depends on commutativity between them according to the Heisenberg 
uncertainty principle (see Nielsen and Chuang 2000, page 89). The aim of this 
subsection is to find some conditions under which quantum weakest preconditions 
commute. 

Recall that for any two operators A and B on Ji, it is said that A and B commute 
if AB = BA. What concerns us in this subsection is the following: 

Question 8.3.9. Given a quantum program E E SO(Ji). When do wp(E)(M) and 
wp(E)(N) commute? 

This question seems very difficult to answer for a general superoperator E. We 
first see a simple example from quantum communication. 

Example 8.3.10 (Nielsen and Chuang 2000, Section 8.3) (Bit flip and phase flip 
channels). A qubit is a quantum state of the form [1/r) = a

0
[0) + a

1 
[I), where [0) 

and [1) are two basis states, and ao and "J are complex numbers with [a
0

[2 + 
[aJ[

2 
= I. Thus, the state space of qubits is the 2-dimensional Hilbert space 

1i2 = C
2
, and linear operators on 1i2 can be represented by 2 x 2 matrices. 

Bit flip and phase flip are quantum operations on a single qubit, and they are 
widely used in the theory of quantum error-correction. We write the Pauli matrices: 

y = ( ~ ~i)' z = ( ~ ~J 
Then the bit flip is defined by 

E(p) = E0pEJ + E 1pE/, (8.8) 

where Eo = ..JPI and E1 =~X. It is easy to see that E(M) and E(N) 
commute when MN = NM and MXN = NXM. 

If E1 in Equation (8.8) is replaced by ~Z (resp. ~Y), then E is the 
phase flip (resp. bit-phase flip), and E(M) and E(N) commute when MN = N M 
and MZN = NZM (resp. MYN = NYM). 

Now we consider the simplest superoperators: unitary transformations and 
projective measurements. 

Proposition 8.3.11. 

(i) Let E E SO(Ji) be a unitary transformation, i.e., E(p) = U pUt for any 
p E D(Ji), where UUt = ut U = Id7i. Then wp(E)(M) and wp(E)(N) 
commute if and only if"M and N commute. 

' ,, 

,, 
' ' 

i'' 
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i'' 
,, ,, 

! 

1.,,' 

i·'; 



330 Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji 

(ii) Let {Pkl be a projective measurement, i.e., Pk, Pk, = 8k,k, Pk, and Lk Pk = 
Jd'H, where 

Proof 

ifk1 = kz, 

otherwise. 

If£ is given by this measurement, with the result of the measurement 
unknown, i.e., 

for each p E D(H), then wp(E)(M) and wp(E)(N) commute ifand only 
if P Mp and PkN P, commute for all k. In particular, let {II)} be an 1 

" ' · h b · {I')J orthononnal basis of1i. {fE is given by the measurement m t e asrs l , 

i.e., 

E(p)= LP,pP,, 

where p1 = li)(ilfor each i, then wp(E)(M) and wp(E)(N) commute for 
any M, N E P(H). 

(i) From Proposition 8.3 .5 we obtain: 

wp(E)(M)wp(E)(N) = utMuUINU = UIMNU. 

Then MN = Uwp(E)(M)wp(E)(N)UI, and the conclusion follows. 
(ii) We first obtain: 

wp(E)(M)wp(E)(N) = LP,MPkP1NP1 = LP"MPkNh 
k,l k 

Similarly, it holds that 

wp(E)(N)wp(E)(M) = L PkN PkM Pte. 
k 

It is clear that wp(E)(M)wp(E)(N) = wp(E)(N)wp(E)(M) if 
PkM pk and PkN Pk conunute. Conversely,. if wp(E)(M)wp(E)(N) ~ 
wp(E)(N)wp(E)(M), then by multiplying Pk m the both s1des we obtam. 

PkMPkN pk = Pk(L P1MP1NP1) = Pk(L P1N P1MP1) = PkNPkMP,. 
I I 

For the case of p1 = li)(il for each i, it holds that P,MP,NP, = 
li) (i IMii) (i INii) (i 1. Note that (i IMii) and (i IMii) are complex numbers, 
and they conunute. Thus, P1 M P1 N P1 = P1 N P1 M P1 always holds. 0 
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For a general superoperator £, we are only able to give some sufficient condi
tions for conunutativity of wp(E)(M) and wp(E)(N). We first consider the case 
where E is given in a operator-sum form. 

Proposition 8.3.12. Suppose that His finite-dimensional. Let M, N E P(H) and 
they commute, i.e., there exists an orthonormal basis {l!fr

1
)} ofH such that 

where At, f.'t are reals for each i (Nielsen and Chuang 2000, Theorem 2.2), and 
let E E SO( H) be represented by the set {Et) of operators. Ijfor any i, j, k, I, we 
have either AkfLI =A! ILk or 

m 

then wp(E)(M) and wp(E)(N) commute. 

Proof We consider the matrix representations of the involved operators with 
respect to the basis {lo/1) }. For any i, j, a routine calculation leads to 

ME, EjN = (A.kf.'lekl)k.l and N E, EjM = (f.'kAzekl)k.l, 

where 

m 

for all k, I. Then the condition given in this proposition implies M E
1 
EjN = 

N E1 EJM. It follows from Proposition 8.3.5 that 

wp(E)(M) · wp(E)(N) = C'i:,E/ME1)('i:,EjNE1) = 'i:,EJME
1
EjNE

1
, 

i,j 

and wp(E)(M)wp(E)(N) = wp(E)(N)wp(E)(M). 
(8.9) 

0 
To present another sufficient condition for conunutativity of quantum weakest 

preconditions, we need to introduce commutativity between a quantum program 
and a quantum predicate. 

Definition 8.3.13. Let E E SO(H) be represented by the set {E1} of operators, 
and let M E P(H). Then we say that quantum predicate M and quantum program 
£commute if M and Ei commute for each i. 

It seems that in the foregoing definition commutativity between quantum predi
cate M and quantum program E depends on the choice of operators E

1 
in the Kraus 

representation of£. Thus, one may wonder if this definition is intrinsic because 
such operators are not unique. To address this problem, we need the following: 

Lemma 8.3.14 (Nielsen and Chuang 2000, Theorem 8.2) (Unitary freedom in the 
operator-sum representation). Suppose that { E1} and {F1} are operation elements 

',' 
'' !'; 

i;l,l.· 
'I 

'1,', 
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giving rise to quantum operations £ and :F, respectively. By appending zero 
operators to the shortest list of operation elements we may ensure that the numbers 
of E; and F1 are the same. Then E = :F if and only if there exist complex numbers 

uiJ such that 

Ei = LuiJFJ 
j 

for all i, and U = (u 11 ) is (the matrix representation of) a unitary operator. 

As a simple corollary, we can see that commutativity between M and E is 
irrelevant to the choice of the Kraus representation operators of£. 

Lemma 8.3.15. The notion of commutativity between observables and quantum 
operations is well-defined. More precisely, suppose that E is represented by both 
(E;} and (F1). Then M and E; commute for all i if and only if M and FJ commute 
for all j. 

Proof Immediate from Lemma 8.3.14. D 

Commutativity between observables and quantum operations is preserved by 
composition of quantum operations. 

Proposition 8,3.16. Let M E P(7t) be a quantum predicate, and let E1, E, E 

SO('H) be two quantum programs. If M and E, commute for i = I, 2, then M 
commutes with the composition E1 o E, of E, and E,. 

Proof Suppose that E1 is represented by {E;} and E, is represented by {FJ ). Then 
for any p E V('H), we have: 

(E, 0 E,)(p) = E,(E,(p)) = LJJE;pE/FJ. 
i,j 

With Lemma 8.3.15 it suffices to note that M(F1E1) = F1ME; = (FJE;)M for 
alli,j. o 

The following proposition gives another sufficient condition for commutativity 
of wp(E)(M) and wp(E)(N). 

Proposition 8.3.17. Let M, N E P('H) be two quantum predicates, and let E E 

SO('H) be a quantum program. If M and N commute, M and E commute, and N 
and E commute, then wp(E)(M) and wp(E)(N) commute. 

Proof Since M and E1 commute, Nand E1 commute for all i, j, and N is 
Hermitian, i.e., Nt = N, we have: 

ME1EjN = E1MEjNl = E1M(NE1)l 

= E1M(E1N)l = E 1MNIEj = E1MNEj 
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and from Equation (8.9) we obtain: 

wp(E)(M) · wp(E)(N) = L EJ E1MN EJE1. 
i,j 

Similarly, it holds that 

wp(E)(N) · wp(E)(M) = L E/ E1N MEJE1. 
i,j 

Then commutativity between M and N implies wp(E)(M). wp(E)(N) = 
wp(E)(N) · wp(E)(M). 

0 

It is easy to see from Proposition 8.3.11 that the condition for commutativity 
of wp(E)(M) and wp(E)(N) given in Proposition 8.3.17 is not necessary. 

N~w we tum to consider the system-environment model of superoperator. 
To th1s end, we need two generalized notions of commutativity between linear 
operators. 

Definition 8.3.18. Let M, N, A, B, C E £('H). 

(i) If AMBNC = ANBMC, then we say that M and N (A, B, C)-commute. 
In particular, it is simply said that M and N A -commute when M and N 
(A, A, A)-commute; 

(ii) If ABI = BAI, then we say that A and B conjugate-commute. 

Obviously, commutativity is exactly I dwcommutativity. 
The next two propositions presents several conditions for commutativity of 

qua~tum weakest preconditions when quantum programs are given in the system
environment model. 

Proposition 8.3.19. Let E be given by Equation (8.3), and we write A = PUleo). 

(i) wp(E)(M) and wp(E)(N) commute if and only if M 0 fe and N 0 h 
(AI, AAI, A)-commute; 

(ii) If (M 0 h)A and (N 0 h)A conjugate-commute, then wp(E)(M) and 
wp(E)(N) commute. 

Proof Immediate from Proposition 8.3.6. D 

Proposition 8.3.20, Suppose that 'It is finite-dimensional. Let E be given by Equa
twn (8.3), and let M, N E P('H) and they commute, i.e., there exists an orthonor
mal basis (l1{r1)} of'lt such that 

where Ai, f.lt are reals for each i. If for any i, }, k, !, we have Aifh 1 = A 1 f.lt or 

(eo I utp l'hek) _!_(eo I ut PI t 1e1), 

then wp(E)(M) and wp(E)(N) commute. 

' !! 

',1,, 
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Proof For any i, j, k, I, it holds that 

(1/rieki(M@ h)PUieo)(eoiU1 P(N@ h)l1fiJez) 

= Atf'.J (1/J;ekiPUieo) (eo I ut P11fiJez). 

IfA1p.1 = AJfJ.t or (eoiUiPI1fitek)_L(eoiUIP11fiJez), i.e., 

(1j11e;IUPieo)(eoiUIP11fiJez) = 0, 

then we have: 

(1/J;eki(M@ h)PUieo) (eoiU1 P(N@ h)l1fiJez) 

= (,Y1eki(N@ h)PUieo)(eoiU1 P(M@ lE)I'frJez). 

This means that 

(M@ h)PUieo)(eoiUIP(N@ h)= (N@ h)PUieo)(eoiU1 P(M 0 h). 

Thus, the conclusion follows immediately from Proposition 8.3.19. D 

To conclude this section, we would like to point out that some sufficient con
ditions for commutativity of quantum weakest preconditions have been presented 
here, but the problem of finding a sufficient and necessary condition for this com
mutativity for a general quantum program is still open and seems very difficult. A 
even more general topic for further studies would be: 

Question 8.3.21. How to characterize [wp(E)(M), wp(N)(N)] in terms of 
[ M, N], where for any operators X and Y, [X, Y] stands for their commutator, 
i.e., [X, Y] =XY- YX? 

The foregoing question might interest mathematicians working in the area of 
operator algebras (Putnam 1967). 

8.4 Quantum Predicate Transformers: 
Projection Operators= Predicates 

The last section was devoted to an exposition ofthe D'Hondt-Panangaden approach 
to quantum weakest preconditions where quantum predicates are represented by 
Hermitian operators with their eigenvalues in the unit interval. This broad defini
tion of quantum predicates allows us to establish an elegant duality between the 
state-transformer (forward) semantics and the predicate-transformer (backward) 
semantics of quantum programs. However, it also causes certain difficulties in the 
further development of quantum predicate-transformer semantics; for example, 
some logical operations of quantum predicates are not always well defined. To 
avoid these obstacles, we choose to consider a special class of quantum predi
cates, namely projection operators, in this section. Since the notion of projection 
operator is equivalent to that of closed subspace in a Hilbert space, we do nat 
distinguish a closed subspace from the projector onto it, and for the most part we 
directly deal with closed subspaces in the sequel for simplicity of presentation. 
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8.4.1 Orthomodular Lattices 

To describe the algebraic structure of the set of closed subspaces of a Hilbert space, 
we briefly recall some basic notions from the theory of orthomodular lattices; for 
more details we refer to Bruns and Harding (2000) and Kalmbach (1983). A 
complete ortholattice is a 5-tuple £ = (L, s. /\, v, _L), where: 

(i) (L, S, /\, V) is a complete lattice. Here, Sis the partial ordering on L, and 
for any M £ L , 1\ M and V M stand for the greatest lower bound and the 
least upper bound of M, respectively. We use 0, I to denote the least and 
greatest elements of L, respectively. 

(ii) _L is a unary operation on L, called orthocomplement, and required to 
satisfY the following conditions: 
(a) a 1\ aJ. = 0, a v aJ. = I; 
(b) aJ.J. =a; and 

(c) a S b implies bJ. S aJ. 

foranya,b E L. 

It is easy to see that the condition (ii)( c) is equivalent to one of the De Morgan 
laws: (a 1\ b)J. = aJ. v bJ. and (a v b)J. = aJ. 1\ bJ. for any a, bEL. A complete 
orthomodular lattice is a complete ortholattice £ = (L, s. /\, v, _L) satisfYing the 
orthomodular law: 

aS bimpliesa V(aJ. 1\b)=b 

for all a, b E L. The orthomodular law can be replaced by the following equation: 
a v (aJ. 1\ (a v b))= a v b for any a, bEL. A complete Boolean algebra is a 
complete ortholattice £ = (L, s. /\, v, _L) fulfilling the distributive law of join 
over meet: 

a v (b 1\ c)= (a v b) 1\ (a v c) 

for all a, b, c E L. With the De Morgan law it is easy to know that this condition is 
equivalent to the distributivelawofmeetoverjoin: a 1\ (b v c) = (a 1\ b) v (a 1\ c) 
for any a, b, c E L. Obviously, the distributive law implies the orthomodular law, 
and so a complete Boolean algebra is a complete orthomodular lattice. 

A central notion in the theory of orthomodular lattices is commutativity of 
elements. Let£= (L, s, /\, v, _L) be a complete ortholattice, and let a, bEL. 
We say that a commutes with b, in symbols aCb, if we have: 

a= (a A b) v (a 1\ bJ.). 

The following lemma indicates that commntativity is preserved by lattice-theoretic 
operations. 

Lemma 8.4.1 (Bruns and Harding 2000). Let£= (L, s, /\, v, _L) be an ortho
modular lattice, and let a E L and b1 E L (i E J). If aCb1 for all i E J, then 

aC(I\tEI b,) and aC(VtEI b;) provided /\tEl b; and VtEI b1 exist. 

I, 

r 1 

I 
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The major difference between a Boolean algebra and an orthomodular lattice is 
that in general distributivity is not valid in the latter. However, a local distributivity 
can be recovered for orthomodular lattices by attaching commutativity. 

Lemma 8.4.2 (Bruns and Harding 2000). Let£= (L, :".A, v, _!_)be an ortho
modular lattice. For any a ELand b, E L (i E I), if aCbtfor all i E I, then 

a A(v b,) = Vca Ab,), 
iEl iEl 

a v C/\ b,) = 1\(a V b,) 
iEl iE/ 

provided 1\iEJ bi and viE! bi eXiSt. 

Furthermore, the foregoing lemma can be generalized considerably by intro
ducing the notion of commutator. Let £ = (L, :", A, v, _!_) be an orthomodular 
lattice, and let A c; L. The strong commutator r(A) of A is defined by 

r(A)= Vtb: aCbforalla E A,and(a, Ab)C(a, Ab)foralla1,a2 E A}. 

If A is finite, then the commutator y(A) of A is defined by 

y(A) = Vt/\ af(a): f: A-+ {1, -1} is a mapping}, 
aEA 

where a 1 denotes a itself and a-1 denotes aj_. The relation between commutator 
and strong commutator is clarified by the following lemma. In addition, the third 
item of the following lemma shows that commutator is a relativization of the 

notion of commutativity. 

Lemma 8.4.3 (Takeuti 1981). Let £ = (L, :",A, v, _!_) be an orthomodular 

lattice and let A c; L. Then 

(i) r(A) :" y(A). 
(ii) If A is finite, then f(A) = y(A). 

(iii) y(A) = 1 if and only if all the members of A are mutually commutable. 

The following is a generalization of Lemma 8.4.2 given in terms of strong 

commutator. 

Lemma 8.4.4 (Takeuti 1981). Let £ = (L, :",A, v, _!_) be an orthomodular 

lattice and let A c; L. Then 

f(A) A (a A v b,) :" v (a A b,), 
iEJ iEf 

r(A) A /\Ca v b,) :"a v 1\ b, 
iEJ iEJ 

for any a E A and b, E A (i E I). 
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We shall need the following lemma, which was proved by the author in Ying 
(2005) and extensively used in automata theory based on quantum logic (Ying 
2000, 2005, 2007). 

Lemma 8.4.5 (Ying 2005). Let£= (L, :",A, v, _!_)be an orthomodular lattice 
and let A c; L. Then for any B c; [A] we have r(A) :" f(B), where [A] stands 
for the subalgebra of£ generated by A. 

8.4.2 Subspaces of a Hilbert Space 

We now are ready to examine the algebraic strncture of closed subspaces of a 
Hilbert space. Let 7i be a Hilbert space. For any X c; 'Ji, we write: 

span(X) = n{ Y : X c; Y is a subspace of '/i). 

Then span (X) is the smallest subspace of 7i containing X, and it is called the 
subspace of 7i generated by X. It is obvious that span(X) is the set of linear 
combinations of vectors in X; that is, 

span(X)= Q:..>ti<Pi): n ": l,A, ECandi<Pt) EXforalll :" i :Sn}. 
i=l 

The set of closed subspaces of'/i is denoted by S('/i). If we identify each closed 
subspace X of 7i with the projector Px, then S('/i) can be seen as a subset of 
P('li). Moreover, the inclusion relation coincides with the Lowner partial order in 
S('/i): for any X, Y E S('/i), X c; Y if and only if Px c; Py. For any X, Y c; '/i, if 
I <P) _]_ 11/r) for all I <P) E X and 11/r) E Y, then X and Y are said to be orthogonal, and 
we write Xl_Y; in particular we simply write I<P)_l_Y if X is the singleton {I<P) }. 
The orthocomplement of X is defined to be 

Xj_ = li<P) E 7i: I<P)_l_X). 

The following theorem clarifies algebraic structures of the set of closed subspaces 
of a Hilbert space. 

Theorem 8.4.6 (Sasaki) (Kalmbach 1983). (S('/i), c;, A, v, _!_)is a complete or
thomodular lattice, where the partial order ~ is the set inclusion, the smallest 
element is the 0-dimensional subspace {0}, the largest element is '/i, and for any 
M c; S('/i), we have: 

1\M=nx. 
XEM 

v M = n{Y E S('/i): X c; y for all X EM}= span(U M). 

8.4.3 Projective Predicate Transformers 

With the preliminaries given in the previous subsections, we are able to deal 
with the special class of quantum predicate transformers where only projection 

'I 
l.i' 

' ,, 
II 
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operators are considered as quantum predicates. Assume that 'H is a Hilbert 
space. Then a closed subspace of 7i is called a projective predicate on 7i. A 
projective predicate transformer on 7{ is a mapping from the set S(Ji) of projective 
predicates into itself. The set of projective predicate transformers on 7i is denoted 
by QPT(Ji), i.e., 

QPT(Ji) ag S(Ji)5 (1i) 

We may introduce a partial order on QPT(Ji) in a pointwise way: for any quantum 
predicate transformers J, g E QPT(Ji), 

f S::: g if f(X) S::: g(X) for all X E S(Ji). 

The next lemma follows immediately from Theorem 8.4.6. 

Lemma 8.4. 7. The set ( QPT(Ji), S:::) of quantum predicate transformers on 7i is 
a complete orthomodular lattice. 

(i) Its smallest and largest elements are denoted by 0, 1, respectively, and 
they are defined by O(X) = {0} (the 0-dimensional subspace ofJi), and 
l(X) = Jifor each X E S(Ji). 

(ii) For any :F S::: QPT(Ji) and X E S(Ji), we have: 

Cf\ :FJCXJ = 1\ f(XJ, 
[EF 

cv :F)(X) = v f(X). 
[EF 

A reward of focusing our attention on projection operators is that quantum 
predicates constitute a lattice in a natural way. Thus, various healthiness condi
tions (Dijkstra 1976; Hesselink 1992) can be easily generalized to the case of 
quantum predicate transformers. 

Definition 8.4.8. Let f be a projective predicate transformer on 7i. Then 

(i) f is said to be monotone if X S::: Y implies f(X) S::: f(Y)for any X, Y E 

S(Ji), 

(ii) f is said to be finitely conjunctive if f(X 1\ Y) = f(X) 1\ f(Y)for any 
X, Y E S(Ji); 

(iii) f is said to be positively conjunctive if 

fCf\ M) = f\ f(X) (8.10) 
XEM 

for any nonempty M S::: S(Ji); 

(iv) f is said to be universally conjunctive if it is positively conjunctive and 
f(Ji) = Ji; 

(v) f is said to befinitely disjunctive if f(X v Y) = f(X) v f(Y) for any 
X, Y E S(Ji); 
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(vi) f is said to be positively disjunctive if 

fCV M) = v f(X) (8.11) 
XEAi 

for any nonempty M s; S(Ji); 

(vii) f is said to be universally disjunctive if it is positively disjunctive and 
f({O}) = {0); 

(viii) f is said to be upper-continuous if Equation (8.!0) holds whenever 
0 i M S::: S(Ji) is a chain, i.e., it always holds that X s; Y or Y s; X 
for any X, Y E M; 

(ix) f is said to be lower-continuous if Equation (8.11) holds whenever 
0 i M s; S(Ji) is a chain. 

We write QMT(Ji), QMC(Ji), QMP(Ji), and QMU(Ji) for the sets of 
monotone, finitely conjunctive, positively conjunctive, and universally conjunc
tive projective predicate transformers on 'H, respectively. In addition, we write 
QM'D(Ji), QJAC(Ji), Q£C(7i), QP'D(Ji), and QJA'D(Ji) for the sets of finitely 
disjunctive, upper-continuous, lower-continuous, positively disjunctive, and uni
versally disjunctive projective predicate transformers on Ji, respectively. Obvi
ously, we have: 

• QMU(Ji) s; QMP(Ji) s; QMC(Ji); 

• QU'D(Ji) s; QP'D(Ji) s; QM'D(Ji), QJAC(Ji); 
and 

• QMC(Ji), QM'D(Ji), QUC(Ji), QJ:.C(Ji) s; QMT(Ji) s; QPT(Ji). 

The following lemma clarifies further the relationship among the preceding spaces 
of projective predicate transformers. 

Lemma 8.4.9. 

(i) QMT(Ji) is a complete sublattice of QPT(Ji). 

(ii) QMC(Ji), QMP(Ji), Q£C(7i) and QMU(Ji) are all inf'closed in 
QPT(Ji). 

(iii) QM'D(Ji), QP'D(Ji), QJAC(Ji) and QJA'D(Ji) are all sup-closed in 
QPT(Ji). 

We now present a simple example to illustrate the notions previously introduced. 

Example 8.4.10. Let A : 7i -+ 7i be a bounded linear operator. ffe define map
ping A- 1 

: S(Ji) -+ S(Ji) by 

['(X)= fi\P) E 7{: AI\P) EX) 

for each X E S(Ji). For any X E S(Ji), it is easy to check that A-1(X) is a 
subspace of}{, and closeness of A -l (X) follows immediately from continuity of 
A. Thus, A-

1 
is a projective predicate transformer. It is easy to see that A-1 is 

I 

I' 

,, 
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universally conjunctive. At the same time, A-1 is universally disjunctive, i.e., 

A-'cV x,) = V r'cx,) 

for any X, E S(Ji). In fact, 

r'cV x,) = A-'cUrY E S(Ji): x, s:: Y for a11 i}) 

= UrA- 1(Y): x, s:: y E S('H) for all i}. 

Note that Y E S('H) implies A-1(Y) E S('H), and X; S:: Y implies A-'(X;) S:: 
A-1(Y). Thus, we have: 

A-'cV X;) s:: Urz E S('H): A-1(X,) s:: z for all i} = v [ 1(X;). 

' 
(i) For any unitary operator U, we have: 

u-I(X) = {U-IIcp) : lcp) EX). 

In particular, we consider some single qubit gates. Let 'H2 be the 2-
dimensional Hilbert space. Then 

S('H2) = {{0}, 'H2J U {'H,(a, {3): a, f3 E C) 

where 'H1(a, {3) = {y(aiO) + /311)): y E C) is a !-dimensional subspace 
of'H2 for each a, {3. We first look at the most frequently used single qubit 
gates, Pauli matrices X, Y, and Z, the Hadamard gate: 

I (I 
H= y'2 I 

the phase gate: 

and the ~ gate: 

~). 
e' 

The predicate transformers x-I, y-I' z-l, H-I, s-I and y-I are given 

by 

x-'('H1(a, {3)) = X('H,(a, {3)) = 'H1(f3, a), 

y-1('H 1(a, {3)) = Y('HI(a, {3)) = 'H1( -{3, a), 

z-1('H1(a, {3)) = Z('HI(a, {3)) = 'H,(a, -{3), 

S-1('H,(a, j3)) = 'H,(a, -ij3), 

T-1('HI(a, {3)) = 'H1(a, e-'f {3) 
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for all a, {3. In general, each unitary operation on a single qubit can be 
written in the form ofU = e0 ·R,({1)Ry(v)R,(i5), where A, {1, v, and 8 are 
real numbers, 

-sin~) (e-'f 
8 , R,(e) = 

cos 2 0 

are the rotation operators about y and z axes, respectively (Nielsen and 
Chuang 2000). Then the predicate transformer u- 1 is given by 

U-
1
('H1 (a, {3)) = 'H1 (a COS.':: + j3e1~ sin.::, j3ei(8+v) COS.':: - ae1S sin.'::). 

2 2 2 2 
(ii) For any quantum measurement {Mm), if X E S('H), then 

M,;;
1
(X) = {11/f) E 'H: 11/fm) EX) 

is the set of quantum states such that the postmeasurement states will lie in 
X whenever we perform measurement { Mm} on them and the outcome m is 
reported. In particular, we consider the computational basis measurement 

{Po= 10)(01, P1 = 11)(11} 

on the first qubit of a 2-qubit system. For i = 0, I, if we hope that the 
measurement outcome is i and the postmeasurement state is in the 1-
dimensional space 'H1 (a, {3), then the state of the system before the mea
surement should be in 

P,-
1
('H 1(a, {3)) = {y(aliO) + f31il)): y E C). 

8.4.4 Projective Weakest Preconditions 

In Section 8.3 the forward semantics of quantum programs is given in terms of 
superoperators. The backward semantics of a quantum program is defined to be 
a mapping from the set of Hermitian operators bounded by o, and I, into it
self. In particular, it follows from Proposition 8.3.5 that the wealcest precondition 
semantics of a quantum program is also a superoperator. In the present section, 
we decided to consider only projective predicates, and then backward semantics 

of quantum programs is represented by mappings from the set of closed sub
spaces of the state space into itself. What is the corresponding forward semantics 
of quantum programs? Quantum programs are constructed from two kinds of 
quantum commands: unitary transformations and quantum measurements. A uni
tary transformation is a bijection from the state space onto itself. On the other 

hand, a quantum measurement introduces certain probabilism. Roughly speaking, 
a quantum measurement transforms a quantum state to a set of quantum states, 
namely the postmeasurement states. Thus, a measurement can be seen as a one
to-many mapping from the state space into itself if the vectors used to represent 
the postmeasurement states are allowed to be not normalized and the probabilities 
of measurement outcomes are encoded into the lengths of these vectors. Further
more, nondeterminate choice is a basic program constructor, and we hope it can 

i'l 

,·: 
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be accommodated well in the forward semantics of quantum programs. Again, 
nondeterminate choice leads us to consider one-to-many mappings from the state 
space into itself. Note that a one-to-many mapping from a set X into itself can be 
equivalently treated as a mapping from the power set of X into itself. This, together 
with the consideration of preserving algebraic and topological structures in the 
state space, motivates us to define (the forward semantics of) a quantum program 
as a mapping from the set of closed subspaces of the state space into itself. 

Definition 8.4.11. A mapping tfrom S(H) into itself is called a quantum program 
if it is lower-continuous, i.e., for any increasing sequences {Xn}~0 of closed 
subspaces ofH, 

00 00 

t(V Xn) = V t(Xn)· 
n=O n=O 

At first glance, the foregoing definition coincides with the definition oflower
continuous projective predicate transformer (see Definition 8.4.8(ix)). However, an 
essential difference exists between them: a quantum program in Definition 8.4.11 
is forward, whereas a projective predicate transformer is backward. More precisely, 
let }{0 = }{ 1 = H. Then a mapping t : S (Ho) -+ S (H 1) is seen as a quantum pro
gram from }{0 to }{1, but a mapping f: S(Ho)-+ S(H1) is treated as a predicate 
transformer from 'H1 to 7-i0 • This is similar to the case of classical programs. 

The notions of Hoare assertion and weakest precondition can be defined in the 
setting of projective predicates in a familiar way. 

Definition 8.4.12. Lett be a mapping from S(H) into itself 

(i) For any X, Y E S(H), wewriteX{t)Y ift(X),; Y. 

(ii) For any X E S(H). the weakest precondition of X with respect to t is 
defined to be a closed subspace wp(t)(X) of}{ satisfYing the following 
conditions: 
(a) wp(t)(X){t)X; 

(b) for any Y E S(H), Y{t)X implies Y,; wp(t)(X). 

8.4.5 The D'Hondt-Panangaden Weakest Preconditions versus 
Projective Weakest Preconditions 

In this subsection we deviate from the right path to examine the relationship be
tween projective weakest preconditions and the D'Hondt and Panangaden weakest 
preconditions defined in Section 8.3. We first consider a special class of quantum 
programs that are represented by superoperators preserving projectors. 

Definition 8.4.13. 

(i) Let E E SO(H). If for any X E S(H), there exists Y E S(H) such that 
E(Px) = !..Py for some 0 < !.. :S I. then we say that E preserves projectors. 

(ii) Let E E SO(H) preserves projectors. Then the restriction te ofE on S(H) is 
defined as follows: For each X E S(H), if E(Px) = !..Py, then I&(X) = Y. 
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We note that if E(Px) = !..Py and E(Px) = ~tPz then Y = z. So, IE is well
defined. 

To simplifY the presentation, we introduce an auxiliary notion. For any X, y E 

S(H), we define the cosine of the angle between X and Y as follows: 

dimXdimY 

cos(X, Y) = L L I('Pti'YJ)I', 
i=l }=I 

where {I'Pt) l?~i,., is an orthonormal basis of}{ such that I'Pt) E X for all i < dim X 
and l<f?;) E x.t for all i >dim X, and {11/r1)}}:-n

1
7i is an orthonormal ba,;;s of}{ 

such that 11/rJ) E Y for all j :" dim Y and 11/r1 ) E y.c for all j > dim Y. It is easy 
to show that cos(X, Y) does not depend on the choices of {I'Pt)} and {11/rJ) }. 

The followmg two technical lemmas will be used in the proofs of the main 
results in this subsection. 

Lemma 8.4.14. Let X, X 1, X 2 , Y E S(H). Then we have: 
(i) cos(X, Y) = cos(Y, X)= ,jtr(Px. Pr). 

(ii) Xt ,; X, implies cos(X1, Y) :s cos(X2 , Y). 

(iii) cos(X, Y) :" min(v'dirnX, VdimY), and cos(X, Y) = v'dimX if and 
only if X ,; Y. 

Proof Suppose that both {l<p,)} and {11/r1)} are orthonormal bases of}{, I'Pt) E X 
for all i :" dim X, I'Pt) E x.c for all i > dim X, 11/r

1
) E Y for all j :s dim Y, and 

11/J) E Y .l for all j > dim Y. Then 

dim% dimf 

tr(PxPr) = tr(L l<p,)(<pt/ · L 11/rJ)~1/rJI) 
i=l }=1 

dimXdimY 

i=l j=l 

dimXdimY 

= :L :L l(<pt/1/rj)l' 
i=l )=I 

= cos(X, Y) 2 

dim X dim'!{ 

s :L :L l(<pt/1/rj)l' 
i=I }=1 

dim X 

= L II'Pt/1 2 

i=l 

=dim X. 

lfcos(X, Y) = v'dimX, then 

dimY 

L I ('Pd1/rj) 1
2 

= I 
)=1 

for all i :" dim X. This implies I'Pt) E Y for all i s dim X, and X c Y. D 

il:, 
I''· 

,'I. 
,'!, 
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Lemma 8.4.15. Let E E SO('H) preserve projectors, let X, Y E S(Jt), and let X 
be finite-dimensional. If for all p E JJ(Jt). we have: 

tr(Pxp) :5: tr(PrE(p)), 

then ts(X) <; Y. 

Proof ( <=) Suppose that E(Px) = J..Pz. Since X is a finite-dimensional subspace 
of1t, we have: 

I 
dim(X) Px E JJ(Jt), 

where dim(X) is the dimension of X. Then we obtain: 

J.. I I 
tr(-.--Pz) = tr(E(d. (X)Px)) :5: tr(d. (X)Px) =I 

d1m(X) 1m 1m 

from the definition of superoperator. This implies that Z is finite-dimensional. 
Thus, it follows that 

and 

Putting 

we get: 

), dim(Z) = tr( .-J..-Pz) :5: I 
dim(X) d1m(X) 

dim( X) 
),< --. 

- dim(Z) 

__ l_p 
p- dim(X) x, 

I 
I= --tr(Px) 

dim( X) 
I 

= dim(X)tr(PxPx) 

= tr(Pxp) 

:5: tr(PrE(p )) 

I 
= -.--tr(PxE(Px)) 

d1m(X) 
), 

= -.--tr(PyPz) 
d1m(X) 

I 
:5: dim(Z)tr(PyPz) 

and dim(Z) :5: tr(PyPz). Therefore, using Lemma 8.4.14 we obtain tc(X) = 
Z<;Y. D 
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Suppose that E E SO(Jt) is a quantum program preserving projectors. Of 
course, the D'Hondt-Panangaden weakest precondition wp(E) of E can be defined 
in (P(Jt), t;) according to Definition 8.3.4. On the other hand, the weakest pre
condition wp(t&) can be defined in (S(Jt), <;)according to Definition 8.4.12. An 
interesting problem is to compare the restriction of wp(E) on S(Jt) with wp(t£). 

Proposition 8.4.16. Let E E SO( H) preserve projectors. 

(i) For any X E S(Jt), if Z is a finite-dimensional subspace of1t, and Pz t; 
wp(E)(Px). then Z <; wp(tc)(X)provided wp(tc)(X) is defined. 

(ii) If E satisfies the condition: p t; wp(E)(E(p )) for all p E JJ(Jt), then for 
any X E S(Jt), we have: 

Pwp(tc)(X) t; wp(E)(Px). 

Proof 

(i) For any p E JJ(Jt), we have: 

tr(Pzp) :5: tr(wp(E)(Px)p) :5: tr(PxE(p)). 

Then it follows from Lemma 8.4.15 that tt(Z) <;X, and by definition we 
obtain Z <; wp(tc)(X). 

(ii) Assume that Y = wp(tc)(X). Then ts(Y) <; X, i.e., E(Py) = J..Pz for some 
J.. and Z with 0 < J.. :5: I and X;> Z E S(Jt). Now for any p E JJ(Jt), by 
Proposition 8.3.5 we obtain: 

tr(Py p) :5: tr(Pywp(E)(E(p ))) 

= tr(Pr · 'L_EfE1pEjE1) 

i,j 

i,j 

= tr(£E1PrE/ · 'L_E1pEj) 
j 

= tr(E(Py )E(p )) 

:5: tr(PzE(p)) 

:5: tr(PxE(p )). 

Therefore, it holds that Pr(E) Px, and Py t; wp(E)(Px) follows. o 

Now we consider a partial inverse of the problem dealt with in the above propo
sition. Lett be a mapping from S(Jt) into itself satisfying the upper continuity: 

ten E~) = n t(E~) 
A<M A<p, 

';: 
i'\i 

I',, r· 
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for any family {EM}A<~ of closed subspaces of 1t with EM, <; E~, whenever 
1-'l <: f-'z. Then t induces an operator E, on £(1t) in the following way: Each 
bounded positive operator A can be written in the form of 

A= 1' AdE, 

by the spectral decomposition theorem, where b 2:: 0, and E, E S(H) for any 
0 <: A <: b. Then it follows from the upper continuity oft that {t(E")) is a spectral 
family, and we can defrne 

E1(A) = 1' Adt(E,). 

Furthermore, E1(A) can be defined for all A E £(1t) by linearity. It is easy to check 
that E, is a superoperator if dim(t(X)) <( dim(X) for any X E S(H). On the other 
hand, iff E QUC(H) is a upper-continuous projective predicate transformer, then 
we can define the extension f' : P(H) __,. P(H) off in a similar way: for any 
ME P(H), 

J'(M) = { Adj(F,) 

when M = J0
1 

AdF, is the spectral decomposition of M. 

(8.12) 

Proposition 8.4.17. Lett be a mapping.from S(H) into itself satisfYing the upper 
continuity and preserving the cosine of the angle between two closed subspaces 
o.f1t: 

cos(X. Y) <: cos(t(X), t(Y)) 

foranyX, Y E S(H). Thenwehavewp(t)* !;= wp(E,). wherewp(-)intheleft-hand 
side and wp(-) in the right-hand side are given according to Definitions 8.4.12 and 
8.3.4, respectively. and the extension * in the left-hand side is defined according 
to Equation (8.12). 

Proo.f(Outline). The theory of spectral measures and integrals (see Prugovecki 
1981, Chapter 11!.5) can be generalized to the case of positive operator-valued 
measures and integrals (Diestel and Uhl 1977) so that 

f AdA" 

is well defrned, where [A A} is a family of positive operators. Furthermore, we have: 

A·(! AdA,)= f Ad(AA"). (8.13) 

(/AdA")· A= f Ad(A;.A), (8.14) 

(8.15) 
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where A is a positive operator, and the right-hand side of Equation (8.15) is the 
I.ebesgue-Stieltjes integral. 

Now for any M E P(H), we show that wp(t)'(MJ r; wp(E,)(M). To this end, 
we only need to prove that wp(t)'(M){E, )M, i.e., 

tr(wp(t)*(M)p) <( tr(ME,(p )) 

for all p E D(H). Suppose that 

M = 1

1 

AdE", p = 1 1 !-'dF~ 
are the spectral decompositions of M and p, respectively. Then with Equations 
(8.13) and (8.14) we obtain: 

wp(t)'(M)p = [{ Adwp(t)(E")]· p 

= 11 

Ad[wp(t)(EA) · p] 

Similarly, we have: 

ME,(p) = [Ad[[ !-'d[E" · t(F~)]). 
Therefore, it follows from Equation (8.15) that 

tr(wp(t)'(M)p) = 1
1 

Ad{1
1 

!-'d[tr(wp(t)(E") · FM)]), 

tr(ME,(p)) = 1
1 

Ad{1
1

f-'d[tr(E" · t(F~))]). 
Consequently, it suffices to show that 

tr(wp(t)(E,) · FM) <( tr(E" · t(F~)). 

In fact, since wp(t)(E,){t)E", we have t(wp(t)(E")) <; E". Then by Lemma8.4.14 
and the assumption that t preserves the cosine of the angle between closed sub
spaces of}-{, we obtain: 

tr(wp(t)(E,) · F~) = cos(wp(t)(E,), F~)2 

<( cos(t(wp(t)(E")), t(FM)) 2 

<:cos(£,, t(F0 )) 2 

<( tr(E" · t(F~)). 

D 
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8.4.6 Quantum Commands 

The remaining part of this section is mainly devoted to defining the semantics 
of recursive procedures in the setting of projective predicates and to establish 
some of the fundamental properties of recursive procedures. We adopt the abstract 
syutax of commands with procedures and unbounded choices used in Hesse link 
(1992). The results obtained in the following subsections generalize the main 
results in Hesse link (1992) to the case of quantum programs by replacing classical 
predicates with projective predicates in the semantics of commands. This can 
be clearly seen from a comparison between the results presented later and the 
corresponding ones in Hesselink (1992). Following Hesselink (1992), letS and 
H be two sets of symbols. It is required that S n H = 0. The elements of S are 
called simple commands, and the elements of H are called procedure names. 
Put A = S U H and assume that A does not contain the symbol E and ";". The 
set of strings over A is denoted by A*. We shall use E to denote the empty 
string, and concatenation of strings will be expressed by the infix operator ";". 
Intuitively, the concatenation ";" is used to denote sequential composition of 
commands. Furthermore, we write A0 for the set of nonempty subsets of A', 
i.e., Ao = P(A*)- {0}, where PO stands for power set. The elements of A0 

are 
called commands. A command C E A0 stands for the choice among the elements 
of C, which are also commands, whenever C contains more than one elements. 

The recursive procedures are declared by a function 

body: H-+ A0
. 

For each procedure name h E H, the body function body associates it to its body 
body(h ), which is a command expression that may contain occurrences of h or 
other procedure names. Intuitively, the behavior of procedure h is given by the 
defining equation h = body(h ). It is worth noting that recursive calls may happen 

because h is allowed to appear in body(h ). 
We can define two operations of commands. The sequential composition of two 

commands C, D E A 0 is defined to be 

C; D = {s; t : s E C and t ED), 

and the (unbounded) choice of a nonempty family C c; A0 of commands is defined 

to be 

cU c E c ,, c)= U c. 
CEC 

Semantics of commands is given in terms of homomorphisms from commands 

to quantum predicate transformers. 

Definition 8.4.18. A homomorphism is a mappingrp : A0 -+ QPT(H) satisjjling 

the following conditions: 

8 Predicate Transformer Semantics of Quantum Programs 

(i) rp( E) = I ds('H.) (the identity mapping on S('H)); 
(ii) rp(C; D)= rp(C) o rp(D); 

(iii) rp(U C E C : C) = 1\cec rp( C) 

for any C, D E A0 and C c; Ao 
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A homomorphism can be obtained by extending a mapping from simple com
mands and procedure names to projective predicate transformers in a natural way. 

Definition 8.4.19. Let v : A -> QPT(H) be a mapping. Then: 

(i) The extension v* of v on A' is defined inductively as follows: 
v'(E) = I ds('l-1.)· and v*(a; s) = v(a) o v'(s)for each a E A and s E A*. 

(ii) The extension v0 ofv on A0 is defined by 

v0 (C) = /\ v*(s) 
sEC 

foranyC E Ao 

Some basic properties of the preceding extension are presented in the following 
lennna, and their routine proofs are omitted. 

Lemma 8.4.20. 

(i) Ifrange(v) c; QMT(H), then range(v0 ) c; QMT(H). The same holds 

for QMC(H), QMP(H) and QMU(H). 
(ii) Ifrange(v) c; QMU(H), then v0 is a homomorphism. 

8.4. 7 Knaster-Tarski Fixed Point Theorem 

To define semantics of quantum procedures, we need the Knaster-Tarski fixed point 
theorem. For convenience of the reader, we briefly review it in this subsection. Let 
L be a lattice and D a mapping from L into itself. If 

D(U) = {D(w): w E U) c; U; 

then U is said to beD-invariant. 

Theorem 8.4.21 (Knaster-Tarski) (Hesselink 1992). Let L be a complete lattice, 
and let D : L -+ L be a monotone function. Then 

(i) D has a least fixed point lfp(D) and a greatest fixed point gfp(D). 

(ii) For any D-invariant subset U of L, we have: 
(a) lfp(D) E U ifU is sup-closed, i.e., V V E U for all V c; U; 
(b) gfp(D) E U ifU is inf -closed, i.e., 1\ V E U for all V c; U. 

The upper and lower ordinal powers of a mapping D : L -+ L are defined as 
follows: 

' I, 

1

,' 

' II, 

IIi 

I, 
! 

I' 
' 

li 

'i 

:! 
_,, ,,,,,,,, ' ::! 
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D t 0 = 0, D-\- 0 = 1; 
D t (a+ 1) = D(D t a), D +(a+ 1) = D(D +a) for each ordinal num-

ber a; and 
• D t a= V!D t fJ: fJ <a), D +a= A(D + fJ: {J <a) if a is a limit 

ordinal number. 

The next proposition gives an explicit representation of fixed points in terms of 

ordinal powers. 

Proposition 8.4.22 (Lloyd 1987). Let L be a complete lattice, and let D : L --> L 

be monotone. Then 

(i) D t a :S lfp(D) and gfp(D) :S D + a for any ordinal number a; 
(ii) There exist ordinal numbers a0 and a, such that D t a = lfp(D) for all 

a:;> a 0, and D +a= gfp(D)for all a ::"a,. 

The following proposition will be used in proving the termination law of quan

tum programs. 

Proposition 8.4.23 (Hesselink 1992). Let L be a complete lattice and K a com
plete sublattice of L, let f, g : L --> L be monotone mappings, and let fl K be the 

restriction off on K. Then 

(i) (a) lfp(f!K) = lfp(f) iflfp(f) E K, 

(b) gfp(fl K) = gfp(f) if gfp(f) E K 
(ii) lfp(f) :S lfp(g), gfp(f) :S gfp(g) iff :S g, i.e., f(a) :S g(a)for all a E L. 

8.4.8 Semantics of Recursive Quantum Commands 

Now we are able to define semantics of recursion expressed by procedure names 
and their declarations. Let w : S --> QPT('H) and u : H --> QPT('H). Then their 

merging w U u : A --> QPT('H) is defined by 

{

w(a) if a E S, 
(wUu)(a)= 

u(a) if a E H. 

Note that w U u is well defined because it was assumed that S n H = 0. As an 

immediate corollary of Lemma 8.4.20(i), we have: 

Lemma8.4.24. Iffor any a E S, w(a) is universally conjunctive, and for any 
a E H, u(a) is universally conjunctive, then for any C E A0

, (w U u)
0

(C) is 

universally conjunctive. 

For each mapping w : S--> QMT('H), it induces a mapping D[ w] from 

QMT('H)H into itself as follows: 

D[w](u) = (w U u)0 o body 

for any u : H --> QMT('H). It follows directly from the defrnition of w U u and 

Lemma 8.4.20(i) that D[w](u)(h) E QMT('H) for every hE H. Then we are 

ready to present the key definition of this section. 

8 Predicate Transformer Semantics of Quantum Programs 

Definition 8.4.25. Let w : S-+ QMT('H). Then: 

(i) The weakest precondition function generated by w is defined to be 

wp[w] = (w U lfp(D[w]))o 
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(ii) The weakest liberal precondition function generated by w is defined to be 

wlp[w] = (w U gfp(D[w]))o, 

where lfp(D[w]) and gfp(D[w]) stand for the least and greatest fixed points of 
D [ w ], respectively. 

It is easy to see that D[w] is monotone. Then we know that lfp(D[w]) and 
glp(D[w]) always exist from Lemma 8.4.9(i) and Theorem 8.4.2l(i), and wp[w] 
and wlp[ w] are well defined. 

Lemma 8.4.26. For any w : S--> QMT('H) and h E H, we have: 

(i) wp[w](h) = wp[w](body(h)) and wlp[w](h)_= wlp[w](body(h)); 
(ii) Ifrange(w) <; QMU('H), then wlp[w] is a homomorphism. 

Proof 

(i) is obvious from the definition of D[w] and Definition 8.4.25_ 
(ii) It follows from Lemma 8.4.9(ii) that QMU('H)H is inf-closed_ On the other 

hand, we see that D[w] is QMU('H)H -invariant by a routine calculation_ 
Then we have gfp(D[w]) E QMU('H)H by Theorem 8.4.21(ii), and it 
follows from Definition 8.4.25(ii) and Lemma 8.4.20(ii) that wlp[w] is a 
homomorphism. o 

8.4.9 Healthiness Laws for Quantum Commands 

Healthiness conditions were first introduced by Dijkstra (1976) and then thor
oughly investigated by Dijkstra and Scholten (1990) among others, and they pre
scribe certain properties of predicate transformers. The aim of this section is to 
establish the quantum generalizations of some healthiness laws. 

Universal conjunctivity is one of the most important healthiness laws for predi
cate transformers, and it asserts that the predicate transformers under consideration 
preserve arbitrary meets of predicates. Universal conjunctivity of classical weakest 
liberal preconditions can be generalized to the quantum case in a straightforward 
way. 

Theorem 8.4.27 (Universal conjunctivity of weakest liberal precondition). If w(a) 
is universally conjunctive for all a E S, then wlp[ w ](C) is universally conjunctive 
for each C E A 0 . 

Proof We see that gfp(D[ w]) E QMU('H)H from the proof ofLemma 8.4.26(ii). 
Thus, it immediately follows from Lemma 8.4.24 and Definition 8.4.25(ii) that 
wlp[w] (C) E QMU('H) for all C E A0 o 
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Another important healthiness condition is termination law, which asserts that 
the total correctoess of a program is the conjunction of the termination and the 
partial correctness of the program. It has been widely used in reasoning about total 
correctness of classical programs. The quantum version of termination law is not 
a straightforward generalization of the classical termination law. It requires some 
new insights from quantum logic, and its proof is much more skillful than that for 
classical programs (Hesselink 1992). To establish the quantum termination law, 

we first need to give two technical lemmas: 

Lemma 8.4.28. Let X E S('H), and let w : S--> QMT(Ji) and u : H --> 
QMT(Ji). If for all a E Sand h E H, we have X<; w(a)(X) and X<; u(h)(X), 

thenfor all C E A 8 , it holds that 

X<; (w U u)8 (C)(X). 

Proof We proceed by induction on the structure of C. For the case of C = a E A, 
it is obvious. If C = a; s, where a E A and s E A*, then we obtain: 

(w U u)8 (C)(X) = (w U u)'(a;s)(X) 

= (w U u)(a)((w U u)'(s)(X)) 

2 (w U u)(a)(X) 

:;ox 

from the induction hypothesis: X<; ( w U u)8 (s )(X). In general, it follows that 

(w U u)8 (C)(X) = 1\ (w U u)'(s)(X) 2 X 
'EC 

from the induction hypothesis that X<; (w U u)8 (s)(X) for all s E A*. o 

Lemma 8.4.29. Let X E S('H). If X<; w(a)(X)for all a E S, then for all a E A 

we have: 

X<; wlp[w](a)(X). 

Proof From Definition 8.4.25 we obtain: 

wlp[w](a)(X) = (w U gfp(D[w]))(a)(X) 

{

w(a)(X) if a E S, 

gfp(D[w])(a)(X) if a E H. 

Therefore, it suffices to show that X<; gfp(D[w])(h)(X). By Theorem 8.4.27, 
we only need to prove X<; (D[w] t a)(h)(X) for all ordinal numbers a, where 

D[w] t a isanordinalpowerof D[w]. 
We proceed by transfinite induction on a. If a = 0, then 

(D[w] t a)(h)(X) = 1i 

8 Predicate Transformer Semantics of Quantum Programs 

and the conclusion holds. Now assume that X<; (D[w] t a)(h )(X). Then 

(D[w] t (a+ l))(h)(X) = D[w](D[w] t a)(h)(X) 

= (w U (D[w] .j. a))8 (body(h))(X) 

and it follows from Lemma 8.4.28 that 

X<; (D[w] t (a+ l))(h)(X). 

Finally, if a is a limit ordinal and X<; (D[w] .j. ,B)(h )(X) for all ,B < a, then 

X<; 1\ (D[w] .j. ,B)(h)(X) = (D[w] t a)(h)(X). 
fi<a 
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D 

To ~r~sent the quantum termination law in a compact way, we need to introduce 
an awnhary notation. For any w : S --> QMT(Ji), we write: 

Range(w) = Utw(a)(X): X E S(Ji)}. 
aES 

Theorem 8.4.30 (Termination law). Suppose that w 1 ,.w2 : S--> QMT(Ji) sat
rsfy the following condition: 

wr(a)(X) = wr(a)(Ji) 1\ w2(a)(X) 

for any a E Sand X E S(Ji). Then 

(i) For any C E A0 and X E S('H), we have: 

wp[wJ](C)(X) <; wp[wJ](C)(Ji) 1\ wlp[w2](C)(X). 

(ii) Let M <; S(Ji). If 
(a) Range(w1), Range(w2) <; M, 

(b) r(M) <; w,(a)(r(M))for all a E S, and 

(c) w,(a) is universally conjunctive for all a E S, 

then we have: 

wp[wr](C)(Ji) 1\ wlp[w,](C)(X) 1\ r(M) <; wp[w1](C)(X), 

where r(M) stands for the strong commutator ofM. 

Note that if all the elements of M commute mutually then r(M) = Ji and 
condition (ii)(b) becomes a part of condition (ii)(c). Furthermore, we have: ' 

wp[wr](C)(Ji) 1\ wlp[w,](C)(X) = wp[w 1](C)(X) 

by combining the two parts of the theorem. 

Proof 

(i) It is obvious that wp[wJ](C)(X) <; wp[wJ](C)(Ji). So, we only need to 
show that 

wp[wJ](C)(X) <; wlp[w2](C)(X). 
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Since w1 <; w2 , we have D[ wJ] <; D[ wz], Then we obtain: 

lfp(D[wJ]) <; gfp(D[wJ]) <; gfp(D[w2]) 

by Proposition 8.4,23, and it follows that 

wp[wJ] = (w 1 U lfp(D[wJ]))0 <; (w2 U gfp(D[w2]))
0 = wlp[w2 ], 

(ii) The proof of part (ii) consists of five claims. First, we write [M] for the 
complete sub lattice of S(Ji) generated by M. Put 

W = {u E QMT('Hf : u(h)(X) E [M] for all h E Hand X E S(Ji)}. 

It is easy to see that W is a complete sublattice of QMT(1i)H 

• Claim I. D[wJ] t a, D[wz] .). a E W for all ordinal numbers a, where 
D[wJ] t a, D[w2].!. a are ordinal powers of D[wJ] and D[w,], respec

tively. 

The proof of this claim can be carried out by transfinite induction on a, and 
it is routine and so omitted here. We only need to note that here the condition 

Range(w1), Range(w2) <; M is required. 
Let lfp(D[wJ]) and Lfp(D[w 1]) stand for the least fixed points of D[wJ] in 

QMT(1i)H and W, respectively. In addition, let gfp(D[w,]) and Gfp(D[w2Jl be 
the greatest fixed points of D[w2 ] in QMT(1i)H and W, respectively. Then we 

have: 

• Claim 2. lfp(D[w 1]) = Lfp(D[w,]) and gfp(D[wz]) = Gfp(D[wz]). 

In fact, we see that lfp(D[wi]), gfp(D[w2]) E W by combining claim 1 and 
Proposition 8.4.22. Then claim 2 follows immediately from Proposition 8.4.23. 

Now we set 

U = {u E W: u(h)(1i)Awlp[w2](h)(X) 1\ f(M) 

<; u(h)(X)forallh E HandXE S(7i)}. 

Claim 3. For each u E U, we have: 

(w 1 U u)0 (C)(7i) 1\ wlp[w2](C)(X) 1\ f(M) <; (w 1 U u)0 (C)(X) 

for all C E A0 and X E S(7i). 

The proof of this claim is carried out by induction on the structure of C. 

• Case 1. C = a E S. Then we have: 

(w1 U u)0 (C)(X) = w1(a)(X), 

(w 1 U u)0 (C)(7i) = w1(a)(1i), 

wlp[w2](C)(X) = (w2 U gfp(D[w2]))0 (C)(X) = w2(a)(X). 

Thus, claim 3 follows from the assumption about w 1 and w2. 
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• Case 2. C = h E H. Then 

(wJ U u)0 (C)(7i) = u(h)(1i), 

(w, U u)0 (C)(X) = u(h)(X), 

and claim 3 follows from the fact that u E U. 
• Case 3. C = a;s, where a E A ands E A'. For simplicity, We write: 

LHS = (w, U u)0 (C)(7i) 1\ wlp[w2](C)(X) 1\ f(M). 

Then we obtain: 
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LHS = (w, U u)(a)((w, U u)*(s)(7i)) 1\ wlp[w2](a)(wlp[w2](s)(X)) 1\ f(M) 

<; (w, U u)(a)(7i) 1\ wlp[wz](a)((w 1 U u)'(s)(7i)) 

1\ wlp[w,](a)(wlp[w2](s)(X)) 1\ f(M). 

Using Lemma 8.4.29 we assert that f(M) <; wlp[w2](a)(f(M)), and it 
follows that 

LHS <; (wJ U u)(a)(7i) 1\ wlp[w2](a)((w 1 U u)'(s)(7i)) 

1\ wlp[w,](a)(wlp[w2 ](s)(X)) 1\ wlp[w2 ](r(M)) 1\ r(M). 

Since wz(a) is universally conjunctive, we have: 

LHS <; (w, U u)(a)(7i) 1\ wlp[w2](a)((w 1 U u)'(s)(7i) 

1\ wlp[wz](s)(X) 1\ r(M)) 1\ f(M) 

<; (w1 U u)(a)(7i) 1\ wlp[w2](a)((w 1 U u)*(s)(X)) 1\ r(M) 

<; (w, U u)(a)((wJ U u)*(s)(X)) 

= (w, U u)'(a;s)(X) 

= (w1 U u)0 (C)(X) 

by using Theorem 8.4.27 and the induction hypothesis on s and a. 

In general, the induction hypothesis on s E A* leads to 

LHS= 1\(w, Uu)'(s)(7i)/\ 1\ wlp[w2](s)(X)/\r(M) 
sEC sEC 

= /\[(w, U u)*(s)(7i) 1\ wlp[w2](s)(X) 1\ r(M)] 
sEC 

<; 1\ (w1 U u)'(s)(X) 

= (w, U u)0 (C)(X) 

and this completes the proof of claim 3. 

• claim 4. U is D[ wJ]-invariant. 

I 
i I 
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In fact, for any u E U, claim 3, together with Lemma 8.4.26, yields: 

D[w!](u)(h)('H) 1\ wlp[w,](h)(X) 1\ f(M) 

= (w1 u u)0 (body(h))('H) 1\ wlp[w2](body(h))(X) 1\ r(M) 

S (w1 U u)0 (body(h))(X) 

S D[w 1](u)(h)(X). 

This means D[w!](u) E U. 

• Claim 5. U is sup-closed. 

It follows from Theorem 8.4.27 that 

wlp[w2 ] = (w2 U gfp(D[w2]))0 o body= (w2 U (D[w,] ~ a))0 
o body 

for some ordinal number a. Then claim I implies wlp[w,](h)(X) E [M] for all 

hE Hand X E S('H). 
For any u, E U (i E I), we obtain: 

cV u,)(h)('H) 1\ wlp[w2](h)(X) 1\ r(M) 
iE/ 

= cV u,(h)('H)) 1\ wlp[w2](h)(X) 1\ r(M) 
iEl 

<; V (u,(h )('H) 1\ wlp[w,](h )(X) 1\ r(M)) 
iE/ 

<; V u,(h )(X) 
iEf 

= CV u,)(h)(X) 
iEl 

by Lemmas 8.4.4 and 8.4.5. Thus, viE/ u, E u. 
Finally, combining claims 3, 4 and 5 and Theorem 8.4.27 we assert that 

Jfp(D[ w1]) = Lfp(D[w!]) E U, and we complete the proof by using Claim 3 once 

again and by noting that 

D 

A weak version of universal conjunctivity of quantum weakest preconditions 
can be derived from universal conjunctivity of quantum weakest liberal precondi

tions and termination law. 

Corollary 8.4.31. Let w1, w2 and M be as in Theorem 8.4.30. Then for each 

C E A 0 we have: 

(i) wp[w](C)(f\,E1 X,) <;/\tEl wp[w](C)(X,). 
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(ii) If I # 0 then it holds that 

f\ wp[w](C)(X,) 1\ r(M) <; wp[w](C)(f\ X,). 
iEf iE/ 

8.4.10 Induction Rules 

Hoare's induction rule (Hoare 1971) is a basic tool of establishing partial correct
ness of recursive procedures. It may be easily generalized to quantum programs 
with the projective predicate transformer semantics . 

Theorem 8.4.32 (Hoare's induction rule). Let h, E H (i E I), let w : S ~ 

QMT('H). and let X,, Yi E S('H) (i E I). Suppose that for all homomorphisms rp 
with rpiS = w, 

X, <; rp(h,)(Yi) for every i E I 

implies 

X, <; rp(body(h, ))(Y,) for every i E I. 

Then X,<; wlp[w](h,)(Y,)for every i E I. 

Proof Put 

U = {u: QMT('H)H: X,<; u(h,)(Yi) for all i E I}. 

It is obvious that U is inf-closed. For any u E U, we see from Lemma 8.4.20 that 
( w U u )0 is a homomorphism. In addition, we have: 

(w U u)0 (h,)(Yi) = u(h,)(Yi) 2 X, 

for all i E I, and (w U u)0 1S = w. Then the assumption yields: 

D[w](u)(h,)(Yi) = (w U u) 0 (body(h,))(Y,) 2 X 1 

for all i E I. Hence, U is D[w]-invariant. With Theorem 8.4.21 we obtain 
gfp(D[w]) E U; that is, 

wlp[wi](h,)(Y,) = gfp(D[w])(ht)(Y,) 2 X, 

for all i E J. D 

Similarly, we are able to prove the following quantum generalization of Hes
selink:'s necessity rule, which is useful for proving that a recursive procedure does 
not satisfy a specification (see Hesselink 1992, Section 2.7). 

Theorem 8.4.33 (Hesse link's necessity rule). Let h, E H (i E !), let w : S ~ 
QMT('H), and let X,, Yi E S('H)(i E I). Supposethatforallhomomorphismsrp 
with rpiS = w, 

rp(h1)(Yi) <;X, for every i E I 

~ I I 
' 

i'l 
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I' 

i.ll 
I' 
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implies 

<P(body(h;))(Y;) <;X, for every i E /. 

Then wp[w](h;)(Y,) <; X,Joreveryi E I. 

8.5 Conclusion 

This chapter presents a systematic exposition of predicate transformer seman
tics of quantum programs. The chapter is divided to two main parts. The first 
part is devoted into a thorough review of the D'Hondt-Panangaden approach to 
quantum predicate transformer semantics where quantum predicates are treated 
as observables with their eigenvalues within the unit interval. In the second part, 
we choose to deal with a special class of quantum predicates, namely projection 
operators. This allows us to establish a quite complete predicate transformer se
mantics for quantum programs by employing some powerful mathematical tools 
from Birkhoff-von Neumann quantum logic. In particular, various healthiness 
conditions are introduced, and the universal conjunctivity, termination law, and 
Hoare's induction rule are generalized into the quantum setting. The relationship 
between projective weakest preconditions and the D'Hondt-Panangaden quantum 

weakest preconditions are carefully examined. 
An interesting topic for further studies would be to establish a link between 

quantum predicate transformer semantics and Kozen's probabilistic predicate 
transformer semantics (Kozen 1981) through the Gleason theorem (Dvurecenskij 

1993). 
This chapter focuses on establishing a mathematical foundation of quantum 

predicate transformer semantics. So, a more important topic for further studies 
would be to apply the abstract mechanism developed in the present chapter to 
quantum program verification or development. In fact, D'Hondt and Panangaden 
(2006) used their approach to give a semantics of Selinger's QPL (Selinger 2004), 
and the D'Hondt-Panangaden approach to quantum predicate transformer seman
tics was also used by the authors of the present chapter (Feng et a!. 2007) to 
give proof rules for the correctness of programs written in a simple language 
fragment that may describe the quantum part of a future quantum computer 
in Knill's architecture (Knill 1996). In a forthcoming paper, we will systemat
ically use the projective predicate transformer semantics developed in the second 
part of this chapter in reasoning about programs written in the existing quantum 
programming languages, e.g., Orner's QCL (Orner 2003), Sander and Zuliani's 
qGCL (Sanders and Zuliani 2000), and Selinger's QPL (Selinger 2004), as well as 
quantum loops defined in Ying and Feng (2006). In Zuliani (2004), Zuliani initi
ated a study of nondeterministic quantum programming. In the future studies, we 
hope to define the notion of refinement relation between quantum programs based 
on quantum predicate transformer semantics and eventually build a refinement 
calculus for supporting stepwise refinement strategy in quantum programs devel
opment by combining the work reported in this chapter with that ofZuliani (2004). 
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Furthermore, we believe that quantum backward semantic techniques and quan
tum refinement calculus will even find their applications in quantum engineering 
design, an area much wider than quantum programming. 
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The Structure of Partial Isometries 

Peter Hines and Samuel L. Braunstein 

Abstract 

It is well known that the "quantum logic" approach to the foundations of quantum 
mechanics is based on the subspace ordering of projectors on a Hilbert space. In 
this paper, we show that this is a special case of an ordering on partial isometries, 
introduced by Halmos and McLaughlin. Partial isometries bave a natural physical 
interpretation, however, they are notoriously not closed under composition. In or
der to take a categorical approach, we demonstrate that the Halmos-McLaughlin 
partial ordering, together with tools from both categorical logic and inverse cate
gories, allows us to form a category of partial isometries. 

This category can reasonably be considered a "categorification" of quantum 
logic- we therefore compare this category with Abramsky and Coecke's "com
pact closed categories" approach to foundations and with the "monoidal closed 
categories" view of categorical logic. This comparison illustrates a fundamen
tal incompatibility between these two distinct approaches to the foundations of 
quantum mechanics. 

9.1 Introduction 

As early as 1936, von Neumann and Birkhoff proposed treating projectors on 
Hilbert space as propositions about quantum systems (Birkhoff and von Neumann 
1936), by direct analogy with classical order-theoretic approaches to logic. Boolean 
lattices arise as the Lindenbaum-Tarski algebras of propositional logics, and as the 
set of all projectors on a Hilbert space also forms an orthocomplemented lattice, 
the operations meet, join, and complement were analogously interpreted as the 
logical connectives conjunction, disjunction, and negation. 

However, the lattice of projectors is not a Boolean lattice, so this interpretation 
requires modifications to the rules of propositional logic (notably the distributive 
law, A 1\ (B v C) = (A 1\ B) v (A 1\ C) fails and is replaced by the weaker 
condition A :S: C =? A 1\ (Aj_ v C) = C). The resulting system of orthomodular 
lattices has become known as quantum logic, and a number of authors (Finkelstein 
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