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Abstract

State-of-the-art automatic speech recognition (ASR) systems use sequence-

level objectives like Connectionist Temporal Classification (CTC) and Lattice-

free Maximum Mutual Information (LF-MMI) for training neural network-

based acoustic models. These methods are known to be most effective with

large size datasets with hundreds or thousands of hours of data. It is difficult to

obtain large amounts of supervised data other than in a few major languages

like English and Mandarin. It is also difficult to obtain supervised data

in a myriad of channel and environmental conditions. On the other hand,

large amounts of unsupervised audio can be obtained fairly easily. There

are enormous amounts of unsupervised data available in broadcast TV, call

centers and YouTube for many different languages and in many environment

conditions. The goal of this research is to discover how to best leverage the

available unsupervised data for training acoustic models for ASR.

In the first part of this thesis, we extend the Maximum Mutual Informa-

tion (MMI) training to the semi-supervised training scenario. We show that

maximizing Negative Conditional Entropy (NCE) over lattices from unsuper-

vised data, along with state-level Minimum Bayes Risk (sMBR) on supervised

data, in a multi-task architecture gives word error rate (WER) improvements
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without needing any confidence-based filtering.

In the second part of this thesis, we investigate using lattice-based supervi-

sion as numerator graph to incorporate uncertainties in unsupervised data in

the LF-MMI training framework. We explore various aspects of creating the

numerator graph including splitting lattices for minibatch training, applying

tolerance to frame-level alignments, pruning beam sizes, word LM scale and

inclusion of pronunciation variants. We show that the WER recovery rate

(WRR) of our proposed approach is 5-10% absolute better than that of the

baseline of using 1-best transcript as supervision, and is stable in the 40-60%

range even on large-scale setups and multiple different languages.

Finally, we explore transfer learning for the scenario where we have unsu-

pervised data in a mismatched domain. First, we look at the teacher-student

learning approach for cases where parallel data is available in source and tar-

get domains. Here, we train a "student" neural network on the target domain

to mimic a "teacher" neural network on the source domain data, but using

sequence-level posteriors instead of the traditional approach of using frame-

level posteriors. We show that the proposed approach is very effective to deal

with acoustic domain mismatch in multiple scenarios of unsupervised domain

adaptation – clean to noisy speech, 8kHz to 16kHz speech, close-talk micro-

phone to distant microphone. Second, we investigate approaches to mitigate

language domain mismatch, and show that a matched language model signif-

icantly improves WRR. We finally show that our proposed semi-supervised

transfer learning approach works effectively even on large-scale unsupervised

datasets with 2000 hours of audio in natural and realistic conditions.
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Chapter 1

Introduction

1.1 Motivation

State-of-the-art ASR use sequence-level objectives like Connectionist Temporal

Classification (CTC) [1] and Lattice-free Maximum Mutual Information (LF-

MMI) [2] for training neural network-based acoustic models. However, these

methods are known to be most effective with large size datasets with 100s of

hours of data. The performance is shown to degrade with small datasets [3]. It

is difficult to obtain large amounts of supervised data other than in a few major

languages like English and Mandarin. It is also difficult to obtain supervised

data in a myriad of channel and environmental conditions. On the other hand,

large amounts of unsupervised audio can be obtained fairly easily. There

are enormous amounts of unsupervised data available in broadcast TV, call

centers and YouTube for many different languages and in many environment

conditions. The goal of this research is to discover how to best leverage the available

unsupervised data for training acoustic models for ASR.
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1.1.1 Semi-supervised training

Semi-supervised training is the setting where we use both the supervised data

and unsupervised data to estimate the parameters of the acoustic model. The

training data in this setting consists of the following sets:

1. Supervised data (DL) : L utterances with acoustic features O(1), O(2), . . . , O(L)

and corresponding transcripts - W(1), W(2) . . . W(L)

2. Unsupervised data (DU ) : U utterances with only acoustic features

O(L+1), O(L+2), . . . , O(L+U)

Unsupervised audio has been used successfully in various approaches

that predate the modern neural network acoustic models [4]. One of the most

common approaches to semi-supervised learning of acoustic models is self-

training [5]–[7], where a seed system trained with only supervised data is used

to decode the unsupervised data and the predicted hypotheses are selected as

the training transcripts, usually based on confidence-based filtering schemes.

However, sequence discriminative training methods are very sensitive to

the accuracy of the transcripts [8]–[10] and they don’t work very well with

self-training approaches without good confidence-based filtering [8], [11]–[13].

However, we can directly incorporate the uncertainties into sequence-level

training by using lattice-based supervision as described in the next section. This

research focuses on the best ways to turn the available unsupervised data into lattice

supervision for training acoustic models using sequence-level objectives.
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1.1.2 Lattice supervision

Lattices are a natural way to incorporate uncertainties in hypotheses when

dealing with unsupervised data. Lattice supervision has been used in [14]

with conventional sequence objectives like MMI [15] as well as in [16] for

semi-supervised training with lattice entropy minimization. We use lattice

supervision and minimize lattice entropy for semi-supervised training of neural

network acoustic models as proposed in [17] and described in Chapter 3.

In [18], we proposed an extension to LF-MMI training in the semi-supervised

setting. We extend this further and investigate various issues related to using

lattice supervision in Chapter 4.

1.1.3 Domain mismatch

Often times, we want ASR models to be used in a domain that is mismatched

with the domain that it was trained for. Transfer learning is applied in such

cases, and there is a rich survey of machine learning methods like [19], [20]

including methods specific to neural networks [21], and speech processing

[22]. Where supervised data is available in the target domain, teacher-student

learning, multi-task or weight transfer approaches have been useful [23]–

[26]. However, in many cases, the only data available in the target domain is

unsupervised, and we would like to use the unsupervised audio to train better

acoustic models. In [27], we proposed a sequence-level teacher-student learning

approach for this, thereby extending the semi-supervised LF-MMI training

from Chapter 4 to transfer learning. We further explore various approaches to

deal with the issue of domain-mismatched data in Chapter 5.
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1.2 Outline

1.2.1 Lattice-based semi-supervised sequence training

In the first part of this thesis (Chapter 3), we explore using a lattice of word

hypotheses as supervision for semi-supervised training of neural network

acoustic models. We look at standard sequence discriminative training objec-

tives like Maximum Mutual Information (MMI) and extend it to the scenario

of semi-supervised training. In this scenario, the analogous objective is to max-

imize Negative Conditional Entropy (NCE), which is computed over a lattice.

Sequence discriminative training methods like MMI and sequence Minimum

Bayes Risk (sMBR) generally don’t work for semi-supervised training without

extensive confidence-based filtering. However, we show that joint training using

NCE on unsupervised data and sequence Minimum Bayes Risk (sMBR) on super-

vised data in a multi-task architecture gives word error rate (WER) improvement

over self-training using sMBR objective on unsupervised data. We evaluate the

proposed approach on the Fisher English task as well as on multiple Babel

languages.

1.2.2 Lattice-free semi-supervised sequence training

While in Chapter 3, we explore lattice-based training in the traditional frame-

level cross-entropy neural network framework, in the second part of this thesis

(Chapter 4), we explore using a lattice as supervision in the lattice-free MMI [2]

training framework. The lattice-free training framework allows a natural way

to incorporate the uncertainties in unsupervised data through the numerator

4



supervision graph. We explore the various aspects of creating the numerator graph

including splitting lattices for minibatch training, applying tolerance on frame-

level alignments, pruning beam sizes, word language model scale and inclusion of

pronunciation variants. We then investigate the proposed approach on large-

scale setups by varying the amounts of supervised and unsupervised data. We finally

show that the proposed method works in many different scenarios without

requiring extensive tuning by evaluating on multiple Babel languages.

1.2.3 Semi-supervised transfer learning

Finally in Chapter 5, we explore the scenario where the unsupervised data is

in a different domain than the supervised data. First, in cases where there is

parallel data in the source and target domains, we propose to use a teacher-

student learning approach. Here, we train a new “student” network in the

target domain that mimics the outputs of the “teacher” network. While tra-

ditionally done using a frame-level approach, we propose to have the student

network mimic the sequence-level posteriors of teacher network. Thereby, we extend

semi-supervised sequence training to transfer learning scenario. We investi-

gate the proposed approach for unsupervised adaption in the following domain

mismatch scenarios – clean to noisy speech in same language domain, 8kHz

to 16kHz speech in different microphone and language domains, close-talk

microphone to distant microphone in different language domains. Second,

we look at cases where there is no parallel data in source and target domains,

but just domain mismatched unsupervised data. Here, we look at the effect
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that mismatched language domain has in the quality of lattice supervision and semi-

supervised training performance using large-scale unsupervised datasets in natural

and realistic conditions.
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Chapter 2

Background

2.1 Automatic Speech Recognition (ASR)

An automatic speech recognition (ASR) system is one that converts an input

speech signal into a sequence of words as the text transcription. Mathemati-

cally, the problem can be formulated as finding the transcription W that best

describes the acoustic feature sequence O representing the speech signal:

Ŵ = arg max
W

P(W | O) (2.1)

However, it is infeasible to directly model the conditional distribution in

(2.1) of the word sequences given the acoustic observations directly. We in-

stead solve this using an inference over a generative process. Using Bayes’ rule,

some independence assumptions and chain rule with Markov assumptions,

we can efficiently do the inference using simpler probabilistic models. We

assume the raw speech signal has been converted into a sequence of acoustic

features of T time-steps O = o1o2 · · · oT, where each ot ∈ RD. The generative

process (diagrammatically represented in Figure 2.1) is as follows:
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Figure 2.1: Flowchart of the generative process of speech
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1. A word sequence W is generated using a language model (LM) P(W).

The n-gram LM that we use is represented using a Weighted Finite State

Acceptor (WFSA) (G).

2. The word sequence is converted to a sequence of phonemes, which are

the simplest linguistic units of sounds using a lexicon model P(N |W).

This can be represented using a Weighted Finite State Transducer (L).

3. To account for co-articulation effects of how the phonemes sound in

the context of other phonemes, we choose to model context-dependent

phonemes. The mapping from phoneme sequence to context-dependent

phoneme sequence is done implicitly using a context-dependency trans-

ducer (C).

4. The translation of the sequence of context-dependent phonemes into an

acoustic feature sequence is modeled by what is known as the acoustic

model (AM). Typically this is an Hidden Markov Model (HMM). The

mapping from the context-dependency phonemes to the individual

transitions in the HMM can be represented using the HMM transducer

(H).

5. Each context-dependent phoneme is modeled using its own HMM. The

model for the whole sequence is then simply a concatenation the indi-

vidual HMMs of the context-dependent phones.

6. Each transition through this HMM represents one time-step. In this

HMM, we model both the state transition probabilities P(si | sj) and
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emission probabilities P(ot | si), where si, sj ∈ S and S is the state space

of the HMM.

7. Because of sparsity issues in modeling all the emission probabilities

separately, a decision tree is used to cluster the context-dependent HMM

states and all the states in a cluster j are modeled using the same emission

probability distribution P(ot | j). In ASR parlance, the cluster j is

referred to as a “tied state” or by the distribution itself as “p.d.f.” (Stands

for probability density function) and j is the “p.d.f. label”. Typically,

these have been estimated using Gaussian Mixture Models (GMMs) and

Deep Neural Networks (DNNs).

With this generative process and the probabilistic models within, we can

solve the solve the speech recognition problem as:

Ŵ = arg max
W

P(O |W)P(W) (2.2)

≈ arg max
W

∑
N

P(O | N)P(N |W)P(W) (2.3)

≈ arg max
W

∑
S,N

P(O | S)P(S | N)P(N |W)P(W) (2.4)

≈ arg max
W

∑
S,N

P(O | S)⏞ ⏟⏟ ⏞
AM

P(S | N)⏞ ⏟⏟ ⏞
H

P(N |W)⏞ ⏟⏟ ⏞
L

P(W)⏞ ⏟⏟ ⏞
G

(2.5)

The advantage of this generative process is that each of the individual

models can be trained independently. For training the LM, we need a large

text corpus. The lexicon is usually created by an expert. However, there are au-

tomatic lexicon learning methods. A simplified approach is to use graphemes
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instead of phonemes, which trivializes the lexicon. For training the acoustic

model, we typically need a corpus consisting of matched audio and transcrip-

tion. Both the transition and emission probabilities can be learned jointly

using an Expectation-Maximization (EM) algorithm or a gradient descent

algorithm without needing an explicit labeling of the hidden variables (HMM

states) at each time-step [28].

2.2 Supervised training

The training of acoustic model (parametrized by λ) involves finding a λ that is

“good” according to some criteria like Maximum Likelihood (ML), Maximum

Mutual Information (MMI) [15] etc. In general, the training data for estimating

the AM consists of the following dataDL: L utterances with acoustic feature se-

quences O(1), O(2), . . . , O(L) and corresponding transcripts W(1), W(2) . . . W(L)

Since the training data includes transcripts for each utterance that can be

used as supervision for training the acoustic models, the data is referred to as

supervised data.

In a supervised training setting, we use only the supervised data to esti-

mate the parameters of the acoustic model λ. The ML criterion for supervised

training is as in (2.6). As described in Section 2.1, using a generative process

and models for LM, lexicon, context-dependency and HMM, we can expand

this into (2.7). 1

1Note that this is very similar to how (2.5) is obtained.
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FML(λ) =
1
L

L

∑
r=1

log
{︂

P(O(r), W(r); λ)
}︂

(2.6)

=
1
L

L

∑
r=1

log

{︄
∑
S,N

P(O(r) | S; λ)P(S | N; λ)P(N |W(r))P(W(r))

}︄
(2.7)

2.3 Weighted Finite State Transducers (FSTs)

As described in section 2.1, the components in the generative process for

speech viz. the language model, the lexicon, the context-dependency and

the HMM transition model can be represented using WFSTs – G, L, C and

H. The joint probabilities from these models can be obtained by composing

the probabilities from the individual models. In terms of FSTs, this is a

composition of the H, C, L and G transducers into a composite “HCLG” graph.

The probabilities are in general stored in log-domain and are interpreted as

“scores” or in a negated version “costs”. The scores or costs can in general be

relaxed to be non-probabilistic, with the addition of a normalization term.

An acoustic features sequence O = o1, o2, . . . oT is generated from a path π

in this composite HCLG graph with probability P(O | π). Let the sequence of

transitions in this path, π, be a1, a2, . . . aT and s(at) be the state corresponding

to the transition at. The likelihood of the path and acoustic feature sequence
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can be computed using the chain rule and HMM assumptions:

P(O, π) =P(O | π)P(π) (2.8)

=
T

∏
t=1

P (ot | s(at))P (at | s(at)) , (2.9)

where each term consists of two terms:

• an acoustic probability representing the emission of an acoustic feature

vector ot from state s(at), P(ot | s(at))

• a graph probability representing the transition at from the state s(at),

P(at | s(at).

As noted previously, we use scores more generally and thus we have acoustic

scores and graph scores. This can be seen as a transformation of the FST from

a probabilistic semiring to a log semiring.

Using this FST framework, we can simplify the expression in (2.7) to (2.10).

FML(λ) =
1
L

L

∑
r=1

log

{︄
∑π∈G(W(r)) P(O(r) | π; λ)P(π; λ)

∑π∈G(W(r)) P(π; λ)

}︄
, (2.10)

where G(W(r)) is a graph created specific to the utterance r (using a linear FST

created from W(r) in place of a trained language model).

2.4 Neural network acoustic models

Conventionally GMMs were used to model the emission probabilities of

the HMM states. GMMs can in theory model any distribution to arbitrary

13



accuracy given sufficient number of components. In practice, this is infeasible

due to the blow up of the number of parameters. Additional assumptions

such as diagonal covariance are added to ensure better parameter estimation.

This adds a limitation that the acoustic features cannot be augmented with

context of nearby frames because the acoustic features in nearby frames are

correlated and breaks the diagonal covariance assumption. To overcome these

limitations, deep neural networks were proposed for acoustic modeling as

summarized in [29]. An HMM with a DNN to model emission probabilities is

referred to as HMM-DNN hybrid acoustic model.

2.4.1 Frame-level training

The DNNs proposed for acoustic modeling in [29] were designed to directly

predict the HMM tied state or p.d.f. label j given the acoustic feature vector.

These were trained to minimize the cross-entropy between the true p.d.f.

labels and predicted p.d.f. labels as in (2.11).

FCE(λ) =−
L

∑
r=1

T(r)

∑
t=1

log P(j∗t | o(r)
t ; λ), (2.11)

where
[︂

j∗1 , j∗2 . . . j∗
T(r)

]︂
is the p.d.f. label sequence corresponding to the best

alignment π∗ obtained using a previously trained HMM-GMM acoustic

model:

π∗ = arg max
π∈G(W(r))

P(π | O(r), W(r); λ′) (2.12)

The HMM state emission probabilities can be obtained from the DNN
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using the Bayes’ rule:

P(ot | jt) =
P(jt | ot)P(ot)

P(jt)

P(ot) is the same for all the HMM states and can be safely ignored during

decoding. The resulting term P(ot | jt) = P(jt|ot)
P(jt)

is known as a pseudo-

likelihood [30]. P(jt) is known as the “prior”. The prior distribution is

conventionally estimated as in [29] using the counts of the p.d.f. labels in all

of the training data. The effect of this division by priors is to “remove” the

priors implicitly learned by the neural network during training. We found an

alternate approach to be useful in many scenarios in [17]. In this approach,

we estimate the priors by marginalizing the posterior distribution of the p.d.f.

labels using empirical distribution of the acoustic feature vectors in the dataset

as shown in (2.13).

P̃(j) =
N

∑
i=1

P(j | oi)P̂(oi)

=
1
N

N

∑
i=1

P(j | oi)

(2.13)

2.4.2 Sequence-level training

An alternative to frame-level training is to train the neural network to predict

the whole sequence well. This is similar to the approach of sequence discrimi-

native training that has been used with HMM-GMM acoustic models. This is

described in detail in Section 2.5.

Recently, sequence-level training objectives like Connectionist Temporal
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Classification (CTC) [1] and Lattice-free Maximum Mutual Information (LF-

MMI) [2] have been shown to out-perform traditional frame-level objectives

like cross-entropy for sequence tasks like ASR. Neural networks trained using

these form state-of-the-art acoustic models in many of the ASR tasks. LF-MMI

training is described in greater detail in Section 2.6.

2.5 Sequence discriminative training

Maximum Likelihood training of model is asymptotically optimal (i.e. when

there is infinite data for training) and when the model assumptions match the

data (e.g. the conditional independence assumptions). However, in practice

discriminative training is generally shown to give better estimates than ML

training. A discriminative criterion encourages the model to be maximally

discriminative of the reference transcript against the competing hypotheses.

A number of discriminative criteria such as MMI [15], MCE[31], MPE [32],

sMBR [33], [34] and bMMI [35] have been developed and used in HMM-based

speech recognition [36]–[39]. Most of these can be generalized and unified

into a single framework [40].

The MMI criterion for training acoustic model is as in (2.14). This is a ratio

of “numerator” likelihood and “denominator” likelihood. The numerator

likelihood is the joint likelihood of the acoustic feature sequence O(r) and

transcription W(r). The denominator term is the likelihood of the acoustic

feature sequence alone O(r). It is computed by marginalizing over all word

sequences. In practice, it may have to be approximated for e.g. using a

lattice generated by using a weak LM. Composing the probabilities from the
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LM, lexicon and the HMM transition model into graph scores, the objective

can be expressed as in (2.15). We can see from this that the numerator and

denominator likelihoods are computed over numerator and denominator

graphs, both of them being WFSTs. The numerator graph is specific to the

utterance and is obtained by using a linear FST created from W(r) as the

language model. The denominator graph is “free” and uses a pre-trained

language model.

FMMI(λ) =
1
L

L

∑
r=1

log
P(O(r) |W(r); λ)P(W(r))

∑W ′ P(O(r) |W ′; λ)P(W ′)
(2.14)

=
1
L

L

∑
r=1

log
∑π∈GNum(W(r)) P(O(r) | π; λ)P(π)

∑π′∈GDen
P(O(r) | π′; λ)P(π′)

(2.15)

In general, it is not feasible to compute the denominator likelihood in

(2.14) over all word sequences. The summation is restricted to hypotheses

contained in a lattice generated using a weak language model (Usually a

unigram or a bigram). But the generation of this lattice (called a denominator

lattice) assumes a pre-trained acoustic model. Conventionally, this is an

acoustic model trained using an ML objective (in case of HMM-GMM) or a CE

objective (in case of HMM-DNN). This adds the limitation that such acoustic

models cannot be trained from scratch using sequence-level objectives, but

only updated from a pre-trained one. Furthermore, the denominator lattices

once generated may not be appropriate once the acoustic model is updated

and might need to be regenerated. Without this regeneration of lattices, the

acoustic model can get overtrained as seen in [41]. Paths in the numerator
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graph that are missing in the denominator graph can also cause problems as

seen in [41], [42]. Some of these problems are addressed in approaches like

CTC and LF-MMI, which allow the model to be trained from scratch without

needing to first generate denominator lattices. LF-MMI is described in detail

in the next section.

2.6 Lattice-free MMI

This section summarizes the lattice-free MMI training of neural network

acoustic models. For a more detailed presentation, the readers are directed to

[2].

Lattice-free MMI (LF-MMI) is a particular implementation of MMI training

using the objective (2.15) where the denominator term is computed using

a forward-backward over a full HMM graph instead of over a lattice. This

graph is fixed and unlike the lattice does not have to be generated for each

utterance separately. This makes it possible for the neural network to be

trained from scratch without needing to be pre-trained using a frame-level

cross-entropy objective. Furthermore, this computation of denominator term

is done efficiently using a GPU. Both the denominator graph as well as the

utterance-specific numerator graphs are represented as finite state transducers

(FSTs). The basic features of LF-MMI system are described in the following

sections.
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2.6.1 Lower frame-rate HMM topology

LF-MMI system uses a simpler HMM topology than the conventional system.

While the conventional system uses a 3-state topology, the LF-MMI system

uses a topology that can be traversed in one frame. The frame rate is also

3x lower and thus a single frame corresponds to 30ms. The HMM topology

can be represented using an FST as shown in Figure 2.2. A single HMM

(corresponding to a context-dependent phone) can emit symbols (p.d.f.s)

corresponding to the regular expression ba∗ i.e. b, ba, baa etc. Here a is

analogous to the blank symbol in CTC, but there is a distinct “blank” symbol

for each context-dependent phone.

0 1 2
b a

a

b

Figure 2.2: HMM topology used in LF-MMI

2.6.2 Denominator graph

The denominator graph is generated using a language model and composing

that with the context-dependency (C) and HMM transducer (H). In traditional

MMI as described in 2.5, a weak word-level language model like a unigram

is used. But in order to make the graph compact and efficiently computable

using a GPU, the LF-MMI system uses a 4-gram phone-level language model.

There is no pruning or backoff below the trigram level and hence it can
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account for only triphones seen in the training data. This LM is represented as

a phone graph (G). This is composed on the left with C to add phonetic-context

dependency and then with H to add the HMM topology. The composed FST

is projected on the input-side to keep only the p.d.f. labels, and followed by

epsilon removal and optimized to reduce the size of the graph. The details of

this procedure can be found in [2].

During LF-MMI training, the utterances are split into fixed-size chunks of

around 1.5s long (or a few different sizes). Due to this, the initial and final

probabilities of the graph created above are inappropriate (because they reflect

the sentence start and end probabilities). So the initial and final probabilities

are modified in the following way. The initial probabilities are set to a new

distribution which is obtained by running the HMM for 100 time steps starting

from the original initial state and averaging the distribution of the states over

those 100 time steps. The final probabilities are all set to one.

2.6.3 Numerator graphs

Unlike the denominator graph, the numerator graph is utterance-specific.

Prior to training the neural network, a GMM-based system is used to dump lat-

tice representing alternative pronunciations of the training utterances. These

lattices are processed into phone graphs and then compiled into utterance-

specific FSTs as for HMM-based conventional training. But, similar to [43], a

constraint is added to allow the phones to appear only slightly before or after

(±20ms by default) where it appeared in the lattice. This process also allows

each state to be identified with a time-index allowing the graph to be split into
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chunks for training.

Since the graphs created above don’t have any scores on them, the scores

are added by composing with a version of denominator FST (known as nor-

malization FST) which includes the initial and final scores as described in

Section 2.6.2. This ensures that the objectives are always negative, which helps

in debugging. This also ensures that numerator graph does not have any

paths not seen in denominator graph, which can cause the training to diverge.

2.6.4 Forward-backward computation

The forward-backward computation to compute the LF-MMI objective and

derivates w.r.t. the neural network outputs (pdfs) are implemented on the

CPU and GPU for the numerator part and the denominator part respectively.

The computation is done in the real-space and not the log-space with special

care taken to avoid underflow or overflow. This is detailed in [2]. The LF-MMI

training is also regularized by allowing during the denominator computation,

transitions from any state to any state with a small probability. This is referred

to as the “leaky-hmm”. This also allows the forward and backward scores to

be kept in a reasonable range during the computation.

2.6.5 Cross-entropy regularization

In [2], it is shown that adding cross-entropy regularization helps the LF-

MMI training. A separate output is added to the neural network with just a

separate affine component or a separate hidden layer. Thus the cross-entropy

part of the neural network has “it’s own” separate weight parameters while it
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shares most of the parameters with the LF-MMI objective. The supervision for

the cross-entropy objective is obtained from the posteriors in the numerator

forward-backward computation. The cross-entropy objective is scaled by a

small value (usually 0.1) to balance it with the LF-MMI objective.
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Chapter 3

Lattice-based semi-supervised
sequence training

3.1 Introduction

In this chapter, we investigate sequence discriminative objectives for semi-

supervised training of ASR. Discriminative training has been a popular alter-

native to Maximum Likelihood (ML) training of acoustic models for speech

recognition as described in Section 2.5.

Standard discriminative training is very sensitive to the accuracy of the

transcripts [8]–[10]. If the reference transcript is incorrect, it discriminates the

incorrect reference transcript against the other hypotheses, which includes

the true transcript. So sequence discriminative self-training methods do not

work very well without some form of confidence-based filtering, as used

in [8], [11]–[13]. However, we show that we can directly incorporate the

uncertainties by using lattice-based objective functions. In [17], we proposed

to use Negative Conditional Entropy (NCE) for semi-supervised training of

DNN acoustic models. Entropy minimization has previously been used as
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an objective for semi-supervised learning in a facial recognition problem [44]

and for sequence-discriminative training of GMM acoustic models [16]. In

this chapter, we describe our proposed NCE objective in Section 3.2 and look

at experimental results in Section 3.3.

3.2 Negative Conditional Entropy

This section describes the approach we proposed in [17] for using NCE ob-

jective for semi-supervised training of DNN acoustic models. Our extension

to semi-supervised training can be obtained using the definition of the Max-

imum Mutual Information Estimation (MMIE) as in (3.1). In the traditional

supervised training setting with only supervised data DL, the expectation in

(3.1) is taken over the empirical distribution, P̂ . This leads to the standard

MMI objective as in (2.14), which is described in Section 2.5.

λ̂ = arg max
λ

IE
(O,W)∼P̂

[︃
log

P(O, W; λ)

P(O; λ)P(W)

]︃

= arg max
λ

IE
(O,W)∼P̂

[︃
log

P(O |W; λ)P(W)

∑W ′ P(O |W ′; λ)P(W ′)

]︃
,

(3.1)

Similarly for unsupervised data DU , the expectation is taken over a distri-

bution that is consistent with the empirical distribution over acoustic features.

This leads to following criterion:

FNCE(λ) ≜
1
U

L+U

∑
r=L+1

∑
W

P(W | O(r); λ) log P(W | O(r); λ)

= − 1
U

L+U

∑
r=L+1

H(W | O(r); λ),

(3.2)
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where H(W | O; λ) is the conditional entropy of the word sequence W condi-

tioned on the acoustic feature sequence O(r) under the posterior distribution

with acoustic model parameterized by λ. This criterion was defined as “Neg-

ative Conditional Entropy (NCE)” in [16]. Another way of looking at this is

that we maximize the weighted average of conditional log-likelihood of the

paths in the lattice weighted by their respective probabilities in the lattice.

In the following sections, we describe efficient ways of optimization for

the objective (Section 3.2.1), describe how the procedure can be used with

DNN acoustic models (Section 3.2.2) and propose a multilingual architecture

for DNN training (Section 3.2.3).

3.2.1 Lattice Entropy

It is difficult to directly optimize for the conditional entropy in (3.2). One issue

is the summation overall word sequences. In practice, we can approximate that

to a summation over word sequences in a lattice Lr. A further approximation,

which is exact if the lattices are generated according to [45], is to minimize the

entropy of the paths in the lattice Lr:

FNCE(λ) ≜
1
U

L+U

∑
r=L+1

∑
π∈Lr

P(π | O(r); λ) log P(π | O(r); λ)

= − 1
U

L+U

∑
r=L+1

HLr(π | O(r); λ),

(3.3)

where π is a HMM state sequence in the lattice as described in .

Lattice-based methods for discriminative training have been developed for

many discriminative objective functions including MMI [36], [37]. The lattice
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entropy in (3.3) and its gradients can be computed using an Inside-Outside1

algorithm [46] or equivalently a backpropagation algorithm [47] over the

decoded lattice Lr. It is easiest to interpret this algorithm as doing semiring

summations over all paths in the lattice under the first-order and second-order

expectation semirings respectively [46].

It can be seen that the entropy of the lattice HL = H(π | O; λ) can be

computed as follows:

HL = − ∑
π∈L

P(O | π; λ)P(π)

Z
log

{︃
P(O | π; λ)P(π)

Z

}︃

= log Z− r̄
Z

(3.4)

where Z = ∑π∈LP(O | π; λ)P(π) is the marginal probability and r̄ =

∑π∈LP(O | π; λ)P(π) log [P(O | π; λ)P(π)]. ⟨Z, r̄⟩ can be computed as the

semiring sum under the first-order expectation semiring with arc weight

⟨pa, pa log pa⟩, where pa = P(ot | s(a); λ)P(a | s(a)) is the probability of the

transition and consists of the acoustic and graph probabilities. The gradient

∇HL can be computed using the second-order expectation semiring sum

⟨Z, r̄,∇Z,∇r̄⟩ with arc weights ⟨pa, pa log pa,∇pa, (1 + log pa)∇pa⟩ as

∇HL =
∇Z
Z
− ∇r̄

Z
+

r̄∇Z
Z2 . (3.5)

The derivative of the objective function (3.2) with respect to the probability

pa of an arc a in lattice Lr simply uses one component in the gradient vector

1effectively a Forward-Backward algorithm for a 2-uniform hypergraph like the decoded
lattice
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(3.5):
∂FNCE

∂pa
= − 1

U
∂HLr

∂pa
(3.6)

3.2.2 Deep Neural Network Acoustic Model

In a HMM-DNN hybrid system, the DNN is used to provide the emission

probability or the pseudo-likelihood [30] of an acoustic feature vector ot at

time t from a pdf j as described in Section 2.4.

For the neural network acoustic model, the parameters λ are set of all the

weights of the connections between the nodes of the neural network. But

since the objective function value depends on the neural network weights

only through DNN outputs (here the outputs are the log of the pdf posteriors)

log yt(j), it is enough to find the gradients of the objective function with

respect to the DNN outputs.

It should also be noted that in the lattice framework described in Section

3.2.1, each lattice arc a maps to a unique pdf label j.

∂FNCE

∂ log y(r)t (j)
= ∑

a∈A(r)
t (j)

∂FNCE

∂ log pa

∂ log pa

∂ log p(ot | s(a); λ)

= ∑
a∈A(r)

t (j)

∂FNCE

∂ log pa
(3.7)

=⇒ ∂FNCE

∂ log y(r)t (j)
= γNCE

t (j), (3.8)

where A(r)
t (j) is the set of arcs in the lattice at time t with p.d.f. j and γNCE

t (j)
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can be termed as the NCE “posterior” of p.d.f. j and is analogous to the

MBR “posteriors” defined in [41]. The derivatives w.r.t. to the output can

be backpropagated [48] to find the gradients for all the parameters of the

neural network. These gradients can be used to optimize the neural network

parameters using stochastic gradient descent (SGD).

3.2.3 Multilingual training architecture

In the multilingual training architecture [49], [50], two (or more) DNNs are

trained sharing all the layers except the last one. An alternate view is of a

single neural network with two or more separate output layers. We can use

this idea for semi-supervised training, by viewing the unsupervised data

as the “second language”. So in this case, the first neural network nnetL

sees only supervised data and the second neural network nnetU sees only

the unsupervised data. The primary motivation is to use the unsupervised

data to only learn representations, but use the final layer trained using the

supervised data for acoustic classification or decoding. The gradients from

the different neural networks can be scaled appropriately to give a higher

weight to gradients from the neural network nnetL that sees supervised data.

In addition, the filtering of unsupervised data frames using say, frame-level

confidence scores [5], can be incorporated easily.

3.3 Experimental results

We evaluated the performance of our proposed semi-supervised training

approach on subsets of Fisher English and on 4 Babel languages. Since in
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practice, sMBR objective works better than MMI for ASR tasks, we used sMBR

as the objective on supervised data in all our experiments.

3.3.1 Experimental setups

We report experiment results on a subset of Fisher English corpus [51] and sev-

eral Babel [52] languages in the limitedLP condition. The Fisher English corpus

has a total of 1600 hours of telephone speech. The first 5000 utterances (about

3.3 hours) in the corpus was selected as the dev set for tuning hyperparameters

and the next 5000 utterances (about 3.2 hours) was selected as the test set

for evaluation. Out of remaining data, 100 hours was selected as supervised

data and the remaining part was selected as unsupervised data by ignoring

the corresponding transcripts. Here, we show results with only 250 hours

subset of unsupervised data. We use a language model that is trained using

the transcripts of the 100 hours supervised data subset for all experiments.

The Babel languages under limitedLP condition have 10 hours of supervised

data and around 50-60 hours of unsupervised data (Table 3.1) after automatic

segmentation. We show results on four Babel languages – Assamese, Ben-

gali, Zulu and Tamil. We use the fixed lexicon provided under the limitedLP

condition. We evaluate our systems on the 10 hours dev10h set, while tuning

on a 2 hours subset dev2h. But we don’t tune hyperparameters for different

languages separately.

For sMBR training, we use a weak language model (unigram) to increase

the number of alternative hypotheses for discrimination. But for the NCE

training, we use a trigram language model to produce a compact lattice with
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Table 3.1: Babel data

Language DL (hrs) DU (hrs) # Context-dependent states
Assamese 10 50 1984
Bengali 10 57 2005
Zulu 10 59 1913
Tamil 10 65 1902

only the most likely hypotheses. This is in line with the empirical results in

[47] that show that a stronger model is better for semi-supervised learning.

The decoding of the test sets is also done using the same trigram language

model.

3.3.2 System descriptions

All the DNNs used in our experiments have p-norm non-linearity with p = 2

and the same basic architecture as in [53]. The features used are the Type IV

acoustic features defined in [54]. For the experiments on Fisher English, we

use MFCC as the base features. For the Babel experiments, we use PLP as

the base features, but we additionally append pitch features [55]. The neural

networks are trained using Natural Gradient SGD [56]. The alignments and

tree for the DNN training are obtained using a HMM-GMM model trained

using only supervised data. The number of context-dependent triphone states

is 3915 for Fisher English and is given in Table 4.6 for Babel languages.

We found the prior estimation method by averaging neural network

posteriors as described in Section 2.4 to improve performance of the semi-

supervised trained neural networks over the traditional method of prior

estimation from alignments [30]. We used a subset (3 hours) of supervised
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data for the estimation of priors.

Supervised baseline systems

The baseline DNN system nnet2_CE is trained with Cross-Entropy as objective

with the targets as alignments of DL obtained from the HMM-GMM system.

The nnet2_CE system for Fisher English has 4 hidden layers of p-norm input

and output dimensions (3000, 300). The network is mixed-up [53] to 8000

components in the middle of training. The network is trained for 10 epochs

using an exponentially decreasing learning rate varying from 0.08 to 0.008.

The nnet2_CE system for Babel languages have 3 hidden layers of p-norm

input and output dimensions (2000, 200). The network is mixed-up to 5000

components. The baseline discriminative system nnet2_sMBR is initialized

with nnet2_CE and trained with sMBR as objective for 4 epochs with a learning

rate of 9× 10−5 and 4 parallel jobs3.

Self-training systems

For the self-training systems, the unsupervised data was decoded using the

nnet2_CE system and the best paths through the lattices were chosen as the

transcripts. The systems nnet2_CE_semisup[:conf] have the same architecture

as nnet2_CE and are trained from scratch using Cross-Entropy objective using

supervised and unsupervised data frames combined together. If con f is

specified, then only unsupervised data frames with confidences [5] greater

than con f are selected.

The systems multilang2_CE[:conf] are DNNs in the multilingual architec-

ture (Section 3.2.3). nnetL is initialized from a partially trained (after the
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mix-up stage) nnet2_CE neural network. nnetU is also initialized from the

same nnet2_CE neural network, but the final affine layer before softmax is ran-

domized and the mix-up components are removed. The system is trained for

20 epochs as measured on supervised data2 with learning rate decreasing from

0.04 to 0.004 and 4 parallel jobs3. If con f is specified, then frame-confidence-

based selection is done as before.

The system multilang2_sMBR is the discriminative self-training system in

the multilingual architecture. nnetL and nnetU are both initialized with the

same final nnet2_CE model. The system is trained for 4 epochs as measured

on the unsupervised data2 with a learning rate of 9× 10−5 and 2 parallel jobs3

for nnetL. The learning rate for the DNN corresponding to unsupervised data

was reduced by a factor of 10 in order to give less weight to the gradients from

unsupervised data. Using equal learning rate worsened the results.

Proposed system

The system multinnet2_sMBR+NCE is similar to multilang2_sMBR, but nnetU

trained with NCE. The training is done for 4 epochs2 with the learning rate

in Fisher English setup being 18× 10−5 for nnetL with 2 parallel jobs. The

learning rate for nnetU was reduced by a factor of 3. The resulting parameter

updates were found to be about 10 times smaller than for nnetL due to NCE

gradients being smaller than sMBR gradients in general. The learning rate in

Babel was 9× 10−5 for nnetL with 1 DNN job and reduced by a factor of 3 for

2 It roughly corresponds to the same number of epochs on the both DNNs because the
number of parallel jobs are for each DNN is varied in proportion to the amount of data
available for the respective DNN

3-num-jobs-nnet parameter in Kaldi
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nnetU.

We also show an oracle system nnet2_sMBR_oracle as an upper bound on

the performance of the semi-supervised systems. This oracle system is similar

to the nnet2_sMBR system, but does sMBR training by using true transcripts

of the unsupervised data. For comparision with multinnet2_sMBR+NCE, the

language model for the oracle system is trained using only the transcripts of

the supervised data.

3.3.3 Results and discussion

The results on Fisher English with 250 hours of unsupervised data are given

in Table 3.2. The self-learning CE system nnet2_CE_semisup has a WER worse

than the baseline CE system nnet2_CE even with frame-filtering. This might be

because we did not add multiple copies of supervised data as suggested in [5].

In contrast, self-learning in the multilingual architecture multilang2_CE gives

nearly 1.4% absolute improvement over supervised CE system nnet2_CE with

and without frame filtering. This suggests that the multilingual architecture is

an effective framework for doing semi-supervised training of DNN.

But the best CE system (multilang2_CE:0.8) is still more than 1% worse

than the system with supervised discriminative training, nnet2_sMBR. This

shows that in order to compete with a discriminatively trained system, the

semi-supervised learning must involve discriminative training. The discrimi-

natively self-trained system, multilang2_sMBR, in the multilingual architecture

is shown to be slightly worse than the supervised baseline nnet2_sMBR even

though the learning rate of nnetU was reduced by a factor of 10. So we can
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conclude that discriminative self-training requires filtering of unsupervised

data as was suggested in several works in the literature. But our proposed sys-

tem multinnet2_sMBR+NCE gives 0.16% and 0.38% absolute improvements on

dev and test sets respectively without any explicit filtering of data. Comparing

with the oracle system results (nnet2_sMBR_oracle) we see that these results

of the proposed system (multinnet2_sMBR+NCE) correspond to a recovery of

15% and 37% of the possible improvements over nnet2_sMBR on dev and test

sets respectively. We believe that the loss in accuracy is due to a combination

of inaccuracy in the decoding, mismatch in features because of using unsuper-

vised speaker adaptation for unsupervised data and the choice of MMI as the

criterion over sMBR.

We measure the WER recovery rate, which is a metric to measure the

performance of semi-supervised trained system. This is defined as:

WRR =
BaselineWER− SemisupWER
BaselineWER−OracleWER

(3.9)

These results of the proposed system correspond to a WRR of 24% (av-

eraged over the test sets) of the possible improvements if we had oracle

transcripts.

Table 3.3 presents analogous results with GMM acoustic models, which

demonstrates that the method is not restricted to only DNN acoustic models.

Here we use MMI as the supervised training criterion.

We got similar WER improvements from 0.1% absolute on Zulu to 0.6%

absolute on Assamese. Improvements in Bengali and Tamil are also in this

range as detailed in Table 3.4.
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Table 3.2: WER (%) results on Fisher English (100 hrs supervised + 250 hrs unsuper-
vised) for DNN acoustic models

System dev test
nnet2_CE 31.98 31.18
nnet2_sMBR 29.58 28.49
nnet2_CE_semisup 32.40 −
nnet2_CE_semisup:0.8 32.46 −
multilang2_CE 30.61 29.84
multilang2_CE:0.8 30.53 29.81
multilang2_sMBR 29.87 28.77
multinnet2_sMBR+NCE 29.44 28.11
nnet2_sMBR_oracle 28.50 27.46

Table 3.3: WER (%) results on Fisher English (100 hrs supervised + 250 hrs unsuper-
vised) for GMM acoustic models

System dev test
gmm_ML 39.58 38.33
gmm_MMI 38.97 36.88
gmm_ML_semisup 38.67 37.33
gmm_MMI+NCE 38.15 35.84
gmm_MMI_oracle 37.47 35.47

Table 3.4: WER (%) results on Babel

Language System dev2h dev10h
Assamese nnet2_sMBR 63.9 62.2
Assamese multinnet2_sMBR+NCE 63.4 61.6
Bengali nnet2_sMBR 66.3 64.1
Bengali multinnet2_sMBR+NCE 65.8 63.8
Zulu nnet2_sMBR 65.9 67.3
Zulu multinnet2_sMBR+NCE 65.7 67.2
Tamil nnet2_sMBR 76.3 74.8
Tamil multinnet2_sMBR+NCE 76.1 74.6
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Chapter 4

Semi-supervised lattice-free
training

4.1 Introduction

Sequence-level objectives like Connectionist Temporal Classification (CTC)

[1] and Lattice-free Maximum Mutual Information (LF-MMI) [2] out-perform

traditional frame-level objectives like cross-entropy and are the state-of-the-art

systems for ASR. However, these methods are known to be data hungry and

are more effective with large size datasets with 100s of hours of data. The

performance is shown to degrade with smaller datasets [3]. So, extending

these methods to unsupervised data is of essence.

As shown in the previous chapter, lattice supervision is a natural way

to incorporate uncertainties when dealing with unsupervised data. In this

chapter, we use lattice-based supervision to extend standard LF-MMI training

to semi-supervised training scenario as proposed in [18]. We describe this

method in Section 4.2 and describe the experiments and results in Section 4.3.
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4.2 Proposed method

The basic LF-MMI training is described in Section 2.6. For more details, the

readers are directed to [2]. In [18], we proposed a modification to the standard

LF-MMI training for the semi-supervised scenario. The proposed approach is

described in this section.

The standard method of numerator graph creation as described in Section

2.6.3 is applicable only when there is a single transcript (word sequence)

for an utterance. We modify this to be applicable to the semi-supervised

training scenario by changing the supervision used. In particular, we modify

(2.15) to use the numerator graphs created from lattices dumped by decoding

unsupervised data using a seed LF-MMI system. In this case, using the same

notations as in (2.15) and using L(r) to correspond to the decoded lattice of

utterance r, the training objective can be written as in (4.1). We looked at

several approaches to train using this lattice-based supervision. These are

described in Sections 4.2.1, 4.2.2 and 4.2.3.

FMMI(λ) =
1
U

U

∑
r=1

log
∑π∈GNum(L(r)) P(O(r) | π; λ)P(π)

∑π′∈GDen
P(O(r) | π′; λ)P(π′)

(4.1)

We then train a new neural network using both supervised data and

unsupervised data in a multitask training approach with the two datasets

in different minibatches. Our experimental results show that it is better to

share all the layers of the network instead of having separate output layers

for supervised and unsupervised data. This was the case even when the
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unsupervised data was from a mismatched domain.

In the standard method, the denominator graph is generated using a 4-

graph phone LM estimated from phone sequences in the training data as

described in Section 2.6.2. But in the proposed method, we also get phone

sequences from the unsupervised data by taking the best path in the decoded

lattice. This ensures that the denominator graph is a good match to the

supervised as well as the unsupervised data and can account for all phone

sequences in computing the denominator likelihood part of the LF-MMI

objective. This is especially important when the supervised data is very small

compared to the unsupervised data or the unsupervised data is mismatched

with the supervised data.

4.2.1 Naïve splitting

In this approach, we convert a lattice obtained from the decoding of an ut-

terance into phone graphs and then to numerator supervision as in standard

LF-MMI as described in Section 2.6.3. But the difference here is in how we get

the lattice and the numerator graph. Here, we get the lattice by decoding the

unsupervised data using a seed LF-MMI system.

Unlike in standard LF-MMI, these lattices also have word LM scores from

the word language model used for decoding the unsupervised data. The

standard LF-MMI does not add these scores to the numerator graph, but only

adds phone LM scores from the denominator FST. But for semi-supervised

training, these word LM scores are added to the numerator graph with an

LM scale, lm-scale = α, while the phone LM scores from the denominator FST
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are added with a scale of 1− α. Thus, we replace the numerator graph path

probability as:

P(π) = [Pword(π)]α
[︁
Pphone(π)

]︁1−α (4.2)

Note that this is a hack as the denominator term in (4.1) uses only the phone

LM scores. But in practice, as shown by experimental results, a positive

lm-scale on the word LM scores help in improving semi-supervised training

results. The word LM scores can help upweight “good” paths in the lattice

and downweight “bad” paths in the lattice.

The addition of phone LM scores is done by composition with the normal-

ization FST (a version of denominator FST with initial and final scores) after

adding time-constraints and splitting into chunks of around 150 frames as

described in Section 2.6.3. We call this “naïve” approach because when we

split the supervision, we do not add appropriate scores from the lattice to the

beginning and end of the splits.

4.2.2 No splitting

In this approach, we do not split the FSTs at the end, but rely on having

appropriate chunk sizes of audio before decoding to get lattices. We use the

approach in [57] to modify the utterances of the entire unsupervised training

corpus to be around 20 distinct lengths. This modification is done using speed

perturbation to alter the length of the utterance to the nearest of the distinct

lengths. Alternatively, we pad each utterance with silence to get one of the

distinct lengths. We do this for the purpose of diagnosis, but this is not the

preferred approach as it makes it difficult to use minibatch training or cannot

39



effectively make use of long history language models for decoding.

4.2.3 Smart splitting

In this approach, we split the lattices directly to get chunks for training (1.5s

long i.e. 150 frames) while also adding appropriate initial and final scores

to the states at the beginning and end of the chunks. The appropriate initial

and final scores are obtained by running a forward-backward [18], [28] on the

original unsplit lattice. This ensures that the forward-backward scores for the

chunk (after splitting) and the per-frame posteriors are exactly the same as

for the original lattice before splitting. (Note that this is the case only at the

beginning of the training. Once the model gets updated, the scores will not be

the same as that for the unsplit lattice.)

We project this split lattice FST to the input labels to get an FSA with

HMM transition-ids as labels. We compose this FSA on the right with a special

purpose FST to incorporate tolerances. i.e. we allow the phones to occur a few

frames behind or ahead of what is defined in the lattice. This is described in

the Section 4.2.3.1. The FSA, thus incorporated with tolerance is composed

with the normalization FST to add phone LM scores, but with the appropriate

scales as in (4.2).

4.2.3.1 Adding tolerances

While we solve the issue of initial and final scores, the smart splitting described

above results in “half” phones i.e. for some paths, we might have split in

the middle of a phone. It is not possible to convert this split lattice into a
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phone graph and compile it into an utterance-specific FST as done with naive

splitting. Instead, we directly convert this lattice into an FSA and apply the

tolerance. The tolerance application can be formulated as a right composition

with a special purpose FST that simulates taking extra self-loops or taking

fewer self-loops in the transition model. For a tolerance of ±1 frame and a

transition model from Figure 4.1 with only one phone, this FST is as shown in

Figure 4.2. Here b is the forward transition-id and a is the self-loop transition-id,

which is like the blank-symbol in CTC.

Our “tolerance FST” can be trivially extended to multiple phones by mak-

ing copies of appropriate states and arcs for each phone.

The FST in Figure 4.2 shows three offset states for o ∈ {−1, 0, 1}. The offset

represents the number of extra self-loop transition-ids added. o = +1 means

there is one extra self-loop transition-id, and there must be a deletion down

the path in order to accept only valid paths. Offset state 0 is the only final state.

This ensures that the input label path and the output label path are of the same

length, and the number of frames in the supervision remains the same. We

also ensure that there are no duplicate paths created after composition with

the lattice:

First, we allow a deletion or insertion of self-loop transition-ids only at the

end of the longest ba∗ sequence. e.g. the FST can transduce sub-sequence bana

into ban and banaa, but not into ban−1a. In order to remember which forward

transition-id has been “seen”, for each offset o, we add a set of states o f , where

f is the forward transition-id. We call these forward states. These are the only

states with self-loops accepting a sequence of self-loop transition-ids like a∗
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before possibly inserting or deleting a’s.

Second, we do not allow paths that mix insertion and deletion. This is done

by adding for each state o f , a pair of states o f s for s ∈ {i, d} called insertion

states and deletion states corresponding to insertion and deletion respectively.

An insertion arc from a forward state o f takes us to an insertion state

(o + 1) f i. From here, we can continue inserting the same transition-id to

(o + 2) f i and so on or end the process of insertion by taking an ϵ arc to an

offset state o + 1. The deletion process is analogous, but with decreasing offset.

To allow this FST to work with partial phones at the beginning of a split

lattice, we add a special start state S with an ϵ arc to the offset state 0. We

add a self-loop on the start state accepting all the self-loop transition-ids

corresponding to transitions of the partial phones. We also add arcs from S

to the deletion states corresponding to the offset 0 that delete the self-loop

transition-id.

Figure 4.1: Phone topology used in LF-MMI

0 1 2
b a

a

b

4.3 Preliminary experiments on Fisher English

4.3.1 Experimental setup

In this section, we conduct preliminary experiments using a subset of the

Fisher English corpus. We work on small-sized subsets to investigate the effect
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Figure 4.2: FST to add a tolerance of ±1
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of various configuration settings in proposed approach. So we use a subset

of speakers corresponding to ~250 hours from the corpus as unsupervised

data. We used the transcripts from the remaining subset to train the language

models for decoding unsupervised data. We used a ~15 hour subset of this

as the supervised data to train the acoustic models. The results are reported

on separately held-out dev and test sets (about 3 hours each), which are part

of the standard Kaldi [58] recipe for Fisher English1. We use WER Recovery

1https://github.com/kaldi-asr/kaldi/tree/master/egs/fisher_
english/s5
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Rate (WRR) [59] as a metric to evaluate the WER improvements from semi-

supervised training:

WRR =
BaselineWER− SemisupWER
BaselineWER−OracleWER

. (4.3)

When evaluating on multiple test sets, the WER is averaged over the test sets

and the WRR is computed using the averaged WERs.

4.3.2 System descriptions

Our basic recipe is to first train a GMM system using only the supervised

data and use this to get supervision to train a seed LF-MMI time-delay neural

network (TDNN) [60] system. The training details are as in [2]. We use i-vector

[61] for speaker adaptation of the neural network. To exclude any effect of i-

vector extractor, we train the i-vector extractor using the combined supervised

and unsupervised datasets. So in these experiments with 15 hours of super-

vised data, the i-vector extractor was trained using 275 hours including both

the supervised and unsupervised datasets. Also, for comparison purposes, we

use statistics from only the supervised data to train the context-dependency

decision tree for all the systems.

The phone LM used for creating the denominator FST is estimated using

phone sequences from both supervised and unsupervised data as in [26], [62].

We give a higher weight of 2.5 to the phone sequences from supervised data

to balance out the imbalance (15 hours vs 250 hours) between supervised and

unsupervised datasets. We did not tune this weight factor. But it is usually

important to have phone sequences from unsupervised data especially if the
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amount of supervised data is very small.

4.3.3 Results and discussion

4.3.3.1 Effect of frame weights

We use lattice posteriors of the senones (pdfs) in the best path of the lattice as

the frame-weights as done in [5]. The per-frame derivatives of our objective

are scaled by these weights. The results are as shown in Table 4.1 for 15

hours supervised and 250 hours unsupervised data (with lm-scale 0.5, beam

4.0 and tolerance ±1 frame). Using best path posteriors as frame-weights is

significantly better with both naïve and smart splitting of lattices. We also

found similar results when using other values of lm-scale, beam and tolerance,

and with 50 hour supervised set. Therefore, all subsequent results are reported

using the best path posteriors as frame-weights.

We also experimented using a different confidence measure – per-frame

MBR posteriors (obtained from the sausages intermediate to MBR decoding

[63]). However, this did not yield any significant gain over using lattice

posteriors as confidences. Since lattices posteriors is computationally simpler

to compute, we resort to using that instead of MBR posteriors.

Table 4.1: WER(%) results using different frame weights

Naïve split Smart split
Weights dev test dev test
No weights 22.63 22.49 22.14 22.67
Best path posteriors 22.37 22.14 22.02 21.89
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4.3.3.2 Effect of supervision type

Table 4.2 shows results for various supervision types with 15 hours supervised

and 250 hours unsupervised data. The first row shows baseline results with

supervised training using only 15 hours data. The last row shows supervised

training results using oracle transcripts for the unsupervised data portion.

Using only the 1-best phone sequence from the lattice i.e. a beam of 0.0 gives

6% absolute improvement over the supervised baseline. In this section, the

lattices used are word determinized i.e. for each word sequence in the lattice,

we retain a unique HMM state sequence and hence a unique phone sequence.

We show later in Section 4.3.3.5 that it is important for the supervision to have

all the alternate pronunciation variations. This also includes alternate paths

that vary only in the presence or absence of optional silence.

For lattice supervision results shown in Table 4.2, we use a beam of 4.0 and

lm-scale of 0.5. Lattice supervision is clearly better than 1-best phone sequence,

and the best results are with smart splitting, although the differences from

naïve splitting and no splitting are not very great. We do not recommend no

splitting method as we cannot do minibatch training effectively if the lengths

of the utterances vary a lot. The smart splitting method is more generalizable.

4.3.3.3 Effect of tolerance

Table 4.3 shows results with various tolerances with lm-scale 0.5 and beam 4.0.

The results with naïve splitting using tolerance±1 frame (60ms) and tolerance

±2 (120ms) frames are both significantly better (∼1% absolute) than using

a tolerance of 0. There is no significant difference in WER between using
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Table 4.2: WER(%) results using various supervision (15 hours supervised + 250
hours unsupervised data. Combined WRR over the two test sets is also shown.)

Supervision lm-scale beam tol dev test WRR(%)
Supervised baseline 29.4 29.2 0
1-best phone seq 0.0 0.0 1 23.0 23.2 54
Naïve split 0.5 4.0 1 22.4 22.1 62
No split + sil 0.5 4.0 1 22.0 22.3 63
No split + speed 0.5 4.0 1 22.1 22.3 62
Smart split 0.5 4.0 1 22.0 21.9 64
Oracle - - - 17.9 18.0 100

tolerance ±1 and ±2 and we henceforth use ±1 frame of tolerance.

Table 4.3: WER(%) results using supervision from lattice (15 hours supervised + 250
hours unsupervised) for various tolerances

Naïve split Smart split
lm-scale beam tol dev test dev test

0.5 4.0 0 23.48 23.53 23.64 23.85
0.5 4.0 1 22.37 22.14 22.02 21.89
0.5 4.0 2 22.31 22.52 21.82 22.03

4.3.3.4 Effect of LM scale and beam

Experiments with various LM scales and beams are shown in Table 4.4. As

described in Section 4.2.1, lm-scale is the interpolation factor between word

LM scores from the lattice and phone LM scores from the normalization FST.

The lattices used in these experiments are word determinized i.e. it does not

include any alternative phone sequences for a word sequence in the lattice.

In this case, we see that an lm-scale of 0.5 and a beam of 4.0 works the best.

However, we find that in large-scale setups in Section 4.4 a smaller beam of 2.0

is more effective.

Our intuition is that as the beam size is increased, more paths are included
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in the lattice and hence the oracle path is more likely included in the lattice.

But wider beam also includes more incorrect paths in the lattice, and hence

the WER degrades on increasing the beam further.

Table 4.4: Preliminary WER(%) results with determinized lattices (15 hours super-
vised + 250 hours unsupervised data). Combined WRR over the two sets is also
shown.

Naïve split Smart split
lm-scale beam tol dev test WRR(%) dev test WRR(%)
Supervised baseline 29.4 29.2 0.0 - - -

0.0 0.0 1 23.0 23.2 54.6 23.0 23.2 54.6
0.0 2.0 1 22.4 22.9 58.6 22.5 22.5 59.9
0.0 4.0 1 22.3 22.3 61.7 22.4 22.6 59.9
0.0 8.0 1 23.5 23.7 50.2 - - -
0.5 2.0 1 22.4 22.7 59.5 22.5 22.4 60.4
0.5 4.0 1 22.4 22.1 62.1 22.0 21.9 64.8
0.5 8.0 1 22.4 22.5 60.3 22.1 22.2 63.0

Oracle 17.9 18.0 100.0 - - -

4.3.3.5 Effect of alternative phone sequences

Table 4.5 shows results comparing supervision without and with alternative

phone sequences. The standard approach of generating lattices for decoding

as in [45] creates lattices with only one HMM state sequence and hence one

phone sequence for each word sequence. So a supervision created from

such a lattice does not have alternative phone sequences. But, as shown in

Table 4.5, using supervision with alternative phone sequences for each word

sequence is significantly better. The effect is particularly dominant when

using only 1-best word sequence as supervision. We believe the inclusion of

paths differing in silence is the main reason for the better performance when

including alternative phone sequences.
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Table 4.5: WER(%) results on dev and test sets and the combined WRR(%) using
supervision without and with alternative phone sequences for each word sequence
(15 hours supervised + 250 hours unsupervised)

Without With
Supervision lm-scale beam tol dev test WRR dev test WRR
1-best word seq 0.0 8.0 1 23.0 23.2 54.6 22.5 22.3 60.8
Naïve split 0.5 4.0 1 22.4 22.1 62.1 21.9 21.7 66.1
Smart split 0.5 4.0 1 22.0 21.9 64.8 21.8 21.6 67.0

4.4 Large-scale data experiments on Fisher English

In this section, we experiment using different sized subsets of Fisher English

corpus as supervised and unsupervised datasets for semi-supervised LF-MMI

training. We investigate

1. effect of different sizes of supervised and unsupervised datasets (Sec-

tions 4.4.3.1 and 4.4.3.2)

2. different proportions of unsupervised dataset relative to supervised

dataset (Sections 4.4.3.1 and 4.4.3.2)

3. amount of language modeling data (Section 4.4.3.2)

The results here are reported on separately held-out dev and test sets (about

3 hours each) from Fisher English corpus, which are part of the standard

Kaldi recipe for Fisher English, as well as standard National Institute of

Standards and Technology (NIST) evaluation sets eval2000 (LDC2002S232) and

rt03 (LDC2007S103).

2https://catalog.ldc.upenn.edu/LDC2002S23
3https://catalog.ldc.upenn.edu/LDC2007S10
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4.4.1 Experimental setups

We consider several different experimental setups varying the amount of su-

pervised data, the amount of unsupervised data and the amount of data for lan-

guage modeling. The setups are denoted with the notation supervised_size +

unsupervised_size, where the supervised_size and unsupervised_size are the

sizes (in hours) of subsets used as supervised and unsupervised datasets

respectively. For fair comparison, we built the context-dependency tree using

only the supervised data and used the same for baseline, semi-supervised

trained and oracle systems. For the results in this section, we use TDNN+LSTM

acoustic model.

For the first part, we fix the amount of unsupervised data to 250 hours

and vary the amount of supervised data (15h, 50h and 100h). In these setups,

to estimate the LM used for decoding the unsupervised data, we use the

transcripts corresponding to the whole of Fisher English training set but

excluding the 250 hours of unsupervised data. In the experimental setup with

100 hours of supervised data, the i-vector extractor is trained using only the

supervised data. On the other hand in the setups corresponding to 15 and 50

hours of supervised data, even the 250h of unsupervised data is included for

training the i-vector extractor.

For the second part, we fix the amount of supervised data to 100 hours

and vary the amount of unsupervised data (250h, 500h, 1000h and 1700h).

We investigate two sizes of language modeling data used to estimate the LM

for the purpose of decoding unsupervised data in semi-supervised training

experiments. The setups where the semi-supervised training uses a small
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LM trained on only 100h of supervised data are denoted by suffixing with

+smallLM, while the setups that use larger LM trained on additional tran-

scripts (from the portion of the corpus excluding the unsupervised set) are

denoted without at any suffix. In all these experimental setups, the same

i-vector extractor is used – the one trained on 100h of supervised dataset.

4.4.2 System descriptions

For each setup, we consider the following systems:

1. Baseline system trained only on supervised data

2. Semi-supervised trained system using 1-best word as supervision

3. Semi-supervised trained system using lattice supervision

4. Oracle system trained using reference transcripts for all the data includ-

ing for the portion used as the unsupervised set.

The semi-supervised trained systems here use a hidden layer size that is

equal to that used in the oracle system. This is appropriate because both use

the same amount of data for training (albeit data is unsupervised in one of

them). This is larger than the hidden layer size used for the baseline system,

which uses a smaller amount of data for training. Using a larger network for

the baseline did not yield any additional improvements.

For the semi-supervised trained system using lattice supervision, we use

smart splitting of lattices and include alternative phone sequences in the

hypotheses. The supervision here used a beam of 2.0 and lm-scale of 0.0. This
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was the best when using 100 hours of supervised data, although a beam of 4.0

and lm-scale of 0.5 gave slightly better results when using only 15 or 50 hours

of supervised data.

4.4.2.1 LM for decoding unsupervised data

In all the experimental setups, the LM for decoding unsupervised data is

a pruned 4-gram modified Kneser-Ney LM trained using the pocolm [64]

toolkit. When only supervised data (100h) transcription is available for LM

estimation, the constructed LM is small enough to be efficiently compiled

into a decoding graph (HCLG). However, when larger amount of LM data

is available, we create a smaller pruned LM for decoding to generate lattices

and use the larger LM only to rescore the lattices using a memory-efficient

lattice rescoring approach [65]. Since the lattice rescoring approach in Kaldi

[58] is only directly applicable to determinized lattices (when there is only one

path corresponding to each word sequence), a small modification is required

to make it applicable to lattices here that have multiple phone sequences for

each word sequence.

Given an undeterminized lattice L, and the LM Gold used to generate L,

the algorithm for rescoring with a new LM Gnew is as shown in Algorithm

1. In both steps 4 and 5, only costs from the best path in LM are added to

the lattice. This is achieved by an intermediate determinization operation to

take only the best path in LM. This particular operation only works when the

lattice is determinized, and hence the need to determinize the original lattice

in step 2. Finally, this determinized lattice projected to word labels to get an
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FSA is composed with the original lattice in step 7. This effectively subtracts

the costs from the old LM and adds costs from the new LM, thereby rescoring

the lattice.

Algorithm 1 Lattice rescoring of undeterminized lattices with new LM Gnew

1: function LATTICE-RESCORE(L, Gold, Gnew)
2: Ldet ← Determinize(L)
3: Remove the costs from Ldet.
4: Add to Ldet, the negated costs from the old LM Gold
5: Add to Ldet, the costs from the new LM Gnew
6: Project Ldet to output labels (words).
7: Lout ← L ◦ Ldet
8: return Lout
9: end function

4.4.3 Results and discussion

4.4.3.1 Effect of larger supervised dataset

In this section, we report results using fixed amount of unsupervised data

(250h) and varying amount of supervised data (15h, 50h and 100h). The

experimental setup is described in the previous section (Section 4.4.1).

We can see from the WER(%) results in Figure 4.3 that on all four test

sets – dev, test, eval2000 and rt03 – increasing the amount of supervised data

(and hence the amount of data available even for semi-supervised and oracle

systems) improves the system performance for all the systems – baseline, semi-

supervised and oracle. The WER recovery rates (WRR) combined4 over the

four test sets for these TDNN+LSTM acoustic model based systems are in the

50-60% range. But there is no pattern in the variation of WRR with supervised

4The WRR is computed using the WER averaged over the four test sets
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dataset size. The WRR is seen to decrease moving from 15h to 50h supervised

data, but then increases on moving to 100h supervised data. However, these

WRRs are in the same range as those seen with TDNN acoustic model based

system in the preliminary experiments (Section 4.3). This shows that the

proposed semi-supervised training method works well even recurrent neural

network-based models like TDNN+LSTM. Further, by comparing the results

of the best path (1-best word sequence) supervision and lattice supervision,

we see that lattice supervision gives a small consistent gain across all the

experimental setups. The WRR when using the lattice supervision is 5-10%

absolute higher than when using the best path supervision.

Figure 4.3: WER(%) results on Fisher English for various supervised dataset sizes
and a fixed unsupervised dataset size
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4.4.3.2 Effect of larger unsupervised dataset and extra LM data

In this section, we report results fixing the supervised dataset to a 100 hours

subset of Fisher English and varying the amount of unsupervised data (250h,

500h, 1000h and 1700h). Each setup has two variations – one where the semi-

supervised training uses a small LM trained on only the supervised data text

and the other that uses a large LM trained on additional transcripts. For these

experiments, we used only a pruned version of the large LM to generate lattices

by building a decoding graph from the pruned version (This pruned version

of large LM is still larger than small LM because it is trained on a much larger

amount of text). We did not rescore the lattices using the larger unpruned

version. Doing such additional rescoring as described in Section 4.4.2.1 is

computationally taxing and did not give any significant improvement in the

setups we tried. The experimental setups are described in Section 4.4.1, and are

denoted with the notation {supervised_size + unsupervised_data_size} with

an additional suffix for those using the small LM.

The results are in Figure 4.4. We see that using the stronger large LM trained

on extra transcripts gives a significant improvement over using the small LM

trained on only the supervised data. This suggests that semi-supervised LF-

MMI training is most effecting when using a strong LM for the numerator

computation.

By comparing the results of setups using small LM for different amounts of

unsupervised data in Figure 4.4, we see that as the amount of unsupervised

data is increased the WER gets better for both the semi-supervised trained

system as well as the oracle system. However, the WERs start saturating and
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increasing the amount of data by a large amount shows only a small gain in

WER. Because of this, the WER of semi-supervised systems only change by

a tiny amount after increasing by a large amount of data. Since the oracle

system performance is also saturating, the WER recovery rates (computed

using WERs averaged over the four test sets) remain in a consistent range of

40-50%.

Furthermore, for larger setups, we found it more efficient to decrease the

number of epochs on unsupervised data, while keeping the number of epochs

supervised data the same. We achieve this by making duplicate copies of the

supervised data and reduce the overall number of epochs. For e.g., if we make

2 copies of supervised data and decrease the number of epochs from 4 to 2, we

are effectively training on supervised data for 4 epochs and on unsupervised

data for 2 epochs.

4.5 Experiments on Babel

In this section, we investigate semi-supervised training on many different

languages from the Babel corpora.

4.5.1 Experimental setups

The Babel corpora have around 40-80 hours of transcribed speech. 10 hours

of data in each language is set as the supervised dataset under the limitedLP

condition, with the remaining 30-60 hours being the unsupervised dataset.

Note that we still use the transcripts for these for the purpose of training the

oracle systems, but we do not use them when training the semi-supervised

56



Figure 4.4: WER(%) results for various LMs and unsupervised dataset sizes
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systems.

Table 4.6 shows the amount of data in each Babel language used in the ex-

periments after automatic segmentation. For automatic segmentation, we use

a neural network based SAD with a HMM Viterbi decoding for automatically

creating segments with a maximum duration of 10s. The neural network SAD

has a TDNN architecture with a statistics pooling layer, and was trained on

the out-of-domain Fisher data reverberated with synthetic RIRs and additive

noise added from MUSAN corpus.

We show results on 5 Babel languages – Assamese, Javanese, Tamil, Turkish

and Vietnamese. We evaluate our systems on the 10 hours dev10h set.
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4.5.2 System descriptions

The supervised systems are trained using lattice-free MMI. For the baseline

system, we train only on the 10 hours supervised data. For the oracle system,

we train by including the unsupervised portion of the data using the oracle

(manual) transcripts.

For semi-supervised training, we use lattice-supervision with smart split-

ting with a lattice beam of 4.0 and an LM scale of 0.5 each on word LM

and phone LM. The lattice supervision was generated by decoding using the

baseline system. We fix the tree obtained from the baseline system for the

semi-supervised trained system.

For the oracle system we generate numerator lattices using the HMM-

GMM system trained only on 10 hours supervised data (same as the system

used to generate lattices for the baseline system). However, we build the tree

using alignments from all the training data, including the portion that was

heldout as unsupervised data when training the baseline and semi-supervised

systems. We also investigated fixing the tree from the baseline system and

using it for the oracle system, but this did not have any significant impact on

the performance.

Table 4.6: Babel data

Language DL (hrs) DU (hrs)
Assamese 10 41
Javanese 10 25
Tamil 10 43
Turkish 10 62
Vietnamese 10 62
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4.5.3 Results and discussion

The results are as shown in Figure 4.5. We see from the graph that semi-

supervised trained system recovers around 50% of the WER improvement

from baseline to oracle system in most of the languages; the only exception

to this was on the Vietnamese corpus. We suspect that this is because the

unsupervised portion of the data in the Vietnamese corpus is significantly

different from the supervised data. Further investigation is required to deal

with possible vocabulary and lexical differences in order to mitigate the gap

in performance.

Figure 4.5: Semi-supervised training results on Babel corpora
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Chapter 5

Semi-supervised transfer learning

5.1 Introduction

Transfer learning is the general machine learning approach of transferring

knowledge from one model to another. Depending on which context it is used,

it is called different things. The semi-supervised training in Chapters 3 and 4

is a special case of transfer learning, where we have additional unsupervised

data in the same domain. In the case where we have to learn a model in a

different domain, the approach is called “domain adaptation”. In the case

where we have to learn a smaller model on the same domain, the approach

is called “model compression”. There is a rich survey of transfer learning

methods in the literature [19]–[21]. Transfer learning methods have been

applied to speech processing in various settings. Wang et. al [22] gives a good

overall survey of methods used in speech processing.

One of the methods for transfer learning is the teacher-student (T-S) ap-

proach where a teacher network is used to “teach” a student network to make
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the same predictions as the teacher. It is traditionally used for model com-

pression [66] as in [67], [68]. It has also been applied in context of domain

adaptation [23], where the teacher network is trained on the source domain

and the student network is trained on the target domain. It is particularly

effective when parallel data is available in source and target domains [69].

Figure 5.1: Network architecture for teacher-student learning
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In this chapter, we focus on the problem of unsupervised domain adapta-

tion, where we have a large amount of unsupervised data in the target domain.

Figure 5.2 can help to contrast this with other similar problems.

Supervised learning Figure 5.2 shows the traditional case of supervised

learning where there is supervised data and the test data are from only a

single domain.

Supervised weights transfer Two approaches to supervised transfer learning

are shown in the figure. In the first, a seed model trained initially on

source domain data is adapted to target domain using a small amount

of supervised data in target domain. This is supervised weights transfer
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Figure 5.2: Transfer learning and how it compares with other similar problems
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approach [26].

Supervised multitask transfer learning The second approach is to jointly

train from scratch using supervised data from both source domain and

target domain in a multitask training approach [26] and thus creating a

model usable on test data from both source and target domains.
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Semi-supervised multitask training The scenario in Chapters 3 and 4 is the

traditional semi-supervised training, where the unsupervised data is

assumed to be from the same domain as the supervised data. Here,

the model is trained on both supervised and unsupervised data in a

multitask training approach.

Unsupervised weights transfer Unsupervised weights transfer is one case of

semi-supervised transfer learning where a seed model is adapted to the

target domain, but using only unsupervised data in the target domain.

Semi-supervised multitask transfer learning Another approach to semi-supervised

transfer learning is a generalization of the standard semi-supervised

training, but where the unsupervised data is from a different target do-

main. In such a scenario, the network is trained in a multitask approach

on supervised data in the source domain and unsupervised data in the

target domain. An example of this is to adapt a seed model trained on

switchboard corpus to AMI-IHM corpus and test on AMI-IHM. In this

case, the model can be trained on supervised switchboard and unsuper-

vised AMI-IHM data in a multitask approach.

Semi-supervised teacher-student learning A special case of this is the semi-

supervised teacher-student learning, where parallel data is available in

source and target domains. This is described in Section 5.3.
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5.2 Domain mismatch in unsupervised data

In the general case of semi-supervised transfer learning, most or all of the

data in the target domain of interest is unsupervised. Here, we have a seed

acoustic model trained on source domain data that is mismatched with the

target domain. We use this to train a new model using the unsupervised

target domain data using the semi-supervised sequence-training approaches

proposed in Chapter 4.

To summarize, the proposed semi-supervised training approach in Chapter

4 involves using the seed model to decode the unsupervised data to create

lattice-based supervision that is used to train a new model in a multitask

training approach – using both supervised data and unsupervised data. The

supervised data portion uses regular LF-MMI with GMM-generated lattices

of alternative pronunciations of training transcripts. The unsupervised data

portion uses semi-supervised LF-MMI with lattices obtained by decoding

using the seed acoustic model and a language model. This assumes that the

unsupervised data is matched with the seed model and the supervised data

that is used to train the seed model. But when the target domain unsupervised

data is mismatched, we have to add a few additional techniques depending

on the kind of acoustic or language domain mismatch. These are described

in the following sections. Often times, we need to deal with both acoustic

and language domain mismatch. But some of the proposed techniques are

orthogonal and complementary.
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5.2.1 Acoustic mismatch

If the target data is from a different acoustic condition, multitask learning

and weights transfer techniques (Section 5.1) have been shown to be help-

ful in mitigating the mismatch during LF-MMI training [26]. We apply the

same, but using unsupervised data from target domain. In this case, we use

lattices generated by decoding the unsupervised data using the seed model

to create numerator supervision for LF-MMI training. We note that since

the unsupervised data is mismatched, the lattices might not be that good.

Nevertheless, experimental results show that with minor mismatch in acoustic

conditions, we can still get WER improvements by doing semi-supervised

transfer learning. Data augmentation methods like simulating reverberation

using synthetic RIRs [70], adding background and foreground noises, speed

and volume perturbation [71] to the training data improve the robustness

of the seed model, thereby reducing its mismatch with the target domain

unsupervised data and making the subsequent semi-supervised training more

effective.

5.2.2 Acoustic mismatch with parallel data

In some special cases, there is parallel data available in acoustically mis-

matched conditions. For e.g., noisy speech can be created by artificially cor-

rupting clean speech, low-resolution audio can be created by downsampling

high-resolution audio, speech can be simultaneously recorded using a far-

field microphone and a close-talk microphone. In these cases, the acoustic

mismatch can be dealt with effectively using a teacher-student (T-S) learning
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approach [69]. While the standard T-S learning approach uses a frame-level

KL-divergence objective, we propose to use a sequence-level counterpart [24],

[25] in lattice-free training framework in Section 5.3.

5.2.3 Language domain mismatch

If the language domain of the unsupervised data is different from that of the

supervised data used to train the seed acoustic model, then we simply train a

new language model for the target domain. It is usually easier to obtain text

data from the target domain of interest than transcribed speech data in the tar-

get domain. We then use the mismatched seed acoustic model along with the

in-domain language model to decode the target-domain unsupervised data.

This ensures that the lattices generated, and hence the numerator supervision

for LF-MMI training are better.

We also note that since the language domain is mismatched, the phone

sequences used to train phone-level LM for denominator graph creation are

also mismatched. But as noted in Section 2.6.2, we interpolate phone n-

gram counts from supervised and unsupervised data, and this mitigates the

mismatch.

5.2.3.1 Language-specific phone LM

A further extension to deal with this mismatch is to use domain-specific

or language-specific phone LMs and use them to create language-specific

denominator FSTs. In this case, for the supervised source-domain data, we

simply use the phone LM (and hence denominator FST) that was used to train
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the seed acoustic model. But for the unsupervised target-domain data, we

use a target-specific phone LM that is estimated by including phone n-gram

counts obtained from the unsupervised data (by taking the best paths from

the decoded lattices).

5.3 Semi-supervised teacher-student learning

Semi-supervised teacher-student learning is a special case of semi-supervised

transfer learning where parallel data is available in source and target domains,

and a lot of this data is unsupervised. Here, we have a seed network trained

on the source domain, which is referred to as the “teacher” network. We

use this teacher network and an appropriate LM to decode unsupervised

data in the source domain to obtain lattices. These lattices are used as the

supervision to train a “student” network, but using the target domain data,

which is parallel to the source domain data. The network architecture for this

is as shown in Figure 5.1.

5.3.1 Relation to semi-supervised training

One approach to deal with the unsupervised data is to naively apply the

semi-supervised training methods of Chapters 3 and 4, while ignoring the

mismatch between source and target domains. But since we have parallel data

in source and target domains, we can be smarter and decode the unsupervised

data in the source domain and use the supervision with parallel target domain

data. This is standard practice and is generally shown to be helpful in many

scenario. For e.g. in [72], we see that supervision generated using the headset
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microphone data improves the performance of acoustic model trained using

distant microphone audio. In our case, we use lattices generated by decoding

the unsupervised source domain data and use these as supervision to train

on the parallel target domain data. For this training, we can use the LF-

MMI objective as described in Chapter 4 or a sequence-KL objective, which is

proposed in [24], [25]

5.3.2 Relation to frame-level T-S learning

The standard approach for T-S learning uses an objective of minimizing the KL

divergence between the frame-level posteriors of the teacher and student net-

works. However, this is not applicable to LF-MMI trained networks, which do

not output frame-level posteriors. Instead, we propose to use KL divergence

between sequence-level posteriors [24], [25] from the teacher and student

networks as the training objective. Furthermore, we compare this objective to

just using LF-MMI objective for training.

5.3.3 Related works

A sequence-KL objective for T-S learning was introduced in [24] for model

compression from an ensemble. Unlike that work which used lattice-based

discriminative training, here we apply sequence-level KL divergence in the

lattice-free training framework for unsupervised domain adaptation. In [25],

a lattice-free sequence-KL objective was introduced for model compression

and speaker adaptation. Our method here differs in how the supervision

for training the student is generated. In particular, we propose a simpler
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way to get the supervision using the lattice supervision approach used for

semi-supervised LF-MMI training in [18]. We also investigate the effect of

using different LMs both when creating the numerator supervision and the

denominator graph.

KL divergence objective is also viewed as a regularizer, which prevents

the model from diverging too much from what the original model predicts

[23]. A sequence-level KL version of this idea was used to regularize LF-MMI

based DNN adaptation in [25], [73] to small adaptation sets. On the other

hand, our work in this chapter focuses on unsupervised domain adaptation

when we have large unsupervised target-domain dataset. We also train our

neural networks from scratch since the input features to the student network

might be different from that of the teacher network (e.g. 16kHz vs 8kHz). In

this context, we can view the sequence-level KL objective to be regularizing

semi-supervised LF-MMI training to prevent to the model from over-fitting to

the unsupervised data.

5.3.4 Synopsis

In this chapter, we investigate two sequence objectives for teacher-student

type transfer learning for unsupervised adaptation – semi-supervised LF-MMI

and sequence-level KL divergence (Section 5.4). In Section 5.5, we describe

experiments to evaluate our proposed method in the scenario of domain

adaptation. We look at three scenario for adaptation – clean to noisy speech,

8kHz to 16kHz audio, and headset microphone to distant microphone.
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5.4 Sequence-KL objective

Sequence-KL objective was proposed for T-S learning in [24]. The objective

here is to make the student network mimic the teacher network by maximiz-

ing the negative KL divergence between sequence-level posteriors from the

teacher and student networks as shown in (5.1). We describe in this section

our implementation in the lattice-free training framework and how it differs

from those in other similar works in [24], [25].

FKL =−∑
r

∑
π∈GNum

P(π | O(r); λ∗) log

[︄
P(π | O(r); λ∗)

P(π | O(r); λ)

]︄
, (5.1)

∝ ∑
r

(︃
∑

π∈GNum

P(π | O(r); λ∗) log P(O(r) | π; λ)

− log P(O(r); λ)

)︃
, (5.2)

where P(π | O(r); λ∗) and P(π | O(r); λ) are posterior probabilities of the

HMM state sequence π obtained from the teacher network (parameterized by

λ∗) and the student network (parameterized by λ) respectively. The former

quantity is a constant since the teacher network is fixed when training the

student. The simplification1 to (5.2) makes it clear that the objective consists

of numerator and denominator terms.
1using Bayes rule and removing the constant additive terms. Also ∑π∈GNum

P(π |
O(r); λ∗) = 1
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5.4.1 Denominator term

The denominator term log P(O(r); λ) i.e. the log-likelihood under the student

network is independent of the teacher network. In [24], this term was com-

puted using a denominator lattice generated using a unigram LM. However,

in lattice-free training, we compute this over a fixed denominator graph, GDen,

just as in the case of LF-MMI. The reader is directed to [2] for details of this

forward-backward [28] computation on a GPU. As in [2], the denominator

graph is created using a 4-gram phone LM. To bias it to the target domain, we

use interpolated counts from source and target domains as in [62].

5.4.2 Numerator term

We compute the first term in (5.2) i.e. the numerator term as a summation over

HMM state sequences π = s1 . . . sT in the numerator graph GNum created by

decoding the utterance using the teacher network. This is the same numerator

graph that is generated for the semi-supervised LF-MMI training described

in Section 2.6. This is also where we differ from [25]. In [25], this summation

is done over the weak denominator graph GDen. However, we are doing this

summation over a lattice-based supervision that is generated using a strong

3-gram or 4-gram word LM. Our results in Section 5.5 show that using a

strong LM here is generally better. This is also easier to implement since the

lattice-based supervision is already generated for semi-supervised LF-MMI

training.
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5.4.3 Derivative computation

Since teacher network is fixed, the derivative of FKL w.r.t. the student network

output of utterance r at time t, y(rt)(j; λ), is:

∂FKL

∂y(rt)(j; λ)
=γNUM

rt (j; λ∗)− γDEN
rt (j; λ), (5.3)

where γNUM
rt (j; λ∗), the numerator posterior, is the posterior probability of

senone j at time t computed over the numerator graph GNum using the teacher

network and γDEN
rt (j; λ), the denominator posterior, is the posterior probabil-

ity of senone j at time t computed over the denominator graph GDen using the

student network. These are computed as:

γNUM
rt (j; λ∗) =

∑π∈GNum
δrt(j)P(O(r) | π; λ∗)P(π)

∑π′∈GNum
P(O(r) | π′; λ∗)P(π′)

, (5.4)

γDEN
rt (j; λ) =

∑π∈GDen
δrt(j)P(O(r) | π; λ)P(π)

∑π′∈GDen
P(O(r) | π′; λ)P(π′)

, (5.5)

where δrt(j) is 1 iff HMM state st in sequence π corresponds to senone j and

0 otherwise. Both the numerator and denominator posteriors are computed

over their respective graphs using forward-backward algorithm [28].

5.4.4 LF-MMI and sequence-KL

From (5.3), we can see that the derivative is the difference of the numerator

posterior computed using the teacher network and the denominator posterior

computed using the student network. Note that this differs only in the first
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term from the derivative of the MMI objective, which is as follows:

∂FMMI

∂y(rt)(j; λ)
=γNUM

rt (j; λ)− γDEN
rt (j; λ), (5.6)

where the first term is the numerator posterior computed using the student

network i.e. with λ instead of λ∗ in (5.4).

To use an interpolation of the two objectives, we can simply interpolate the

numerator posteriors from teacher and student networks. This is a sequence-

level analogue to the knowledge distillation idea [68], and this was also

explored in [74]. In our work, we always compute the numerator of the LF-

MMI objective using a supervision lattice generated using a strong 3-gram

word LM. But in Section 5.5.3.3, we investigate computing the numerator of

the sequence-KL objective using a different supervision lattice such as one

generated using a weak LM like a unigram LM.

5.5 Teacher-student learning experiments

We compare semi-supervised LF-MMI and sequence-level KL divergence for

domain adaptation in the following scenario – Clean to noisy speech, 8kHz to

16kHz speech, and close-talk to far-field microphone speech.

5.5.1 Experimental setups

5.5.1.1 Clean to noisy speech

In this section, we describe the experimental setups for teacher-student learn-

ing for domain adaptation from clean to noisy speech.

The training data consists of 1800 hours of Fisher English [51]. Of this, we
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used 300 hours (by randomly choosing a subset of speakers) as supervised

data with transcription, and all the 1800 hours as unsupervised data without

transcription 2

To create the parallel noisy speech corpus, we augment the clean speech

data with reverberation generated using synthetic RIRs and additive noise

from the MUSAN corpus as described in [70]. We create parallel noisy speech

for both supervised data and unsupervised data. For each clean utterance, we

create 3 augmented versions by randomly picking RIRs and additive noises.

The systems are evaluated using WER and WER Recovery rate (WRR) on

dev and test sets, which are 3 hour subsets heldout from the Fisher English

corpus, but reverberated and corrupted with noise. These are part of Kaldi

[58] Aspire recipe. We also report results on the official aspire development

set [75].

5.5.1.2 8kHz to 16kHz speech

In this section, we describe the experimental setups for teacher-student learn-

ing for domain adaptation from 8kHz to 16kHz speech.

Supervised data We use Fisher English corpus for the supervised data. This

consists of ~1800 hours of data in the training set with audio sampled at 8kHz

rate. Of this, we selected a subset of speakers corresponding 300 hours of

data as the supervised data. We use a 3x augmented version with RIRs and

2Note that a part of the data is used both as supervised data with transcription and
unsupervised data without transcription. This is similar to using “soft labels” in standard
teacher-student training. This was done for computation benefits since we could dump the
features and lattices for all the 1800 hours together as required for some of the experiments
that used only unsupervised data for training.
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noises. This is same as the noisy version of the supervised data described in

the previous section. We create a parallel corpus of 16kHz speech from this by

upsampling the audio to 16kHz rate.

Unsupervised data We use AMI-IHM corpus [76] for the unsupervised data.

It consists of ~80 hours of audio. The audio is recorder using a headset

microphone at 16kHz rate. We create parallel corpus of 8kHz speech from this

by downsampling the audio recordings to 8kHz rate.

There are multiple sources of mismatch here including bandwidth, channel

and language domain. However, we only have parallel data to deal with the

bandwidth mismatch (8kHz vs. 16kHz).

5.5.1.3 Close-talk to far-field microphone speech

In this section, we describe the experimental setups for teacher-student learn-

ing for domain adaptation from close-talk to far-field microphone speech.

As supervised dataset, we use the AMI corpus [76], which has parallel

data in individual headset microphone (IHM) and single distant microphone

(SDM) conditions. As unsupervised datasets, we have two – Mixer 6 [77] and

ICSI [78]. The datasets for training and test are described below.

AMI corpus: Augmented multi-party interaction (AMI) corpus [76] collected

meeting recordings in multiple locations. Each meeting had 4-7 speak-

ers, each fit with a headset microphone. This data corresponds to the

Individual Headset Microphone (IHM) condition. The meeting was also

simultaneously recorded using a far-field array microphone. The data
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from the first microphone corresponds to the Single Distant Microphone

(SDM) condition. We use the data from IHM and SDM conditions as

parallel data while training the ASR systems. We evaluate our systems

on the AMI data by reporting the performance on the official dev and

test heldout meetings for ASR [76].

ICSI corpus: ICSI corpus is also a meeting corpus similar to AMI, but col-

lected at ICSI in Berkeley. The setting for this is similar to that of AMI.

Each meeting involved 3-10 speakers with each speaker fit with a lapel

or headset microphone. This data corresponds to the Individual Headset

Microphone (IHM) condition. The meeting was also simultaneously

recorded using far-field desktop microphone. The data from the 4 indi-

vidual channels of this far-field microphone corresponds to the Single

Distant Microphone (SDM) condition. We use the data from IHM and

SDM conditions as parallel data, but we use only the audio and discard

the transcripts. We evaluate our systems on the ICSI data by reporting

the performance on the official dev and test heldout meetings for ASR

[78].

Mixer-6 corpus: Mixer 6 consists of audio recordings of interviews, transcript

readings and conversational telephone speech from native American

English speakers. We only use the conversational telephone speech

part of the corpus. In particular, we use only one side of it, which was

recorded simultaneously using 14 microphone channels. We use data

from the MIC02 channel as the close-talk microphone data. We use

data from MIC04-14 as the parallel far-field microphone data. Since the
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same speech is recorded in multiple channels, we randomly sample the

far-field data to be around 3x the amount of close-talk speech data. The

Mixer-6 corpus is not transcribed. So we evaluate our systems on the

Mixer-6 data by reporting the performance on the 10 hours IARPA Aspire

dev set.

5.5.2 System descriptions

All the neural networks in our experiments have an architecture with time-

delay neural network (TDNN) [60], [79] layers interleaved with LSTM [80]

layers. We use per-frame dropout on the LSTM layers [81]. The reader

is directed to [81] for training details. To avoid over-fitting, we apply the

regularization methods suggested in [2] for both LF-MMI and sequence-KL

training. We use online i-vectors [61], [82], [83] for speaker adaptation. Our

method for creating lattice-based supervisions is described in Sections 2.6 and

5.4.

The teacher and the student networks use i-vectors extracted from different

i-vector extractors trained on their respective domains.

5.5.2.1 Clean to noisy speech

In this section, we describe the systems used for teacher-student learning for

adaptation from clean to noisy speech. The corresponding experimental setup

is described in Section 5.5.1.1.

Baseline system The “Baseline” system is trained with LF-MMI objective

on 300 hours supervised data from Fisher English that is augmented 3x with
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reverberation and noise [70] and 3x with speed and volume perturbation [71]

(Hence 9x300 hours).

Oracle system The “Oracle” system is trained with LF-MMI objective using

as supervised data all 1800 hours augmented 3x with reverberation and noise.

Teacher network The teacher network is trained on “clean" 300 hours su-

pervised data with only 3x speed perturbation, but with no reverberation or

noise addition.

Student network The teacher network is used to decode the whole 1800

hours3 of “clean” Fisher data. For this decoding, we use a 3-gram LM trained

on transcripts from the 300 hours supervised set. These lattices are also used

to create supervision for the parallel noisy corpus used to train the student

network. The student network is trained either only on the unsupervised

noisy data or in a multitask framework on both supervised and unsupervised

data. The training on supervised data uses LF-MMI with supervision from a

GMM system, while the training on unsupervised data uses an interpolated

objective (1− β)FMMI + βFKL. The denominator graph for both is generated

using 4-gram phone LM created by averaging counts from supervised data

phone transcription and 1-best phone hypotheses from unsupervised data. For

LF-MMI, we convert the lattice into numerator supervision as described in 4.2

using smart splitting with a pruning beam of 4 and lm-scale of 0.5 interpolating

3Note that this includes the 300 hours of audio from supervised dataset, but we are only
using the audio and not the transcripts. This is like using soft posteriors for labeled data in
conventional T-S learning [68].
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word LM and the phone LM scores. For sequence-KL, we use the posteriors

obtained from the decoded lattices interpolated with the phone LM using a

weight of 0.5.

We use the same i-vector extractor for baseline, oracle and all the student

networks. This is trained on 1800 hours of Fisher data augmented 3x with

reverberation and noise.

5.5.2.2 8kHz to 16kHz speech

In this section, we describe the systems used for teacher-student learning

for domain adaptation from 8kHz to 16kHz speech using Fisher English

as the supervised dataset and AMI-IHM as the unsupervised dataset. The

corresponding experimental setups is described in Section 5.5.1.2.

Baseline network and Teacher network The “Baseline" network here is

same as the one in Section 5.5.2.1. This is also the teacher network for T-S

learning.

Student network The teacher network is used to decode the target AMI-

IHM data (downsampled to 8kHz to use with Fisher’s teacher network) to

generate lattices. A 3-gram Fisher LM is used for this decoding. While the

lattices are generated using the 8kHz AMI-IHM data, we use the same with

the parallel 16kHz AMI-IHM data for training the student network. The

student network is trained either only on the unsupervised AMI-IHM data

or in a multitask framework on both supervised Fisher and unsupervised

AMI-IHM data. For multitask training, we share all the layers of the network
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for both the supervised and unsupervised data. The i-vector extractor used

with the networks is also trained on the corresponding data. The training

on supervised Fisher English data uses LF-MMI with supervision from a

Fisher English GMM system, while the training on unsupervised data uses an

interpolated objective (1− β)FMMI + βFKL. The denominator graph for both

is generated using 4-gram phone LM created by averaging counts from Fisher

English phone transcription and 1-best phone hypotheses from AMI-IHM. For

LF-MMI, we convert the lattice into numerator supervision as described in 4.2

using smart splitting with a pruning beam of 4 and lm-scale of 0.5 interpolating

word LM and the phone LM scores. For sequence-KL, we use the posteriors

obtained from the decoded lattices interpolated with the phone LM.

5.5.2.3 Close-talk to far-field microphone speech

In this section, we describe the systems for teacher-student learning for adap-

tation from close-talk to far-field microphone speech. The experimental setup

for this is described in Section 5.5.1.3.

AMI baseline system For training the baseline system, we use AMI-SDM

data mixed with AMI-IHM data augmented with reverberation and noise. For

supervision, we generate lattices using a GMM system for AMI-IHM data

and use it for the parallel reverberated AMI-IHM data and AMI-SDM data as

done in [72].

Oracle systems We have two “oracle” systems – one for ICSI corpus and

one for Mixer-6 corpus, all in the far-field microphone condition. We use these
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to compare with the performance of unsupervised adaptation systems. The

first oracle system is trained only on the ICSI corpus in a supervised fashion

analogous to the AMI baseline system described in the previous section. The

second oracle system is trained only on 300 hours of Fisher English augmented

with synthetic RIRs and additive noise from the MUSAN corpus. We could

not train an oracle system on the Mixer-6 corpus itself since we do not have the

transcripts for that. Also, the Fisher English corpus was the official training

corpus for the IARPA Aspire challenge, which is the test set we are evaluating

on.

Teacher network As teacher network, we use a TDNN-LSTM network

trained on AMI-IHM data that is mixed with reverberated and noise aug-

mented version of the same. This teacher network was selected as it gave the

best performance on AMI-IHM dev and eval sets.

Mixer 6 student network For adaptation using mixer 6 data, we decode the

mixer 6 headset microphone (MIC02) data using the teacher network and a

3-gram Fisher word LM to generate lattices. These lattices are converted into

supervision for data from the parallel far-field microphones (MIC04-MIC13).

Since the same data was recorded in multiple microphones, we kept a subset

of only 30% of the parallel far-field data.

ICSI student network For adaptation using ICSI data, we decode the ICSI-

IHM data using the teacher network and the 3-gram AMI word LM to generate

lattices. These lattices are converted into supervision for data from the parallel
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ICSI-SDM data. We used all 4 available distant microphones, but adjusted the

training to train on these for one-fourth the number of epochs as the rest of

the data.

In both the baseline and T-S learning networks, we use the same i-vector

extractor, which is trained on the same AMI data used to train the baseline.

For both the adaptation experiments, we use semi-supervised training in a

multitask architecture with supervised training with LF-MMI on the same

AMI data as the baseline network and unsupervised training also with LF-

MMI on a mix of augmented (using reverberation and noise addition) headset

microphone data and distant microphone data from Mixer 6 or ICSI corpora.

5.5.3 Results and discussion

The results for adaptation from clean to noisy speech are in Table 5.1. The

experimental setup and the description of the systems are in Sections 5.5.1.1

and 5.5.2.1 respectively. The columns “sup” and “unsup” show the amount of

supervised and unsupervised data (prior to augmentation) respectively used

in training the student network.

The results for adaptation from 8kHz to 16kHz speech are plotted in

Figures 5.3 and 5.4 for various configurations and various values of β, the

weight of interpolation of sequence-KL objective with LF-MMI objective. The

best configuration is compared with the baseline and the oracle systems in 5.2.

The results for adaptation from close-talk microphone speech to single

distant microphone speech are shown in Table 5.3. The table shows the

supervised and unsupervised data used for training of the systems.
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Table 5.1: WER(%) results for unsupervised adaptation from clean to noisy. The
objective is (1− β)FMMI + βFKL.

System β hrs WER (%) WRR
sup unsup dev test aspire (%)

Baseline 0 300 0 23.6 22.5 26.6 0
Unsup only 0 0 1800 23.0 22.0 27.0 6
Unsup only 1 0 1800 21.8 21.0 25.9 34
Semisup multitask 0 300 1800 21.6 21.0 25.1 42
Semisup multitask 1 300 1800 21.0 20.3 24.4 59
Semisup multitask 0.5 300 1800 21.0 20.2 24.2 61

+ unigram LM 0.5 300 1800 21.2 20.6 24.5 54
Oracle 0 1800 0 19.1 18.4 23.3 100

Figure 5.3: 8kHz Fisher ->16kHz AMI-IHM WER(%) results: Unsupervised vs semi-
supervised multitask training. The solid lines show results on AMI eval and dashed
lines on AMI dev.

0.0 (MMI) 0.25 0.5 0.75 1.0 (KL)

β

27

28

29

30

31

32

33

34

W
E

R
(%

)

dev

eval

Sup + Unsup multitask

Unsup only

Baseline

83



Figure 5.4: 8kHz Fisher ->16kHZ AMI-IHM WER(%) results: Unigram vs 3-gram for
sequence-KL. The solid lines show results on AMI eval and dashed lines on AMI dev.
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Table 5.2: WER(%) results for 8kHz Fisher to 16kHz AMI-IHM

System Source domain Target domain WER WRR
sup Rate sup unsup Rate dev eval
(hrs) (kHz) (hrs) (hrs) (kHz) (%) (%) (%)

Baseline 300 8 0 0 8 30.6 33.3 0
T-S 300 16 0 80 16 27.7 29.6 24
Oracle 0 - 80 0 16 18.7 18.6 100
Oracle 0 - 80 0 8 20.4 19.9 89

5.5.3.1 Effect of multitask learning

In Table 5.1, rows 4-6 show results with semi-supervised multitask learn-

ing using LF-MMI on supervised data and an interpolation of LF-MMI and
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Table 5.3: WER(%) results for adaptation from close-talk to distant microphone

Training data AMI-SDM ICSI-SDM Aspire
System sup unsup dev eval dev eval dev
Baseline AMI - 33.8 37.0 43.9 42.9 41.4
T-S AMI ICSI 32.9 36.5 36.0 31.5 -
+ domain den-fst AMI ICSI 32.9 36.9 36.1 31.4 -
T-S AMI Mx6 34.0 37.1 - - 33.2
+ domain den-fst AMI Mx6 33.3 36.8 - - 32.0
Oracle ICSI - - - 30.2 27.9 -
Oracle Fsh300h - - - - - 26.6

sequence-KL on unsupervised data. We see that any of these multitask train-

ing systems is better than the systems that train only on the unsupervised

data.

As described in Section 5.2, multitask training can effectively mitigate

mismatch in acoustic and language domains. We see this in the results for

domain adaptation from Fisher English to AMI-IHM shown in Figure 5.3.

WERs on AMI dev and AMI eval are shown for various interpolation factors.

We see that semi-supervised multitask training (Red ◦) is better than training

only on the unsupervised data (Blue ×) in the target domain. The former

gives an improvement of around 3% absolute over the “Baseline” in the best

configuration of β = 0.25. It is possible that training on a larger amount of

data and also regularizing with supervised Fisher data (even if out-of-domain)

is helping the cause here 4.

From these results, we conclude that semi-supervised multitask training

is significantly better than training only on unsupervised data. This is the

4In addition, we have an i-vector extractor that is also trained on a larger dataset (including
Fisher), but based on the results in [26] for a similar adaptation experiment from Switchboard
to AMI, we do not think this itself gives a significant improvement over just training i-vector
extractor on the AMI data as done for the results in the previous sections.
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case even when there is a big domain mismatch between supervised and

unsupervised data as in the case of Fisher vs AMI.

5.5.3.2 Effect of LF-MMI and sequence-KL

From rows 2 and 3 of Table 5.1 showing results from training only on the

unsupervised data, we see that sequence-KL is significantly better than using

LF-MMI. The WER with LF-MMI is worse than even the baseline on the aspire

set. However, when using multitask learning, the difference between the

systems is much smaller. Using either sequence-KL (Row 5) or an interpolation

of LF-MMI and sequence-KL (Row 6) is slightly better than using LF-MMI

(Row 3).

However, this does not seem to hold in generic cases where there is a

domain mismatch between supervised and unsupervised data as in the case of

adaptation from 8kHz to 16kHz speech. We see this from the results in Figure

5.3. The red lines in the figure show WER results for different interpolation

weights, β, between sequence-KL and LF-MMI. The WER is better for LF-MMI

and the optimal is at β = 0.25. We believe that since the domains of the data

used to train the teacher and student networks are different (Fisher English

vs. AMI), the numerator posteriors from the teacher are not very good for

training the student using sequence-KL. But, we get better posteriors from the

student network by training using LF-MMI.

From these results, we conclude that sequence-KL is more robust than LF-

MMI when training only on unsupervised data. But, when multitask training

is used, the difference between sequence-KL and LF-MMI is less significant.
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Since, multitask training is quite effective in handling domain mismatch, we

recommend using LF-MMI or an interpolation of LF-MMI and sequence-KL

with a higher weight on LF-MMI.

5.5.3.3 Effect of LM used for numerator computation

For semi-supervised training, it is generally better to use a strong LM for

decoding unsupervised data to generate lattices. From [18], the best phone

LM scale for interpolating normalization FST’s phone LM scores and lattice’s

word LM scores when generating numerator supervision is 0.5.

In this section, we try to find:

1. the best phone LM scale (0.0 vs 0.5) for interpolating phone LM and

word LM scores to get numerator posteriors for sequence-KL

2. the best LM (3-gram vs 1-gram) to use for generating lattices to get

numerator posteriors for sequence-KL

The legend in Figure 5.4 shows the LM used for decoding and the phone

LM scale when generting supervision for sequence-KL objective. In these

experiments, we use the interpolated objective (1− β)FMMI + βFKL. Note

that the LF-MMI objective in all cases uses a 3-gram word LM for decoding

and a phone LM scale of 0.5 for interpolating phone LM and word LM scores.

From Figure 5.4, when using a 3-gram word LM for decoding, using a

phone LM scale of 0.0 (Blue ×) works better than a phone LM scale of 0.5

(Red ◦). However, when using a 1-gram LM for decoding, the WER degrades

with a phone LM scale of 0.0 (Orange ∗) and gets even worse than baseline for
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large β. This problem is alleviated if a phone LM scale of 0.5 is used (Green

△), but is still worse than using 3-gram word LM for decoding.

We observe the same effect even for adaptation from clean to noisy speech

as can be seen in Table 5.1. Using a unigram LM (Row 7) is worse than using

a 3-gram LM (Row 6) for decoding when generating numerator posteriors

for sequence-KL objective (while still using 3-gram for generating lattices for

MMI training),

From these results, we conclude that for unsupervised domain adapta-

tion, it is better to use a strong LM like 3-gram for generating numerator

supervision. This is also computationally advantageous because using strong

3-gram LM requires only a single generation of lattices for both MMI and

sequence-KL, while using 1-gram LM requires regeneration of lattices for

sequence-KL. Further, when using a strong word LM, interpolating the LM

scores with phone LM scores is not required and using a phone LM scale of

0.0 works the best.

The performance degradation when using a weak LM was also reported

in [25] for unsupervised speaker adaptation. But we believe the degradation

is larger in our case because we are training the student network from scratch

instead of initializing from the teacher network. However, initializing from

teacher network is not straight-forward in our case since the input features

are different (16kHz vs 8kHz).
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5.5.3.4 Overall impact of T-S learning

We discuss in this section the impact of semi-supervised teacher-student

learning for domain adaptation based on the results in Tables 5.1, 5.2 and 5.3

As can be seen in Table 5.1, for adaptation from clean to noisy speech,

we see that our proposed approach multitask learning approach training on

supervised data using LF-MMI and on unsupervised data using interpolation

of LF-MMI and sequence-KL gives a WER recovery of 61%. Using only LF-

MMI on both types of data gives a lesser 42% WER recovery.

Similarly, we get good results for adaptation from close-talk to distant

microphone as can be seen in Table 5.3. For the T-S learning systems, we

used just the LF-MMI objective, which is quite effective especially in cases

of language domain mismatch. The results show that using parallel data

in Mixer 6 or ICSI for adaptation from IHM to SDM improves WER in the

distance microphone condition. The performance improvement is small on

the AMI-SDM test sets since the baseline here is already state-of-the-art on that

task. But we see significant improvement in the mismatched condition when

evaluating on ICSI-SDM or Aspire test sets. In these cases, the baseline system

is mismatched to the test data and its performance is very poor compared

to the corresponding oracle systems. But using T-S learning, we are able to

get a WER recovery rate of 50% or more. As can be seen in the rows with

“+ domain den-fst”, we improve WER slightly by using a domain-specific

phone LM and denominator FST described in Section 5.2.3.1 But this shows

a significant difference only when using Mixer 6 data, which is mismatched

with the source AMI-IHM data.
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However, the WER recovery rate is smaller (at 24%) for adaptation from

8kHz Fisher English to 16kHz AMI-IHM as can be seen in Table 5.2. The best

multitask training system here is quite behind the “Oracle” system (Row 3) in

Table 5.2. This is the case even when considering an “Oracle” system trained

on 8kHz data (Row 6), which only degrades performance by less than 2% over

using 16kHz data. This suggests that bandwidth mismatch by itself is not a

major issue in these experiments, but that other forms of domain mismatch

such as language mismatch (dialect, topics etc.) between Fisher and AMI are

more prominent. One prominient issue is that we decoded the unsupervised

AMI data using a Fisher LM because we did not have text matching the AMI

corpus (other than the training transcripts, but using that would be cheating).

From these results, we conclude that semi-supervised teacher-student

learning is very effective when parallel data is available in source and target

domains. It shows good WER recovery rate for adaptation from clean to noisy

speech and close-talk to distant microphone speech. It is not effective by itself

in dealing the adaptation from 8kHz Fisher to 16kHz AMI, because in addition

to bandwidth mismatch for which parallel data is available, there are also

other mismatches in acoustic and language domains. A better target-domain

matched LM is required as suggested in Section 5.2.3. This is explored in the

next set of experiments.

5.6 Domain mismatch experiments

We explore semi-supervised transfer learning across mismatch domains in the

following scenario – AMI-IHM to Tedlium corpus, Tedlium to How2 challenge
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corpus and Fisher English to Fearless steps corpus.

5.6.1 Experimental setups

5.6.1.1 AMI-IHM to Tedlium

In this section, we describe the experimental setups for semi-supervised

transfer learning experiments from the AMI-IHM corpus to Tedlium corpus.

As supervised dataset, we use the AMI-IHM corpus and as unsupervised

dataset we use Tedlium corpus [84], [85].

AMI-IHM corpus is described in detail in Section 5.5.1.3. This is the

training data for the source domain and is supervised consisting of 80 hours

of audio and corresponding transcripts.

The Tedlium corpus is made from TED talks and their transcriptions avail-

able in the TED website 5. These were filtered and cleaned for the purposes

speech processing tasks as described in [84], [85]. Here, we use the Release 3 of

this corpus, which includes 2351 TED talks and transcriptions corresponding

to 452 hours of audio data. We used the dictionary as well as the language

modeling data released with this to get the pronunciation lexicon and the

language model for decoding. We followed the Kaldi recipe 6 for this purpose.

The target domain data is 452 hours of data from the train set of the Tedlium

release 3 corpus. We only use the audio from this data, and use its transcripts

for neither acoustic model training nor language model training. The dev and

test sets from the Tedlium corpus are the datasets that we evaluate the system

performance on.
5http://www.ted.com/
6https://github.com/kaldi-asr/kaldi/tree/master/egs/tedlium/s5_r3
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5.6.1.2 Tedlium to How2 challenge corpus

In this section, we describe the experimental setups for semi-supervised

transfer learning from the Tedlium corpus to the How2 challenge corpus [86].

Source domain We use as supervised data the Release 3 of the Tedlium

corpus [85]. This is as described in Section 5.6.1.1, and consists of 452 hours of

audio data with corresponding transcriptions.

Target domain The target domain is the instructional videos from YouTube

collected in the How2 challenge corpus. This corpus was designed to have

80,000 instructional videos (about 2,000 hours) with associated English sub-

titles and summaries. A 300 hour subset of this with cleaned sub-titles was

released for use during the JSALT 2018 Workshop. For our work, we use this

300 hours set for a supervised domain adaptation baseline. For unsupervised

domain adaptation experiments, as unsupervised data, we use a separately

collected set of videos from the expertvillage YouTube channel 7. This

consists of about 100,000 videos (about 2200 hours). We excluded the videos

that were contained in the 300 hours supervised set.

5.6.1.3 Fisher English to Fearless steps challenge corpus

In this section, we describe the experimental setups for semi-supervised

transfer learning from Fisher English to the Fearless steps challenge corpus

[87].
7https://www.youtube.com/expertvillage
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Source domain The training data for the source domain is the supervised

training data from the Fisher English corpus.

Target domain Fearless steps corpus is an effort by CRSS-UTDallas to dig-

itize the audio from the Apollo missions into a corpus for various spoken

language technology tasks. Around 19,000 hours of data from Apollo 11, 13

and 1 missions was released with the name “Fearless Steps”. The corpus was

released to the community along with a set of 5 challenge tasks. In this work,

we focus on only the ASR task. The challenge conditions allow us to utilize

any speech and language data external to the Fearless steps corpus, but only a

subset of channels and recording from the Fearless steps corpus. This subset

amounts to around 9000 hours. Since the data is conversational and some of

the audio is very noisy, we chose the augmented Fisher English corpus as the

training data for seed acoustic model training to apply transfer learning to the

Fearless steps domain.

But the tricky part is to build an in-domain vocabulary and language

model that is matched to the Fearless steps corpus because we did have any

matched language modeling data. For this reason, we resort to collecting

data from the web. We used several sources of data as suggested in [88], [89]

related to Apollo missions and NASA. It included materials from books 8,

mission reports [90] and transcriptions [91], [92].

All the data available for training is unsupervised (~9000 hours) and is

used for semi-supervised transfer learning experiments. A small amount

of ~20 hours data (~4 hours after segmentation) was manually transcribed

8https://www.nasa.gov/connect/ebooks/index.html
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and was released by the challenge organizers as the Fearless steps dev set.

We evaluate our systems on this dataset. Another ~60 hours of data (~20

hours after SAD and segmentation) was also released by the organizers as

the Fearless steps train set. But this is not manually transcribed but rather

contains ASR-generated transcripts. So we do not use this set for acoustic

model training, but only use it for language model training.

5.6.2 System descriptions

5.6.2.1 AMI-IHM to Tedlium

In this section, we describe the systems used for semi-supervised transfer

learning from AMI-IHM corpus to Tedlium corpus.

AMI-IHM baseline We use as baseline a system completely trained on the

source domain, AMI-IHM corpus. This is a TDNN+LSTM neural network

acoustic model trained using clean AMI-IHM data along with a reverberated

copy of AMI-IHM data. This system was chosen to give the best performance

on the AMI-IHM evalutation sets. For supervision, we use lattices generated

from a GMM system for AMI-IHM data and use it also for the reverberated

AMI-IHM data as done in [70], [72].

Semi-supervised systems The unsupervised audio from the Tedlium re-

lease 3 train set is decoded using the “AMI-IHM baseline” acoustic model

to generate lattices for semi-supervised training. We investigate using two

language models as described in Table 5.4.
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Table 5.4: Language models for decoding unsupervised data for adaptation from
AMI-IHM to Tedlium corpus. Their perplexities (PPL) on Tedlium dev set are reported.

Domain Data source PPL
AMI Out-of-domain AMI + Fisher transcripts 423
Ted In-domain Selected data from WMT12 corpus [93] 219

We use multitask training for semi-supervised transfer learning from AMI-

IHM to Tedlium using supervised data from AMI-IHM and only unsupervised

data from the Tedlium corpus. We generate lattice supervision using smart

splitting with a lattice beam of 4 and lm-scale of 0.5 on word and phone LMs.

The wider beam of 4 was more useful when decoding unsupervised data with

AMI LM, and it did not make much difference with in-domain Tedlium LM.

Oracle system For the oracle system, we use multitask training for super-

vised transfer learning from AMI-IHM to Tedlium.

We use the same i-vector extractor as in the “AMI-IHM baseline” system

for all the systems. This i-vector extractor is trained only on the AMI-IHM

data. We did not see any significant gain on training i-vector extractor by

including the Tedlium data. So for fair comparison, we used the same i-vector

extractor the baseline, semi-supervised and oracle systems.

5.6.2.2 Tedlium to How2 challenge corpus

In this section, we describe the systems used for semi-supervised transfer

learning from Tedlium corpus to How2 challenge corpus. For the corresponding

experimental setup, the reader is directed to the description in a previous

section (Section 5.6.1.2).
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Tedlium baseline We use as baseline a system that is trained entirely on

the source domain, the train set of the Tedlium 3 corpus. This is a TDNN-F

neural network acoustic model. For supervision, we use lattices generated

from a HMM-GMM system trained on the same Tedlium corpus. Note that

these lattices are constrained to the transcripts, and only include variations of

pronunciations.

Semi-supervised system The unsupervised data from the How2 challenge

corpus is decoded using the “Tedlium baseline” system acoustic model to

generate lattices. We investigate using different language models for decoding

– n-gram LM as well as RNNLM:

Ted 4-gram LM The first is a baseline Tedlium n-gram LM used in the “Tedlium

baseline” system, which was estimated on the Tedlium transcripts and

a selection of monolingual data from WMT12 corpus [93] 9 and the

Tedlium acoustic transripts. This has a perplexity of 181 on the How2 dev

set.

How2 4-gram LM The second is a How2 n-gram LM that is in-domain to the

How2 corpus and was estimated by including in the LM training data,

the sub-titles from the 300 hours of videos released as part of the How2

challenge during the JSALT 2018 Workshop [86]. This has a perplexity

of 101 on the How2 dev set.

How2 RNNLM The last is an in-domain How2 RNNLM. This was trained

using the same data sources used for the How2 n-gram LM estimation.

9https://www.openslr.org/51/
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For n-gram LM estimation, we use the pocolm toolkit [64]. For RNNLM

training, we use Kaldi[94], [95]. For efficient rescoring of lattices, we use

the pruned rescoring proposed in [95] with a lattice pruning beam of 4. But

since the lattices are undeterminized and can have multiple phone sequeunces

per word sequence, we use the modified rescoring approach described in

Algorithm 1. For semi-supervised multitask learning, we use lattice-based

supervision with smart splitting, pruning with a beam of 2.0, only phone LM

scores (lm-scale = 0) on the supervision.

Oracle system As an oracle system, we train a supervised system on only

the 300 hours subset of the How2 corpus that included the cleaned sub-titles.

We generate lattices for training using the “Tedlium baseline” neural network

acoustic model. As in standard LF-MMI, these are constrained to the word-

level transcripts (sub-titles) but include pronunciation variants.

For fair comparison, we use the same i-vector extractor as for the “Tedlium

baseline” system, which is trained on the Tedlium 3 training data.

5.6.2.3 Fisher English to Fearless steps challenge corpus

In this section, we describe the systems used for semi-supervised transfer

learning from Fisher English to Fearless steps challenge corpus.

Aspire baseline As baseline system, we use a pre-trained Aspire LF-MMI

trained TDNN+LSTM neural network acoustic model 10 as the baseline. This
10http://kaldi-asr.org/models/m1
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model was trained using the Kaldi Aspire recipe 11.

Semi-supervised systems The unsupervised data (~9000 hours) from the

Fearless steps corpus is unsegmented. We first segment it into 10s or smaller

segments using a neural network-based speech activity detection (SAD) sys-

tem. We used a pre-trained SAD system 12, which was also trained on the

Aspire corpus. The segmented unsupervised data, amounting to around 2400

hours, is decoded using Aspire baseline acoustic model. To get a reasonable

performance, we use an in-domain LM for decoding that was estimated by

including NASA related text sources from the web mentioned in the previous

section (Section 5.6.1.3). Aside from all the in-domain text from the web,

transcripts from the Fisher English corpus were also included to model spon-

taneous conversations. A small amount of data amounting to 20 hours was

released as the Fearless steps train set with ASR-generated transcripts. These

transcripts are also used when estimating the language model. We used the

same text sources to extract a vocabulary that included scientific terms and

abbreviations used throughout the Fearless steps corpus. A multi-stage process

was used to normalize the NASA text sources based on existing vocabulary,

and update the vocabulary to include new words in the text sources that occur

at least twice. The language model estimation and lexicon preparation steps

are described in the following section.

11https://github.com/kaldi-asr/kaldi/tree/master/egs/aspire/s5
12http://kaldi-asr.org/models/m4
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Language modeling We used a modified Kneser-Ney 4-gram LM [96] as

the in-domain language model for the Fearless steps corpus. This was estimated

on the n-gram counts from all the mentioned sources using the pocolm [64]

toolkit. The counts from different sources were weighted in such a way as to

minimize the perplexity on the tuning set. We considered two different sets

for tuning:

1. ASR-generated transcripts released as the Fearless steps train by the Fear-

less steps challenge organizers

2. Normalized Apollo 11 transcripts obtained from Apollo Flight Journal

(AFJ) [91] and Apollo Lunar Surface Journal (ALSJ) [92].

When one of the sets was used for tuning, the other was included for

training. The perplexity results on the Fearless steps dev set as shown in Table

5.5 show that tuning on the Apollo 11 transcripts from AFJ and ALSJ gives

4 points improvement over tuning on Fearless steps train. This is reasonable

because these transcripts are the closest to the content of the Fearless steps

corpus, for which we do not have any manual transcription other than the

Fearless steps dev set. The ASR-generated transcripts from the Fearless steps

train set released by the challenge organizers are not good enough for this

purpose. Even with these improvements to the LM, the perplexity on the

Fearless steps dev was still low (best number is 114) as shown in Table 5.5, but

a considerable improvement over an LM trained just on Fisher English. The

results also show that excluding NASA eBooks from the LM sources gives

better perplexity numbers as the eBooks turn out to be not that good a match

to the spontaneous conversations and the domain of the Fearless steps corpus.
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Table 5.5: Perplexities of language models on the manually transcribed Fearless steps
dev set

LM Sources Tuned on Perplexity
Fisher English Fisher heldout 451

+ NASA Fearless steps train 122
+ NASA Apollo 11 (AFJ, ALSJ) 118
- eBooks Fearless steps train 118
- eBooks Apollo 11 (AFJ, ALSJ) 114

Lexicon Since we need a pronunciation lexicon for ASR training, we

also get pronunciations for all the words. We use the CMU pronouncing

dictionary [97] as the seed lexicon, and use it to train a grapheme-to-phoneme

(G2P) [98] model using phonetisaurus [99] toolkit. The G2P model is used to

generate pronunciations for the new non-abbreviation words in the expanded

vocabulary.

Since the text sources from the web are all normalized differently it is

not possible to easily figure out whether something is an abbreviation or not.

We used an adhoc method to consider a capitalized sequence of letters as an

abbreviation if that is not in the lexicon, and if it was already in the lexicon we

assume that it’s a regular non-abbreviation word. For the abbreviations in the

expanded vocabulary, we add the pronunciation by spelling the individual

letters in the abbreviation. The pronunciation of the individual letters are

obtained from the CMU dictionary.

5.6.3 Results and Discussion

In this section, we report experimental results of semi-supervised transfer

learning in the following scenario – AMI-IHM to Tedlium, Tedlium to How2
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challenge corpus, Fisher English to Fearless steps corpus.

The results for adaptation from AMI-IHM to Tedlium are shown in Table

5.6. The LM used for decoding unsupervised data to generate lattice-based

supervision for semi-supervised training is shown in the column “LM”. The

results comparing performance for different amounts of unsupervised data is

shown in Figure 5.5. The LM used for decoding unsupervised data is indicated

in the legend. The figure also shows the performance using three different

training strategies:

init from baseline Here, we train only on unsupervised data by updating

the seed model. This corresponds to unsupervised weights transfer in

Figure 5.2.

train from scratch Here, we train only on unsupervised data but we train

from scratch instead of initializing the model from a seed model.

multitask training This is semi-supervised multitask transfer learning on

source-domain supervised data and target-domain unsupervised data.

The results for adaptation from Tedlium to How2 corpus are shown in Ta-

ble 5.7. The LM used for decoding unsupervised data to generate lattice-based

supervision for semi-supervised training is shown in the column “LM”. WER

results are shown on the How2 dev using the How2 4-gram LM for decoding as

well as the corresponding numbers after rescoring with How2 RNN LM.

The results for adaptation from Fisher English to Fearless steps corpus are

shown in Table 5.8. The amount of supervised source-domain and unsu-

pervised target-domain data used for training each system is shown in the
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Table 5.6: Domain adaptation results for adaptation from AMI-IHM to Tedlium
showing WER(%) on Tedlium dev and Tedlium test sets

System Type LM dev test WRR(%)
AMI-IHM baseline - - 18.8 19.4 0

Semisup multitask

shared den-fst AMI 14.8 13.8 46
domain den-fst AMI 14.8 13.8 46

separate outputs AMI 15.3 14.2 42
shared den-fst Ted 12.9 12.2 63
domain den-fst Ted 12.6 12.2 64

separate outputs Ted 13.2 12.3 61

Tedlium oracle shared den-fst - 8.7 8.6 100
separate outputs - 9.2 9.0 96

Figure 5.5: Domain adaptation WER(%) results for adaptation from AMI-IHM to
Tedlium corpus for different amounts of target-domain unsupervised data
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5.6.3.1 Effect of language model mismatch

In this section, we discuss the effect of the mismatch between the domains of

the language model used for decoding and the unsupervised target-domain

data.

In Table 5.6, rows 2-4 and rows 5-7 respectively show results for adaptation
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Table 5.7: WER(%) results on How2 dev set

System Ted
(hrs)

How2 (hrs) LM how2 dev
sup unsup 4-gm RNNLM

Tedlium baseline 452 0 0 - 18.7 16.8
Semisup multitask 452 0 2200 Ted 4-gram 17.0 16.0
Semisup multitask 452 0 2200 How2 4-gram 16.4 15.4
Semisup multitask 452 0 2200 How2 RNN 16.2 15.2
Supervised How2 0 300 0 - 15.9 14.8

Table 5.8: Semi-supervised transfer learning results on Fearless steps dev set

System Type Data (hrs) WER
sup unsup (%)

Aspire baseline - 1800 0 38.8

Only unsup train from scratch 0 180 36.6
init from baseline 0 180 34.1

Semisup multitask - 300 180 34.2

Only unsup train from scratch 0 2400 33.9
init from baseline 0 2400 34.2

Semisup multitask - 300 2400 34.0

from AMI-IHM to Tedlium using two different LMs for decoding unsuper-

vised data – an out-of-domain AMI LM and in-domain Ted LM. The LMs are

described in Section 5.6.2.1. The results show a much larger WER recovery

(64% at best) with Ted LM compared to 46% with AMI LM. Similarly, in Table

5.7, for adaptation from Tedlium to How2 challenge corpus, we see that using

the in-domain How2 4-gram LM is 0.6% absolute better (17.0 vs 16.4) than

using the out-of-domain Ted 4-gram LM.

Figure 5.5 shows WER on Tedlium dev and Tedlium test sets for different

amounts of unsupervised data for adaptation from AMI-IHM to Tedlium

corpus. When the mismatched AMI LM is used, the improvement is smaller

or there is even degradation on increasing the amount of unsupervised data.
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We observe that that increasing the amount of unsupervised data in the target-

domain is helpful, but only if we also use a matched LM to decode the un-

supervised data. There is not much benefit in increasing the unsupervised

data if we do not use a matched LM to decode that data. From these results,

we conclude that it is very important for the language model used to de-

code the unsupervised data to match the target domain so that we get better

supervision lattices for semi-supervised training.

5.6.3.2 Effect of domain-specific phone LM and separate output layer

In this section, we discuss three approaches to handling language domain

mismatch between source and target data:

shared den-fst using a shared phone LM trained using phone counts from

source and target domains as described in Section 5.2.3

domain den-fst a target domain-specific phone LM and denominator FST as

described in Section 5.2.3.1

separate outputs separate output layers during multitask training.

As can be seen from the results in Table 5.6, having separate outputs (rows 4,

7 and 9) for the two domains degrades the performance. This is the case even

the target-domain data is supervised as can be seen from the WER results of

the Tedlium oracle systems (row 9).

As can also be seen from the results in Table 5.6, using target domain-

specific phone LM gives almost the same performance as or is slightly better

than using a shared phone LM.
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Based on these results, we conclude that it is better to share all the layers

of the network when doing transfer learning with multitask training. We also

see that using target domain-specific phone LM is about the same or slightly

better than using shared phone LM. However, we recommend this approach

because it allows to use for the supervised part of the data (source-domain

data) the same denominator FST and training examples dumped for training

the seed system.

5.6.3.3 Effect of rescoring with strong LM

In this section, we discuss the effect on semi-supervised transfer learning of

rescoring lattices obtained by decoding unsupervised data using an RNNLM.

Table 5.7 shows WER on how2 dev set using both the How2 4-gram LM and

How2 RNNLM. Comparing row 3 and row 4 in the table, we see that using

RNNLM rescoring gives a slighly better performance (0.2% absolute) than

using just the n-gram LM for generating lattices. However, the difference is

very small compared to the improvement over the baseline system. We point

out that this RNNLM rescoring gives a significant WER improvement on the

how2 dev set (18.7 to 16.8) for the seed system (Tedlium baseline system). While

the improved seed system implies better lattices and numerator supervision

which can help semi-supervised training, here we see from the results that

a 2% improvement in WER of the seed system through LM rescoring only

amounts to a 0.2% improvement in semi-supervised training results.

Given the computational cost of RNNLM rescoring and the tiny gains that

we see from it compared to the improvement over the baseline, we do not
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recommend for most applications RNNLM rescoring of unsupervised data

lattices for semi-supervised transfer training.

5.6.3.4 Effect of multitask training and amount of unsupervised data

In this section, we compare multitask training with two other strategies – train

from scratch and init from baseline – described in Section 5.6.3 for different

amounts of unsupervised data.

Figure 5.5 shows WER on Tedlium dev and Tedlium test when using different

amounts of unsupervised data for adaptation from AMI-IHM to Tedlium cor-

pus. Multitask learning is generally seen to outperform train from scratch and

init from baseline. Here, we see that WER generally improves upon increasing

the amount of unsupervised data from Tedlium corpus when using in-domain

Ted LM for decoding as described in Section 5.6.3.1. However, when the out-

domain AMI LM is used for decoding, there is not always improvement on

increasing the amount of unsupervised data.

For adaptation from Fisher English to Fearless steps corpus using 180

hours of unsupervised data, the results in Table 5.8 show a 2.2% improvement

(38.8→ 36.6) using the train from scratch method. However, if we use init from

baseline i.e. initialize the network from the seed Aspire baseline network and

update the model, we get a further 2.5% absolute improvement. Similarly,

we get an overall 4.6% improvement (38.8 → 34.2) when using multitask

training including 300 hours of augmented Fisher English data. However,

increasing the amount of unsupervised data to 2400 hours gives no additional

improvement with multitask training or init from baseline, but we do get some
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improvement when training from scratch on only unsupervised data. With such

a large amount of unsupervised data for training, it is likely that initialization

from the Aspire baseline network is not necessary 13.

Based on the results in this section, we conclude that, as in the case of T-S

learning (Section 5.3), semi-supervised multitask learning with some amount

of out-of-domain supervised data is very useful, and is more robust than

training only on unsupervised data.

5.6.3.5 Overall impact of semi-supervised transfer learning

In this section, we discuss the overall impact of our proposed semi-supervised

transfer learning methods for domain adaptation when there is no parallel

data in source and target domains. We rely on the our experimental results in

Tables 5.6, 5.7 and 5.8.

As can be seen in Table 5.6, semi-supervised transfer learning with mul-

titask training on supervised source-domain data and unsupervised target-

domain data recovers 64% of the WER improvement over the baseline (trained

on source-domain) that we get using an oracle system. The recovery rate

is smaller when using a mismatched AMI LM to decode the unsupervised

target-domain data from Tedlium corpus.

We see that this approach also scales well to large unsupervised data based

on the results in Table 5.7. Comparing the semi-supervised multitask training

results with the Supervised How2 system results, we see that using 2200

13It should be noted that with 2400 hours of data, we trained a much larger neural network
model with 5 LSTM layers instead of just 4 as in the Aspire baseline, which might have
contributing to the better results using multitask training.
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hours of unsupervised target-domain How2 data (along with 452 hours of

supervised source-domain Tedlium data), we can get a WER close to that

obtained using 300 hours of supervised target-domain How2 data. This shows

the utility of unsupervised target-domain data compared to the supervised

target-domain data, which is much harder to obtain. Furthermore, this is a

significant 2.5% absolute improvement (1.6% after RNNLM rescoring) over

the Tedlium baseline trained on only the out-of-target-domain Tedlium.

As can be seen in Table 5.8, for adaptation to Fearless steps corpus, we

get a 10% relative improvement over an out-of-domain Aspire baseline (38.8

to 33.9). But the improvement is likely limited because of the lack of a good

in-domain LM matched to the Fearless steps corpus. Further, experimentation

is need here with better or improved LM to see if we can benefit from the large

amount of unsupervised data.
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Chapter 6

Conclusion and future work

6.1 Conclusions

In this thesis, we proposed various approaches for semi-supervised sequence

training of acoustic models for automatic speech recognition. In the first part,

we focused on the conventional lattice-based sequence discriminative training

framework. We proposed to minimize the lattice entropy, which is analogous

to the MMI objective in the semi-supervised training scenario. The lattice

allows to incorporate uncertainties in the hypothesis, without requiring a

confidence-based filtering of utterances. While the standard objectives like

sMBR degraded the performance when applied to unsupervised data using

just a single best transcript, the proposed approach still gave an improvement.

The proposed approach gave a WER recovery rate of 25% combined over

Fisher English test sets relative to the WER improvement obtained using

sMBR objective with the oracle transcription.

In the next part, we focused on extending the lattice-free MMI objective

to the semi-supervised training scenario. We explored various methods of
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creating the supervision for computing the numerator of LF-MMI objective.

We introduced a “smart” splitting approach which correctly splits the lattice

into chunks while accounting for the appropriate initial and final scores at the

beginning and ends of chunks. We found that it is important for the super-

vision to have alternative phone sequences for each word sequence to cover

the different pronunciation variations of the words as well as the position

and durations of optional silences. This gave a consistent improvement in

performance on all our setups. We investigated the effect of lattice beam,

scale on word LM scores and applying tolerance on position and duration

of phones in the supervision. A beam of 4.0 with an LM scale of 0.5 on both

word LM and phone LM scores and a tolerance of ±30ms on phone timings

in the supervision was found to be optimal for setups with small amount

of supervised data (15 or 50 hours). But for larger setups with 100 hours of

supervised data, a beam of 2.0 with an LM scale of 0.0 on word LM was the

most beneficial.

Using our proposed semi-supervised training approach with lattice-based

supervision, we were able to recover up to 65% of the WER improvement

possible using oracle transcriptions when using only 15 hours of supervised

data from Fisher English. The WER Recovery Rate (WRR) remained consistent

in the 40-60% range even on large-scale setups with 100 hours of supervised

data and up to 1600 hours of unsupervised data. Lattice-based supervision

was 5-10% absolute better in WRR than 1-best transcription as supervision.

However, since the WERs start saturating upon increasing the amount of data,

increasing to a large amount of unsupervised data showed tiny improvements
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in WER. We also showed that a strong LM is important for generating lattices

used as supervision. Using a strong LM trained on text corpus besides the

supervised data transcripts gave a 5-10% absolutely better WRR than using

an LM trained only on the supervised data transcripts. However, we did

not find a significant improvement with lattice rescoring with higher order

n-gram or RNNLM, and the higher computational cost does not merit the

use of rescoring. Thus, we recommend using a large text corpus to train the

LM for decoding unsupervised data. We finally showed that our proposed

method also works equally well in multiple Babel languages, where we got a

WRR of around 40-50%.

Finally, we looked at the scenario where the unsupervised data is from

a different domain. Here, we first investigated the scenario where there is

parallel data available in source and target domains. In such a case, we

showed that a teacher-student (T-S) learning approach is very effective. Here,

we generated numerator supervision using the teacher network trained on the

source domain and used it to train a student network on the target domain.

We showed experiments on 3 different scenarios – adaptation from clean to

noisy speech, adaptation from 8kHz Fisher to 16kHz AMI-IHM where there is

mismatch in bandwidth, microphone and language domain, and adaptation

from headset microphone to distance microphone condition on both the ICSI

and Mixer 6 corpora.

We showed that T-S learning with multitask training on both supervised

and unsupervised data is significantly better than training only on unsuper-

vised data. This was the case even when there was a big mismatch between
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the data as in the case of Fisher vs AMI. We showed that sequence-KL diver-

gence objective is more robust than LF-MMI and prevents overtraining that is

seen with LF-MMI when training the student network only on unsupervised

data. However, when multitask training was used, the difference was less

significant. Since multitask training was very effective in handling domain

mismatch, we recommend using LF-MMI or an interpolation of LF-MMI and

sequence-KL with a higher weight on LF-MMI. Overall, we showed a good

WER recovery rate of 50% or more for adaptation from clean to noisy and

close-talk to distant microphone. But our proposed T-S learning approach

was not effective by itself in dealing with the adaptation from 8kHz Fisher to

16kHz AMI, because parallel data was not available to handle the different

kinds of mismatch other than bandwidth mismatch.

In general cases, where parallel data is not available in source and target

domains, we showed that the semi-supervised LF-MMI with multitask train-

ing on supervised and unsupervised data can effectively handle the domain

mismatch. Multitask training is more robust than training only on unsuper-

vised data even when initializing from a seed network. By using a language

model trained on the target domain text, we showed that we can effectively

deal with language domain mismatch between source and target data. Using

a matched language model improved WRR from 46% to 64% for adaptation

from AMI-IHM to Tedlium corpus. A matched language model also showed

a higher benefit from adding more unsupervised data to training, while a

mismatched language model did not always show WER improvement on
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adding more unsupervised data. Thus, we recommend using a large exter-

nal LM corpus matched to the target-domain to train an LM for decoding

unsupervised data.

When the language domain of the unsupervised data is different, we also

found that it was better to use different denominator FSTs for computing

the supervised and unsupervised data denominator likelihoods. For this, we

estimated a phone LM using the best path phone sequence hypotheses of

the unsupervised data utterances. However, using separate output layers

degraded the performance, and we conclude that it is better to share all

the layers of network when doing semi-supervised transfer learning with

multitask training.

We also showed results for the applicability of these methods on large scale

unsupervised corpora with natural and realistic speech – the How2 challenge

corpus and the Fearless steps challenge corpus. For adaptation from Tedlium

to How2 corpus, we were able to achieve as much a performance gain as with

300 hours of in-domain supervised data with just 2200 hours of in-domain

completely unsupervised data. This shows that the proposed approach can

greatly reduce the cost and time expensive manual transcription process.

For adaptation to Fearless steps corpus, we were able to get 10% relative

improvement over an out-of-domain Aspire baseline, but the improvement

is likely limited because of the lack of a good in-domain LM matched to the

Fearless steps corpus. Further, experimentation is needed here with better or

improved LM.
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6.2 Future work

6.2.1 Sequence-training objectives beyond MMI

It is generally known that MMI is the simplest sequence-training objective,

this can be improved upon by explicitly incorporating a measure of sequence-

level accuracy into the objective such as in sMBR [34] and boosted MMI [35],

[100]. So, we can expect better improvement by replacing MMI-type objectives

with a more sMBR-like or boosted-MMI objective even for semi-supervised

training. This is done by extending the standard sMBR or boosted-MMI

objectives to compute the expected accuracy w.r.t. a lattice-based supervision

instead of a 1-best path supervision. The sMBR-version is as in (6.1), where π

is a HMM state sequence and the summation is over all state sequences. In

the conventional sequence discriminative training, this summation is over a

lattice referred to as the denominator lattice. In the lattice-free framework, this

summation is over a full HMM that is represented as a denominator FST, GDen,

as described in Section 2.6.2 and the lattice L(r) is converted into a numerator

graph GNum(L(r)) as described in Section 2.6.3. In this case, we can call the

objective as “lattice-free sMBR” and this is as shown in (6.2).

FEsMBR(λ) ≜∑
r

∑
π

P(π | O(r); λ)A(L(r), π), (6.1)

=∑
r

∑
π∈GDen

P(π | O(r); λ)A(GNum(L(r)), π), (6.2)

We can compute the objective and gradients for (6.1) by defining A(L(r), π)
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appropriately:

A(L(r), π) = ∑
t

γt(ρ(at)), (6.3)

where γt(l(at)) is the lattice posterior probability (or numerator posterior

probability in lattice-free sMBR) at time t of senone ρ(at) in lattice L(r), and at

is the HMM state at time i in the HMM state sequence π. If the lattice L(r) has

only one path, then γt(ρ(at)) falls back to an indicator function of the senone

ρ(at) at time t and is same as the conventional sMBR.

We conducted preliminary experiments using this objective on subsets

of the Fisher English corpus. While using this objective by itself degraded

the performance, using a combination of lattice-free sMBR objective with

lattice-free MMI for the unsupervised part of the semi-supervised training

was slightly better than using lattice-free MMI objective. But the difference

was not very significant. We also did not see a similar improvement when we

tried this or lattice-free boosted MMI (LF-bMMI) – for the supervised training.

However, in [101], the authors were able to get about 5% relative improvement

using LF-bMMI. As future work, we could investigate further into using these

objectives for semi-supervised training.

6.2.2 Lightly supervised training

Chapters 3 and 4 dealt with methods for semi-supervised training when

there is a large amount of unsupervised audio available. In some cases, in

addition to the audio, there is also some form of light supervision available.

For example,

1. In the broadcast news scenario, there might be reading scripts available,

115



which might not completely match the audio because of improvisations

by the reader.

2. In TV shows, there might closed captions available, which might not

align with audio segments correctly.

3. In YouTube videos, there might be caption words, which do not form a

full transcript of the audio, but are only a few keywords.

4. In standard ASR corpora, there might be human transcription errors.

The imprecise transcriptions in all these cases are called “light supervision”

and the scenario is called “lightly supervised training”. In this scenario, we

might be able to do better than standard semi-supervised training by making

use of the available light supervision.

In most standard lightly-supervised training approaches, a biased LM is

used to decode the initial audio segments to get best-path hypothesis and these

are aligned with the original transcripts to retrieve the aligned portions for

training. The lattice-free MMI framework in Chapter 4 allows us to use lattice-

based supervision instead of supervision from just a single path. As future

work, we could investigate using this framework to create better supervision

using the biased LM in the lightly-supervised training scenario.
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