Semester 1 Midterm Study Guide

1. If EF = 4x + 15, FG = 39, and EG = 110, find the value of x. The drawing is not to scale. A. x = 56B. x = 16C. x = 14D. x = 2

2. If $m \angle DEF = 119$, then what are $m \angle FEG$ and $m \angle HEG$? The diagram is not to scale.

- A. $m \angle FEG = 71, m \angle HEG = 119$ B. $m \angle FEG = 119, m \angle HEG = 61$
- C. $m \angle FEG = 61, m \angle HEG = 129$
- D. $m \angle FEG = 61, m \angle HEG = 119$
- $_$ 3. Name an angle supplementary to $\angle COD$.

- A. $\angle BOD$ B. $\angle COA$ C. $\angle AOE$ D. $\angle COB$
- 4. Two angles whose sides are opposite rays are called _____ angles. Two coplanar angles with a common side, a common vertex, and no common interior points are called _____ angles.
 - A. vertical; adjacent
 - B. adjacent; vertical
 - C. vertical; supplementary
 - D. adjacent; complementary

5. SQ bisects $\angle RST$, and $m \angle RSQ = 2x - 4$. Write an expression for $\angle RST$. The diagram is not to scale.

6. Find the coordinates of the midpoint of the segment whose endpoints are H(6, 4) and K(2, 8). A. (4, 4) B. (2, 2) C. (8, 12) D. (4, 6)

7. Noam walks home from school by walking 8 blocks north and then 6 blocks east. How much shorter would his walk be if there were a direct path from the school to his house? Assume that the blocks are square.

- A. 14 blocks C. 4 blocks D. The distance would be the same. B.
 - 10 blocks
- 8. Find the perimeter of $\triangle ABC$ with vertices A(1, 1), B(7, 1), and C(1, 9).

D. 14 units

9. Find, to the nearest tenth, the area of the region that is inside the square and outside the circle. The circle has a diameter of 6 inches.

- ____ 14. What is the converse of the following conditional?
 - If a point is in the fourth quadrant, then its coordinates are negative.
 - A. If a point is in the fourth quadrant, then its coordinates are negative.
 - B. If a point is not in the fourth quadrant, then the coordinates of the point are not negative.
 - C. If the coordinates of a point are not negative, then the point is not in the fourth quadrant.
 - D. If the coordinates of a point are negative, then the point is in the fourth quadrant.
- 15. Is the following definition of *perpendicular* reversible? If yes, write it as a true biconditional. Two lines that intersect at right angles are perpendicular.
 - A. The statement is not reversible.
 - B. Yes; if two lines intersect at right angles, then they are perpendicular.
 - C. Yes; if two lines are perpendicular, then they intersect at right angles.
 - D. Yes; two lines intersect at right angles if (and only if) they are perpendicular.
 - 16. Is the statement a good definition? If not, find a counterexample.
 - A square is a figure with two pairs of parallel sides and four right angles.
 - A. The statement is a good definition.
 - B. No; a rhombus is a counterexample.
 - C. No; a rectangle is a counterexample.
 - D. No; a parallelogram is a counterexample.
 - 17. Use the Law of Detachment to draw a conclusion from the two given statements. If not possible, write *not possible*.

I can go to the concert if I can afford to buy a ticket.

I can go to the concert.

- A. I can afford to buy a ticket.
- B. I cannot afford to buy the ticket.
- C. If I can go to the concert, I can afford the ticket.
- D. not possible

18. Use the Law of Syllogism to draw a conclusion from the two given statements.

If you exercise regularly, then you have a healthy body.

If you have a healthy body, then you have more energy.

- A. If you do not have more energy, then you do not exercise regularly.
- B. You have more energy.
- C. You have a healthy body.
- D. If you exercise regularly, then you have more energy.
- 19. Name the Property of Congruence that justifies this statement:

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

- A. Transitive Property
- B. Symmetric Property D. none of these

C. Reflexive Property

Drawing not to scale

A. 150 D. 20 B. 30 C. 160

21. What is the relationship between $\angle 4$ and $\angle 5$?

- C. alternate interior angles A. corresponding angles
- same-side interior angles B.
- D. alternate exterior angles

22. Find the values of x and y. The diagram is not to scale.

23. Which lines are parallel if $m \angle 3 = m \angle 6$? Justify your answer.

A. $r \parallel s$, by the Converse of the Same-Side Interior Angles Postulate B. $r \parallel s$, by the Converse of the Alternate Interior Angles Theorem C. $l \parallel m$, by the Converse of the Alternate Interior Angles Theorem D. $l \parallel m$, by the Converse of the Same-Side Interior Angles Postulate

24. Find the value of x for which l is parallel to m. The diagram is not to scale.

25. Find the values of x, y, and z. The diagram is not to scale.

A. x = 63, y = 104, z = 76C. x = 63, y = 76, z = 104B. x = 76, y = 63, z = 104D. x = 76, y = 104, z = 63

26. Find the value of x. The diagram is not to scale.

27. The folding chair has different settings that change the angles formed by its parts. Suppose $m \angle 2$ is 34 and $m \angle 3$ is 76. Find $m \angle 1$. The diagram is not to scale.

28. What is the slope of the line shown?

A. 130

____ 29. Find the values of the variables in the parallelogram. The diagram is not to scale.

- B. x = 53, y = 53, z = 127
- C. x = 31, y = 53, z = 96D. x = 31, y = 53, z = 127

Name:

Find the length of the missing side. Leave your answer in simplest radical form.

- 31. A grid shows the positions of a subway stop and your house. The subway stop is located at (-7, 8) and your house is located at (6, 4). What is the distance, to the nearest unit, between your house and the subway stop?
 - A. 19 B. 14 C. 24 D. 11
- 32. What are the names of four coplanar points?

- A. Points P, M, F, and C are coplanar.
- B. Points F, D, P, and N are coplanar.
- C. Points P, M, N, and C are coplanar.
- D. Points P, M, D, and C are coplanar.
- _____ 33. Name the line and plane shown in the diagram.

_____ 34. Name the plane represented by the front of the box.

40. Complete the statement.

$\angle G$	DF ≃_ ?	
A.	$\angle DGF$	
B.	$\angle DEF$	

- C. ∠*EDF* D. *LDFE*
- 41. $\angle 1$ and $\angle 2$ are a linear pair. $m \angle 1 = x 15$, and $m \angle 2 = x + 77$. Find the measure of each angle. A. $\angle 1 = 59, \ \angle 2 = 131$ C. $\angle 1 = 44$, $\angle 2 = 146$ B. $\angle 1 = 44, \angle 2 = 136$ D. $\angle 1 = 59$, $\angle 2 = 121$
- 42. T(6, 12) is the midpoint of CD. The coordinates of D are (6, 15). What are the coordinates of C? B. (6, 24) C. (6,9) A. (6, 18) D. (6, 13.5)
- 43. Find the distance between points P(8, 2) and Q(3, 8) to the nearest tenth. B. 7.8 C. 61 D. 14.9 A. 11
- 44. Jose wants to put a fence around his rectangular garden. His garden measures 33 feet by 39 feet. The garden has a path around it that is 3 feet wide. How much fencing material does Jose need to enclose the garden and path? D. 84 ft
 - A. 120 ft B. 156 ft C. 168 ft
 - 45. Find the circumference of the circle in terms of π .

A. 156π in.

B. 39π in.

C. 1521π in. D. 78π in.

10

- 10 В 5 10 x -10 -5 5 С D -5
- 46. Find the perimeter of parallelogram *ABCD* with vertices A(-5, 6), B(2, 6), C(1, -2), and D(8, -2).

ID: A

B. 35 in.²

40 units

10

A. 17 units

A. 1225 in.²

B.

47. If the perimeter of a square is 140 inches, what is its area?

49. Write an expression that gives the area of the shaded region in the figure below. You do not have to evaluate the expression. The diagram is not to scale.

C. 34 units

C. 19,600 in.²

D. 43 units

D. 140 in.²

A.
$$A = 12 \times 13 - 4 \times 6$$
C. $A = (13 - 6) \times (12 - 4)$ B. $A = (13 - 4) \times (12 - 6)$ D. $A = 12 \times 13 - (12 \times 4) - (13 \times 6)$

51. Construct CJ, the bisector of $\angle C$.

- 52. Based on the pattern, what are the next two terms of the sequence?

 9, 15, 21, 27, ...

 A. 33, 972

 B. 39, 45

 C. 162, 972

 D. 33, 39
- 53. What is the conclusion of the following conditional?

A number is divisible by 2 if the number is even.

- A. The sum of the digits of the number is divisible by 2.
- B. If a number is even, then the number is divisible by 2.
- C. The number is even.
- D. The number is divisible by 2.
- 54. Write the two conditional statements that make up the following biconditional. I drink juice if (and only if) it is breakfast time.
 - A. I drink juice if (and only if) it is breakfast time. It is breakfast time if (and only if) I drink juice.
 - B. If I drink juice, then it is breakfast time. If it is breakfast time, then I drink juice.
 - C. If I drink juice, then it is breakfast time. I drink juice only if it is breakfast time.
 - D. I drink juice. It is breakfast time.
- 55. Which statement is the Law of Detachment?
 - A. If $p \rightarrow q$ is a true statement and q is true, then p is true.
 - B. If $p \rightarrow q$ is a true statement and q is true, then $q \rightarrow p$ is true.
 - C. If $p \rightarrow q$ and $q \rightarrow r$ are true, then $p \rightarrow r$ is a true statement.
 - D. If $p \rightarrow q$ is a true statement and p is true, then q is true.

____ 56. What is the value of x? Identify the missing justifications. $m \angle PQR = x - 5, m \angle SQR = x - 7, \text{ and } m \angle PQS = 100.$

Drawing not to scale

$$m \angle PQR + m \angle SQR = m \angle PQS$$

$$x - 5 + x - 7 = 100$$

$$2x - 12 = 100$$

$$2x = 112$$

$$x = 56$$

a.
b. Substitution Property
c. Simplify
d.
e. Division Property of Equality

- A. Angle Addition Postulate; Subtraction Property of Equality
- B. Angle Addition Postulate; Addition Property of Equality
- C. Protractor Postulate; Addition Property of Equality
- D. Protractor Postulate; Subtraction Property of Equality
- ____ 57. Name the Property of Equality that justifies this statement: If l = m, then m = l.
 - A. Multiplication Property
- C. Subtraction Property
- B. Symmetric Property D. Transitive Property

Use the given property to complete the statement.

58. Multiplication Property of Equality

If $5x \div 9 = 36$, then	
A. $5x = 324$	C. $36 = 5x \div 9$
B. $5x \cdot 9 = 324$	D. $36 = 5x \cdot 9$

59. Solve for *x*. Justify each step.

4x - 9 = 99

60. What is the value of x? Justify each step. AC = 32

61. What are the converse, inverse, and contrapositive of the following true conditional? What are the truth values of each? If a statement is false, give a counterexample. If a figure is a rectangle, then it is a parallelogram.

- 62. What four segments are perpendicular to plane JKPN?
 - A. segments *ML*, *LQ*, *RQ*, and *MR*
- C. segments JM, KL, PQ, and NR
- B. segments MR, LQ, NR, and PQ
- D. segments ML, RQ, JM, and NR

Use the diagram to find the following.

This diagram of airport runway intersections shows two parallel runways. A taxiway crosses both runways.

- 64. How are ∠8 and ∠4 related? A. alternate interior angles
 - B. corresponding angles

- C. same-side interior angles
- D. none of these

____ 65. Which is a correct two-column proof?

Given: $r \parallel s$ **Prove**: $\angle b$ and $\angle h$ are supplementary.

A.

Statements	R e asons			
1. $r \parallel s$	1. Given			
2 . $\angle b \cong \angle c$	2. Vertical Angles			
3 . $\angle c$ and $\angle e$ are supplementary.				
 4. ∠e ≅ ∠h 5. ∠b and ∠h are supplementary. 	4. Vertical Angles			
5. $\angle b$ and $\angle h$ are supplementary.	5. Substitution			

StatementsR e asons1. $r \parallel s$ 1. Given2. $\angle b \cong \angle h$ 2. Corresponding Angles3. $\angle c$ and $\angle e$ are supplementary.3. Same-Side Exterior Angles4. $\angle e \cong \angle h$ 4. Vertical Angles5. $\angle c$ and $\angle h$ are supplementary.5. Substitution

(٦
C	٧.

D.

B.

Statements	R e asons			
1. $r \parallel s$	1. Given			
2 . $\angle b \cong \angle c$	2. Vertical Angles			
3 . $\angle d$ and $\angle h$ are supplementary.	3. Alternate Interior Angles			
4. $\angle e \cong \angle h$	4. Vertical Angles			
5. $\angle b$ and $\angle h$ are supplementary.	5. Same-Side Interior Angles			
none of these				

____ 66. Find $m \angle P$. The diagram is not to scale.

67. The expressions in the figure below represent the measures of two angles. Find the value of x. $f \parallel g$. The diagram is not to scale.

____ 68. Find the value of x. The diagram is not to scale.

- 70. Write an equation in slope-intercept form of the line through point P(6, -1) with slope 4. A. y = 4x - 1B. y = 4x - 25C. y + 1 = 4(x - 6)D. y + 6 = 4(x - 1)
- 71. Write an equation in slope-intercept form of the line through points S(-7,-6) and T(10,8). A. $y = -\frac{14}{17}x - \frac{4}{17}$ C. $y = \frac{14}{17}x + \frac{4}{17}$

B.
$$y = -\frac{14}{17}x + \frac{4}{17}$$
 D. $y = \frac{14}{17}x - \frac{4}{17}$

- C. Yes; their slopes are equal.
- D. No; their slopes are not equal
- 76. Plans for a bridge are drawn on a coordinate grid. One girder of the bridge lies on the line y = 9x + 3. A perpendicular brace passes through the point (-7, 3). Write an equation of the line that contains the brace.

A.
$$y-7 = \frac{1}{9}(x+3)$$

B. $y-3 = -\frac{1}{9}(x+7)$
C. $x-3 = 9(y+7)$
D. $y-3 = 9(x+7)$

77. State the missing reasons in this proof.

Statements	Reasons		
1.∠1 ≅ ∠5	Given		
2.∠4 ≅ ∠1	a		
3.∠4 ≅ ∠5	b		
$4. p \parallel r$	c		

_ 78. Find the sum of the measures of the angles of the figure.

A. 1260 B. 900 C. 540 D. 72	0
-----------------------------	---

79. The Polygon Angle-Sum Theorem states: The sum of the measures of the angles of an *n*-gon is _____. A. $\frac{n-2}{180}$ B. (n-1)180 C. $\frac{180}{n-1}$ D. (n-2)180

- _____ 80. What is the measure of one angle in a regular 30-gon?
 - A. 192 B. 84 C. 168 D. 5040

81. Find $m \angle A$. The diagram is not to scale.

- 82. The sum of the measures of two exterior angles of a triangle is 264. What is the measure of the third exterior angle?
 A. 96
 B. 84
 C. 106
 D. 86
- 83. Complete this statement: The sum of the measures of the exterior angles of an *n*-gon, one at each vertex, is _____.

A. (<i>n</i> − 2)180	B. 360	C. $\frac{(n-2)180}{2}$	D. 180 <i>n</i>
		n	

____ 84. This jewelry box has the shape of a regular pentagon. It is packaged in a rectangular box as shown here. The box uses two pairs of congruent right triangles made of foam to fill its four corners. Find the measure of the foam angle marked.

85. Use *less than, equal to*, or *greater than* to complete this statement: The sum of the measures of the exterior angles of a regular 9-gon, one at each vertex, is _____ the sum of the measures of the exterior angles of a regular 6-gon, one at each vertex.
A compact tell
B less than _____ C greater than _____ D equal to ______

A. cannot tell B. less than C. greater than D. equal to

Semester 1 Midterm Study Guide Answer Section

1.	ANS:		PTS: 1	DIF: L3			1-3 Measuring Segments
			nd compare lengths	-			CC G.CO.1 CC G.GPE.6 G.3.b
			Using the Segment				coordinate distance
2.	ANS:		PTS: 1	DIF: L3			1-4 Measuring Angles
			nd compare the mea		•		CC G.CO.1 M.1.d G.3.b
	TOP:	1-4 Problem 4	Using the Angle Ac	dition Post	tulate k	KEY:	Angle Addition Postulate
3.	ANS:	B P	PTS: 1	DIF: L3	F	REF:	1-5 Exploring Angle Pairs
	OBJ:	1-5.1 To identif	ly special angle pair	rs and use t	heir relation	ships t	to find angle measures
	NAT:	CC G.CO.1 M.	1.d G.3.b	TOP: 1-5	Problem 1	Identif	fying Angle Pairs
	KEY:	supplementary	angles				
4.	ANS:	A P	PTS: 1	DIF: L3	F	REF:	1-5 Exploring Angle Pairs
	OBJ:	1-5.1 To identif	y special angle pair	rs and use t	heir relation	ships t	to find angle measures
	NAT:	CC G.CO.1 M.	1.d G.3.b	TOP: 1-5	Problem 1	Identif	fying Angle Pairs
	KEY:	adjacent angles	vertical angles				
5.	ANS:	D P	PTS: 1	DIF: L3	F	REF:	1-5 Exploring Angle Pairs
	OBJ:	1-5.1 To identif	y special angle pair	rs and use t	heir relation	ships t	to find angle measures
	NAT:	CC G.CO.1 M.1	1.d G.3.b			-	-
	TOP:	1-5 Problem 4 U	Using an Angle Bise	ector to Fin	d Angle Mea	asures	
		angle bisector			-		
6.	ANS:	D P	PTS: 1	DIF: L2			
	REF:	1-7 Midpoint an	nd Distance in the	Coordinate	Plane		
	OBJ:	1-7.1 To find the	he midpoint of a se	gment			
	NAT:	CC G.GPE.6 C	C G.GPE.4 CC G.G	PE.7 G.3.b	G.4.a		
	TOP:	1-7 Problem 1	Finding the Midpoi	nt			
	KEY:	coordinate plan	e Midpoint Formu	ıla			
7.	ANS:	C P	PTS: 1	DIF: L3			
	REF:	1-7 Midpoint an	nd Distance in the	Coordinate	Plane		
	OBJ:	1-7.2 To find th	he distance betweer	n two points	s in the coor	rdinate	plane
	NAT:	CC G.GPE.6 C	C G.GPE.4 CC G.G	PE.7 G.3.b	G.4.a 🛛 🗍	ГОР:	1-7 Problem 4 Finding
	Distan	ice					
	KEY:	coordinate plan	e Distance Formul	a word pro	oblem prob	olem sc	olving
8.	ANS:	B P	PTS: 1	DIF: L3			
	REF:	1-8 Perimeter,	Circumference, and	Area			
	OBJ:	1-8.1 To find the	he perimeter or circ	umference	of basic sha	ipes	
	NAT:	CC N.Q.1 M.1.	.c M.1.f M.2.a G.3	3.b A.4.e			
	TOP:	1-8 Problem 3	Finding Perimeter i	n the Coor	dinate Plane		
	KEY:	triangle perim	eter coordinate pla	nne Distan	ce Formula		
9.	ANS:	A P	PTS: 1	DIF: L3			
	REF:	1-8 Perimeter,	Circumference, and	Area			
	OBJ:	1-8.2 To find the	ne area of basic sha	pes			
	NAT:	CC N.Q.1 M.1.	.c M.1.f M.2.a G.3	3.b A.4.e			
	TOP:	1-8 Problem 6 I	Finding Area of an	Irregular Sh	nape k	KEY:	circle square area
10.	ANS:	C P	PTS: 1	DIF: L2			
	REF:	2-1 Patterns and	d Inductive Reason	ing			
			ductive reasoning t	•	ijectures		
			G.CO.10 CC G.CC				
			Finding a Countere		ŀ	KEY:	conjecture counterexample
				-			<u>^</u>

11. ANS: C PTS: 1 DIF: L2 **REF: 2-2 Conditional Statements** OBJ: 2-2.1 To recognize conditional statements and their parts NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.5.a TOP: 2-2 Problem 1 Identifying the Hypothesis and the Conclusion KEY: conditional statement | hypothesis | conclusion 12. ANS: A **PTS:** 1 DIF: L3 **REF: 2-2 Conditional Statements** OBJ: 2-2.1 To recognize conditional statements and their parts NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.a TOP: 2-2 Problem 2 Writing a Conditional KEY: conditional statement | Venn Diagram 13. ANS: B REF: 2-2 Conditional Statements **PTS:** 1 DIF: L3 OBJ: 2-2.1 To recognize conditional statements and their parts NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.a TOP: 2-2 Problem 3 Finding the Truth Value of a Conditional KEY: conditional statement | truth value 14. ANS: D **PTS:** 1 DIF: L2 **REF: 2-2 Conditional Statements** OBJ: 2-2.2 To write converses, inverses, and contrapositives of conditionals NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11 TOP: 2-2 Problem 4 Writing and Finding Truth Values of Statements KEY: conditional statement | converse of a conditional 15. ANS: D $PTS \cdot 1$ DIF: L3 REF: 2-3 Biconditionals and Definitions OBJ: 2-3.1 To write biconditionals and recognize good definitions NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.1.c TOP: 2-3 Problem 3 Writing a Definition as a Biconditional KEY: biconditional statement 16. ANS: C PTS: 1 DIF: L3 REF: 2-3 Biconditionals and Definitions OBJ: 2-3.1 To write biconditionals and recognize good definitions NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.1.c TOP: 2-3 Problem 4 Identifying Good Definitions KEY: biconditional statement | counterexample 17. ANS: D **PTS:** 1 DIF: L3 **REF: 2-4 Deductive Reasoning** OBJ: 2-4.1 To use the Law of Detachment and the Law of Syllogism NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11 TOP: 2-4 Problem 1 Using the Law of Detachment KEY: deductive reasoning | Law of Detachment 18. ANS: D $PTS \cdot 1$ DIF: L3 REF: 2-4 Deductive Reasoning OBJ: 2-4.1 To use the Law of Detachment and the Law of Syllogism NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11 TOP: 2-4 Problem 2 Using the Law of Syllogism KEY: deductive reasoning | Law of Syllogism 19. ANS: A **PTS:** 1 DIF: L2 REF: 2-5 Reasoning in Algebra and Geometry OBJ: 2-5.1 To connect reasoning in algebra and geometry NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.5.b TOP: 2-5 Problem 2 Using Properties of Equality and Congruence KEY: Properties of Congruence | Transitive Property 20. ANS: B PTS: 1 DIF: L2 REF: 2-6 Proving Angles Congruent OBJ: 2-6.1 To prove and apply theorems about angles NAT: CC G.CO.9| G.5.b TOP: 2-6 Problem 1 Using the Vertical Angles Theorem KEY: Vertical Angles Theorem | vertical angles

21.	ANS: C PTS: 1 DIF:	L3	REF:	3-1 Lines and Angles		
	OBJ: 3-1.2 To identify angles formed by two	ines and a trans	sversal	-		
	NAT: CC G.CO.1 CC G.CO.12 M.1.d G.3.g					
	TOP: 3-1 Problem 3 Classifying an Angle Pair					
	KEY: angle pairs transversal parallel lines					
22	ANS: B PTS: 1 DIF:	L4	REF	3-2 Properties of Parallel		
22.	Lines		REI .	5 2 Hopernes of Futurer		
	OBJ: 3-2.2 To use properties of parallel lines	o find angle m	easures			
	NAT: CC G.CO.9 M.1.d G.3.g TOP			og an Angle Measure		
	KEY: corresponding angles parallel lines	. 5211001011	i i inqui	ig un ringie meusure		
23	ANS: B PTS: 1 DIF:	1.2	DEE	3-3 Proving Lines Parallel		
25.	OBJ: 3-3.1 To determine whether two lines ar			CC G.CO.9 G.3.b G.3.g		
	TOP: 3-3 Problem 3 Determining Whether Lin		11111.	ee d.eo.9 d.5.0 d.5.g		
	KEY: parallel lines reasoning	les are i araner				
24	ANS: A PTS: 1 DIF:	τ.	DEE	3-3 Proving Lines Parallel		
24.	OBJ: 3-3.1 To determine whether two lines ar			CC G.CO.9 G.3.b G.3.g		
	TOP: 3-3 Problem 4 Using Algebra KEY	*				
25	ANS: B PTS: 1 DIF:	· ·				
23.	Triangles	LS	КЕГ.	3-5 Parallel Lines and		
	6	alac	ΝΑΤ·	CC G.CO.10 M.1.d G.3.g		
	OBJ: 3-5.2 To find measures of angles of trian TOP: 3-5 Problem 1 Using the Triangle Angle		INAI.	CC 0.CO.10 M.1.d 0.3.g		
	KEY: triangle sum of angles of a triangle	-Sum Theorem				
26	ANS: D PTS: 1 DIF:	1.2	DEE.	2.5 Denallal Lines and		
20.		L3	KEF:	3-5 Parallel Lines and		
	Triangles OBJ: 3-5.2 To find measures of angles of trian	alac	ΝΑΤ·	CC G.CO.10 M.1.d G.3.g		
	TOP: 3-5 Problem 2 Using the Triangle Exter			CC 0.CO.10 M.1.d 0.3.g		
	KEY: triangle sum of angles of a triangle ver					
27	ANS: B PTS: 1 DIF:	-	DEE.	3-5 Parallel Lines and		
21.	Triangles	L3	REF.	5-5 Faraner Lines and		
	OBJ: 3-5.2 To find measures of angles of triar	مامد	ΝΑΤ·	CC G.CO.10 M.1.d G.3.g		
	TOP: 3-5 Problem 3 Applying the Triangle T		INAT.	CC 0.CO.10 M.1.d 0.5.g		
	KEY: triangle sum of angles of a triangle wo		terior a	ngle of a polygon		
28	ANS: C PTS: 1 DIF:	-	icitor ai	igie of a polygon		
20.	REF: 3-7 Equations of Lines in the Coordinate					
	OBJ: 3-7.1 To graph and write linear equation		ΝΔΤ·	CC G.GPE.5 G.3.g G.4.a		
	G.4.d	3	14/11.	CC 0.01 L.5 0.5.6 0.4.4		
	TOP: 3-7 Problem 1 Finding Slopes of Lines		KFY	slope linear graph graph of		
	line		KL1.	stope intear graph graph of		
29		L4	B EE.	6-2 Properties of		
2).	Parallelograms	LI	KLI.	o 2 mopenies of		
	OBJ: 6-2.1 To use relationships among sides a	nd angles of na	rallelog	rams		
	NAT: CC G.CO.11 CC G.SRT.5 G.1.c G.3.f	na angles of pa	runeiog	14110		
	TOP: 6-2 Problem 1 Using Consecutive Angles	2				
	KEY: parallelogram opposite angles consecu		nsversal	1		
30	ANS: D PTS: 1 DIF:	- ·		-		
50.	REF: 8-1 The Pythagorean Theorem and Its (
	OBJ: 8-1.1 To use the Pythagorean theorem and its converse					
	NAT: CC G.SRT.4 CC G.SRT.8 N.5.e G.3.d					
	TOP: 8-1 Problem 1 Finding the Length of the	e Hypotenuse				
	KEY: Pythagorean Theorem leg hypotenuse	• •				

31. ANS: B **PTS:** 1 DIF: L3 REF: 8-1 The Pythagorean Theorem and Its Converse OBJ: 8-1.1 To use the Pythagorean theorem and its converse NAT: CC G.SRT.4| CC G.SRT.8| N.5.e| G.3.d TOP: 8-1 Problem 3 Finding Distance KEY: Pythagorean Theorem | leg | hypotenuse | word problem | problem solving 32. ANS: C **PTS:** 1 DIF: L3 REF: 1-2 Points, Lines, and Planes OBJ: 1-2.1 To understand basic terms and postulates of geometry NAT: CC G.CO.1| G.3.b| G.4.b TOP: 1-2 Problem 1 Naming Points, Lines, and Planes KEY: coplanar | point 33. ANS: B DIF: L3 REF: 1-2 Points, Lines, and Planes PTS: 1 OBJ: 1-2.1 To understand basic terms and postulates of geometry TOP: 1-2 Problem 1 Naming Points, Lines, and Planes NAT: CC G.CO.1| G.3.b| G.4.b KEY: line | plane 34. ANS: B PTS: 1 REF: 1-2 Points, Lines, and Planes DIF: L2 OBJ: 1-2.1 To understand basic terms and postulates of geometry NAT: CC G.CO.1| G.3.b| G.4.b TOP: 1-2 Problem 1 Naming Points, Lines, and Planes KEY: plane 35. ANS: A **PTS:** 1 DIF: L2 REF: 1-2 Points, Lines, and Planes OBJ: 1-2.1 To understand basic terms and postulates of geometry NAT: CC G.CO.1 | G.3.b | G.4.b TOP: 1-2 Problem 1 Naming Points, Lines, and Planes KEY: point | collinear points | reasoning 36. ANS: C **PTS:** 1 REF: 1-2 Points, Lines, and Planes DIF: L3 OBJ: 1-2.1 To understand basic terms and postulates of geometry NAT: CC G.CO.1| G.3.b| G.4.b TOP: 1-2 Problem 2 Naming Segments and Rays KEY: segment 37. ANS: C PTS: 1 DIF: L4 REF: 1-2 Points, Lines, and Planes OBJ: 1-2.1 To understand basic terms and postulates of geometry NAT: CC G.CO.1| G.3.b| G.4.b TOP: 1-2 Problem 3 Finding the Intersection of Two Planes KEY: plane | intersection 38. ANS: A **PTS:** 1 DIF: L4 **REF: 1-3 Measuring Segments** OBJ: 1-3.1 To find and compare lengths of segments NAT: CC G.CO.1 | CC G.GPE.6 | G.3.b TOP: 1-3 Problem 2 Using the Segment Addition Postulate KEY: coordinate | distance 39. ANS: C PTS: 1 DIF: L3 **REF:** 1-3 Measuring Segments OBJ: 1-3.1 To find and compare lengths of segments NAT: CC G.CO.1| CC G.GPE.6| G.3.b TOP: 1-3 Problem 4 Using the Midpoint KEY: midpoint 40. ANS: C PTS: 1 DIF: L3 **REF:** 1-4 Measuring Angles OBJ: 1-4.1 To find and compare the measures of angles NAT: CC G.CO.1| M.1.d| G.3.b TOP: 1-4 Problem 3 Using Congruent Angles KEY: congruent angles 41. ANS: B **PTS:** 1 **REF:** 1-5 Exploring Angle Pairs DIF: L3 OBJ: 1-5.1 To identify special angle pairs and use their relationships to find angle measures NAT: CC G.CO.1| M.1.d| G.3.b TOP: 1-5 Problem 3 Finding Missing Angle Measures KEY: supplementary angles | linear pair 42. ANS: C **PTS:** 1 DIF: L2 REF: 1-7 Midpoint and Distance in the Coordinate Plane OBJ: 1-7.1 To find the midpoint of a segment NAT: CC G.GPE.6| CC G.GPE.4| CC G.GPE.7| G.3.b| G.4.a TOP: 1-7 Problem 2 Finding an Endpoint KEY: coordinate plane | Midpoint Formula

- 43. ANS: B **PTS:** 1 DIF: L3 REF: 1-7 Midpoint and Distance in the Coordinate Plane OBJ: 1-7.2 To find the distance between two points in the coordinate plane NAT: CC G.GPE.6| CC G.GPE.4| CC G.GPE.7| G.3.b| G.4.a TOP: 1-7 Problem 3 Finding Distance KEY: Distance Formula | coordinate plane 44. ANS: C **PTS:** 1 DIF: L4 REF: 1-8 Perimeter, Circumference, and Area OBJ: 1-8.1 To find the perimeter or circumference of basic shapes NAT: CC N.Q.1 | M.1.c | M.1.f | M.2.a | G.3.b | A.4.e TOP: 1-8 Problem 1 Finding the Perimeter of a Rectangle KEY: perimeter | word problem | problem solving 45. ANS: D PTS: 1 DIF: L3 REF: 1-8 Perimeter, Circumference, and Area OBJ: 1-8.1 To find the perimeter or circumference of basic shapes NAT: CC N.Q.1| M.1.c| M.1.f| M.2.a| G.3.b| A.4.e TOP: 1-8 Problem 2 Finding Circumference KEY: circle | circumference 46. ANS: C PTS: 1 DIF: L3 REF: 1-8 Perimeter, Circumference, and Area OBJ: 1-8.1 To find the perimeter or circumference of basic shapes NAT: CC N.Q.1 | M.1.c | M.1.f | M.2.a | G.3.b | A.4.e TOP: 1-8 Problem 3 Finding Perimeter in the Coordinate Plane KEY: perimeter | coordinate plane | Distance Formula 47. ANS: A **PTS:** 1 DIF: L3 REF: 1-8 Perimeter, Circumference, and Area OBJ: 1-8.2 To find the area of basic shapes NAT: CC N.Q.1 | M.1.c | M.1.f | M.2.a | G.3.b | A.4.e TOP: 1-8 Problem 4 Finding Area of a Rectangle KEY: area | square 48. ANS: D PTS: 1 DIF: L2 REF: 1-8 Perimeter, Circumference, and Area OBJ: 1-8.2 To find the area of basic shapes NAT: CC N.Q.1 | M.1.c | M.1.f | M.2.a | G.3.b | A.4.e TOP: 1-8 Problem 5 Finding Area of a Circle KEY: area | circle 49. ANS: B **PTS:** 1 DIF: L2 REF: 1-8 Perimeter, Circumference, and Area OBJ: 1-8.2 To find the area of basic shapes NAT: CC N.Q.1 | M.1.c | M.1.f | M.2.a | G.3.b | A.4.e TOP: 1-8 Problem 6 Finding Area of an Irregular Shape KEY: rectangle | area 50. ANS: Answers may vary. Sample: VX, XY, YZ, ZY PTS: 1 DIF: L3 REF: 1-2 Points, Lines, and Planes OBJ: 1-2.1 To understand basic terms and postulates of geometry
 - NAT: CC G.CO.1 | G.3.b | G.4.bTOP: 1-2 Problem 2 Naming Segments and RaysKEY: point | ray

51. ANS:

PTS: 1 DIF: L2 **REF: 1-6 Basic Constructions** OBJ: 1-6.1 To make basic constructions using a straightedge and a compass NAT: CC G.CO.12 G.1.d G.3.b TOP: 1-6 Problem 4 Constructing the Angle Bisector KEY: angle bisector | construction 52. ANS: D **PTS:** 1 DIF: L3 REF: 2-1 Patterns and Inductive Reasoning OBJ: 2-1.1 To use inductive reasoning to make conjectures NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.5.a TOP: 2-1 Problem 1 Finding and Using a Pattern KEY: pattern | inductive reasoning 53. ANS: D **PTS:** 1 DIF: L3 **REF: 2-2 Conditional Statements** OBJ: 2-2.1 To recognize conditional statements and their parts NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.5.a TOP: 2-2 Problem 1 Identifying the Hypothesis and the Conclusion KEY: conditional statement | conclusion 54. ANS: B PTS: 1 DIF: L3 REF: 2-3 Biconditionals and Definitions OBJ: 2-3.1 To write biconditionals and recognize good definitions NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.1.c TOP: 2-3 Problem 2 Identifying the Conditionals in a Biconditional KEY: biconditional statement | conditional statement 55. ANS: D PTS: 1 DIF: L3 **REF: 2-4 Deductive Reasoning** OBJ: 2-4.1 To use the Law of Detachment and the Law of Syllogism NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 TOP: 2-4 Problem 1 Using the Law of Detachment KEY: Law of Detachment | deductive reasoning 56. ANS: B **PTS:** 1 DIF: L3 REF: 2-5 Reasoning in Algebra and Geometry OBJ: 2-5.1 To connect reasoning in algebra and geometry NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b TOP: 2-5 Problem 1 Justifying Steps When Solving an Equation KEY: Properties of Equality | Angle Addition Postulate | deductive reasoning 57. ANS: B **PTS:** 1 DIF: L2 REF: 2-5 Reasoning in Algebra and Geometry OBJ: 2-5.1 To connect reasoning in algebra and geometry NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.5.b TOP: 2-5 Problem 2 Using Properties of Equality and Congruence KEY: Properties of Equality | Symmetric Property

- 58. ANS: A PTS: 1 DIF: L3
 REF: 2-5 Reasoning in Algebra and Geometry
 OBJ: 2-5.1 To connect reasoning in algebra and geometry
 NAT: CC G.CO.9 | CC G.CO.10 | CC G.CO.11 | G.5.b
 TOP: 2-5 Problem 2 Using Properties of Equality and Congruence
 - KEY: Properties of Equality
- 59. ANS:

ANS.	0.
4x - 9 = 99	Given
4x - 9 + 9 = 99 + 9	Addition Property of Equality
4x = 108	Simplify
$\frac{4x}{4} = \frac{108}{4}$	Division Property of Equality
<i>x</i> = 27	Simplify

PTS: 1 DIF: L4 REF: 2-5 Reasoning in Algebra and Geometry OBJ: 2-5.1 To connect reasoning in algebra and geometry

- NAT: CC G.CO.9 CC G.CO.10 CC G.CO.11 G.5.b
- TOP: 2-5 Problem 1 Justifying Steps When Solving an Equation
- KEY: Properties of Equality | proof | deductive reasoning

60. ANS:

- a. Segment Addition Postulate
- **b.** Substitution
- **c.** Simplify
- d. Subtraction Property of Equality
- e. Division Property of Equality

PTS: 1 DIF: L3 REF: 2-5 Reasoning in Algebra and Geometry

- OBJ: 2-5.1 To connect reasoning in algebra and geometry
- NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11| G.5.b
- TOP: 2-5 Problem 1 Justifying Steps When Solving an Equation
- KEY: deductive reasoning | proof | Properties of Equality
- 61. ANS:
 - Converse:

If a figure is a parallelogram, then it is a rectangle.

The converse is false. A parallelogram that does not have four 90° angles is not a rectangle.

Inverse:

If a figure is not a rectangle, then it is not a parallelogram.

The inverse is false. A parallelogram with angles that are not all 90° angles is not a rectangle, but it is a parallelogram.

Contrapositive:

If a figure is not a parallelogram, then it is not a rectangle. The contrapositive is true.

- PTS: 1 DIF: L4 REF: 2-2 Conditional Statements
- OBJ: 2-2.2 To write converses, inverses, and contrapositives of conditionals

NAT: CC G.CO.9| CC G.CO.10| CC G.CO.11

TOP: 2-2 Problem 4 Writing and Finding Truth Values of Statements

KEY: truth value | converse | inverse | contrapositive | conditional | multi-part question

62.	ANS: C	PTS: 1	DIF:	L3	REF:	3-1 Lines and Angles
	OBJ: 3-1.1 To identify relationships between figures in space					
		O.1 CC G.CO.12 M				
		blem 1 Identifying N		g Lines and I	Planes	
	KEY: parallel	planes parallel lines	5			
63.	ANS: A	PTS: 1	DIF:	L3	REF:	3-1 Lines and Angles
		o identify angles for		nes and a trai	nsversal	
		O.1 CC G.CO.12 M				
		blem 2 Identifying a				
		rsal alternate exterio	or angles par	allel lines		
64.	ANS: B	PTS: 1	DIF:			3-1 Lines and Angles
		o identify angles form		nes and a trai	nsversal	
		O.1 CC G.CO.12 M				
		blem 3 Classifying an				
	-	lines transversal a	ngle pairs			
65.		PTS: 1	DIF:	L2	REF:	3-2 Properties of Parallel
	Lines					
		o prove theorems ab			NAT:	CC G.CO.9 M.1.d G.3.g
		blem 2 Proving an A				
		two-column proof s				
66.		PTS: 1	DIF:	L3	REF:	3-2 Properties of Parallel
	Lines					
		o use properties of pa				
		O.9 M.1.d G.3.g		3-2 Problem	3 Findi	ng Measures of Angles
	e	parallel lines transve				
67.		PTS: 1	DIF:	L4	REF:	3-2 Properties of Parallel
	Lines		11 1 1.	C 1 1		
	UBJ: 3-2.2 I	o use properties of pa	arallel lines to	2 2 D m h l m m	1 neasures	
					4 Findi	ng an Angle Measure
60	-	onding angles parall PTS: 1			DEE.	2.5 Denallal Lines and
08.		P15: 1	DIF:	L2	KEF:	3-5 Parallel Lines and
	Triangles	o find measures of a	nales of triand		ΝΑΤ·	CC G.CO.10 M.1.d G.3.g
		blem 2 Using the Tr	•	-		CC 0.C0.10 M.I.d 0.5.g
		e e	•	÷		on remote interior angles
60	ANS: B	PTS: 1	DIF:	-	a polyg	on premote interior angles
07.		ations of Lines in th				
		o graph and write lin			NAT·	CC G.GPE.5 G.3.g G.4.a
	G.4.d	o gruph und write in	equations		11111.	00 0.01 <u>D.</u>
		blem 2 Graphing Lin	es KEY.	slope-interce	ept form	graphing
70	ANS: B	PTS: 1	DIF:	-	-p+ 10111	1 9. wp
70.		ations of Lines in th				
	-	o graph and write lin			NAT:	CC G.GPE.5 G.3.g G.4.a
	G.4.d	0 . r	· · · · · · · · · ·			
		blem 3 Writing Equa	tions of Line	s	KEY:	slope-intercept form
71.	ANS: D	PTS: 1	DIF:			1 1
		ations of Lines in th	e Coordinate	Plane		
		o graph and write lin			NAT:	CC G.GPE.5 G.3.g G.4.a
	G.4.d		-			
		blem 4 Using Two F	oints to Writ	e an Equatior	ı	
	KEY: slope-in	ntercept form slope				

- 72. ANS: A PTS: 1 DIF: L4 REF: 3-7 Equations of Lines in the Coordinate Plane OBJ: 3-7.1 To graph and write linear equations NAT: CC G.GPE.5 G.3.g G.4.a G.4.d TOP: 3-7 Problem 4 Using Two Points to Write an Equation KEY: point-slope form 73. ANS: B **PTS:** 1 DIF: L3 REF: 3-7 Equations of Lines in the Coordinate Plane OBJ: 3-7.1 To graph and write linear equations NAT: CC G.GPE.5 G.3.g G.4.a G.4.d TOP: 3-7 Problem 5 Writing Equations of Horizontal and Vertical Lines KEY: horizontal line 74. ANS: A DIF: L3 PTS: 1 REF: 3-8 Slopes of Parallel and Perpendicular Lines OBJ: 3-8.1 To relate slope to parallel and perpendicular lines NAT: CC G.GPE.5| G.3.g| G.4.a| G.4.d TOP: 3-8 Problem 1 Checking for Parallel Lines KEY: slopes of parallel lines | parallel lines 75. ANS: B PTS: 1 DIF: L3 REF: 3-8 Slopes of Parallel and Perpendicular Lines OBJ: 3-8.1 To relate slope to parallel and perpendicular lines NAT: CC G.GPE.5| G.3.g| G.4.a| G.4.d TOP: 3-8 Problem 4 Writing Equations of Perpendicular Lines KEY: slopes of perpendicular lines | perpendicular lines | reasoning 76. ANS: B $PTS \cdot 1$ DIF: L3 REF: 3-8 Slopes of Parallel and Perpendicular Lines OBJ: 3-8.1 To relate slope to parallel and perpendicular lines TOP: 3-8 Problem 5 Writing Equations of Lines NAT: CC G.GPE.5 | G.3.g | G.4.a | G.4.d KEY: word problem | problem solving | perpendicular lines | slopes of perpendicular lines 77. ANS: a. Vertical angles. **b.** Transitive Property. c. Alternate Interior Angles Converse. $PTS \cdot 1$ DIF: L3 REF: 3-3 Proving Lines Parallel OBJ: 3-3.1 To determine whether two lines are parallel NAT: CC G.CO.9| G.3.b| G.3.g TOP: 3-3 Problem 2 Writing a Flow Proof of Theorem 3-6 KEY: two-column proof | proof | reasoning | corresponding angles | multi-part question 78. ANS: C PTS: 1 DIF: L2 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 1 Finding a Polygon Angle Sum KEY: Polygon Angle-Sum Theorem 79. ANS: D **PTS**: 1 DIF: L3 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon TOP: 6-1 Problem 1 Finding a Polygon Angle Sum NAT: CC G.SRT.5| M.1.d| G.3.f KEY: Polygon Angle-Sum Theorem 80. ANS: C PTS: 1 DIF: L3 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 2 Using the Polygon Angle-Sum
 - KEY: Corollary to the Polygon Angle-Sum Theorem | regular polygon

- 81. ANS: D **PTS:** 1 DIF: L4 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.1 To find the sum of the measures of the interior angles of a polygon NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 3 Using the Polygon Angle-Sum Theorem KEY: pentagon | exterior angle | sum of angles of a polygon 82. ANS: A **PTS:** 1 DIF: L3 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon NAT: CC G.SRT.5| M.1.d| G.3.f TOP: 6-1 Problem 4 Finding an Exterior Angle Measure KEY: exterior angle | Polygon Angle-Sum Theorem 83. ANS: B PTS: 1 DIF: L3 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon TOP: 6-1 Problem 4 Finding an Exterior Angle Measure NAT: CC G.SRT.5| M.1.d| G.3.f KEY: Polygon Exterior Angle-Sum Theorem 84. ANS: D **PTS:** 1 DIF: L4 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon TOP: 6-1 Problem 4 Finding an Exterior Angle Measure NAT: CC G.SRT.5| M.1.d| G.3.f KEY: regular polygon | Polygon Angle-Sum Theorem 85. ANS: D PTS: 1 DIF: L3 REF: 6-1 The Polygon Angle-Sum Theorems OBJ: 6-1.2 To find the sum of the measures of the exterior angles of a polygon
 - NAT: CC G.SRT.5 | M.1.d | G.3.f TOP: 6-1 Problem 4 Finding an Exterior Angle Measure
 - KEY: regular polygon