

Semiconductor Roadmap and Bioelectronics

Dr. Ralph Cavin Semiconductor Research Corporation

Bioelectronics Roundtable * November 4, 2008

- International Technology Roadmap for Semiconductors (ITRS)
- ITRS Emerging Research Devices (ERD) Chapter
 - Lessons from Nanoelectronics roadmap
 - ERD chapter
- Roadmapping for Bioelectronics?
 - Can we use some ITRS methodology?

SRC International Technology Roadmap for Semiconductors (ITRS)

- A very detailed industrial perspective on the future requirements for micro/nano electronic technologies
 - Goal is to continue exponential gains in performance & price for the next fifteen years
- Built on worldwide consensus of leading industrial, government, and academic technologists
- Provides guidance for the semiconductor industry and for academic research worldwide

SRC International Technology Roadmap NC for Semiconductors (ITRS)

- Contains critical requirements and judgment of status
- Projects that by 2020, half-pitch spacing of metal lines will be 14 nanometers and device gate lengths will be 5 nanometers vs. today's commercially produced 45-nm lines and 25-nm gate lengths.
- Major update every two years

- **1983-1994:** SRC announces ten year research goals
- **1990:** SRC leads in establishing NACS resulting in MICRO TECH 2000 expert meeting; precursor to ITRS
- 1992: National Technology Roadmap for Semiconductors (NTRS) effort led by SRC and SIA defines industry five-year goals
- **1994:** NTRS updated and horizon extended to 15 years
- **1998:** Roadmap is internationalized and becomes the International Roadmap for Semiconductors (ITRS)

Solutions Exist

Solutions Being Pursued

Yellow

No Known Solutions

SSC

CMOS Scaling Challenges (2001)

Table 2a	High F	Performa	ance Log	gic Tech	nology I	Requirem	nents—2	2001 IT	RS	
CALENDAR YEAR	2001	2002	2003	2004	2005	2006	2007	2010	2013	2016
TECHNOLOGY NODE	130nm			90nm			65NM	45nm	32NM	22мм
MPU GATE LENGTH	65	53	45	37	32	30	25	18	13	9
Gate Dielectric Equivalent Oxide Thickness (EOT) (nm) [1]	1.45	1.35	1.35	1.15	1.05	0.95	0.85	0.65	0.50	0.45
Electrical Thickness Adjustment Factor (Gate Depletion and Quantum Effects) (nm) [2]	0.8	0.8	0.8	0.8	0.8	0.8	0.5	0.5	0.5	0.5
Tox Electrical Equivalent (nm) [3]	2.25	2.15	2.15	1.95	1.85	1.75	1.35	1.15	1.00	0.95
Vdd (V) [4]	1.2	1.2	1.1	1.0	0.9	0.9	0.8	0.6	0.5	0.4
Sub-Threshold I-off @25°C (uA/um) [5]	0.01	0.03	0.07	0.1	0.3	0.7	1	3	7	10
Id-NMOS @Vdd (uA/um) [6]	926	1001	924	905	878	961	1076	1218	1523	1465
Required "Technology Improvement" (SOI/Low- Temp/High-mobility) [7]	0%	0%	0%	0%	0%	0%	0%	30%	70%	100%
Rsd Percent of Ideal Channel Resistance (Vdd/IdNMOS with no RSD) [8]	16%	16%	17%	18%	19%	19%	20%	25%	30%	35%
Parasitic Capacitance Percent of Cgate [9]	19%	22%	25%	27%	29%	29%	27%	31%	35%	42%
Intrinsic Frequency (1/Tau) (GHz) [10]	624	764	873	1013	1166	1282	1531	2603	4424	6460
Relative Device Performance [11]	1.0	1.2	1.4	1.6	1.9	2.1	2.5	4.2	7.1	10.3
Relative Device Switching Energy	1.0	0.72	0.45	0.29	0.19	0.17	0.12	0.04	0.02	0.01

Bioelectronics Roundtable * November 4, 2008

SRC History of ERD Roadmap Development

• Began in 2000

- Initial list of candidates 3 pages
- Challenge:
 - Huge constellation of ideas, concept, prototypes etc
 - Different maturity levels
 - Different application time scales
 - Different operating principles
 - Little quantization initially

• Approach:

- Taxonomy building
- Quantitative assessments
- Progress monitoring

Forms the basis for comprehensive selection and evaluation

SRC 2001 Emerging Research Logic Devices

Device	Resonant Tunneling Diode - FET	Single Electron Transistor	Rapid Single Quantum Flux Logic	Quantum Cellular Automata	Ballistic Devices	Nanotube Devices	-O-O- Molecular Devices
Maturity	Demonstrated	Demonstrated	Demonstrated	Demonstrated	Demonstrated	Concept	Concept
Types	3-terminal	Silicon, Metal islands	High Tc Low Tc Superconductors	Electronic QCA Magnetic QCA	3-terminal	FET	
Advantages	Density, Performance, RF	Density, Power, Function	High Speed (GHz), Potentially robust	High functional density, no interconnects	THz operation, might allow analog and digital operation	Density, Power	Identity of individual switches (e.g. size, properties) on sub- nm level. Potential solution to interconnect problem
Challenges	matching of device properties across wafer	New device & system. Room temp operation questionable. Noise (offset charge), lack of drive current	Low temperatures required (even with high Tc), fabrication of complex, dense circuitry	Limited fan out, low temperature, architecture	Impedance matching, operation at room temperature	New device and system, difficult route for fabricating complex circuitry	Thermal and environmental stability; two terminal devices; need for new architectures

The time horizon for entries increases from left to right in this table

SRC 2003 Emerging Research Logic Devices

				× ×				
Device	FET	RSFQ	1D structures	Resonant Tunneling Devices	SET	Molecular	QCA	Spin transistor
Cell Size	100 n m	0.3 µm	100 nm	100 nm	40 nm	Not known	60 nm	100 nm
Density (cm ⁻²)	3E9	1E6	3E9	3E9	6E10	1E12	3E10	3E9
Switch Speed	700 G Hz	1.2 THz	Not known	1 THz	1 GHz	Not known	30 MHz	700 GHz
Circuit Speed	30 GHz	250– 800 GHz	30 GHz	30 GHz	1 GHz	<1 MHz	1 MHz	30 GHz
Switching Energy, J	2×10 ⁻¹⁸	>1.4×10 ⁻¹⁷	2×10 ⁻¹⁸	>2×10 ⁻¹⁸	>1.5×10 ⁻¹⁷	1.3×10 ⁻¹⁶	>1×10 ⁻¹⁸	2×10 ⁻¹⁸
Binary Throughput, GBit/ns/cm ²	86	0.4	86	86	10	N/A	0.06	86

10

SRC 2005 Emerging Research Logic Devices

	Device						<u>ک</u>		
Min. required			FET [B]	1D structures	↔ Resonant Tunneling Devices	SET	Molecular	Ferromagnetic logic	Spin transistor
Best projected Demonstrated	Types		Si CMOS	CNT FET NW FET NW hetero- structures Crossbar nanostructure	RTD-FET RTT	SET	Crossbar latch Molecular transistor Molecular QCA	Moving domain wall M: QCA	Spin transistor
	, Supported	Architectures	Conventional	Conventional and Cross-bar	Conventional and CNN	CNN	Cross-bar and QCA	CNN Reconfigure logic and QCA	Conventional
	Cell Size (spatial pitch) Density (device/cm ²) Switch Speed Circuit Speed	Projected	100 nm	100 nm [C]	100 nm [C]	40 nm [L]	10 nm [Q]	140 nm [U]	100 nm [C]
		Demonstrated	590 nm	~1.5 🛛 m [D]	3µm [H]	~700 nm [M]	~2⊡m [R]	250 nm [V, W]	100 🛛 m [X]
		Projected	1E10	4.5E9	4.5E9	6E10	1E12	5E9	4.5E9
		Demonstrated	2.8E8	4E7	1E7	2E8	2E7	1.6E9	1E4
		Projected	12 THz	6.3 THz [E]	16 THz [I]	10 THz [M]	1 THz [S]	1 GHz [U]	40 GHz [Y]
		Demonstrated	1 THz	200 MHz [F]	700 GHz [J]	2 THz [N]	100 Hz [R]	30 Hz [V, W]	Not known
		Projected	61 GHz	61 GHz [C]	61 GHz [C]	1 GHz [L]	1 GHz [Q]	10 MHz [U]	Not known
		Demonstrated	5.6 GHz	220 Hz [G]	10 GHz [Z]	1 MHz [F]	100 Hz [R]	30 Hz [V]	Not known
	Switching	Projected	3E-18	3E-18	>3E-18	1×10 ⁻¹⁸ [L] [>1.5×10 ⁻¹⁷] [O]	5E-17 [T]	~1E-17 [V]	3E-18
	Energy, J	Demonstrated	1E-16	1E-11 [G]	1E-13 [K]	8×10 ⁻¹⁷ [P] [>1.3×10 ⁻¹⁴] [O]	3E-7 [R]	6E-18 [W]	Not known
	Binary	Projected	238	238 [C]	238 [C]	10	1000	5E-2	Not known
	Throughput, GBit/ns/cm ²	Demonstrated	1.6	1E-8	0.1	2E-4	2E-9	5E-8	Not known
	Operational Temperature Materials System		RT	RT	4.2 – 300 K	20 K [L]	RT	RT	RT
			Si	CNT, Si, Ge, III-V, In ₂ O ₃ , ZnO, TiO ₂ , SiC,	III-V Si-Ge	III-V Si	Organic molecules	Ferromagnetic alloys	Si, III-V, complex metals oxides

Bioelectronics Roundtable * November 4, 2008

Emerging Technology Parametrization

10

- Can we develop a process for a *Bioelectronics Roadmap*?
 - ITRS methodology might be helpful
- Procedure:
 - Selection
 - Categorization/Taxonomy
 - Assessment
 - Need to be as quantitative as possible

- Initial Selection/Categorization exercise
 - Based on the input from BERT participants

Selected Cross-Cut Research Needs

- Immune system reaction to bio-electronic implants
- Stimulated adhesion of cells to the sensing surface
- Mechanical stimulation/response of cells
- Bioelectromagnetics
- What else?

