
SemFix:	Program	Repair	
via	Semantic	Analysis

Ye	Wang,	PhD	student
Department	of	Computer	Science

Virginia	Tech

Problem	Statement

• Debugging	takes	much	time	and	effort
• Even	after	root	cause	of	a	bug	is	identified,	fixing	
bug	is	non-trivial
• Problem	solved	by	this	paper	is	how	to	
automatically	repair	bugs

Example

To	be	fixed

Constraint

3 usable	variables	at	line	4:
inhibit,	up_sep,	down_sep

let	bias	=	f(inhibit,	up_sep,	down_sep)
so	that	bias	>	down_sep can	pass	tests

Synthesize	f
(1)	try	a	constant:
cannot	satisfy	constraint

(2)	try	to	use	"+",	{v1+c,	v1+v2}:
f	=	up_sep +	100

Background

• Statistical	fault	localization
• Localize	root-cause	of	program	failure	by	exploiting	the	
correlation	between	execution	of	faulty	statements	and	
program	failure

• Component-based	program	synthesis
• Generate	a	program	that	satisfies	all	the	given	input-
output	pairs.

Approach

• Only	generate	a	repair	by	altering	one	statement.	
The	generated	fix	is	always	with	respect	to	a	given	
test	suite.
• Generate	repair	constraint
• Generate	a	fix

Approach

• Generate	repair	constraint
• The	paper	focuses	on	repairs	changing	the	right	side	of	
assignments	or	branch	predicates

• No	side	effect:	f(…)	do	not	modify	any	program	variable

• Repair	constraint	C	is	a	conjunction	of	constraints	
derived	from	T.	For	each	test	ti,	there	is	a	constraint	Ci,	

Approach

• Generate	repair	constraint
• Each	Ci is	a	predicate	over	the	function	f
• To	generate	Ci,	the	paper	uses	symbolic	execution	in	a	
novel	fashion.
• Traditional	symbolic	execution	takes	all	input	variables	
as	symbolic,	while	the	paper's	symbolic	execution	starts	
with	a	concrete	input.
• Execute	the	program	concretely	with	input	ti to	
statement	s.	Denote	the	program	state	before	executing	
statement	s	as	𝜉".	Then	set	the	result	of	function	f(…)	as	
symbolic	and	continue	symbolic	execution	from	
statement	s.

Approach

• Generate	repair	constraint
• 𝜏":	symbolic	value	assigned	to	result	of	function	f(…)
• Symbolic	execution	explores	m	paths.
• For	each	path	𝜋%,	𝑝𝑐% is	the	associated	path	condition,	
and	𝑂% is	the	symbolic	expression	of	output
• 𝑂 𝑡" is	the	expected	output	of	program	P	with	input	𝑡"
• Constraint:

• First	part	means	at	least	one	feasible	path	along	which	
output	of	program	P	is	the	same	as	the	expected	output.
• Second	part	builds	up	input-output	relationship	of	
function	f

Approach

• Generate	repair	constraint

𝑋 > 110 ∧ 1 = 1 ∨ 𝑋 ≤ 110 ∧ 1 = 0
can	be	simplified	 to	𝑋 > 110

𝑓 1,11,110 > 110

𝑓 1,11,110 = 𝑋

Approach

• Generate	a	fix
• Component	based	program	synthesis
• Input-output	pairs	of	to-be-synthesis	program	are	
encoded	into	constraints	on	a	set	of	location	variables	L,	
a	valuation	of	which	leads	to	a	program	that	satisfies	the	
given	input-output	pairs.
• Constraint	𝜓5678 𝐿,𝛼,𝛽 dictates	that	the	synthesized	
program	must	produce	output	𝛽 when	given	input	𝛼
• Input-output	pair	 𝜉"<, 𝜏"< is	generated	when	f	is	hit	at	
the	kth time	in	the	execution	of	program	P	with	input	𝑡",	
but	 𝜉"<, 𝜏"< is	symbolic	in	terms	of	 𝜏"<|1 ≤ 𝑘 ≤ 𝜔 ,	
where	𝜔 is	number	of	times	f	is	executed	with	input	𝑡"

Approach

• Generate	a	fix
• 𝜏"<|1 ≤ 𝑘 ≤ 𝜔 satisfy	
• 𝑓 should	satisfy	the	constraint

• Conjoin	constraints	from	all	tests	together	with	the	well-
formedness constraint	𝜓@5A

Approach

• Putting	it	all	together
• The	algorithm	takes	as	inputs	a	buggy	program	P,	a	test	
suite	T	and	a	ranked	list	of	suspicious	program	
statements	RC
• When	successful,	the	algorithm	produces	a	repair,	
applying	which	on	P	makes	P	pass	all	tests	in	the	test	
suite	T.

Evaluation

• Use	SemFix to	repair	seeded	defects	and	real	
defects	in	an	open	source	software.	The	proposed	
method	is	also	compared	with	genetic	
programming	based	repair	techniques.

Evaluation

• Intuitively,	it	is	harder	to	generate	a	repair	to	pass	
more	tests
• Repairs	generated	with	small	number	of	tests	may	
not	be	valid	for	other	tests	that	are	not	in	test	suite.

Evaluation

•

Evaluation

• Different	types	of	bugs

Related	Work

• Genetic	programming:
• W.	Weimer,	T.	Nguyen,	C.	Le	Goues,	and	S.	Forrest,	
“Automatically	finding	patches	using	genetic	
programming,”	in	ICSE,	2009.
• C.	Le	Goues,	M.	Dewey-Vogt,	S.	Forrest,	and	W.	Weimer,	
“A	systematic	study	of	automated	program	repair:	Fixing	
55	out	of	105	bugs	for	$8	each,”	in	ICSE,	2012.

• AutoFix-E	and	AutoFix-E2	are	based	on	the	program	
contracts	in	Eiffel	programs
• Jobstmann,	et.	al.	uses	LTL	specifications	for	finite	
state	programs

Related	Work

• Gopinath,	et.	al.	use	behavioral	specifications	and	
encode	the	specification	constraint	on	the	buggy	
program	into	SAT	constraint
• Robert	and	Roderick	employ	template	based	repair	
for	linear	expressions.
• Dallmeier,	et.	al.	try	to	generate	fixes	from	object	
behavior	anomalies.
• ClearView follows	a	similar	scheme	but	works	on	
deployed	binary	program	when	high	availability	is	
required.

Related	Work

• BugFix suggests	bug-fix	that	has	been	used	in	a	
similar	debugging	situation.
• Debroy and	Wong	propose	to	use	mutation	for	
program	repair.
• PHPRepair focuses	on	HTML	generation	errors	in	
PHP	programs.
• Instead	of	fixing	a	buggy	program,	program	
sketching	allows	a	programmer	to	write	a	sketch	of	
the	implementation	idea	while	leaving	the	low	level	
details	omitted	as	holes	to	be	automatically	filled	
up	by	the	sketch	complier.

Conclusion

• The	proposed	SemFix is	a	semantics	based	program	
repair	tool.
• The	repair	constraint,	which	is	derived	from	a	set	of	
tests, is	solved	by	generating	a	valid	repair.
• SemFix can	synthesize	a	repair	even	if	the	repair	
code	does	not	exist	anywhere	in	the	program.

Discussion

• Which	is	easier,	fixing	a	bug	manually	or	verify	the	
auto-generated	bug	fix?

Discussion

• Can	you	apply	artificial	intelligence	(AI)	to	
automatic	bug	repairing	to	improve	it?
• If	yes,	how?

Discussion

• If	you	are	a	software	engineer	in	an	IT	company,	
will	you	use	an	automatic	bug	repairing	tool?
• If	yes,	which	cases	will	you	use	it	in?	which	cases	
will	you	not	use	it	in?

Discussion

• The	paper	says	"the	test	suite	could	be	large	and	
thus	affect	the	scalability	of	our	technique".
• Do	you	think	selecting	a	subset	of	the	entire	test	
suite	for	repair	generation	is	a	good	idea?

Discussion

• These	basic	components	are	used	to	generate	a	
repairs.
• Do	you	think	they	are	enough?	Should	we	add	
something	more,	like	division	(/)?

Discussion

• The	proposed	method	only	synthesis	an	expression.
• Should	we	use	some	more	complicated	logics,	like	
if-condition,	for-loop,	and	while-loop?
• If	yes,	how	will	they	affect	the	precision	and	speed	
of	the	bug	repairing	method?

Discussion

• The	proposed	method	only	change	one	statement.
• Do	you	think	changing	more	statements	is	a	good	
idea?	Why?

Discussion

• To	be	honest,	no	matter	how	many	test	cases	are	
used,	we	can	not	guarantee	the	bug	fix	is	right.
• Can	the	bug	repairing	method	use	another	
constraint,	instead	of	tests?

Discussion

• Can	any	other	research	be	done	based	on	SemFix?
• If	yes,	talk	about	the	details.

