\qquad
\qquad
\qquad

Semester 1 Midterm Study Guide

\qquad 1. If $E F=4 x+15, F G=39$, and $E G=110$, find the value of x. The drawing is not to scale.

A. $x=56$
B. $x=16$
C. $x=14$
D. $x=2$
\qquad 2. If $m \angle D E F=119$, then what are $m \angle F E G$ and $m \angle H E G$? The diagram is not to scale.

A. $m \angle F E G=71, m \angle H E G=119$
B. $m \angle F E G=119, m \angle H E G=61$
C. $m \angle F E G=61, m \angle H E G=129$
D. $m \angle F E G=61, m \angle H E G=119$
3. Name an angle supplementary to $\angle C O D$.

A. $\angle B O D$
B. $\angle C O A$
C. $\angle A O E$
D. $\angle C O B$
4. Two angles whose sides are opposite rays are called \qquad angles. Two coplanar angles with a common side, a common vertex, and no common interior points are called \qquad angles.
A. vertical; adjacent
B. adjacent; vertical
C. vertical; supplementary
D. adjacent; complementary
5. $\overrightarrow{S Q}$ bisects $\angle R S T$, and $m \angle R S Q=2 x-4$. Write an expression for $\angle R S T$. The diagram is not to scale.

A. $x-2$
B. $4 x-4$
C. $2 x-4$
D. $4 x-8$
6. Find the coordinates of the midpoint of the segment whose endpoints are $H(6,4)$ and $K(2,8)$.
A. $(4,4)$
B. $(2,2)$
C. $(8,12)$
D. $(4,6)$
7. Noam walks home from school by walking 8 blocks north and then 6 blocks east. How much shorter would his walk be if there were a direct path from the school to his house? Assume that the blocks are square.
A. 14 blocks
C. 4 blocks
B. 10 blocks
D. The distance would be the same.
8. Find the perimeter of $\triangle A B C$ with vertices $A(1,1), B(7,1)$, and $C(1,9)$.

A. 114 units
B. 24 units
C. 28 units
D. 14 units
\qquad 9. Find, to the nearest tenth, the area of the region that is inside the square and outside the circle. The circle has a diameter of 6 inches.

A. $7.7 \mathrm{in}^{2}{ }^{2}$
B. 28.3 in. ${ }^{2}$
C. 1.9 in. 2
D. 36 in. ${ }^{2}$
\qquad 10. What is a counterexample for the conjecture?

Conjecture: Any number that is divisible by 4 is also divisible by 8 .
A. 24
B. 40
C. 12
D. 26
\qquad 11. Another name for an $i f$-then statement is a \qquad . Every conditional has two parts. The part following if is the \qquad , and the part following then is the \qquad .
A. conditional; conclusion; hypothesis
C. conditional; hypothesis; conclusion
B. hypothesis; conclusion; conditional
D. hypothesis; conditional; conclusion
\qquad 12. Draw a Venn diagram to illustrate this conditional:

Cars are motor vehicles.
A.

C.

B.

D.

\qquad 13. A conditional can have a \qquad of true or false.
A. hypothesis
C. counterexample
B. truth value
D. conclusion
\qquad 14. What is the converse of the following conditional?

If a point is in the fourth quadrant, then its coordinates are negative.
A. If a point is in the fourth quadrant, then its coordinates are negative.
B. If a point is not in the fourth quadrant, then
the coordinates of the point are not negative.
C. If the coordinates of a point are not negative, then the point is not in the fourth quadrant.
D. If the coordinates of a point are negative, then the point is in the fourth quadrant.
\qquad 15. Is the following definition of perpendicular reversible? If yes, write it as a true biconditional.

Two lines that intersect at right angles are perpendicular.
A. The statement is not reversible.
B. Yes; if two lines intersect at right angles, then they are perpendicular.
C. Yes; if two lines are perpendicular, then they intersect at right angles.
D. Yes; two lines intersect at right angles if (and only if) they are perpendicular.
\qquad 16. Is the statement a good definition? If not, find a counterexample.

A square is a figure with two pairs of parallel sides and four right angles.
A. The statement is a good definition.
B. No; a rhombus is a counterexample.
C. No; a rectangle is a counterexample.
D. No; a parallelogram is a counterexample.
17. Use the Law of Detachment to draw a conclusion from the two given statements. If not possible, write not possible.
I can go to the concert if I can afford to buy a ticket.
I can go to the concert.
A. I can afford to buy a ticket.
B. I cannot afford to buy the ticket.
C. If I can go to the concert, I can afford the ticket.
D. not possible
18. Use the Law of Syllogism to draw a conclusion from the two given statements.

If you exercise regularly, then you have a healthy body.
If you have a healthy body, then you have more energy.
A. If you do not have more energy, then you do not exercise regularly.
B. You have more energy.
C. You have a healthy body.
D. If you exercise regularly, then you have more energy.
19. Name the Property of Congruence that justifies this statement:

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.
A. Transitive Property
C. Reflexive Property
B. Symmetric Property
D. none of these
\qquad 20. $m \angle 2=30$. Find $m \angle 4$.

Drawing not to scale
A. 150
B. 30
C. 160
D. 20
21. What is the relationship between $\angle 4$ and $\angle 5$?

A. corresponding angles
C. alternate interior angles
B. same-side interior angles
D. alternate exterior angles
22. Find the values of x and y. The diagram is not to scale.

A. $x=51, y=63$
B. $x=77, y=63$
C. $x=63, y=77$
D. $x=77, y=65$
\qquad 23. Which lines are parallel if $m \angle 3=m \angle 6$? Justify your answer.

A. $r \| s$, by the Converse of the Same-Side Interior Angles Postulate
B. $r \| s$, by the Converse of the Alternate Interior Angles Theorem
C. $l \| m$, by the Converse of the Alternate Interior Angles Theorem
D. $l \| m$, by the Converse of the Same-Side Interior Angles Postulate
\qquad 24. Find the value of x for which l is parallel to m. The diagram is not to scale.

A. 28
B. 56
C. 84
D. 152
25. Find the values of x, y, and z. The diagram is not to scale.

A. $x=63, y=104, z=76$
B. $x=76, y=63, z=104$
C. $x=63, y=76, z=104$
D. $x=76, y=104, z=63$
26. Find the value of x. The diagram is not to scale.

A. 33
B. 70
C. 23
D. 13
\qquad 27. The folding chair has different settings that change the angles formed by its parts. Suppose $m \angle 2$ is 34 and $m \angle 3$ is 76 . Find $m \angle 1$. The diagram is not to scale.

A. 130
B. 110
C. 100
D. 120
28. What is the slope of the line shown?

A. $\frac{6}{11}$
B. $-\frac{6}{11}$
C. $-\frac{11}{6}$
D. $\frac{11}{6}$
29. Find the values of the variables in the parallelogram. The diagram is not to scale.

A. $x=53, y=31, z=96$
B. $x=53, y=53, z=127$
C. $x=31, y=53, z=96$
D. $x=31, y=53, z=127$

Find the length of the missing side. Leave your answer in simplest radical form.
\qquad 30.

A. $\sqrt{26} \mathrm{ft}$
B. $\sqrt{206} \mathrm{ft}$
C. 296 ft
D. $2 \sqrt{74} \mathrm{ft}$
\qquad 31. A grid shows the positions of a subway stop and your house. The subway stop is located at $(-7,8)$ and your house is located at $(6,4)$. What is the distance, to the nearest unit, between your house and the subway stop?
A. 19
B. 14
C. 24
D. 11
32. What are the names of four coplanar points?

A. Points P, M, F, and C are coplanar.
B. Points F, D, P, and N are coplanar.
C. Points P, M, N, and C are coplanar.
D. Points P, M, D and C are coplanar.
33. Name the line and plane shown in the diagram.

A. $\overleftrightarrow{Q P}$ and plane $S R$
C. $\overleftrightarrow{P Q}$ and plane $S P$
B. $P Q$ and plane $P Q S$
D. line P and plane $P Q S$
\qquad 34. Name the plane represented by the front of the box.

A. $C A B$
B. $G B F$
C. $B J C$
D. $D B F$
\qquad 35. \qquad two points are collinear.
A. Any
B. Sometimes
C. No
\qquad 36. What are the names of the segments in the figure?

A. The three segments are $\overline{A B}, \overline{C A}$, and $\overline{A C}$.
B. The three segments are $\overline{A B}, \overline{B C}$, and $\overline{B A}$.
C. The three segments are $\overline{A B}, \overline{B C}$, and $\overline{A C}$.
D. The two segments are $\overline{A B}$ and $\overline{B C}$.
37. Name the intersection of plane $A C G$ and plane $B C G$.
A. $\overleftrightarrow{A C}$
C. $\overleftrightarrow{C G}$
B. $\overleftrightarrow{B G}$
D. The planes need not intersect.
\qquad 38. If $E F=2 x-12, F G=3 x-15$, and $E G=23$, find the values of $x, E F$, and $F G$. The drawing is not to scale.

A. $x=10, E F=8, F G=15$
B. $x=3, E F=-6, F G=-6$
C. $x=10, E F=32, F G=45$
D. $x=3, E F=8, F G=15$
\qquad 39. If Z is the midpoint of $\overline{R T}$, what are $x, R Z$, and $R T$?

A. $x=18, R Z=134$, and $R T=268$
B. $x=22, R Z=150$, and $R T=300$
C. $x=20, R Z=150$, and $R T=300$
D. $x=20, R Z=300$, and $R T=150$
\qquad 40. Complete the statement.

$\angle G D F \cong$?
A. $\angle D G F$
B. $\angle D E F$
C. $\angle E D F$
D. $\angle D F E$
\qquad 41. $\angle 1$ and $\angle 2$ are a linear pair. $m \angle 1=x-15$, and $m \angle 2=x+77$. Find the measure of each angle.
A. $\angle 1=59, \angle 2=131$
B. $\angle 1=44, \angle 2=136$
C. $\angle 1=44, \angle 2=146$
D. $\angle 1=59, \angle 2=121$
\qquad 42. $T(6,12)$ is the midpoint of $\overline{C D}$. The coordinates of D are $(6,15)$. What are the coordinates of C ?
A. $(6,18)$
B. $(6,24)$
C. $(6,9)$
D. $(6,13.5)$
\qquad 43. Find the distance between points $P(8,2)$ and $Q(3,8)$ to the nearest tenth.
A. 11
B. 7.8
C. 61
D. 14.9
\qquad 44. Jose wants to put a fence around his rectangular garden. His garden measures 33 feet by 39 feet. The garden has a path around it that is 3 feet wide. How much fencing material does Jose need to enclose the garden and path?
A. 120 ft
B. 156 ft
C. 168 ft
D. 84 ft
\qquad 45. Find the circumference of the circle in terms of π.

A. 156π in.
B. $39 \pi \mathrm{in}$.
C. 1521π in.
D. $78 \pi \mathrm{in}$.
\qquad 46. Find the perimeter of parallelogram $A B C D$ with vertices $A(-5,6), B(2,6), C(1,-2)$, and $D(8,-2)$.

A. 17 units
B. 40 units
C. 34 units
D. 43 units
\qquad 47. If the perimeter of a square is 140 inches, what is its area?
A. 1225 in. 2
B. $35 \mathrm{in.}^{2}$
C. 19,600 in. 2
D. 140 in. ${ }^{2}$
\qquad 48. Find the area of the circle to the nearest tenth. Use 3.14 for π.

A. 30.5 in. ${ }^{2}$
B. $295.4 \mathrm{in} .^{2}$
C. 60.9 in. ${ }^{2}$
D. 73.9 in. ${ }^{2}$
\qquad 49. Write an expression that gives the area of the shaded region in the figure below. You do not have to evaluate the expression. The diagram is not to scale.

A. $A=12 \times 13-4 \times 6$
B. $A=(13-4) \times(12-6)$
C. $A=(13-6) \times(12-4)$
D. $A=12 \times 13-(12 \times 4)-(13 \times 6)$
50. Name four rays shown.

51. Construct $\overrightarrow{C J}$, the bisector of $\angle C$.

52. Based on the pattern, what are the next two terms of the sequence?
$9,15,21,27, \ldots$
A. 33,972
B. 39,45
C. 162,972
D. 33,39
\qquad 53. What is the conclusion of the following conditional?

A number is divisible by 2 if the number is even.
A. The sum of the digits of the number is divisible by 2 .
B. If a number is even, then the number is divisible by 2 .
C. The number is even.
D. The number is divisible by 2 .
54. Write the two conditional statements that make up the following biconditional. I drink juice if (and only if) it is breakfast time.
A. I drink juice if (and only if) it is breakfast time.

It is breakfast time if (and only if) I drink juice.
B. If I drink juice, then it is breakfast time.

If it is breakfast time, then I drink juice.
C. If I drink juice, then it is breakfast time.

I drink juice only if it is breakfast time.
D. I drink juice.

It is breakfast time.
55. Which statement is the Law of Detachment?
A. If $p \rightarrow q$ is a true statement and q is true, then p is true.
B. If $p \rightarrow q$ is a true statement and q is true, then $q \rightarrow p$ is true.
C. If $p \rightarrow q$ and $q \rightarrow r$ are true, then $p \rightarrow r$ is a true statement.
D. If $p \rightarrow q$ is a true statement and p is true, then q is true.
\qquad 56. What is the value of x ? Identify the missing justifications. $m \angle P Q R=x-5, m \angle S Q R=x-7$, and $m \angle P Q S=100$.

Drawing not to scale

$$
\begin{aligned}
m \angle P Q R+m \angle S Q R=m \angle P Q S & \text { a. } \\
x-5+x-7=100 & \text { b. Substitution Property } \\
2 x-12=100 & \text { c. Simplify } \\
2 x=112 & \text { d. } \\
x=56 & \text { e. Division Property of Equality }
\end{aligned}
$$

A. Angle Addition Postulate; Subtraction Property of Equality
B. Angle Addition Postulate; Addition Property of Equality
C. Protractor Postulate; Addition Property of Equality
D. Protractor Postulate; Subtraction Property of Equality
57. Name the Property of Equality that justifies this statement:

If $l=m$, then $m=l$.
A. Multiplication Property
C. Subtraction Property
B. Symmetric Property
D. Transitive Property

Use the given property to complete the statement.
58. Multiplication Property of Equality

If $5 x \div 9=36$, then \qquad .
A. $5 x=324$
B. $5 x \cdot 9=324$
C. $36=5 x \div 9$
D. $36=5 x \cdot 9$
59. Solve for x. Justify each step.
$4 x-9=99$
60. What is the value of x ? Justify each step. $A C=32$

Drawing not to scale

$$
\begin{aligned}
A B+B C=A C & \text { a. } \\
2 x+6 x+8=32 & \text { b. } \\
8 x+8=32 & \text { c. } \\
8 x=24 & \text { d. } \\
x=3 & \text { e. }
\end{aligned}
$$

61. What are the converse, inverse, and contrapositive of the following true conditional? What are the truth values of each? If a statement is false, give a counterexample.
If a figure is a rectangle, then it is a parallelogram.

62. What four segments are perpendicular to plane $J K P N$?
A. segments $M L, L Q, R Q$, and $M R$
C. segments $J M, K L, P Q$, and $N R$
B. segments $M R, L Q, N R$, and $P Q$
D. segments $M L, R Q, J M$, and $N R$

Use the diagram to find the following.

63. Identify a pair of alternate exterior angles.
A. $\angle 1$ and $\angle 5$
B. $\angle 8$ and $\angle 4$
C. $\angle 2$ and $\angle 5$
D. $\angle 1$ and $\angle 8$

This diagram of airport runway intersections shows two parallel runways. A taxiway crosses both runways.

64. How are $\angle 8$ and $\angle 4$ related?
A. alternate interior angles
C. same-side interior angles
B. corresponding angles
D. none of these
\qquad 65. Which is a correct two-column proof?

Given: $r \| s$
Prove: $\angle b$ and $\angle h$ are supplementary.

A.

Statements	$\mathbf{R e}$ asons	
1. $r \\| s$	1.	
2. Given		
2. $\angle b \cong \angle c$	2. Vertical Angles	
3. $\angle c$ and $\angle e$ are supplementary.	3.	
4. Same-Side Interior Angles		
4. $\angle e \cong \angle h$	4.	
5. Vertical Angles		
$L b$ and $\angle h$ are supplementary.	5.	

B.

Statements	$\mathbf{R e}$ asons		
1. $r \\| s$	1.	Given	
2. $\angle b \cong \angle h$	2.	Corresponding Angles	
3. $\angle c$ and $\angle e$ are supplementary.	3.	Same-Side Exterior Angles	
4. $\angle e \cong \angle h$	4.	Vertical Angles	
5. $\angle c$ and $\angle h$ are supplementary.	5.	Substitution	

Statements	$\mathbf{R e}$ asons	
1. $r \\| s$	1. Given	
2. $\angle b \cong \angle c$	2. Vertical Angles	
3. $\angle d$ and $\angle h$ are supplementary.	3. Alternate Interior Angles	
4. $\angle e \cong \angle h$	4. Vertical Angles	
5. $\angle b$ and $\angle h$ are supplementary.	5. Same-Side Interior Angles	

D. none of these
\qquad 66. Find $m \angle P$. The diagram is not to scale.

A. 106
B. 74
C. 64
D. 84
\qquad 67. The expressions in the figure below represent the measures of two angles. Find the value of $x . f \| g$. The diagram is not to scale.

A. 15
B. 17
C. -16
D. 16
68. Find the value of x. The diagram is not to scale.

A. 33
B. 162
C. 147
D. 75
\qquad 69. What is the graph of $y=-\frac{3}{4} x-2$?
A.

C.

B.

D.

\qquad 70. Write an equation in slope-intercept form of the line through point $P(6,-1)$ with slope 4 .
A. $y=4 x-1$
B. $y=4 x-25$
C. $y+1=4(x-6)$
D. $y+6=4(x-1)$
\qquad 71. Write an equation in slope-intercept form of the line through points $S(-7,-6)$ and $T(10,8)$.
A. $y=-\frac{14}{17} x-\frac{4}{17}$
B. $y=-\frac{14}{17} x+\frac{4}{17}$
C. $y=\frac{14}{17} x+\frac{4}{17}$
D. $y=\frac{14}{17} x-\frac{4}{17}$
\qquad 72. What is an equation in slope-intercept form for the line given?

A. $y=1 / 3(x)+(-2 / 3)$
B. $y=3(x)+(-10 / 3)$
C. $y=3(x)+(-2 / 3)$
D. $y=1 / 3(x)-(-4)$
73. Write the equation for the horizontal line that contains point $G(3,4)$.
A. $x=4$
B. $y=4$
C. $y=3$
D. $x=3$
74. Which two lines are parallel?

$$
\begin{array}{ll}
\text { I. } & 5 y=2 x-5 \\
\text { II. } & 5 y=4+3 x \\
\text { III. } & 5 y-3 x=-1
\end{array}
$$

A. II and III
C. I and III
B. I and II
D. No two of the lines are parallel.
75. Are the lines $y=-x-2$ and $4 x+4 y=16$ perpendicular? Explain.
A. Yes; their slopes have product -1 .
B. No; their slopes are not opposite reciprocals.
C. Yes; their slopes are equal.
D. No; their slopes are not equal
\qquad 76. Plans for a bridge are drawn on a coordinate grid. One girder of the bridge lies on the line $y=9 x+3$. A perpendicular brace passes through the point $(-7,3)$. Write an equation of the line that contains the brace.
A. $y-7=\frac{1}{9}(x+3)$
B. $y-3=-\frac{1}{9}(x+7)$
C. $x-3=9(y+7)$
D. $y-3=9(x+7)$
77. State the missing reasons in this proof.

Given: $\angle 1 \cong \angle 5$
Prove: $p \| r$

Statements	Reasons	
$1 . \angle 1 \cong \angle 5$	Given	
2. $\angle 4 \cong \angle 1$	a.___	
3. $\angle 4 \cong \angle 5$	b.___	
$4 . p \\| r$	c.___	

78. Find the sum of the measures of the angles of the figure.

A. 1260
B. 900
C. 540
D. 720
79. The Polygon Angle-Sum Theorem states: The sum of the measures of the angles of an n-gon is \qquad .
A. $\frac{n-2}{180}$
B. $(n-1) 180$
C. $\frac{180}{n-1}$
D. $(n-2) 180$
80. What is the measure of one angle in a regular 30 -gon?
A. 192
B. 84
C. 168
D. 5040
\qquad 81. Find $m \angle A$. The diagram is not to scale.

A. 107
B. 117
C. 63
D. 73
\qquad 82. The sum of the measures of two exterior angles of a triangle is 264 . What is the measure of the third exterior angle?
A. 96
B. 84
C. 106
D. 86
81. Complete this statement: The sum of the measures of the exterior angles of an n-gon, one at each vertex, is \qquad .
A. $(n-2) 180$
B. 360
C. $\frac{(n-2) 180}{n}$
D. $180 n$
\qquad 84. This jewelry box has the shape of a regular pentagon. It is packaged in a rectangular box as shown here. The box uses two pairs of congruent right triangles made of foam to fill its four corners. Find the measure of the foam angle marked.

A. 54°
B. 36°
C. 18°
D. 72°
82. Use less than, equal to, or greater than to complete this statement: The sum of the measures of the exterior angles of a regular 9 -gon, one at each vertex, is \qquad the sum of the measures of the exterior angles of a regular 6 -gon, one at each vertex.
A. cannot tell
B. less than
C. greater than
D. equal to

Semester 1 Midterm Study Guide

Answer Section

11. ANS: C PTS: 1 DIF: L2 REF: 2-2 Conditional Statements

OBJ: 2-2.1 To recognize conditional statements and their parts
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.a
TOP: 2-2 Problem 1 Identifying the Hypothesis and the Conclusion
KEY: conditional statement | hypothesis | conclusion
12. ANS: A PTS: 1 DIF: L3 REF: 2-2 Conditional Statements

OBJ: 2-2.1 To recognize conditional statements and their parts
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.a
TOP: 2-2 Problem 2 Writing a Conditional
KEY: conditional statement | Venn Diagram
13. ANS: B PTS: 1 DIF: L3 REF: 2-2 Conditional Statements

OBJ: 2-2.1 To recognize conditional statements and their parts
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.a
TOP: 2-2 Problem 3 Finding the Truth Value of a Conditional
KEY: conditional statement | truth value
14. ANS: D PTS: 1 DIF: L2 REF: 2-2 Conditional Statements

OBJ: 2-2.2 To write converses, inverses, and contrapositives of conditionals
NAT: CC G.CO.9| CC G.CO.10| CC G.CO. 11
TOP: 2-2 Problem 4 Writing and Finding Truth Values of Statements
KEY: conditional statement \mid converse of a conditional
15. ANS: D PTS: 1 DIF: L3 REF: 2-3 Biconditionals and

Definitions
OBJ: 2-3.1 To write biconditionals and recognize good definitions
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.1.c
TOP: 2-3 Problem 3 Writing a Definition as a Biconditional KEY: biconditional statement
16. ANS: C PTS: 1 DIF: L3 REF: 2-3 Biconditionals and

Definitions
OBJ: 2-3.1 To write biconditionals and recognize good definitions
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.1.c
TOP: 2-3 Problem 4 Identifying Good Definitions
KEY: biconditional statement | counterexample
17. ANS: D PTS: 1 DIF: L3 REF: 2-4 Deductive Reasoning

OBJ: 2-4.1 To use the Law of Detachment and the Law of Syllogism
NAT: CC G.CO.9| CC G.CO.10| CC G.CO. 11
TOP: 2-4 Problem 1 Using the Law of Detachment
KEY: deductive reasoning | Law of Detachment
18. ANS: D PTS: 1 DIF: L3

REF: 2-4 Deductive Reasoning
OBJ: 2-4.1 To use the Law of Detachment and the Law of Syllogism
NAT: CC G.CO.9| CC G.CO.10| CC G.CO. 11
TOP: 2-4 Problem 2 Using the Law of Syllogism
KEY: deductive reasoning | Law of Syllogism
19. ANS: A PTS: 1 DIF: L2

REF: 2-5 Reasoning in Algebra and Geometry
OBJ: 2-5.1 To connect reasoning in algebra and geometry
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b
TOP: 2-5 Problem 2 Using Properties of Equality and Congruence
KEY: Properties of Congruence | Transitive Property
20. ANS: B PTS: 1 DIF: L2

OBJ: 2-6.1 To prove and apply theorems about angles
TOP: 2-6 Problem 1 Using the Vertical Angles Theorem
KEY: Vertical Angles Theorem | vertical angles

REF: 2-6 Proving Angles Congruent
NAT: CC G.CO.9| G.5.b
21. ANS: C PTS: 1 DIF: L3 REF: 3-1 Lines and Angles

OBJ: 3-1.2 To identify angles formed by two lines and a transversal
NAT: CC G.CO.1| CC G.CO.12| M.1.d| G.3.g
TOP: 3-1 Problem 3 Classifying an Angle Pair
KEY: angle pairs | transversal | parallel lines
22. ANS: B PTS: 1 DIF: L4

Lines
OBJ: 3-2.2 To use properties of parallel lines to find angle measures
NAT: CC G.CO.9| M.1.d| G.3.g TOP: 3-2 Problem 4 Finding an Angle Measure
KEY: corresponding angles | parallel lines
23. ANS: B PTS: 1 DIF: L2 REF: 3-3 Proving Lines Parallel

OBJ: 3-3.1 To determine whether two lines are parallel NAT: CC G.CO.9| G.3.b| G.3.g
TOP: 3-3 Problem 3 Determining Whether Lines are Parallel
KEY: parallel lines \mid reasoning
24. ANS: A PTS: 1 DIF: L4 REF: 3-3 Proving Lines Parallel

OBJ: 3-3.1 To determine whether two lines are parallel NAT: CC G.CO.9| G.3.b| G.3.g
TOP: 3-3 Problem 4 Using Algebra KEY: parallel lines | transversal
25. ANS: B PTS: 1 DIF: L3 REF: 3-5 Parallel Lines and

Triangles
OBJ: 3-5.2 To find measures of angles of triangles NAT: CC G.CO.10| M.1.d| G.3.g
TOP: 3-5 Problem 1 Using the Triangle Angle-Sum Theorem
KEY: triangle | sum of angles of a triangle
26. ANS: D PTS: 1 DIF: L3 REF: 3-5 Parallel Lines and

Triangles
OBJ: 3-5.2 To find measures of angles of triangles
NAT: CC G.CO.10| M.1.d| G.3.g
TOP: 3-5 Problem 2 Using the Triangle Exterior Angle Theorem
KEY: triangle | sum of angles of a triangle | vertical angles
27. ANS: B PTS: 1 DIF: L3 REF: 3-5 Parallel Lines and

Triangles
OBJ: 3-5.2 To find measures of angles of triangles
NAT: CC G.CO.10|M.1.d| G.3.g
TOP: 3-5 Problem 3 Applying the Triangle Theorems
KEY: triangle \mid sum of angles of a triangle \mid word problem | exterior angle of a polygon
28. ANS: C PTS: 1 DIF: L3

REF: 3-7 Equations of Lines in the Coordinate Plane
OBJ: 3-7.1 To graph and write linear equations NAT: CC G.GPE.5| G.3.g| G.4.a|
G.4.d

TOP: 3-7 Problem 1 Finding Slopes of Lines KEY: slope | linear graph | graph of
line
29. ANS: C

PTS: 1
DIF: L4
REF: 6-2 Properties of
Parallelograms
OBJ: 6-2.1 To use relationships among sides and angles of parallelograms
NAT: CC G.CO.11| CC G.SRT.5| G.1.c| G.3.f
TOP: 6-2 Problem 1 Using Consecutive Angles
KEY: parallelogram | opposite angles | consecutive angles | transversal
30. ANS: D PTS: 1 DIF: L3

REF: 8-1 The Pythagorean Theorem and Its Converse
OBJ: 8-1.1 To use the Pythagorean theorem and its converse
NAT: CC G.SRT.4| CC G.SRT.8| N.5.e| G.3.d
TOP: 8-1 Problem 1 Finding the Length of the Hypotenuse
KEY: Pythagorean Theorem | leg | hypotenuse
31. ANS: B PTS: 1 DIF: L3

REF: 8-1 The Pythagorean Theorem and Its Converse
OBJ: 8-1.1 To use the Pythagorean theorem and its converse
NAT: CC G.SRT.4| CC G.SRT.8| N.5.e| G.3.d TOP: 8-1 Problem 3 Finding
Distance
KEY: Pythagorean Theorem | leg | hypotenuse | word problem | problem solving
32. ANS: C PTS: 1 DIF: L3 REF: 1-2 Points, Lines, and Planes

OBJ: 1-2.1 To understand basic terms and postulates of geometry
NAT: CC G.CO.1|G.3.b| G.4.b TOP: 1-2 Problem 1 Naming Points, Lines, and Planes
KEY: coplanar | point
33. ANS: B PTS: 1 DIF: L3 REF: 1-2 Points, Lines, and Planes

OBJ: 1-2.1 To understand basic terms and postulates of geometry
NAT: CC G.CO.1|G.3.b| G.4.b TOP: 1-2 Problem 1 Naming Points, Lines, and Planes
KEY: line \| plane
34. ANS: B PTS: 1 DIF: L2 REF: 1-2 Points, Lines, and Planes

OBJ: 1-2.1 To understand basic terms and postulates of geometry
NAT: CC G.CO.1| G.3.b| G.4.b TOP: 1-2 Problem 1 Naming Points, Lines, and Planes
KEY: plane
35. ANS: A PTS: 1 DIF: L2 REF: 1-2 Points, Lines, and Planes

OBJ: 1-2.1 To understand basic terms and postulates of geometry
NAT: CC G.CO.1|G.3.b|G.4.b TOP: 1-2 Problem 1 Naming Points, Lines, and Planes
KEY: point | collinear points \mid reasoning
36. ANS: C PTS: 1 DIF: L3 REF: 1-2 Points, Lines, and Planes

OBJ: 1-2.1 To understand basic terms and postulates of geometry
NAT: CC G.CO.1|G.3.b| G.4.b TOP: 1-2 Problem 2 Naming Segments and Rays
KEY: segment
37. ANS: C PTS: 1 DIF: L4 REF: 1-2 Points, Lines, and Planes

OBJ: 1-2.1 To understand basic terms and postulates of geometry
NAT: CC G.CO.1|G.3.b| G.4.b TOP: 1-2 Problem 3 Finding the Intersection of Two
Planes
KEY: plane | intersection
38. ANS: A PTS: 1

OBJ: 1-3.1 To find and compare lengths of segments NAT: CC G.CO.1| CC G.GPE.6| G.3.b
TOP: 1-3 Problem 2 Using the Segment Addition Postulate
39. ANS: C PTS: 1 DIF: L3

OBJ: 1-3.1 To find and compare lengths of segments
TOP: 1-3 Problem 4 Using the Midpoint
40. ANS: C PTS: 1 DIF: L3

OBJ: 1-4.1 To find and compare the measures of angles
TOP: 1-4 Problem 3 Using Congruent Angles
41. ANS: B PTS: 1 DIF: L3 REF: 1-5 Exploring Angle Pairs

OBJ: 1-5.1 To identify special angle pairs and use their relationships to find angle measures
NAT: CC G.CO.1|M.1.d| G.3.b TOP: 1-5 Problem 3 Finding Missing Angle Measures
KEY: supplementary angles| linear pair
42. ANS: C PTS: 1 DIF: L2

REF: 1-7 Midpoint and Distance in the Coordinate Plane
OBJ: 1-7.1 To find the midpoint of a segment
NAT: CC G.GPE.6| CC G.GPE.4| CC G.GPE.7| G.3.b| G.4.a
TOP: 1-7 Problem 2 Finding an Endpoint
KEY: coordinate plane \mid Midpoint Formula
43. ANS: B
PTS: 1
DIF: L3

REF: 1-7 Midpoint and Distance in the Coordinate Plane
OBJ: 1-7.2 To find the distance between two points in the coordinate plane
NAT: CC G.GPE.6| CC G.GPE.4| CC G.GPE.7| G.3.b| G.4.a TOP: 1-7 Problem 3 Finding Distance
KEY: Distance Formula | coordinate plane
44. ANS: C
PTS: 1
DIF: L4

REF: 1-8 Perimeter, Circumference, and Area
OBJ: 1-8.1 To find the perimeter or circumference of basic shapes
NAT: CC N.Q.1| M.1.c| M.1.f| M.2.a| G.3.b| A.4.e
TOP: 1-8 Problem 1 Finding the Perimeter of a Rectangle
KEY: perimeter | word problem | problem solving
45. ANS: D PTS: 1 DIF: L3

REF: 1-8 Perimeter, Circumference, and Area
OBJ: 1-8.1 To find the perimeter or circumference of basic shapes
NAT: CC N.Q.1| M.1.c| M.1.f| M.2.a| G.3.b| A.4.e
TOP: 1-8 Problem 2 Finding Circumference KEY: circle | circumference
46. ANS: C PTS: 1 DIF: L3

REF: 1-8 Perimeter, Circumference, and Area
OBJ: 1-8.1 To find the perimeter or circumference of basic shapes
NAT: CC N.Q.1| M.1.c| M.1.f| M.2.a| G.3.b| A.4.e
TOP: 1-8 Problem 3 Finding Perimeter in the Coordinate Plane
KEY: perimeter | coordinate plane \mid Distance Formula
47. ANS: A PTS: 1 DIF: L3

REF: 1-8 Perimeter, Circumference, and Area
OBJ: 1-8.2 To find the area of basic shapes
NAT: CC N.Q.1| M.1.c| M.1.f| M.2.a| G.3.b| A.4.e
TOP: 1-8 Problem 4 Finding Area of a Rectangle KEY: area \mid square
48. ANS: D PTS: 1 DIF: L2

REF: 1-8 Perimeter, Circumference, and Area
OBJ: 1-8.2 To find the area of basic shapes
NAT: CC N.Q.1| M.1.c| M.1.f| M.2.a| G.3.b| A.4.e
TOP: 1-8 Problem 5 Finding Area of a Circle
KEY: area \mid circle
49. ANS: B PTS: 1 DIF: L2

REF: 1-8 Perimeter, Circumference, and Area
OBJ: 1-8.2 To find the area of basic shapes
NAT: CC N.Q.1| M.1.c| M.1.f| M.2.a| G.3.b| A.4.e
TOP: 1-8 Problem 6 Finding Area of an Irregular Shape KEY: rectangle | area
50. ANS:

Answers may vary. Sample: $\overrightarrow{V X}, \overrightarrow{X Y}, \overrightarrow{Y Z}, \overrightarrow{Z Y}$

PTS: 1 DIF: L3 REF: 1-2 Points, Lines, and Planes
OBJ: 1-2.1 To understand basic terms and postulates of geometry
NAT: CC G.CO.1| G.3.b| G.4.b TOP: 1-2 Problem 2 Naming Segments and Rays
KEY: point | ray

PTS: 1 DIF: L2 REF: 1-6 Basic Constructions
OBJ: 1-6.1 To make basic constructions using a straightedge and a compass
NAT: CC G.CO.12| G.1.d| G.3.b TOP: 1-6 Problem 4 Constructing the Angle Bisector
KEY: angle bisector | construction
52. ANS: D PTS: 1 DIF: L3

REF: 2-1 Patterns and Inductive Reasoning
OBJ: 2-1.1 To use inductive reasoning to make conjectures
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.a
TOP: 2-1 Problem 1 Finding and Using a Pattern KEY: pattern | inductive reasoning
53. ANS: D PTS: 1 DIF: L3 REF: 2-2 Conditional Statements

OBJ: 2-2.1 To recognize conditional statements and their parts
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.a
TOP: 2-2 Problem 1 Identifying the Hypothesis and the Conclusion
KEY: conditional statement | conclusion
54. ANS: B PTS: 1 DIF: L3 REF: 2-3 Biconditionals and

Definitions
OBJ: 2-3.1 To write biconditionals and recognize good definitions
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.1.c
TOP: 2-3 Problem 2 Identifying the Conditionals in a Biconditional
KEY: biconditional statement | conditional statement
55. ANS: D PTS: 1 DIF: L3 REF: 2-4 Deductive Reasoning

OBJ: 2-4.1 To use the Law of Detachment and the Law of Syllogism
NAT: CC G.CO.9| CC G.CO.10| CC G.CO. 11
TOP: 2-4 Problem 1 Using the Law of Detachment
KEY: Law of Detachment | deductive reasoning
56. ANS: B PTS: 1 DIF: L3

REF: 2-5 Reasoning in Algebra and Geometry
OBJ: 2-5.1 To connect reasoning in algebra and geometry
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b
TOP: 2-5 Problem 1 Justifying Steps When Solving an Equation
KEY: Properties of Equality | Angle Addition Postulate | deductive reasoning
57. ANS: B PTS: 1 DIF: L2

REF: 2-5 Reasoning in Algebra and Geometry
OBJ: 2-5.1 To connect reasoning in algebra and geometry
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b
TOP: 2-5 Problem 2 Using Properties of Equality and Congruence
KEY: Properties of Equality | Symmetric Property
58. ANS: A
PTS: 1
DIF: L3

REF: 2-5 Reasoning in Algebra and Geometry
OBJ: 2-5.1 To connect reasoning in algebra and geometry
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b
TOP: 2-5 Problem 2 Using Properties of Equality and Congruence
KEY: Properties of Equality
59. ANS:
$4 x-9=99 \quad$ Given
$4 x-9+9=99+9 \quad$ Addition Property of Equality
$4 x=108$
$\frac{4 x}{4}=\frac{108}{4}$
$x=27$

Simplify
Division Property of Equality
Simplify

PTS: 1 DIF: L4 REF: 2-5 Reasoning in Algebra and Geometry
OBJ: 2-5.1 To connect reasoning in algebra and geometry
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b
TOP: 2-5 Problem 1 Justifying Steps When Solving an Equation
KEY: Properties of Equality | proof \mid deductive reasoning
60. ANS:
a. Segment Addition Postulate
b. Substitution
c. Simplify
d. Subtraction Property of Equality
e. Division Property of Equality

PTS: 1 DIF: L3 REF: 2-5 Reasoning in Algebra and Geometry
OBJ: 2-5.1 To connect reasoning in algebra and geometry
NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b
TOP: 2-5 Problem 1 Justifying Steps When Solving an Equation
KEY: deductive reasoning | proof | Properties of Equality
61. ANS:

Converse:
If a figure is a parallelogram, then it is a rectangle.
The converse is false. A parallelogram that does not have four 90° angles is not a rectangle.

Inverse:
If a figure is not a rectangle, then it is not a parallelogram.
The inverse is false. A parallelogram with angles that are not all 90° angles is not a rectangle, but it is a parallelogram.

Contrapositive:
If a figure is not a parallelogram, then it is not a rectangle.
The contrapositive is true.

PTS: 1 DIF: L4 REF: 2-2 Conditional Statements
OBJ: 2-2.2 To write converses, inverses, and contrapositives of conditionals
NAT: CC G.CO.9| CC G.CO.10| CC G.CO. 11
TOP: 2-2 Problem 4 Writing and Finding Truth Values of Statements
KEY: truth value \mid converse \mid inverse \mid contrapositive \mid conditional \mid multi-part question

72. ANS: A PTS: 1 DIF: L4REF: 3-7 Equations of Lines in the Coordinate PlaneOBJ: 3-7.1 To graph and write linear equationsNAT: CC G.GPE.5| G.3.g| G.4.a|G.4.dTOP: 3-7 Problem 4 Using Two Points to Write an Equation
KEY: point-slope form
73. ANS: B PTS: 1REF: 3-7 Equations of Lines in the Coordinate Plane
OBJ: 3-7.1 To graph and write linear equationsNAT: CC G.GPE.5| G.3.g| G.4.a|G.4.dTOP: 3-7 Problem 5 Writing Equations of Horizontal and Vertical LinesKEY: horizontal line
74. ANS: A PTS: 1 DIF: L3
REF: 3-8 Slopes of Parallel and Perpendicular Lines
OBJ: 3-8.1 To relate slope to parallel and perpendicular lines
NAT: CC G.GPE.5| G.3.g| G.4.a| G.4.d TOP: 3-8 Problem 1 Checking for Parallel Lines
KEY: slopes of parallel lines | parallel lines
75. ANS: B PTS: 1 DIF: L3
REF: 3-8 Slopes of Parallel and Perpendicular Lines
OBJ: 3-8.1 To relate slope to parallel and perpendicular lines
NAT: CC G.GPE.5| G.3.g| G.4.a| G.4.d
TOP: 3-8 Problem 4 Writing Equations of Perpendicular Lines
KEY: slopes of perpendicular lines \mid perpendicular lines \mid reasoning
76. ANS: B PTS: 1 DIF: L3
REF: 3-8 Slopes of Parallel and Perpendicular Lines
OBJ: 3-8.1 To relate slope to parallel and perpendicular lines
NAT: CC G.GPE.5| G.3.g| G.4.a| G.4.d TOP: 3-8 Problem 5 Writing Equations of Lines
KEY: word problem | problem solving | perpendicular lines | slopes of perpendicular lines
77. ANS:
a. Vertical angles.
b. Transitive Property.
c. Alternate Interior Angles Converse.
PTS: 1 DIF: L3 REF: 3-3 Proving Lines Parallel
OBJ: 3-3.1 To determine whether two lines are parallel NAT: CC G.CO.9| G.3.b| G.3.gTOP: 3-3 Problem 2 Writing a Flow Proof of Theorem 3-6KEY: two-column proof \mid proof \mid reasoning | corresponding angles \mid multi-part question
78. ANS: C PTS: 1 DIF: L2
REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon
NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 1 Finding a Polygon Angle SumKEY: Polygon Angle-Sum Theorem
79. ANS: D PTS: 1 DIF: L3REF: 6-1 The Polygon Angle-Sum TheoremsOBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygonNAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 1 Finding a Polygon Angle SumKEY: Polygon Angle-Sum Theorem
80. ANS: C PTS: 1 DIF: L3
REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon
NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 2 Using the Polygon Angle-SumKEY: Corollary to the Polygon Angle-Sum Theorem | regular polygon
81. ANS: D PTS: 1 DIF: L4REF: 6-1 The Polygon Angle-Sum TheoremsOBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon
NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 3 Using the Polygon Angle-Sum
Theorem
KEY: pentagon | exterior angle \mid sum of angles of a polygon
82. ANS: A PTS: 1 DIF: L3
REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon
NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 4 Finding an Exterior Angle Measure
KEY: exterior angle | Polygon Angle-Sum Theorem
83. ANS: B PTS: 1 DIF: L3
REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon
NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 4 Finding an Exterior Angle Measure
KEY: Polygon Exterior Angle-Sum Theorem
84. ANS: D PTS: 1 DIF: L4
REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon
NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 4 Finding an Exterior Angle MeasureKEY: regular polygon \mid Polygon Angle-Sum Theorem
85. ANS: D PTS: 1 DIF: L3
REF: 6-1 The Polygon Angle-Sum Theorems
OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon
NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 4 Finding an Exterior Angle MeasureKEY: regular polygon

