
UDC 621.391

Semantic Web Technologies for Enterprise
Application Integration

Nenad Anicic1,2, Nenad Ivezic1

1 National Institute of Standards and Technology
100 Bureau Dr., Gaithersburg, MD 20899, USA

{nanicic, nivezic}@nist.gov
2 Faculty of Organizational Sciences,

11000 Belgrade, Serbia and Montenegro
anicic.nenad@fon.bg.ac.yu

Abstract. Large industrial interoperability projects use syntax-based
Enterprise Application Integration standards, such as XML Schema,
to accomplish interoperable data exchange among enterprise
applications. In this paper, we describe an approach to assess the
potential impact of Semantic Web technologies on these standards
and on testability of integration results when using these standards.
The experimental approach includes an automated translation of an
XML Schema-based representation of business document content
models into an OWL-based ontology. Based on this ontology, we use
the Semantic Web representation and reasoning mechanisms to
validate ontological constructs and constraints in support of data
exchange. We demonstrate novel, model-based integration
capabilities that go beyond the existing syntax-based approaches.
These new capabilities are relevant when managing multiple
enterprise ontologies derived from a common ontology.

1. Introduction

Success of large-scale, industry-wide enterprise integration efforts
depends on the enterprise application integration (EAI) standards.
Examples of such EAI standards include Open Applications Group
(OAGIS) [1], RosettaNet [2], and Universal Business Languages (UBL)
[3]. Currently, these standards are based on XML specifications that are
syntactic formalisms [4,5,6]. Capabilities of these standards and
testability of integration results based on these standards are
significantly limited as a consequence of the limited reasoning capabilities
supported by syntactic formalisms. This follows from the fact that syntax-
based approaches to define structure of business documents do not impose
a common interpretation of the data and there is no way to achieve a

Nenad Anicic, Nenad Ivezic

repeatable and a verifiable procedure to recognize a semantic unit from a
domain of interest [7].

Take, for example, the Schematron [8] rules that are typically used to
encode constraints for the application content of the messages exchanged
among applications. These rules, however, cannot be reasoned about and
compared in a context of some integration problem. Consequently, two
rules that are perfectly valid syntactically may be conflicting with each
other within a certain integration context.

The advent of Semantic Web offers opportunities for more capable EAI
standards to capture and manipulate semantic relationships. Semantic
formalisms at the foundation of these technologies allow use of
computational approaches to reason about formally expressed concepts
and make inferences that are useful, yet beyond the capabilities of the
syntax-based approaches. Consequently, testability of the application
integration efforts may become equally more powerful. Essentially, the
reasoning methods, such as satisfiability and consistency checking, may
be readily used to perform various types of validations, such as whether
two ontologies are compatible and whether a specific business document
instance has sufficient and necessary data to belong to a specific class of
documents.

In principle, the Semantic Web technologies today enable one to draw
automated inferences about relationships between conceptual structures
using a subset of the First Order Logic formalism called Description
Logics. As an example, it is possible to express constraints on existence of
an element in a document schema (e.g., ‘The access rights element will
appear only if the sensitivity type element appears’) and to reason about
possible conflicts of such a rule with other document rules (e.g., ‘Either the
access right or sensitivity type element, but not both, will appear’). These
types of reasoning are not possible using purely syntactic approaches.

This paper describes an approach to evaluate capabilities of the
Semantic Web technologies for EAI and, particularly, how it affects
integration testing capabilities. The specific objectives that drive this
work are (1) to develop an experimental tool enabling assessment of
Semantic Web technologies for EAI and (2) to design and execute a series
of experiments to effectively perform such an assessment. To accomplish
these objectives, the paper posits Semantic Web-based integration
architecture and an integration methodology that is enabled by such
architecture.

The rest of the paper is structured as follows. Section 2 describes a
prototypical problem considered for this work. Section 3 describes a
current, traditional EAI standards architecture and, then, proposes a
Semantic Web-based architecture. Section 4 gives terminology to describe
our methodology. Section 5 describes details of the developed integration
methodology. Section 6 discusses some initial findings. Section 7 includes

120 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

a description of the related work. Finally, Section 8 provides concluding
remarks.

2. A Prototypical Problem

The scope of our effort is partially defined by the type of problems
identified in this section. First, however, we define a few terms.

By integration of enterprise applications, we mean exchange of
business document instances (or, simply, business documents) between
two enterprise applications that are based on two different business
document content models (or, equivalently, interface models) so that
interoperable data exchange is achieved. Obviously, business document
instances conform to business document content models. Interoperable
data exchange is clearly the key objective of an integration effort and may
be thought of as such an exchange of data that preserves intended
meaning of the data.

The prototypical problem discussed here may be readily encountered in
the traditional standards usage for enterprise application integration, as
described next and shown in Fig. 1

Fig. 1. A Prototypical Problem: Interface Standards Compatibility Checking

Two independent, but related, industry consortia develop respective
enterprise application integration standards (or, equivalently, business
document content models or interface standards). First, an automotive
retail consortium, call it STAR for Standards in Automotive Retail,
develops XML Schema-based standards to enable business documents to
be transacted by automotive manufacturers and their retail houses[9].

ComSIS Vol.2, No.1, June 2005 121

Nenad Anicic, Nenad Ivezic

Second, an automotive supply chain consortium, named AIAG for
Automotive Industry Action Group, develops XML Schema-based
standards to enable business documents exchange by automotive
manufacturers and their suppliers [10].

A STAR application adopts and implements the proposed STAR XML-
based interface model. However, an additional requirement is posed for
the STAR applications: to be able to exchange the automotive parts
ordering data with the AIAG applications that adopted the AIAG interface
model.

Both STAR and AIAG consortia base their interface models on the same
‘horizontal’ document standard – The OAGIS Business Object Documents
(BODs). BODs are specifications of general XML Schema components and
general aggregations that make up business document content models
from these components. Each consortium independently uses the OAGIS
BODs to customize their own document content models and define usage
rules for the components (e.g., mandatory and conditional components).

Presently, the usage rules for the business document content models
are captured outside the XML Schema using syntactic constructs (e.g.,
Schematron rules). A significant manual task is required to identify and
reconcile differences among constraints and rules of two or more
standards. We seek an approach to enable automated checking of
compatibility among rules and constraints that are independently
developed within the two or more standards groups with a common
terminology at their bases. Once such automated checking of
compatibility is in place, more capable application integration and
testability of integration results are expected.

3. A Semantic Web-based Architecture for EAI Standards

In this section, we compare a traditional and a novel architecture to
integrate enterprise applications. We continue to use OAG, STAR, and
AIAG terms to indicate a general, a source, and a target standard
specification, respectively.

3.1. Traditional EAI Standards Architecture

The left portion of Fig. 2 shows a traditional EAI standards architecture
based on a pure XML Schema-based integration approach. The following
steps are required to translate data from a previously developed STAR
XML Schema interface model to an AIAG XML Schema interface model
(and vice versa) and to verify the business document translation:

122 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

(1) Identify and resolve manually any semantic and syntactic differences
for implementations of the STAR and AIAG XML Schema interface
models.

(2) Create two XSLT stylesheet transformations from the source to the
target XML Schema interface model and vice versa.

(3) Apply translation to a business document conformant to the source
XML Schema interface model to obtain a business document
conformant to the target XML Schema interface model (based on the
XSLT stylesheet transformations).

(4) Validate the translation:
a. Validate translated business documents with respect to the

target XML Schema interface model (using syntactic
approaches such as Schematron rules).

b. Validate translation using equivalence test. The equivalence
test is between the initial source business document and the
final source business document that is obtained through a
sequence of two (forward and reverse) translations compatible
with transformations in step (2).

The validation of translation using an equivalence test (step 4b above)
is not straightforward. Specifically, applying the two translations in
sequence (forward and reverse) using different mechanisms and
comparing the final source business document to the initial source
business document is problematic. Namely, some issues arise during the
validation stage that require capability beyond a simple, syntax-based
equivalence test. For example, despite a syntactically different element
order (in the sense of XML Schema), elements may be semantically
equivalent, if that order is not significant. In a different example, an
equivalent time period can be specified either by a start date with (1) an
end date or (2) a duration of time period. This may pose a difficulty to
simple syntax-based equivalence tests.

ComSIS Vol.2, No.1, June 2005 123

Nenad Anicic, Nenad Ivezic

 Fig. 2. Traditional and Semantic Web-based EAI Standards Architectures

3.2. A Semantic Web-based EAI Standards Architecture

The right portion of Fig. 2 shows the proposed Semantic Web-based EAI
standards architecture. In this approach, OWL-DL language is employed
to formally define business document content models [11]. The language
is based on a subset of the First Order Logic formalism called Description
Logics. This, in turn, enables us to readily use automated reasoning
methods provided by DL reasoners (e.g., Racer [12]). These reasoning
methods are fundamental enablers of automated transformations (i.e.,
mapping functions between OWL-DL interface models). The basic
assumption is that the interface models are independently developed but
have a common terminology as their bases.

As in the previous, traditional approach, we assume previously
independently developed STAR and AIAG XML Schema interface models.
At this point, we assume that the OAG, STAR, and AIAG OWL-DL
ontologies have been created – a step that will be discussed in detail later.

The following steps are envisioned to translate and verify the
translation in the proposed architecture:
(1) Perform model-based equivalence analysis of STAR and AIAG

schemas. The following steps are involved.
a. Create a merged ontology from independently developed STAR

and AIAG ontologies and check for unsatisfiability

124 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

b. Identify similarity between two schemas based on the
comparison of their semantic models and using an automated
inference tool.

(2) Apply semantic translation using the merged ontology and an OWL-
DL reasoner.

a. Translate the source (STAR) XML instance to the source
(STAR) OWL representation

b. Check for consistency and sufficiency with respect to the
merged (source-STAR + target-AIAG) ontology

c. Classify the source OWL individual into the target ontology
(AIAG) and perform validation and serialization

We maintain reference to two distinct parts of this proposed
architecture: the ontology creation part and the translation part.

4. Semantic Web-based Integration Terminology

Before we describe details of the developed integration methodology, we
introduce a formalism and terminology to describe the methodology. In
this paper, we use the word “concept” (interpreted as a set of individuals)
to refer to the expressions that define a class in the OWL-DL language
and a terminology to denote a hierarchical structure that provides a
representation of the domain of interest. The key features of Description
Logics reside in constructs for establishing relationships between
concepts. The meaning of concepts is specified with a logical semantics.
An important distinction in using logical semantics to describe a concept
meaning is between the concept description (i.e., class with necessary
conditions only) and concept definition (i.e., class with both necessary and
sufficient conditions).

In the following, we use Description Logics formalism to make
statements how concepts and roles are related to each other and also to
describe testing algorithms and results. The use of the formalism allows
automated reasoning techniques to be used to check the consistency of
classes and ontologies, and to check entailment relationship. In fact, OWL
DL could be easily mapped to SHOIN(Dn) an expressive Description Logic
[13], with an ontology equivalent to a Description Logics knowledge base.
An OWL essential feature is that it uses a DL style model theory to
formalize the meaning of the language. In order to define formal
semantics of OWL DL as Description Logics model, we consider the
semantics of concepts in terms of an interpretation Ι =(∆Ι, °Ι) that consists
of a domain of interpretation (nonempty set) ∆Ι and an interpretation
function °Ι, which maps every atomic concept C to a subset of ∆Ι (CΙ ⊆ ∆Ι),
every atomic role R to a binary relation RΙ ⊆ ∆Ι x ∆Ι, and every named
individual o to an element of ∆Ι (oΙ ∈ ∆Ι). The interpretation function can

ComSIS Vol.2, No.1, June 2005 125

Nenad Anicic, Nenad Ivezic

be extended from concept names to complex concept descriptions in an
obvious way.

A DL knowledge base ∑(T, A) consists of a set of terminological axioms
T (often called a TBox) and a set of assertions about individuals A (often
called an ABox). To construct a knowledge base using concept languages
we permit concept and role expressions to be used in assertions on
individual, C(a) and R(a,b) where C is a concept of T, R is a role of T and
a,b are individuals in A. If Ι =(∆Ι, °Ι) is an interpretation , C(a) is satisfied
by I if aΙ ∈ CΙ, and R(a,b) is satisfied by I if (aΙ,bΙ) ∈ RΙ.

There are two important tasks that are fundamental to our
methodology and that are enabled by the formally defined semantics of
OWL DL:
− Calculating a concept satisfiability means determining whether the

concept description is not contradictory with the rest of an ontology. A
concept C is satisfiable if it has a model for a concept C (i.e., CΙ) that is
nonempty; the concept is unsatisfiable otherwise.

− Checking consistency of an individual means determining whether the
individual is an instance of a concept. Let ∑ be a knowledge base, then
an individual a ∈ A is an instance of concept C if and only if ∑╞ C(a)
(i.e., C satisfies all constraints specified for concept description).
To accomplish the above two fundamental tasks, we use two basic

functions of an OWL-DL reasoner:
− Subsumption computation determines whether a concept description is

more general than another one. We say that C is subsumed by D (C ⊑
D) if CΙ ⊆ DΙ for every interpretation I.

− Individual classification determines the most specific concept for the
particular individual. An individual a is recognized to be an instance of
concept C if and only if a ∈ CΙ for all interpretations I. To check
individual consistency we follow the usual logical paradigm where two
individuals with different names are indeed different individuals. This
characteristic called Unique Named Assumption (UNA), is not
characteristic of OWL (that requires explicit statement that two
individuals are different or equal), but is very important when we need
to perform individual checking. The interpretation function ·I is
extended in such way that for every individual a,b ∈ A, a ≠ b if aI ≠ bI.
One of the most important inference services of DL systems is

computing the subsumption hierarchy of a given finite set of concept
descriptions. There are two main approaches to calculate subsumption in
DL. The first approach, called structural subsumption algorithm,
transforms concept descriptions into a normal form, and then compares
the syntactic structure of the normalized concept descriptions [15]. This
algorithm cannot handle DL with disjunction and full negation and will
not be considered here. The second approach called tableau-based
algorithm has been proposed in [17]. The algorithm, instead of directly

126 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

testing subsumption of concept descriptions C ⊑ D, reduces to checking
unsatisfiability of axiom C ⊓ ¬ D. If the algorithm can find a finite model,
then the subsumption relationship does not hold. If the algorithm fails,
then the subsumption relationship holds. In this case, the algorithm looks
for a ‘clash’ among constraints, which would preclude a model from
existing. A concept C is unsatisfiable if it is impossible to create an
individual that is an instance of C.

The individual classification helps us to identify other concepts that the
particular individual belongs to. Let us define a set of assertions A1 that
describe an individual a, an instance of the C concept (e.g., C class is
defined using two mandatory properties: r1 and r2). For example, the
individual a has only a property filler r1 (e.g., A1 ={ C(a), r1(a, value1)}).
Because a DL reasoner makes the open world assumption (OWA), if a
mandatory property is not present, the reasoner cannot conclude that it is
false (as it is wrong to assume it will never be present). For that reason,
the reasoner can conclude only contradictory but not insufficient
information (i.e., missing properties). In a B2B context, a document being
exchanged contains all required information and in order to compute that
an instance has all mandatory properties it is necessary to validate
instance with “local closed world assumption” (CWA)..

To check whether a is a valid instance of a concept C it should be
sufficient to check whether most-specific concept of a is subsumed by C,
turning instance checking into subsumption: Msc_a ⊑ C. To define most-
specific concept Msc_a, we need to include close operator which takes an
individual and ‘closes’ roles on the individual, by first counting the known
fillers for the roles and than asserting number restriction on the most-
specific concept. For example, the most-specific concept for the individual
a defined above is: Msc_a ≡ C ⊓ (≤1 r1) ⊓ (≤0 r2).

5. Semantic Web-based Integration Methodology: Details

In this section, we describe in detail the proposed Web-based integration
methodology. Fig. 3 and 4 illustrate the methodology using a scenario-
based view of the semantic integration architecture. Fig. 3 includes a
group of steps, which we call ‘ontology creation’ to define and test
possibilities for interoperable data exchange among different XML
Schemas (e.g., STAR and AIAG schemas). The ontology creation occurs
during design time.

ComSIS Vol.2, No.1, June 2005 127

Nenad Anicic, Nenad Ivezic

Fig. 3. Ontology Creation: Design Time View of The Semantic Integration Method

The following steps define design phase of ontology building. The OAG
consortium has a role to create the satisfiable generalized terminology
which can be used by independent users. For that purpose, the first two
steps have to be done before a user adds any business context information
to describe the user-specific business documents in a form of a satisfiable
regular terminology.
(1) Apply Xsd2Owl Transformation. Apply an automated transformation

to the OAG XML Schema representation to obtain an OAG OWL-
based generalized ontology.

(2) Calculate concept subsumption and check satisfiability of the new
OAG ontology. The outcome of this step is a new subsumption
hierarchy for the OAG generalized ontology and an indication from
the reasoner that the new ontology is either satisfiable (i.e., not
contradictory) or not.

(3) Create an OAG regular terminology (that requires human designer
input). The original STAR and AIAG Schemas include free text
description of the additional document constraints that need to be
‘layered on top’ of the OAG generalized terminology. In this step, for
each of the schemas, these constraints are used to specify concept
definitions (based on the original concept descriptions). The outcome
of this step is a regular terminology.

(4) Check satisfiability of each individual regular ontology. Similar to
Step 2, the outcome of this step is an indication from the reasoner
whether each individual ontology is satisfiable. In addition, we may
choose here (during design time) to merge the resulting ontologies
(same as run time Step 3) and check whether the merged ontologies
are satisfiable (same as run time Step 4). This is a necessary condition
for an individual translation from one to the other ontology.

128 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

Fig. 4 includes a group of steps, which we call ‘data translation’, that
helps us to reason about concrete XML data based on the XML Schema
and the possibility to transform the data from one format to another and
actually achieve interoperable data exchange using the specific data. The
following steps define the data translation group of steps at runtime.

.

Fig. 4. Data Translation: Run Time View of The Semantic Integration
Method
(1) Apply automated transformation from source XML data to OWL

data. This transformation is dependent on the transformation defined
in design phase step 1. The outcome of this step is transformed source
(e.g. STAR) OWL data that correspond to the initial XML data.

(2) Validate source data. This step includes consistency checking under
both Open World Assumption (OWA) and Closed World Assumption
(CWA). Reasoning about individuals in OWL-DL assumes ‘Open
World’. The outcome of this step, if successful, is an indication from
the reasoner that the source OWL data are consistent with respect to
the source ontology. An individual is valid only if it is consistent (i.e.,
belongs to a specific concept) in both OWA reasoning and CWA
reasoning.

(3) Create a satisfiable merged ontology. In order to translate from STAR
to AIAG OWL data, we need to perform this step. (This and the
following steps can performed by any other target system ‘User n’
similar.) The outcome of this step is the new merged ontology and the
new concept hierarchy. (As explained in design phase Step 4, this and

ComSIS Vol.2, No.1, June 2005 129

Nenad Anicic, Nenad Ivezic

the satisfiability check from the following step may be either run here,
at run time, or at design time.).

(4) Check satisfiability of the merged ontology and consistency of the
STAR data with the new merged ontology. The successful outcome of
this step is an indication from the reasoner that the merged ontology
is satisfiable and, similarly, that the STAR OWL source data are
consistent with respect to the merged ontology.

(5) Compute classification of the STAR OWL data in the AIAG ontology.
The successful outcome of this step is an assignment of the STAR
OWL data to the specific AIAG class(es). At this point we have a result
that the specific STAR XML data (instance) may be successfully
translated into target AIAG XML data. This, however, doesn’t mean
that all STAR data may be successfully translated to AIAG, but only
that the specific data may be translated.

(6) Validate target OWL data. The outcome of this step, if successful, is
an indication from the reasoner that the target OWL data are
consistent with respect to the target ontology.

(7) Apply serialization of OWL data into XML data. The outcome of this
step is an target XML instance (e.g., AIAG) that preserves semantics
defined in the original STAR OWL data.

5.1. Apply Xsd2Owl Transformation

An automated transformation was devised for the OAG XML Schema
representation to obtain an OAG OWL-based ontology. This is a
generalized ontology that contains concept descriptions only (i.e.,
necessary conditions) and no definitions (i.e., sufficient and necessary
conditions). The automated transformation was possible because we took
into account decisions for the OAG components and document design. Fig.
5 gives some of these rules while a detailed account of the transformation
is out of scope of this paper and is a subject of a future publication.

130 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

Fig. 5. Example Transformation Rules from OAG XML Schema into OAG OWL-DL
Generalized Ontology

An application of the transformation rules is illustrated in the
following. Fig. 6 shows a rendering of the simplified XML Schema for the
OAG aggregate component AddressBase. The AddressBase component has
a relatively complex structure and it describes all possible elements that
an OAG Address instance (that uses AddressBase) may have. For that
reason, all the elements are optional in the complexType definition of the
AddressBase.

Within the AddressBase schema definition we can see choice between
‘unstructured’ AddressLine and the ‘structured Line’ that consists of parts
such as StreetName, BuldingNumber, Unit, and Floor. We capture this
constraint in the resulting OWL description by using a hierarchy of
properties. Every property has a strictly defined range when it is used as
a property of this class. The ranges for those properties are extensions of
other concept (class) descriptions (e.g. IdentifierType and TextType
classes).

ComSIS Vol.2, No.1, June 2005 131

Nenad Anicic, Nenad Ivezic

Fig. 6. A Rendering of the simplified XML Schema for the OAG AddressBase
component

The generalized terminology T1 contains basic concepts such as
IdentifierType, TextType, NameCode, CountryCodeType, CodeType,…etc,
and the following complex axiom description:

AddressBase ⊑ (∀ hasId.IdentifierType)
⊓ (∀ hasAdressee.TextType)
⊓ (∀ hasCity.NameType)⊓ (≤1 hasCity)

132 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

⊓ (∀ hasCountry.CountryCodeType) ⊓ (≤1 hasCountry)
⊓ (∀ hasPostalCode.CodeType) ⊓ (≤1 hasPostalCode)
⊓ (∀ hasAddressLine.TextType)
⊓ (∀ hasStreetName.TextType)
⊓ (∀ hasBuldingNumber.TextType)
⊓ (∀ hasUnit.TextType) ⊓ (∀ hasFloor.TextType)
⊓ (¬(≥1 hasAddressLine) ⊔ ¬(≥1 sequence63736952))
⊓ (¬ (≥1 sequence63736952)
 ⊔ ((≤1 hasStreetName) ⊓ (≤1 hasBulidingNumber)
 ⊓ (≤1 hasUnit) ⊓ (≤1 hasFloor)))

All roles are defined as atomic. Furthermore, to represent relationships
between roles we can also use inclusion. This set of inclusion role axioms
defines a role hierarchy:

hasAddressLine ⊑ choice49723144
sequence63736952 ⊑ choice49723144
hasStreetName ⊑ sequence63736952
hasBulidingNumber ⊑ sequence63736952
hasUnit ⊑ sequence63736952
hasFloor ⊑ sequence63736952

where sequence63736952 and choice49723144 are computer
generated identifiers for the role names.

5.2. Calculate Concept Subsumption and Check Satisfiability

When dealing with large ontology transformations, a designer may specify
concept descriptions that may turn out to be contradictory. A DL reasoner
may calculate concept subsumption and check whether any concept
description is contradictory in the resulting ontology. An example
situation that results in an unsatisfiable concept (using our
transformation approach) is when a complexType definition is specified as
a restriction of an existing type with different cardinality constraints (e.g.,
an element that is mandatory in the super-type definition is prohibited in
the new definition).

5.3. Create Regular Terminologies

Once we have a satisfiable generalized terminology, every individual
application integrator (i.e., a human responsible for defining a business
document content model and an application integration) can

ComSIS Vol.2, No.1, June 2005 133

Nenad Anicic, Nenad Ivezic

independently use the terminology to specify additional constraints and to
provide definition for concepts in a particular context of the intended
application.

When an integrator describes a component or builds a new one,
likelihood of automated interoperable data exchange will be increased if
new axioms (introduced by the integrator) reference the generalized
terminology. The new axioms are defined as extensions where all new
concepts, defined as definitions, agree with the atomic concept and roles
defined in the generalized terminology. That new terminology we call
regular terminology. Terminological axioms to represent defined
concepts are given in form called equality (≡).

For example, with such axioms, we associate the left-hand side concept
name Address to the description on right-hand side AddressBase with two
cardinality constraints:

Address ≡ AddressBase ⊓ (≥1 hasCity) ⊓ (≥1 hasCountry)

The new concept Address is introduced using the OAG AddressBase
description. Address is defined as AddressBase with mandatory
properties hasCity and hasCountry. When an integrator customizes
component for a particular context (i.e., a BOD document), he or she needs
to specify required fields and business rules for the document in that
particular context.

5.4. Check Satisfiability of the Regular Terminologies

For a created regular terminology, a reasoner will calculate a new
subsumption hierarchy. (All OAG concept descriptions (axioms) are
imported into the new ontology). Within the new hierarchy, every concept
contains both inherited and its own axioms. These axioms are either part
of definition or description and need to be non-contradictory to each other.
If all concepts are satisfiable, than this regular terminology (that contains
definitions) can be used for application integration.

Every time when we make changes in an ontology, we need to check for
the ontology satisfiability. Suppose that a logical constraint is specified for
the OAG AddressBase component to state an exclusive option between an
unstructured (free) text address line and a structured line (that contains
hasStreetName, hasAddressLine, hasCity, hasCountry, and other
elements of address). If the integrator defines a new address concept with
mandatory properties hasStreetName (that is a part of ‘structured’ line
defined via sequence63736952 super property) and hasAddressLine using
the OAG AddressBase defined above, a reasoner will find that the concept
is unsatisfiable.

134 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

Testing Integration Capabilities

Once we determine satisfiability of two independently defined regular
terminologies, we may proceed to determine whether two interface models
based on those ontologies can facilitate interoperable data exchange.

The first step is to create a merged ontology from the two regular
terminologies. The merged ontology contains concept axioms from both
ontologies. As both ontologies use the same generalized terminology, a
new subsumption hierarchy will be calculated and new relationships may
emerge among concepts. A reasoner is utilized to check satisfiability of
each concept in the merged ontology. If there are no contradictory
concepts, then we can say that it is possible that two interface models may
support interoperable data exchange. Fig. 7 shows this testing step.

A reasoner can calculate relationships such as subClassOf or
equivalent. When the subsumption or equivalency relationship cannot be
calculated (i.e., when subClassOf or equivalent relationships do not hold
for two concepts), an individual may still be classified to belong to either
one or both of the concepts depending only on the particular individual
assertion.

Fig. 7. Testing for Necessary Integration Conditions

The result of this satisfiability checking can be that business document
content models (i.e., interface models) are either compatible (i.e., allowing
bidirectional interoperable data exchange), incompatible, unidirectional,
or unknown (i.e. the reasoner does not have enough information to make
any conclusion and reasoning should include individuals).

If the result is unknown, a designer can provide new axioms such as
conditional equivalence relationships among concepts, as indicated in step
3 in Fig. 7. New axioms might change subsumption hierarchy, produce
new relationships, and may increase compatibility between two
ontologies.

ComSIS Vol.2, No.1, June 2005 135

Nenad Anicic, Nenad Ivezic

5.5. Transforming Source Data into OWL Individuals

In this step, we transform XMLSchema instances into OWL-DL
individuals in order to conform with the OWL model-based assumptions
used in ontological reasoning (i.e., satisfiability checking). We have
developed a tool that enables this translation. The translation rules
include the following:
− For every element (including root element) we create an OWL

individual with a corresponding type.
− Parent-child relationships are translated to class-property

relationships: every child element is a value of the respective property
of parent class.

− The text content (the data) of element/attribute is mapped into
datatype property with an RDF literal as a value for that property.
An individual that is created during this transformation gets a unique

ID (URI) generated by the transformation tool. The ID of an individual is
important for classification but it is not significant, which means that for
the same message we can have generated different ids. Two individuals
can be content equivalent if they have identical content (property values).
According to the previously defined rules, an AddressBase XML Schema
instance is transformed, as shown in Fig. 8.

Fig. 8. An Example Transformation of XML Data into OWL Individuals

Conjunction of things asserted about an individual forms the
descriptions of the individual. DL allows the user to specify that an
individual is an instance of a primitive concept. For example, address12 is
asserted to be an instance of AddressBase and contains roles hasId,
hasCity, hasCountry filled by id34, city56, country78 respectively.

136 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

5.6. Validating Source Data

Validation is a necessary step not only to check transformation result
with respect to the concept definition but also to check other semantic
constraints which are defined in the corresponding ontology. Validate the
data means to check whether data are consistent in OWA and valid in
CWA reasoning.

If we have an individual address1 with explicit assertion that it is an
instance of the star:Address with two hasCity role fillers, then using
UNA, a particular individual will be calculated to have property
hasCity=2, which violates the constraint for concept description (≥ 1
hasCity) and, consequently, results in an inconsistent individual.

Consider the following example: star:Address(address2). We have an
individual with an explicit assertion that it is an instance of the
star:Address class and without any roles. Based on the instance checking
in OWA, one can conclude that this individual is consistent. However,
when an individual is not complete, as in this case, we can still recognize
concept membership. If we know that an individual address2 is
star:Address, then adding more information to the model cannot cause it
to become false.

To check whether address2 is an valid instance of a concept
star:Address it should be sufficient to check whether most-specific concept
of address is subsumed by star:Address, turning instance checking into
subsumption. As this subsumption does not hold we can conclude that
individual address2 is not a valid instance of star:Address.

5.7. Create Merged Ontology

In order to translate XML data from one format to another, we need to
create a merged ontology. The merged ontology contains all concept
axioms from relevant ontology sources (e.g. OAG, STAR and AIAG). The
Semantic Web is a universally accessible platform that enables those
ontologies to be shared and processed by the integration tool. Because new
independently defined ontologies are based on the same generalized OAG
terminology, a reasoner may combine axioms and calculate a new concept
subsumption hierarchy. In the merged ontology one concept might be
dependent on some concepts in the other ontology namespace. The merged
semantics provides support for inferences over the source data that may
yield unexpected results (such as those we discussed in the previous
section). If integration capability between those specific ontologies is done
at design time, as described in section 5.4, and enriched with new
mapping axioms, then this entire additional axiom set will be included in
the merged ontology.

ComSIS Vol.2, No.1, June 2005 137

Nenad Anicic, Nenad Ivezic

5.8. Check Satisfiability and Consistency

Because the integration tool is a complete reasoner that includes
consistency checkers, all axioms of the merged ontology must be loaded.
The tool has to check satisifiability for every concept of the merged
ontology (as described in section 5.4). An additional checking is the
individual consistency checking for source individuals with respect to the
merged ontology. An individual that belongs to the source concept and
which satisfies all constraints in the source definition has to satisfy all
constraints defined for the equivalent concept definitions in the target
ontology. (For details, see Section 5.6)

5.9. Compute Target Data

In order to compute target data, we use the merged ontology to calculate a
new concept subsumption hierarchy, as described in the previous two
steps. In addition, we checked consistency of the source individuals with
respect to the merged ontology. If the outcome of these steps included
satisfiable concepts and consistent individuals, then we can use the
individual classification capability of a DL reasoner to compute target
data (i.e., individuals). The individual classification allows us to find what
the most-specific concept is for every individual in the target ontology. The
individual classification helps us to identify other concepts that the
particular individual belongs to.

By using the merged ontology T’ (that combines axioms from source and
target terminology), we check satisfiability between the auxiliary most-
specific concepts and other concept in the merged ontology. For
terminology T’, new axioms might be calculated (e.g., equivalence). The
equivalence between two concepts may force an individual to be checked
for consistency with respect to both concepts (i.e., equivalence between
two concepts means that the two concepts share exactly the same set of
individuals.)

5.10. Validating Target Data

As we saw in the discussion of validating a source (i.e., STAR OWL) data,
it is necessary to have not only OWA consistency but also to check that
the same individual is a valid instance of the target concept in the CWA
reasoning. The individual consistency checking in OWA is already done
with respect to the merged ontology. The OWL individuals classified to
the AIAG concept hierarchy have to be checked for sufficiency with
respective to target (AIAG) concepts. If the individual is inconsistent in
CWA with respect to the target ontology, then translation is not possible

138 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

(e.g. the individual does not have all the required properties or violates
some of the business rule constraints). If successful, however, the specific
XML source data (i.e., STAR_Address from step 5), can be said to be
translatable into a target OWL data and allowing interoperable data
exchange.

As we have seen above, new individuals can be calculated from source
data (described in 5.9.) in a way that all new individuals are consistent.
However, having new individuals consistent is still not sufficient for
interoperability in B2B context. This is the case when a consistent
individual in OWA sense might not have all mandatory elements, as
required by the necessary conditions in the subsumption between the
auxiliary most-specific concept for target ontology and the intended
concept.

5.11. Serializing Target Data

The serialization into OWL format is straightforward. A new file will
contain a set of individuals with types from target (AIAG) ontology.

For serialization into XML format we use concept and property
hierarchy. If we use default XSD serialization from our OWL ontology,
then the serialization is also provided. If we have a customized mapping
to specific XMLSchema syntax (e.g., a sequence of elements defined in a
separate file), then that serialization is dependent on the mapping rules.
The serialization algorithm will be discussed in a future publication.

6. Initial Findings

6.1. Individual Equivalence Test

One of the important tests when dealing with enterprise application
integrations in a B2B setting is to check for content equivalence between
two business documents. As mentioned before, during XML to OWL
transformation, every new OWL individual is assigned a new URI
identifier. That identifier is only necessary for individual classification
and its actual value is not significant. That means that the same XML
data business document instance may be transformed to individuals with
different URI identifiers but same content. For datatypes ‘semantically
equal’ means that the lexical representation of the literals maps to the
same value. For individuals it means that they either have the same URI
reference or are defined as being the same individual.

ComSIS Vol.2, No.1, June 2005 139

Nenad Anicic, Nenad Ivezic

Two individuals are ‘semantically equal’ if their respective auxiliary
most-specific concepts are equivalent. Let us consider an example where
we have ABox A with assertion about two individuals a and b as following.
The individuals contain oag:hasCity with different fillers: ‘city56’ and
‘city78’ respectively. If it is given (or calculated) that two individuals are
equal (e.g. city56=city78), then applying subsumption checking algorithm
we can conclude that the corresponding most-specific concepts Msc_a and
Msc_b are equivalent, and infer that equality between two individuals, a =
b, holds.

6.2. Concept equivalence with inconsistent business document
instances

In Section 5.4, we investigated whether two ontologies can facilitate
interoperable data exchange and we used reasoning capabilities to
perform satisfiability check between the two ontologies. We determined
that if there are no contradictory concepts in the merged ontology, then we
can say that it is possible that two interface models (i.e., ontologies) may
support interoperable data exchange. However, that is only a necessary
condition to accomplish interoperable data exchange. The following is a
description of a translation problem when the necessary condition is
satisfied but interoperable data exchange may not be accomplished
because some individuals may violate business constraints defined for
that concept.

For example, presence of a mandatory property (i.e., a necessary
condition) within the target concept, may give rise to an inconsistent
source individual if the source concept specifies that property as optional.
It is important to keep in mind that for calculating subsumption and
equivalence among concepts we use only axioms there are part of
definitions – constraints, however, are not always a part of definition, they
might be part of concept description. As indicated above, the mandatory
property was not part of definition but only defined as a necessary
condition. In a general case, any logical constraint that is not a part of
either target or source concept definition but only their necessary
conditions may cause a similar inconsistency and prevent interoperable
data exchange.

7. Related Work

Early work in development of Semantic Web technologies pointed at the
fact that semantic interoperability requires standards not only for the
syntactic form of documents, but also for the semantic content [7].

140 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

A previous effort investigated use of Semantic Web technologies (e.g.,
DAML+OIL) in support of semantic constraints definitions and
management for RosettaNet, a B2B integration standard [18]. Here, an
approach for mapping from XML Schema to DAML+OIL was outlined.
This approach uses RosettaNet XML Schema design decisions which are
different from OAG and , consequently the mapping rules are slightly
different. The authors’ evolutionary approach that uses (but does not
change) the integration standard and their focus on automatic validation
of XML documents is similar to ours. However, the main difference is in
our focus on evaluation and validation of integration results in the EAI
domain. Another paper describes an initial exploration of OWL as a
model-based language for integrating XML data sources [19]. In this
work, OWL is introduced as a top layer of heterogeneous XML data
sources. The focus here is on a query language for OWL as an extension of
XQuery that may be used for hybrid reasoning (i.e., relies on procedural
computation) in our approach. Recently, a new layered model for XML
schemas was proposed, which offers a semantic view for XML schemas
through the specification of concepts and semantic relationships among
them [20]. The work introduces a transformation framework that
encompasses the whole XML document transformation process, from
modeling and semantic matching to transformation script generation. In
this paper, conceptual modeling is used to automate the transformation
algorithm. Unlike this work, that deals with diversity of schema
constructs and semantic matching, our approach is based on OWL DL
representation of a conceptual model using a core set of concept
descriptions that may be customized. Moreover, our approach enables
automated inferred relationships among concepts (in models) using logical
matching of their definitions.

8. Conclusion

In this paper, we described a Semantic Web-based integration
methodology to serve as a blueprint to assess capabilities of these
emerging technologies to enhance syntax-based standards approaches for
enterprise applications integration. In particular, we were interested to
investigate possible advances in testability of integration efforts using the
new technologies. This novel integration methodology is described
through a scenario of integration and validation steps that are performed
both at design time and run time. During design time, the methodology
supports development of generalized and regular ontologies (that describe
application interface models) and allow model-based similarity analysis of
these ontological models. During run time, the methodology enables
semantic translation of instances of business documents (conforming to

ComSIS Vol.2, No.1, June 2005 141

Nenad Anicic, Nenad Ivezic

the developed ontologies) using the previously developed ontologies and
automated reasoning tools.

Initial experimental results in testing the methodology show
interesting capabilities such as the ability to perform individual
equivalence test that is content based. Through experimental work, we
have also gained a significant number of insights into the issues of
necessary and sufficient conditions for achieving interoperable data
exchange.

Our immediate future work will focus on experimental assessment of
the initial ideas for Semantic Web-based EAI standards. The work will
draw from on-going industrial standards-based integration efforts such as
the ones going within STAR and AIAG industrial groups. We expect to
identify key technical issues for the proposed approach, and through
experimental demonstration show how such issue may or may not be
addressed using the proposed approach. Our key contribution, we
anticipate, will be to increase significantly understanding of whether and
how Semantic Web technologies may be applied in a near future to
realistic industrial integration efforts.

Disclaimer
Certain commercial software products are identified in this paper.

These products were used only for demonstration purposes. This use does
not imply approval or endorsement by NIST, nor does it imply these
products are necessarily the best available for the purpose.

References

1. Open Applications Group (OAG) Web Site, [Online]. Available:
http://www.openapplications.org/, (current November 2004)

2. RosettaNet Web Site, [Online]. Available: http://www.reosettanet.org ,
(current November 2004)

3. Meadows, B., Seaburg, L. (eds.): Universal Business Language 1.0, [Online].
Available: http://docs.oasis-open.org/ubl/cd-UBL-1.0/, (current November
2004)

4. Extensible Markup Language (XML), Version 1.0 (second edition). W3C
Recommendation,2000, [Online]. Available: http://www.w3.org/TR/1998/REC-
xml-19980210/, (current November 2004)

5. XML Schema Part 1: Structures Second Edition, W3C Recommendation 2004,
[Online]. Available: http://www.w3.org/TR/xmlschema-1/, (current November
2004)

6. XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 2004,
[Online]. Available: http://www.w3.org/TR/xmlschema-2/, (current November
2004)

7. Decker, S., Harmelen, F., Broekstra, et al.: The Semantic Web - on the Roles
of XML and RDF . In: IEEE Internet Computing, Vol. 4,No. 5,63-74, (2000)

142 ComSIS Vol.2, No.1, June 2005

Semantic Web Technologies for Enterprise Application Integration

8. Jelliffe R.,: Schematron - Pattern-based schema language, accessed [Online].
Available: http://www.ascc.net/xml/resource/schematron/schematron.html,
(current November 2004)

9. Standards for Technology in Automotive Retail (STAR) Web Site, [Online].
Available: http://www.starstandard.org/, (current November 2004)

10. Automotive Industry Action Group (AIAG) Web Site, [Online]. Available:
http://www.aiag.org/, (current November 2004)

11. McGuinness, D.L., Harmelen, F. (eds.): OWL Web Ontology Language
Overview [Online]. Available: http://www.w3c.org/TR/owl-features/, (current
November 2004)

12. Haarslev V., Moller, R.: Description of the RACER system and its
 applications. In Proceedings International Workshop on Description Logics,

(2001)
13. Horrocks, I., Patel-Schneider, P.F., Harmelen, F.: From {SHIQ} and {RDF} to

{OWL}: The Making of a Web Ontology Language, Journal of Web Semantics,
7-26, (2003)

14. Baader, F., Horrocks, I., Sattler, U., : Description Logics as Ontology
 Languages for the Semantic Web: Lecture Notes in Artificial Intelligence.

Springer-Verlag, (2003)
15. D.Nardi, R. J. Brachman. An Introduction to Description s. In the
 Description Logic Handbook, edited by F. Baader, D. Calvanese, D.L.
 McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University Press,
 1- 39,(2003)
16. Baader, F., Nutt, W.: Basic Description Logics. In the Description Logic
 Handbook, edited by F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,
 P.F. Patel-Schneider, Cambridge University Press, 43-95,(2003)
17. Schmidt-Schauβ, M., Smolka, G., Attributive concept descriptions with

complements. Artificial Intelligance, 48(1),1-26,(1991)
18. Trastour, D., Preist, C., Coleman, D.: Using Semantic Web Technology to

Enhance Current Business-to-Business Integration Approaches. 7th IEEE
International Enterprise Distributed Object Computing Conference, EDOC
2003, Brisbane, Australia, (2003)

19. Lehti, P., Fankhauser, P.: XML data integration with OWL: experiences and
challenges. Applications and the Internet, 2004. Proceedings. 2004
International Symposium, ,160 – 167, (2004)

20. Boukottaya, A., Vanoirbeek, C., Paganelli, F., Khaled, A.o.: Automating XML
document Transformations: A conceptual modeling based approach, The First
Asia-Pacific Conference on Conceptual Modeling, Dunedin, New Zealand,
(2004)

Nenad Aničić is a teaching assistant and PhD Student at the Faculty of
Organizational Sciences, University of Belgrade. He received his BS and
MS degree from the Faculty of Organizational Sciences, University of
Belgrade. His main teaching and research areas are databases systems,
information system development in modern software environments,
semantic technologies, and interoperable application systems.

ComSIS Vol.2, No.1, June 2005 143

Nenad Anicic, Nenad Ivezic

Nenad Ivezić is a Guest Researcher at the National Institute of Standards
and Technology (NIST), on assignment from the Oak Ridge National
Laboratory where he is on the staff of the Applied Software Engineering
Research Group. He received his BS degree from University of Belgrade
and his MS and PhD degrees from Carnegie Mellon University in
Pittsburgh. He was a principal investigator on industry-funded research
projects involving machine learning, agent-based systems, ontology-based
integration, and application integration testing. His current research
interests include semantic technologies, interoperable application
systems, and integration standards development and testing.

144 ComSIS Vol.2, No.1, June 2005

	Introduction
	A Prototypical Problem
	A Semantic Web-based Architecture for EAI Standards
	Traditional EAI Standards Architecture
	A Semantic Web-based EAI Standards Architecture

	Semantic Web-based Integration Terminology
	Semantic Web-based Integration Methodology: Details
	Apply Xsd2Owl Transformation
	Calculate Concept Subsumption and Check Satisfiability
	Create Regular Terminologies
	Check Satisfiability of the Regular Terminologies
	Testing Integration Capabilities

	Transforming Source Data into OWL Individuals
	Validating Source Data
	Create Merged Ontology
	Check Satisfiability and Consistency
	Compute Target Data
	Validating Target Data
	Serializing Target Data

	Initial Findings
	Individual Equivalence Test
	Concept equivalence with inconsistent business document inst

	Related Work
	Conclusion
	References

