
Chapter 4

Semidefinite programming

Prior to 1984, linear and nonlinear programming,4.1 one a subset of the other,
had evolved for the most part along unconnected paths, without even a common
terminology. (The use of “programming” to mean “optimization” serves as a
persistent reminder of these differences.)

−Forsgren, Gill, & Wright, 2002 [158]

Given some practical application of convex analysis, it may at first seem puzzling why
a search for its solution ends abruptly with a formalized statement of the problem itself
as a constrained optimization. The explanation is: typically we do not seek analytical
solution because there are relatively few. (§3.5.2, §C) If a problem can be expressed in
convex form, rather, then there exist computer programs providing efficient numerical
global solution. [183] [423] [424] [422] [367] [353] The goal, then, becomes conversion of a
given problem (perhaps a nonconvex or combinatorial problem statement) to an equivalent
convex form or to an alternation of convex subproblems convergent to a solution of the
original problem:

By the fundamental theorem of Convex Optimization, any locally optimal point
(solution) of a convex problem is globally optimal. [63, §4.2.2] [324, §1] Given convex real
objective function g and convex feasible set D⊆dom g , which is the set of all variable
values satisfying the problem constraints, we pose a generic convex optimization problem

minimize
X

g(X)

subject to X∈ D
(685)

4.1 nascence of polynomial-time interior-point methods of solution [382] [420].
Linear programming ⊂ (convex ∩ nonlinear) programming.
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where constraints are abstract here in membership of variable X to convex feasible set
D . Inequality constraint functions of a convex optimization problem are convex while
equality constraint functions are conventionally affine, but not necessarily so. Affine
equality constraint functions, as opposed to the superset of all convex equality constraint
functions having convex level sets (§3.4.0.0.4), make convex optimization tractable.

Similarly, the problem

maximize
X

g(X)

subject to X∈ D
(686)

is called convex were g a real concave function and feasible set D convex. As conversion
to convex form is not always possible, there is much ongoing research to determine which
problem classes have convex expression or relaxation. [35] [61] [165] [294] [363] [162]

4.1 Conic problem

Still, we are surprised to see the relatively small number of submissions to
semidefinite programming (SDP) solvers, as this is an area of significant
current interest to the optimization community. We speculate that semidefinite
programming is simply experiencing the fate of most new areas: Users have yet
to understand how to pose their problems as semidefinite programs, and the lack
of support for SDP solvers in popular modelling languages likely discourages
submissions.

−SIAM News, 2002. [126, p.9]

(confer p.140) Consider a conic problem (p) and its dual (d): [311, §3.3.1] [255, §2.1] [256]

(p)

minimize
x

cTx

subject to x ∈ K
Ax = b

maximize
y,s

bTy

subject to s ∈ K∗

ATy + s = c

(d) (301)

where K is a closed convex cone, K∗ is its dual, matrix A is fixed, and the remaining
quantities are vectors.

When K is a polyhedral cone (§2.12.1), then each conic problem becomes a linear
program; the selfdual nonnegative orthant providing the prototypical primal linear
program and its dual. [98, §3-1]4.2 More generally, each optimization problem is convex
when K is a closed convex cone. Solution to each convex problem is not necessarily
unique; the optimal solution sets {x⋆} and {y⋆, s⋆} are convex and may comprise more
than a single point.

4.2Dantzig explains reasoning behind a nonnegativity constraint: . . .negative quantities of activities are
not possible. . . . a negative number of cases cannot be shipped.
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4.1.1 a semidefinite program

When K is the selfdual cone of positive semidefinite matrices Sn
+ in the subspace of

symmetric matrices Sn, then each conic problem is called a semidefinite program (SDP);
[294, §6.4] primal problem (P) having matrix variable X∈ Sn while corresponding dual
(D) has slack variable S∈ Sn and vector variable y = [yi]∈Rm : [11] [12, §2] [430, §1.3.8]

(P)

minimize
X∈ S

n
〈C , X 〉

subject to X º 0

A svec X = b

maximize
y∈R

m, S∈S
n

〈b , y〉
subject to S º 0

svec−1(ATy) + S = C

(D) (687)

This is the prototypical semidefinite program and its dual, where matrix C∈ Sn and vector
b∈Rm are fixed as is

A ,





svec(A1)
T

...
svec(Am)T



∈ Rm×n(n+1)/2 (688)

because {Ai∈ Sn, i=1 . . . m} is given. Thus

A svec X =





〈A1 , X 〉
...

〈Am , X 〉





svec−1(ATy) =
m
∑

i=1

yiAi

(689)

The vector inner-product for matrices is defined in the Euclidean/Frobenius sense in the

isomorphic vector space Rn(n+1)/2 ; id est,

〈C , X 〉 , tr(CTX) = svec(C )Tsvec X (38)

where svec X defined by (56) denotes symmetric vectorization.

In a national planning problem of some size, one may easily run into several
hundred variables and perhaps a hundred or more degrees of freedom. . . . It
should always be remembered that any mathematical method and particularly
methods in linear programming must be judged with reference to the type of
computing machinery available. Our outlook may perhaps be changed when we
get used to the super modern, high capacity electronic computor that will be
available here from the middle of next year. −Ragnar Frisch [160]

The Simplex method of solution for linear programming, invented by Dantzig in
1947 [98], is now integral to modern technology. The same cannot yet be said for
semidefinite programming whose roots trace back to systems of positive semidefinite linear
inequalities studied by Bellman & Fan in 1963 [32] [108] who provided saddle convergence
criteria. Interior-point methods for numerical solution of linear programs can be traced
back to the logarithmic barrier of Frisch in 1954 and Fiacco & McCormick in 1968 [153].
Karmarkar’s polynomial-time interior-point method sparked a log-barrier renaissance

http://books.google.com/books?hl=en&lr=&id=MuEFJR7Ek4EC&oi=fnd&pg=PA1&dq=bellman+fan+%22on+systems+of+linear+inequalities%22&ots=vopI11HP4C&sig=sHLLFPKMY3YCEFG2VlW3QR4PQ0E
http://www.convexoptimization.com/TOOLS/n1.pdf
http://books.google.com/books?id=sjD_RJfxvr0C&dq=Fiacco+McCormick+Nonlinear+Programming&printsec=frontcover&source=bl&ots=hEBYaqvF15&sig=uq3svbbVpfDbGGyUZioCW24d1MQ&hl=en&ei=1GglS8-9E46StgP-tvTgDg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CA0Q6AEwAA#v=onepage&q=&f=false
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linear program

second-order cone program

semidefinite program

quadratic program

PC

Figure 86: Venn diagram of programming hierarchy. Semidefinite program is a subset
of convex program PC . Semidefinite program subsumes other convex program classes
excepting geometric program. Second-order cone program and quadratic program each
subsume linear program. Nonconvex program \PC comprises those for which convex
equivalents have not yet been found.

in 1984, [291, §11] [420] [382] [294, p.3] but numerical performance of contemporary
general-purpose semidefinite program solvers remains limited: Computational intensity
for dense systems varies as O(m2n) (m constraints ≪ n variables) based on interior-point
methods that produce solutions no more relatively accurate than 1E-8. There are
no solvers capable of handling in excess of n=100,000 variables without significant,
sometimes crippling, loss of precision or time.4.3 [36] [293, p.258] [70, p.3]

Nevertheless, semidefinite programming has recently emerged to prominence because
it admits a new class of problem previously unsolvable by convex optimization techniques,
[61] and because it theoretically subsumes other convex techniques: (Figure 86)
linear programming and quadratic programming and second-order cone programming.4.4

Determination of the Riemann mapping function from complex analysis [303] [30, §8, §13],
for example, can be posed as a semidefinite program.

4.1.2 Maximal complementarity

It has been shown [430, §2.5.3] that contemporary interior-point methods [421] [306]
[294] [12] [63, §11] [158] (developed circa 1990 [165] for numerical solution of semidefinite

4.3Heuristics are not ruled out by SIOPT; indeed I would suspect that most successful methods have
(appropriately described) heuristics under the hood - my codes certainly do. . . . Of course, there are still
questions relating to high-accuracy and speed, but for many applications a few digits of accuracy suffices
and overnight runs for non-real-time delivery is acceptable.

−Nicholas I. M. Gould, Stanford alumnus, SIOPT Editor in Chief
4.4Second-order cone programming was born in the 1990s; it is not posable as a quadratic program. [264]

http://www.stanford.edu/class/ee364a/lectures/unconstrained.pdf
http://www2.isye.gatech.edu/~nemirovs/BeyondTheIPM.ppt
http://www.stanford.edu/group/SOL/alumni.html#alumni
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programs) can converge to a solution of maximal complementarity ; [192, §5] [429] [269]
[172] not a vertex solution but a solution of highest cardinality or rank among all optimal
solutions.4.5

This phenomenon can be explained by recognizing that interior-point methods
generally find solutions relatively interior to a feasible set by design.4.6 [7, p.3] Log barriers
are designed to fail numerically at the feasible set boundary. So low-rank solutions, all
on the boundary, are rendered more difficult to find as numerical error becomes more
prevalent there.

4.1.2.1 Reduced-rank solution

A simple rank reduction algorithm, for construction of a primal optimal solution X⋆ to
(687P) satisfying an upper bound on rank governed by Proposition 2.9.3.0.1, is presented
in §4.3. That proposition asserts existence of feasible solutions with an upper bound
on their rank; [27, §II.13.1] specifically, it asserts an extreme point (§2.6.0.0.1) of primal
feasible set A ∩ Sn

+ satisfies upper bound

rankX ≤
⌊√

8m + 1 − 1

2

⌋

(272)

where, given A∈Rm×n(n+1)/2 and b∈Rm,

A , {X∈ Sn | A svec X = b} (690)

is the affine subset from primal problem (687P).

4.1.2.2 Coexistence of low- and high-rank solutions; analogy

That low-rank and high-rank optimal solutions {X⋆} of (687P) coexist may be grasped
with the following analogy: We compare a proper polyhedral cone S3

+ in R3 (illustrated in

Figure 87) to the positive semidefinite cone S3

+ in isometrically isomorphic R6, difficult
to visualize. The analogy is good:

� int S3

+ is constituted by rank-3 matrices.

intS3
+ has three dimensions.

� boundary ∂S3

+ contains rank-0, rank-1, and rank-2 matrices.

boundary ∂S3
+ contains 0-, 1-, and 2-dimensional faces.

� the only rank-0 matrix resides in the vertex at the origin.

� Rank-1 matrices are in one-to-one correspondence with extreme directions of S3

+

and S3
+ . The set of all rank-1 symmetric matrices in this dimension

{

G ∈ S3

+ | rankG=1
}

(691)

is not a connected set.
4.5This characteristic might be regarded as a disadvantage to interior-point methods of numerical

solution, but this behavior is not certain and depends on solver implementation.
4.6Simplex methods, in contrast, find vertex solutions. [98, p.158] [16, p.2]
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Γ2

Γ1

S3
+

0

A=∂H

C

P

Figure 87: Visualizing positive semidefinite cone in high dimension: Proper polyhedral
cone S3

+⊂R3 representing positive semidefinite cone S3

+⊂ S3 ; analogizing its intersection

S3

+ ∩ ∂H with hyperplane. Number of facets is arbitrary (an analogy not inspired by
eigenvalue decomposition). The rank-0 positive semidefinite matrix corresponds to origin
in R3, rank-1 positive semidefinite matrices correspond to edges of polyhedral cone, rank-2
to facet relative interiors, and rank-3 to polyhedral cone interior. Vertices Γ1 and Γ2 are
extreme points of polyhedron P=∂H ∩ S3

+ , and extreme directions of S3
+ . A given vector

C is normal to another hyperplane (not illustrated but independent w.r.t ∂H) containing
line segment Γ1Γ2 minimizing real linear function 〈C , X 〉 on P . (confer Figure 29,
Figure 33)
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� Rank of a sum of members F +G in Lemma 2.9.2.9.1 and location of a difference
F−G in §2.9.2.12.1 similarly hold for S3

+ and S3
+ .

� Euclidean distance from any particular rank-3 positive semidefinite matrix (in the
cone interior) to the closest rank-2 positive semidefinite matrix (on the boundary)
is generally less than the distance to the closest rank-1 positive semidefinite matrix.
(§7.1.2)

� distance from any point in ∂S3

+ to int S3

+ is infinitesimal (§2.1.7.1.1).

distance from any point in ∂S3
+ to intS3

+ is infinitesimal.

� faces of S3

+ correspond to faces of S3
+ (confer Table 2.9.2.3.1):

k dimF(S3
+) dimF(S3

+) dimF(S3

+∋ rank-k matrix)
0 0 0 0

boundary 1 1 1 1
2 2 3 3

interior 3 3 6 6

Integer k indexes k-dimensional faces F of S3
+ . Positive semidefinite cone S3

+

has four kinds of faces, including cone itself (k = 3, boundary + interior), whose
dimensions in isometrically isomorphic R6 are listed under dimF(S3

+). Smallest

face F(S3

+∋ rank-k matrix) that contains a rank-k positive semidefinite matrix
has dimension k(k + 1)/2 by (222).

� For A equal to intersection of m hyperplanes having linearly independent normals,
and for X∈ S3

+ ∩ A , we have rankX ≤ m ; the analogue to (272).

Proof. With reference to Figure 87: Assume one (m = 1) hyperplane A= ∂H
intersects the polyhedral cone. Every intersecting plane contains at least one matrix
having rank less than or equal to 1 ; id est, from all X∈ ∂H ∩ S3

+ there exists an
X such that rankX≤ 1. Rank 1 is therefore an upper bound in this case.

Now visualize intersection of the polyhedral cone with two (m = 2) hyperplanes
having linearly independent normals. The hyperplane intersection A makes a
line. Every intersecting line contains at least one matrix having rank less than
or equal to 2, providing an upper bound. In other words, there exists a positive
semidefinite matrix X belonging to any line intersecting the polyhedral cone such
that rankX ≤ 2.

In the case of three independent intersecting hyperplanes (m = 3), the hyperplane
intersection A makes a point that can reside anywhere in the polyhedral cone. The
upper bound on a point in S3

+ is also the greatest upper bound: rankX ≤ 3. ¨
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4.1.2.2.1 Example. Optimization over A ∩ S3
+ .

Consider minimization of the real linear function 〈C , X 〉 over

P , A ∩ S3

+ (692)

a polyhedral feasible set;

f⋆
0 , minimize

X
〈C , X 〉

subject to X ∈ A ∩ S3
+

(693)

As illustrated for particular vector C and hyperplane A= ∂H in Figure 87, this linear
function is minimized on any X belonging to the face of P containing extreme points
{Γ1 , Γ2} and all the rank-2 matrices in between; id est, on any X belonging to the face
of P

F(P) = {X | 〈C , X 〉 = f⋆
0 } ∩ A ∩ S3

+ (694)

exposed by the hyperplane {X | 〈C , X 〉 = f⋆
0 }. In other words, the set of all optimal

points X⋆ is a face of P
{X⋆} = F(P) = Γ1Γ2 (695)

comprising rank-1 and rank-2 positive semidefinite matrices. Rank 1 is the upper bound on
existence in the feasible set P for this case m = 1 hyperplane constituting A . The rank-1
matrices Γ1 and Γ2 in face F(P) are extreme points of that face and (by transitivity
(§2.6.1.2)) extreme points of the intersection P as well. As predicted by analogy to
Barvinok’s Proposition 2.9.3.0.1, the upper bound on rank of X existent in the feasible
set P is satisfied by an extreme point. The upper bound on rank of an optimal solution
X⋆ existent in F(P) is thereby also satisfied by an extreme point of P precisely because
{X⋆} constitutes F(P) ;4.7 in particular,

{X⋆∈ P | rankX⋆≤ 1} = {Γ1 , Γ2} ⊆ F(P) (696)

As all linear functions on a polyhedron are minimized on a face, [98] [268] [290] [297] by
analogy we so demonstrate coexistence of optimal solutions X⋆ of (687P) having assorted
rank. 2

4.1.2.3 Previous work

Barvinok showed, [25, §2.2] when given a positive definite matrix C and an arbitrarily
small neighborhood of C comprising positive definite matrices, there exists a matrix C̃
from that neighborhood such that optimal solution X⋆ to (687P) (substituting C̃ ) is an
extreme point of A ∩ Sn

+ and satisfies upper bound (272).4.8 Given arbitrary positive
definite C , this means nothing inherently guarantees that an optimal solution X⋆ to
problem (687P) satisfies (272); certainly nothing given any symmetric matrix C , as the
problem is posed. This can be proved by example:

4.7 and every face contains a subset of the extreme points of P by the extreme existence theorem
(§2.6.0.0.2). This means: because the affine subset A and hyperplane {X | 〈C , X 〉 = f⋆

0 } must intersect
a whole face of P , calculation of an upper bound on rank of X⋆ ignores counting the hyperplane when
determining m in (272).
4.8Further, the set of all such C̃ in that neighborhood is open and dense.
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4.1.2.3.1 Example. (Ye) Maximal Complementarity.
Assume dimension n to be an even positive number. Then the particular instance of
problem (687P),

minimize
X∈ S

n

〈[

I 0
0 2I

]

, X

〉

subject to X º 0

〈I , X 〉 = n

(697)

has optimal solution

X⋆ =

[

2I 0
0 0

]

∈ Sn (698)

with an equal number of twos and zeros along the main diagonal. Indeed, optimal solution
(698) is a terminal solution along the central path taken by the interior-point method as
implemented in [430, §2.5.3]; it is also a solution of highest rank among all optimal solutions
to (697). Clearly, rank of this primal optimal solution exceeds by far a rank-1 solution
predicted by upper bound (272). 2

4.1.2.4 Later developments

This rational example (697) indicates the need for a more generally applicable and simple
algorithm to identify an optimal solution X⋆ satisfying Barvinok’s Proposition 2.9.3.0.1.
We will review such an algorithm in §4.3, but first we provide more background.

4.2 Framework

4.2.1 Feasible sets

Denote by D and D∗ the convex sets of primal and dual points respectively satisfying the
primal and dual constraints in (687), each assumed nonempty;

D =







X∈ Sn
+ |





〈A1 , X 〉
...

〈Am , X 〉



= b







= A ∩ Sn
+

D∗ =

{

S∈ Sn
+ , y = [yi]∈Rm |

m
∑

i=1

yiAi + S = C

}

(699)

These are the primal feasible set and dual feasible set. Geometrically, primal feasible
A ∩ Sn

+ represents an intersection of the positive semidefinite cone Sn
+ with an affine subset

A of the subspace of symmetric matrices Sn in isometrically isomorphic Rn(n+1)/2. A has
dimension n(n+1)/2−m when the vectorized Ai are linearly independent. Dual feasible
set D∗ is a Cartesian product of the positive semidefinite cone with its inverse image
(§2.1.9.0.1) under affine transformation4.9 C−∑

yiAi . Both feasible sets are convex, and

4.9Inequality C−∑

yiAiº 0 follows directly from (687D) (§2.9.0.1.1) and is known as a linear matrix
inequality. (§2.13.5.1.1) Because

∑

yiAi¹C , matrix S is known as a slack variable (a term borrowed
from linear programming [98]) since its inclusion raises this inequality to equality.
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the objective functions are linear on a Euclidean vector space. Hence, (687P) and (687D)
are convex optimization problems.

4.2.1.1 A ∩ Sn
+ emptiness determination via Farkas’ lemma

4.2.1.1.1 Lemma. Semidefinite Farkas’ lemma.
Given set {Ai∈ Sn, i=1 . . . m} , vector b = [bi]∈Rm, and affine subset

(690) A = {X∈ Sn |〈Ai , X 〉= bi , i=1 . . . m} Ä {A svec X |Xº 0} (379) is closed,

then primal feasible set A ∩ Sn
+ is nonempty if and only if yTb≥ 0 holds for each and

every vector y = [yi]∈Rm such that
m
∑

i=1

yiAi º 0.

Equivalently, primal feasible set A ∩ Sn
+ is nonempty if and only if yTb≥ 0 holds for

each and every vector ‖y‖= 1 such that
m
∑

i=1

yiAi º 0. ⋄

Semidefinite Farkas’ lemma provides necessary and sufficient conditions for a set of
hyperplanes to have nonempty intersection A ∩ Sn

+ with the positive semidefinite cone.
Given

A =





svec(A1)
T

...
svec(Am)T



 ∈ Rm×n(n+1)/2 (688)

semidefinite Farkas’ lemma assumes that a convex cone

K = {A svec X | Xº 0} (379)

is closed per membership relation (319) from which the lemma springs: [248, §I] K closure
is attained when matrix A satisfies the cone closedness invariance corollary (p.157). Given
closed convex cone K and its dual from Example 2.13.5.1.1

K∗ = {y |
m

∑

j=1

yjAj º 0} (386)

then we can apply membership relation

b ∈ K ⇔ 〈y , b〉 ≥ 0 ∀ y ∈ K∗ (319)

to obtain the lemma

b ∈ K ⇔ ∃X º 0 Ä A svec X = b ⇔ A ∩ Sn
+ 6= ∅ (700)

b ∈ K ⇔ 〈y , b〉 ≥ 0 ∀ y ∈ K∗ ⇔ A ∩ Sn
+ 6= ∅ (701)

The final equivalence synopsizes semidefinite Farkas’ lemma.

While the lemma is correct as stated, a positive definite version is required for
semidefinite programming [430, §1.3.8] because existence of a feasible solution in the cone
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interior A ∩ int Sn
+ is required by Slater’s condition4.10 to achieve 0 duality gap (optimal

primal−dual objective difference §4.2.3, Figure 62). Geometrically, a positive definite
lemma is required to insure that a point of intersection closest to the origin is not at
infinity; e.g, Figure 48. Then given A∈Rm×n(n+1)/2 having rank m , we wish to detect
existence of nonempty primal feasible set interior to the PSD cone;4.11 (382)

b ∈ intK ⇔ 〈y , b〉 > 0 ∀ y ∈ K∗, y 6= 0 ⇔ A ∩ int Sn
+ 6= ∅ (702)

Positive definite Farkas’ lemma is made from proper cones, K (379) and K∗ (386), and
membership relation (325) for which K closedness is unnecessary:

4.2.1.1.2 Lemma. Positive definite Farkas’ lemma.
Given l.i. set {Ai∈ Sn, i=1 . . . m} and vector b = [bi]∈Rm, make affine set

A = {X∈ Sn |〈Ai , X 〉= bi , i=1 . . . m} (690)

Primal feasible cone interior A ∩ int Sn
+ is nonempty if and only if yTb > 0 holds for each

and every vector y = [yi] 6= 0 such that
m
∑

i=1

yiAi º 0.

Equivalently, primal feasible cone interior A ∩ int Sn
+ is nonempty if and only if yTb > 0

holds for each and every vector ‖y‖= 1 Ä
m
∑

i=1

yiAi º 0. ⋄

4.2.1.1.3 Example. “New” Farkas’ lemma.
Lasserre [248, §III] presented an example in 1995, originally offered by Ben-Israel in 1969
[33, p.378], to support closedness in semidefinite Farkas’ Lemma 4.2.1.1.1:

A ,

[

svec(A1)
T

svec(A2)
T

]

=

[

0 1 0
0 0 1

]

, b =

[

1
0

]

(703)

Intersection A ∩ Sn
+ is practically empty because the solution set

{Xº 0 | A svec X = b} =

{[

α 1√
2

1√
2

0

]

º 0 | α∈R

}

(704)

is positive semidefinite only asymptotically (α→∞). Yet
m
∑

i=1

yiAiº 0 ⇒ yTb≥0 the dual

system erroneously indicates nonempty intersection because K (379) violates a closedness
condition of the lemma; videlicet, for ‖y‖= 1

y1

[

0 1√
2

1√
2

0

]

+ y2

[

0 0
0 1

]

º 0 ⇔ y =

[

0
1

]

⇒ yTb = 0 (705)

4.10Slater’s sufficient constraint qualification is satisfied whenever any primal or dual strictly feasible
solution exists; id est, any point satisfying the respective affine constraints and relatively interior to the
convex cone. [347, §6.6] [42, p.325] If the cone were polyhedral, then Slater’s constraint qualification is
satisfied when any feasible solution exists (relatively interior to the cone or on its relative boundary).
[63, §5.2.3]
4.11Detection of A ∩ int S

n
+ 6= ∅ by examining intK instead is a trick need not be lost.
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On the other hand, positive definite Farkas’ Lemma 4.2.1.1.2 certifies that A ∩ int Sn
+ is

empty; what we need to know for semidefinite programming.
Lasserre suggested addition of another condition to semidefinite Farkas’ lemma

(§4.2.1.1.1) to make a new lemma having no closedness condition. But positive definite
Farkas’ lemma (§4.2.1.1.2) is simpler and obviates the additional condition proposed.

2

4.2.1.2 Theorem of the alternative for semidefinite programming

Because these Farkas’ lemmas follow from membership relations, we may construct
alternative systems from them. Applying the method of §2.13.2.1.1, then from positive
definite Farkas’ lemma we get

A ∩ int Sn
+ 6= ∅

or in the alternative

yTb≤ 0 ,
m
∑

i=1

yiAi º 0 , y 6= 0

(706)

Any single vector y satisfying the alternative certifies A ∩ int Sn
+ is empty. Such a vector

can be found as a solution to another semidefinite program: for linearly independent
(vectorized) set {Ai∈ Sn, i=1 . . . m}

minimize
y

yTb

subject to
m
∑

i=1

yiAi º 0

‖y‖2 ≤ 1

(707)

If an optimal vector y⋆ 6= 0 can be found such that y⋆Tb≤ 0, then primal feasible cone
interior A ∩ int Sn

+ is empty.

4.2.1.3 Boundary-membership criterion

(confer (701)(702)) From boundary-membership relation (329), for proper cones K (379)
and K∗ (386) of linear matrix inequality,

b ∈ ∂K ⇔ ∃ y 6= 0 Ä 〈y , b〉= 0 , y ∈ K∗, b ∈ K ⇔ ∂Sn
+ ⊃ A ∩ Sn

+ 6= ∅ (708)

Whether vector b∈ ∂K belongs to cone K boundary, that is a determination we can indeed
make; one that is certainly expressible as a feasibility problem: Given linearly independent
set4.12 {Ai∈ Sn, i=1 . . . m} , for b∈ K (700)

find y 6= 0

subject to yTb = 0
m
∑

i=1

yiAi º 0

(709)

4.12From the results of Example 2.13.5.1.1, vector b on the boundary of K cannot be detected simply by
looking for 0 eigenvalues in matrix X . We do not consider a skinny-or-square matrix A because then
feasible set A ∩ S

n
+ is at most a single point.
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Any such nonzero solution y certifies that affine subset A (690) intersects the positive
semidefinite cone Sn

+ only on its boundary; in other words, nonempty feasible set A ∩ Sn
+

belongs to the positive semidefinite cone boundary ∂Sn
+ .

4.2.2 Duals

The dual objective function from (687D) evaluated at any feasible solution represents a
lower bound on the primal optimal objective value from (687P). We can see this by direct
substitution: Assume the feasible sets A ∩ Sn

+ and D∗ are nonempty. Then it is always
true:

〈C , X 〉 ≥ 〈b , y〉
〈

∑

i

yiAi + S , X

〉

≥ [ 〈A1 , X 〉 · · · 〈Am , X 〉 ] y

〈S , X 〉 ≥ 0

(710)

The converse also follows because

X º 0 , S º 0 ⇒ 〈S , X 〉 ≥ 0 (1574)

Optimal value of the dual objective thus represents the greatest lower bound on the primal.
This fact is known as the weak duality theorem for semidefinite programming, [430, §1.3.8]
and can be used to detect convergence in any primal/dual numerical method of solution.

4.2.2.1 Dual problem statement is not unique

Even subtle but equivalent restatements of a primal convex problem can lead to vastly
different statements of a corresponding dual problem. This phenomenon is of interest
because a particular instantiation of dual problem might be easier to solve numerically or
it might take one of few forms for which analytical solution is known.

Here is a canonical restatement of prototypical dual semidefinite program (687D), for
example, equivalent by (194):

(D)

maximize
y∈R

m, S∈S
n

〈b , y〉
subject to S º 0

svec−1(ATy) + S = C

≡
maximize

y∈R
m

〈b , y〉
subject to svec−1(ATy) ¹ C

(687D̃)

Dual feasible cone interior in int Sn
+ (699) (689) thereby corresponds with canonical dual

(D̃) feasible interior

rel int D̃∗ ,

{

y∈Rm |
m

∑

i=1

yiAi ≺ C

}

(711)

4.2.2.1.1 Exercise. Primal prototypical semidefinite program.
Derive prototypical primal (687P) from its canonical dual (687D̃); id est, demonstrate that
particular connectivity in Figure 88. H
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P

D

P̃

D̃

duality
duality

transformation

Figure 88: Connectivity indicates paths between particular primal and dual problems from
Exercise 4.2.2.1.1. More generally, any path between primal problems P (and equivalent
P̃) and dual D (and equivalent D̃) is possible: implying, any given path is not necessarily
circuital; dual of a dual problem is not necessarily stated in precisely same manner
as corresponding primal convex problem, in other words, although its solution set is
equivalent to within some transformation.

4.2.3 Optimality conditions

When primal feasible cone interior A ∩ int Sn
+ exists in Sn or when canonical dual

feasible interior rel int D̃∗ exists in Rm, then these two problems (687P) (687D) become
strong duals by Slater’s sufficient condition (p.249). In other words, the primal optimal
objective value becomes equal to the dual optimal objective value: there is no duality gap
(Figure 62) and so determination of convergence is facilitated; id est, if ∃X∈ A ∩ int Sn

+

or ∃ y∈ rel int D̃∗ then

〈C , X⋆〉 = 〈b , y⋆〉
〈

∑

i

y⋆
i Ai + S⋆ , X⋆

〉

= [ 〈A1 , X⋆〉 · · · 〈Am , X⋆〉 ] y⋆

〈S⋆ , X⋆〉 = 0

(712)

where S⋆, y⋆ denote a dual optimal solution.4.13 We summarize this:

4.2.3.0.1 Corollary. Optimality and strong duality. [378, §3.1] [430, §1.3.8]
For semidefinite programs (687P) and (687D), assume primal and dual feasible sets
A ∩ Sn

+⊂ Sn and D∗⊂ Sn× Rm (699) are nonempty. Then

� X⋆ is optimal for (687P)

� S⋆, y⋆ are optimal for (687D)

� duality gap 〈C,X⋆〉−〈b , y⋆〉 is 0

4.13Optimality condition 〈S⋆ , X⋆〉= 0 is called a complementary slackness condition, in keeping with
linear programming tradition [98], that forbids dual inequalities in (687) to simultaneously hold strictly.
[324, §4]
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if and only if

i) ∃X∈ A ∩ int Sn
+ or ∃ y ∈ rel int D̃∗

and

ii) 〈S⋆ , X⋆〉 = 0 ⋄

For symmetric positive semidefinite matrices, requirement ii is equivalent to the
complementarity (§A.7.4)

〈S⋆ , X⋆〉 = 0 ⇔ S⋆X⋆ = X⋆S⋆ = 0 (713)

Commutativity of diagonalizable matrices is a necessary and sufficient condition
[218, §1.3.12] for these two optimal symmetric matrices to be simultaneously
diagonalizable. Therefore

rankX⋆ + rankS⋆ ≤ n (714)

Proof. To see that, the product of symmetric optimal matrices X⋆, S⋆∈ Sn must
itself be symmetric because of commutativity. (1563) The symmetric product has
diagonalization [12, cor.2.11]

S⋆X⋆ = X⋆S⋆ = QΛS⋆ΛX⋆ QT = 0 ⇔ ΛX⋆ΛS⋆ = 0 (715)

where Q is an orthogonal matrix. The product of the nonnegative diagonal Λ matrices can
be 0 if their main diagonal zeros are complementary or coincide. Due only to symmetry,
rankX⋆ = rank ΛX⋆ and rankS⋆ = rank ΛS⋆ for these optimal primal and dual solutions.
(1549) So, because of the complementarity, the total number of nonzero diagonal entries
from both Λ cannot exceed n . ¨

When equality is attained in (714)

rankX⋆ + rankS⋆ = n (716)

there are no coinciding main diagonal zeros in ΛX⋆ΛS⋆ , and so we have what is called
strict complementarity.4.14 Logically it follows that a necessary and sufficient condition
for strict complementarity of an optimal primal and dual solution is

X⋆+ S⋆ ≻ 0 (717)

4.2.3.1 solving primal problem via dual

The beauty of Corollary 4.2.3.0.1 is its conjugacy; id est, one can solve either the primal or
dual problem in (687) and then find a solution to the other via the optimality conditions.
When a dual optimal solution is known, for example, a primal optimal solution is any
primal feasible solution in hyperplane {X | 〈S⋆ , X 〉=0}.

4.14 distinct from maximal complementarity (§4.1.2).
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4.2.3.1.1 Example. Minimal cardinality Boolean. [97] [35, §4.3.4] [363]
(confer Example 4.5.1.5.1) Consider finding a minimal cardinality Boolean solution x to
the classic linear algebra problem Ax = b given noiseless data A∈Rm×n and b∈Rm ;

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(718)

where ‖x‖0 denotes cardinality of vector x (a.k.a 0-norm; not a convex function).
A minimal cardinality solution answers the question: “Which fewest linear combination

of columns in A constructs vector b ?” Cardinality problems have extraordinarily wide
appeal, arising in many fields of science and across many disciplines. [336] [230] [187] [186]
Yet designing an efficient algorithm to optimize cardinality has proved difficult. In this
example, we also constrain the variable to be Boolean. The Boolean constraint forces an
identical solution were the norm in problem (718) instead the 1-norm or 2-norm; id est,
the two problems

(718)

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

=

minimize
x

‖x‖1

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(719)

are the same. The Boolean constraint makes the 1-norm problem nonconvex.
Given data

A =





−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2− 1

3

−9 4 8 1
4

1
9

1
4− 1

9



 , b =





1
1
2
1
4



 (720)

the obvious and desired solution to the problem posed,

x⋆ = e4 ∈ R6 (721)

has norm ‖x⋆‖2 =1 and minimal cardinality; the minimum number of nonzero entries in
vector x . The Matlab backslash command x=A\b , for example, finds

x
M

=

















2
128

0
5

128

0
90
128

0

















(722)

having norm ‖x
M
‖2 =0.7044 . Coincidentally, x

M
is a 1-norm solution; id est, an optimal

solution to
minimize

x
‖x‖1

subject to Ax = b
(517)

http://www.mathworks.com/help/techdoc/ref/mldivide.html
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The pseudoinverse solution (rounded)

x
P

= A†b =

















−0.0456
−0.1881

0.0623
0.2668
0.3770

−0.1102

















(723)

has least norm ‖x
P
‖2 =0.5165 ; id est, the optimal solution to (§E.0.1.0.1)

minimize
x

‖x‖2

subject to Ax = b
(724)

Certainly none of the traditional methods provide x⋆ = e4 (721) because, and in general,
for Ax = b

∥

∥arg inf ‖x‖2

∥

∥

2
≤

∥

∥arg inf ‖x‖1

∥

∥

2
≤

∥

∥arg inf ‖x‖0

∥

∥

2
(725)

We can reformulate this minimal cardinality Boolean problem (718) as a semidefinite
program: First transform the variable

x , (x̂ + 1) 1
2 (726)

so x̂i∈{−1, 1} ; equivalently,

minimize
x̂

‖(x̂ + 1) 1
2‖0

subject to A(x̂ + 1) 1
2 = b

δ(x̂x̂T) = 1

(727)

where δ is the main-diagonal linear operator (§A.1). By assigning (§B.1)

G =

[

x̂
1

]

[ x̂T 1 ]
=

[

X x̂
x̂T 1

]

,

[

x̂x̂T x̂
x̂T 1

]

∈ Sn+1 (728)

problem (727) becomes equivalent to: (Theorem A.3.1.0.7)

minimize
X∈ S

n , x̂∈R
n

1Tx̂

subject to A(x̂ + 1) 1
2 = b

G =

[

X x̂
x̂T 1

]

(º 0)

δ(X) = 1
rankG = 1

(729)

where solution is confined to rank-1 vertices of the elliptope in Sn+1 (§5.9.1.0.1) by the
rank constraint, the positive semidefiniteness, and the equality constraints δ(X)=1. The
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rank constraint makes this problem nonconvex; by removing it4.15 we get the semidefinite
program

minimize
X∈ S

n , x̂∈R
n

1Tx̂

subject to A(x̂ + 1) 1
2 = b

G =

[

X x̂
x̂T 1

]

º 0

δ(X) = 1

(730)

whose optimal solution x⋆ (726) is identical to that of minimal cardinality Boolean problem
(718) if and only if rankG⋆ =1.

Hope4.16 of acquiring a rank-1 solution is not ill-founded because 2n elliptope vertices
have rank 1, and we are minimizing an affine function on a subset of the elliptope
(Figure 144) containing rank-1 vertices; id est, by assumption that the feasible set of
minimal cardinality Boolean problem (718) is nonempty, a desired solution resides on the
elliptope relative boundary at a rank-1 vertex.4.17

For that data given in (720), our semidefinite program solver sdpsol [423] [424]
(accurate in solution to approximately 1E-8)4.18 finds optimal solution to (730)

round(G⋆) =





















1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1

−1 −1 −1 1 −1 −1 1
1 1 1 −1 1 1 −1
1 1 1 −1 1 1 −1

−1 −1 −1 1 −1 −1 1





















(731)

near a rank-1 vertex of the elliptope in Sn+1 (Theorem 5.9.1.0.2); its sorted eigenvalues,

λ(G⋆) =





















6.99999977799099
0.00000022687241
0.00000002250296
0.00000000262974

−0.00000000999738
−0.00000000999875
−0.00000001000000





















(732)

Negative eigenvalues are undoubtedly finite-precision effects. Because the largest
eigenvalue predominates by many orders of magnitude, we can expect to find a good

4.15Relaxed problem (730) can also be derived via Lagrange duality; it is a dual of a dual program [sic ] to
(729). [322] [63, §5, exer.5.39] [416, §IV] [164, §11.3.4] The relaxed problem must therefore be convex
having a larger feasible set; its optimal objective value represents a generally loose lower bound (1778) on
the optimal objective of problem (729).
4.16A more deterministic approach to constraining rank and cardinality is in §4.6.0.0.12.
4.17Confinement to the elliptope can be regarded as a kind of normalization akin to matrix A column
normalization suggested in [131] and explored in Example 4.2.3.1.2.
4.18A typically ignored limitation of interior-point solution methods is their relative accuracy of only about
1E-8 on a machine using 64-bit (double precision) floating-point arithmetic; id est, optimal solution x⋆

cannot be more accurate than square root of machine epsilon (ǫ=2.2204E-16). Nonzero primal−dual
objective difference is not a good measure of solution accuracy.
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approximation to a minimal cardinality Boolean solution by truncating all smaller
eigenvalues. We find, indeed, the desired result (721)

x⋆ = round

































0.00000000127947
0.00000000527369
0.00000000181001
0.99999997469044
0.00000001408950
0.00000000482903

































= e4 (733)

These numerical results are solver dependent; insofar, not all SDP solvers will return a
rank-1 vertex solution. 2

4.2.3.1.2 Example. Optimization over elliptope versus 1-norm polyhedron
for minimal cardinality Boolean Example 4.2.3.1.1.

A minimal cardinality problem is typically formulated via, what is by now, a standard
practice [131] [71, §3.2, §3.4] of column normalization applied to a 1-norm problem
surrogate like (517). Suppose we define a diagonal matrix

Λ ,











‖A(: , 1)‖2 0
‖A(: , 2)‖2

. . .

0 ‖A(: , 6)‖2











∈ S6 (734)

used to normalize the columns (assumed nonzero) of given noiseless data matrix A . Then
approximate the minimal cardinality Boolean problem

minimize
x

‖x‖0

subject to Ax = b

xi ∈ {0, 1} , i=1 . . . n

(718)

as
minimize

ỹ
‖ỹ‖1

subject to AΛ−1ỹ = b
1 º Λ−1ỹ º 0

(735)

where optimal solution
y⋆ = round(Λ−1ỹ⋆) (736)

The inequality in (735) relaxes Boolean constraint yi∈{0, 1} from (718); bounding any
solution y⋆ to a nonnegative unit hypercube whose vertices are binary numbers. Convex
problem (735) is justified by the convex envelope

cenv ‖x‖0 on {x∈Rn | ‖x‖∞≤κ} =
1

κ
‖x‖1 (1455)

Donoho concurs with this particular formulation, equivalently expressible as a linear
program via (513).



258 CHAPTER 4. SEMIDEFINITE PROGRAMMING

Approximation (735) is therefore equivalent to minimization of an affine function (§3.2)
on a bounded polyhedron, whereas semidefinite program

minimize
X∈ S

n , x̂∈R
n

1Tx̂

subject to A(x̂ + 1) 1
2 = b

G =

[

X x̂
x̂T 1

]

º 0

δ(X) = 1

(730)

minimizes an affine function on an intersection of the elliptope with hyperplanes. Although
the same Boolean solution is obtained from this approximation (735) as compared with
semidefinite program (730), when given that particular data from Example 4.2.3.1.1,
Singer confides a counterexample: Instead, given data

A =

[

1 0 1√
2

0 1 1√
2

]

, b =

[

1

1

]

(737)

then solving approximation (735) yields

y⋆ = round













1 − 1√
2

1 − 1√
2

1












=







0

0

1






(738)

(infeasible, with or without rounding, with respect to original problem (718)) whereas
solving semidefinite program (730) produces

round(G⋆) =









1 1 −1 1
1 1 −1 1

−1 −1 1 −1
1 1 −1 1









(739)

with sorted eigenvalues

λ(G⋆) =









3.99999965057264
0.00000035942736

−0.00000000000000
−0.00000001000000









(740)

Truncating all but the largest eigenvalue, from (726) we obtain (confer y⋆)

x⋆ = round









0.99999999625299
0.99999999625299
0.00000001434518







 =





1
1
0



 (741)

the desired minimal cardinality Boolean result. 2

4.2.3.1.3 Exercise. Minimal cardinality Boolean art.
Assess general performance of standard-practice approximation (735) as compared with
the proposed semidefinite program (730). H
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4.2.3.1.4 Exercise. Conic independence.
Matrix A from (720) is full-rank having three-dimensional nullspace. Find its four conically
independent columns. (§2.10) To what part of proper cone K= {Ax | xº 0} does vector
b belong? H

4.2.3.1.5 Exercise. Linear independence.
Show why fat matrix A , from compressed sensing problem (517) or (522), may be regarded
full-rank without loss of generality. In other words: Is a minimal cardinality solution
invariant to linear dependence of rows? H

4.3 Rank reduction

. . . it is not clear generally how to predict rankX⋆ or rankS⋆ before solving
the SDP problem.

−Farid Alizadeh, 1995 [12, p.22]

The premise of rank reduction in semidefinite programming is: an optimal solution X⋆

found does not satisfy Barvinok’s upper bound (272) on rank. The particular numerical
algorithm solving a semidefinite program may have instead returned a high-rank optimal
solution (§4.1.2; e.g, (698)) when a lower-rank optimal solution was expected. Rank
reduction is a means to adjust rank of an optimal solution to (687P), returned by a solver,
until it satisfies Barvinok’s upper bound with the optimal objective value unchanged.

4.3.1 Posit a perturbation of X⋆

Recall from §4.1.2.1, there is an extreme point of A ∩ Sn
+ (690) satisfying upper bound

(272) on rank. [25, §2.2] It is therefore sufficient to locate an extreme point of the
intersection whose primal objective value (687P) is optimal:4.19 [120, §31.5.3] [255, §2.4]
[256] [8, §3] [309]

Consider again affine subset

A = {X∈ Sn | A svec X = b} (690)

where for Ai∈ Sn

A ,





svec(A1)
T

...
svec(Am)T



 ∈ Rm×n(n+1)/2 (688)

Given any optimal solution X⋆ to

minimize
X∈ S

n
〈C , X 〉

subject to X ∈ A ∩ Sn
+

(687P)

4.19There is no known construction for Barvinok’s tighter result (277). −Monique Laurent, 2004
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whose rank does not satisfy upper bound (272), we posit existence of a set of perturbations

{tjBj | tj ∈R , Bj ∈ Sn, j =1 . . . n} (742)

such that, for some 0≤ i≤n and scalars {tj , j =1 . . . i} ,

X⋆+

i
∑

j=1

tjBj (743)

becomes an extreme point of A ∩ Sn
+ and remains an optimal solution of (687P).

Membership of (743) to affine subset A is secured for the ith perturbation by demanding

〈Bi , Aj〉 = 0 , j =1 . . . m (744)

while membership to the positive semidefinite cone Sn
+ is insured by small perturbation

(753). Feasibility of (743) is insured in this manner, optimality is proved in §4.3.3.
The following simple algorithm has very low computational intensity and locates an

optimal extreme point, assuming a nontrivial solution:

4.3.1.0.1 Procedure. Rank reduction. [403]
initialize: Bi = 0 ∀ i
for iteration i=1...n

{
1. compute a nonzero perturbation matrix Bi of X⋆+

i−1
∑

j=1

tjBj

2. maximize ti

subject to X⋆+
i

∑

j=1

tjBj ∈ Sn
+

} ¶

A rank-reduced optimal solution is then

X⋆ ← X⋆+

i
∑

j=1

tjBj (745)

4.3.2 Perturbation form

Perturbations of X⋆ are independent of constants C ∈ Sn and b∈Rm in primal and dual
problems (687). Numerical accuracy of any rank-reduced result, found by perturbation of
an initial optimal solution X⋆, is therefore quite dependent upon initial accuracy of X⋆.

4.3.2.0.1 Definition. Matrix step function. (confer §A.6.5.0.1)
Define the signum-like quasiconcave real function ψ : Sn→ R

ψ(Z ) ,

{

1 , Z º 0
−1 , otherwise

(746)

The value −1 is taken for indefinite or nonzero negative semidefinite argument. △
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Deza & Laurent [120, §31.5.3] prove: every perturbation matrix Bi , i=1 . . . n , is of
the form

Bi = −ψ(Zi)RiZiR
T
i ∈ Sn (747)

where

X⋆ , R1R
T
1 , X⋆+

i−1
∑

j=1

tjBj , RiR
T
i ∈ Sn (748)

where the tj are scalars and Ri∈Rn×ρ is full-rank and skinny where

ρ , rank



X⋆+
i−1
∑

j=1

tjBj



 (749)

and where matrix Zi∈ Sρ is found at each iteration i by solving a very simple feasibility
problem: 4.20

find Zi∈ Sρ

subject to 〈Zi , RT
i AjRi〉 = 0 , j =1 . . . m

(750)

Were there a sparsity pattern common to each member of set {RT
i AjRi∈ Sρ, j =1 . . . m} ,

then a good choice for Zi has 1 in each entry corresponding to a 0 in the pattern; id est,
a sparsity pattern complement. At iteration i

X⋆+

i−1
∑

j=1

tjBj + tiBi = Ri(I − ti ψ(Zi)Zi)R
T
i (751)

By fact (1539), therefore

X⋆+
i−1
∑

j=1

tjBj + tiBi º 0 ⇔ 1 − ti ψ(Zi)λ(Zi) º 0 (752)

where λ(Zi)∈Rρ denotes the eigenvalues of Zi .

Maximization of each ti in step 2 of the Procedure reduces rank of (751) and locates a
new point on the boundary ∂(A ∩ Sn

+) .4.21 Maximization of ti thereby has closed form;

(t⋆i )
−1 = max {ψ(Zi)λ(Zi)j , j =1 . . . ρ} (753)

4.20A simple method of solution is closed-form projection of a random nonzero point on that proper
subspace of isometrically isomorphic R

ρ(ρ+1)/2 specified by the constraints. (§E.5.0.0.6) Such a solution
is nontrivial assuming the specified intersection of hyperplanes is not the origin; guaranteed by
ρ(ρ + 1)/2 > m . Indeed, this geometric intuition about forming the perturbation is what bounds any
solution’s rank from below; m is fixed by the number of equality constraints in (687P) while rank ρ
decreases with each iteration i . Otherwise, we might iterate indefinitely.
4.21This holds because rank of a positive semidefinite matrix in S

n is diminished below n by the number
of its 0 eigenvalues (1549), and because a positive semidefinite matrix having one or more 0 eigenvalues
corresponds to a point on the PSD cone boundary (193). Necessity and sufficiency are due to the facts:
Ri can be completed to a nonsingular matrix (§A.3.1.0.5), and I − ti ψ(Zi)Zi can be padded with zeros
while maintaining equivalence in (751).
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When Zi is indefinite, direction of perturbation (determined by ψ(Zi)) is arbitrary. We
may take an early exit from the Procedure were Zi to become 0 or were ρ to become
equal to 1 (assuming a nontrivial solution) or were

rank
[

svec RT
i A1Ri svec RT

i A2Ri · · · svec RT
i AmRi

]

= ρ(ρ + 1)/2 (754)

(274) which characterizes rank ρ of any [sic ] extreme point in A ∩ Sn
+ . [255, §2.4] [256]

Proof. Assuming the form of every perturbation matrix is indeed (747), then by
(750)

svec Zi ⊥
[

svec(RT
i A1Ri) svec(RT

i A2Ri) · · · svec(RT
i AmRi)

]

(755)

By orthogonal complement we have

rank
[

svec(RT
i A1Ri) · · · svec(RT

i AmRi)
]⊥

+ rank
[

svec(RT
i A1Ri) · · · svec(RT

i AmRi)
]

= ρ(ρ + 1)/2
(756)

When Zi can only be 0, then the perturbation is null because an extreme point has been
found; thus

[

svec(RT
i A1Ri) · · · svec(RT

i AmRi)
]⊥

= 0 (757)

from which the stated result (754) directly follows. ¨

4.3.3 Optimality of perturbed X⋆

We show that the optimal objective value is unaltered by perturbation (747); id est,

〈C , X⋆+
i

∑

j=1

tjBj〉 = 〈C , X⋆〉 (758)

Proof. From Corollary 4.2.3.0.1 we have the necessary and sufficient relationship
between optimal primal and dual solutions under assumption of nonempty primal feasible
cone interior A ∩ int Sn

+ :

S⋆X⋆ = S⋆R1R
T
1 = X⋆S⋆ = R1R

T
1 S⋆ = 0 (759)

This means R(R1) ⊆ N (S⋆) and R(S⋆) ⊆ N (RT
1 ). From (748) and (751) we get the

sequence:

X⋆ = R1R
T
1

X⋆+ t1B1 = R2R
T
2 = R1(I − t1ψ(Z1)Z1)R

T
1

X⋆+ t1B1 + t2B2 = R3R
T
3 = R2(I − t2ψ(Z2)Z2)R

T
2 = R1(I − t1ψ(Z1)Z1)(I − t2ψ(Z2)Z2)R

T
1

...

X⋆+
i

∑

j=1

tjBj = R1

(

i
∏

j=1

(I − tj ψ(Zj)Zj)

)

RT
1

(760)
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Substituting C = svec−1(ATy⋆) + S⋆ from (687),

〈C , X⋆+
i

∑

j=1

tjBj〉 =

〈

svec−1(ATy⋆) + S⋆ , R1

(

i
∏

j=1

(I − tj ψ(Zj)Zj)

)

RT
1

〉

=

〈

m
∑

k=1

y⋆
kAk , X⋆+

i
∑

j=1

tjBj

〉

=

〈

m
∑

k=1

y⋆
kAk + S⋆ , X⋆

〉

= 〈C , X⋆〉

(761)

because 〈Bi , Aj〉=0 ∀ i , j by design (744). ¨

4.3.3.0.1 Example. Aδ(X) = b .
This academic example demonstrates that a solution found by rank reduction can certainly
have rank less than Barvinok’s upper bound (272): Assume a given vector b belongs to
the conic hull of columns of a given matrix A

A =





−1 1 8 1 1

−3 2 8 1
2

1
3

−9 4 8 1
4

1
9



∈ Rm×n , b =





1
1
2
1
4



∈ Rm (762)

Consider the convex optimization problem

minimize
X∈ S5

tr X

subject to X º 0

Aδ(X) = b

(763)

that minimizes the 1-norm of the main diagonal; id est, problem (763) is the same as

minimize
X∈ S5

‖δ(X)‖1

subject to X º 0

Aδ(X) = b

(764)

that finds a solution to Aδ(X) = b . Rank-3 solution X⋆ = δ(x
M

) is optimal, where
(confer (722))

x
M

=













2
128

0
5

128

0
90
128













(765)

Yet upper bound (272) predicts existence of at most a

rank-

(⌊
√

8m + 1 − 1

2

⌋

= 2

)

(766)
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feasible solution from m = 3 equality constraints. To find a lower rank ρ optimal solution
to (763) (barring combinatorics), we invoke Procedure 4.3.1.0.1:

Initialize:

C = I , ρ=3, Aj , δ(A(j , :)) , j =1, 2, 3, X⋆ = δ(x
M

) , m=3, n=5.
{

Iteration i=1:

Step 1: R1 =



















√

2
128 0 0

0 0 0

0
√

5
128 0

0 0 0

0 0
√

90
128



















.

find Z1∈ S3

subject to 〈Z1 , RT
1AjR1〉 = 0 , j =1, 2, 3

(767)

A nonzero randomly selected matrix Z1 , having 0 main diagonal, is a solution
yielding nonzero perturbation matrix B1 . Choose arbitrarily

Z1 = 11T− I ∈ S3 (768)

then (rounding)

B1 =













0 0 0.0247 0 0.1048
0 0 0 0 0

0.0247 0 0 0 0.1657
0 0 0 0 0

0.1048 0 0.1657 0 0













(769)

Step 2: t⋆1 = 1 because λ(Z1)= [−1 −1 2 ]T. So,

X⋆ ← δ(x
M

) + B1 =













2
128 0 0.0247 0 0.1048
0 0 0 0 0

0.0247 0 5
128 0 0.1657

0 0 0 0 0
0.1048 0 0.1657 0 90

128













(770)

has rank ρ←1 and produces the same optimal objective value.

} 2

4.3.3.0.2 Exercise. Rank reduction of maximal complementarity.
Apply rank reduction Procedure 4.3.1.0.1 to the maximal complementarity example
(§4.1.2.3.1). Demonstrate a rank-1 solution; which can certainly be found (by Barvinok’s
Proposition 2.9.3.0.1) because there is only one equality constraint. H



4.4. RANK-CONSTRAINED SEMIDEFINITE PROGRAM 265

4.3.4 thoughts regarding rank reduction

Because rank reduction Procedure 4.3.1.0.1 is guaranteed only to produce another
optimal solution conforming to Barvinok’s upper bound (272), the Procedure will not
necessarily produce solutions of arbitrarily low rank; but if they exist, the Procedure
can. Arbitrariness of search direction when matrix Zi becomes indefinite, mentioned on
page 262, and the enormity of choices for Zi (750) are liabilities for this algorithm.

4.3.4.1 inequality constraints

The question naturally arises: what to do when a semidefinite program (not in prototypical
form (687))4.22 has linear inequality constraints of the form

αT
i svec X¹ βi , i = 1 . . . k (771)

where {βi} are given scalars and {αi} are given vectors. One expedient way to handle this
circumstance is to convert the inequality constraints to equality constraints by introducing
a slack variable γ ; id est,

αT
i svec X + γi = βi , i = 1 . . . k , γ º 0 (772)

thereby converting the problem to prototypical form.
Alternatively, we say the ith inequality constraint is active when it is met with equality;

id est, when for particular i in (771), αT
i svec X⋆ = βi . An optimal high-rank solution

X⋆ is, of course, feasible (satisfying all the constraints). But for the purpose of rank
reduction, inactive inequality constraints are ignored while active inequality constraints are
interpreted as equality constraints. In other words, we take the union of active inequality
constraints (as equalities) with equality constraints A svec X = b to form a composite
affine subset Â substituting for (690). Then we proceed with rank reduction of X⋆ as
though the semidefinite program were in prototypical form (687P).

4.4 Rank-constrained semidefinite program

We generalize the trace heuristic (§7.2.2.1), for finding low-rank optimal solutions to SDPs
of a more general form:

4.4.1 rank constraint by convex iteration

Consider a semidefinite feasibility problem of the form

find
G∈SN

G

subject to G ∈ C
G º 0
rankG ≤ n

(773)

4.22Contemporary numerical packages for solving semidefinite programs can solve a range of problems
wider than prototype (687). Generally, they do so by transforming a given problem into prototypical form
by introducing new constraints and variables. [12] [424] We are momentarily considering a departure from
the primal prototype that augments the constraint set with linear inequalities.
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where C is a convex set presumed to contain positive semidefinite matrices of rank n
or less; id est, C intersects the positive semidefinite cone boundary. We propose that
this rank-constrained feasibility problem can be equivalently expressed as iteration of the
convex problem sequence (774) and (1800a):

minimize
G∈SN

〈G , W 〉
subject to G ∈ C

G º 0

(774)

where direction vector 4.23 W is an optimal solution to semidefinite program, for
0≤n≤N−1

N
∑

i=n+1

λ(G⋆)i = minimize
W∈ SN

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = N − n

(1800a)

whose feasible set is a Fantope (§2.3.2.0.1), and where G⋆ is an optimal solution to problem
(774) given some iterate W . The idea is to iterate solution of (774) and (1800a) until
convergence as defined in §4.4.1.2:4.24 (confer (810))

N
∑

i=n+1

λ(G⋆)i = 〈G⋆, W ⋆〉 = λ(G⋆)Tλ(W ⋆) , 0 (775)

defines global convergence of the iteration; a vanishing objective that is a certificate of
global optimality but cannot be guaranteed. Optimal direction vector W ⋆ is defined as
any positive semidefinite matrix yielding optimal solution G⋆ of rank n or less to then
convex equivalent (774) of feasibility problem (773):

(773)

find
G∈SN

G

subject to G ∈ C
G º 0
rankG ≤ n

≡
minimize

G∈SN
〈G , W ⋆〉

subject to G ∈ C
G º 0

(774)

id est, any direction vector for which the last N− n nonincreasingly ordered eigenvalues
λ of G⋆ are zero.

In any semidefinite feasibility problem, a solution of least rank must be an extreme
point of the feasible set.4.25 This means there exists a hyperplane supporting the feasible
set at that extreme point. Then there must exist a linear objective function such that this
least-rank feasible solution optimizes the resultant semidefinite program.

4.23Search direction W is a hyperplane-normal pointing opposite to direction of movement describing
minimization of a real linear function 〈G , W 〉 (p.67).
4.24Proposed iteration is neither dual projection (Figure 179) or alternating projection (Figure 183).
Sum of eigenvalues follows from results of Ky Fan (page 567). Inner product of eigenvalues follows from
(1681) and properties of commutative matrix products (page 524).
4.25 which follows by extremes theorem 2.8.1.1.1, by rank of a sum of positive semidefinite matrices (1555)
(257), and by definition of extreme point (167) for which no convex combination can produce it: If a least
rank solution were expressible as a convex combination of feasible points, then there could exist feasible
matrices of lesser rank.
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We emphasize that convex problem (774) is not a relaxation of rank-constrained
feasibility problem (773); at global convergence, convex iteration (774) (1800a) makes
it instead an equivalent problem.

4.4.1.1 direction matrix interpretation

(confer §4.5.1.2) The feasible set of direction matrices in (1800a) is the convex hull of outer
product of all rank-(N− n) orthonormal matrices; videlicet,

conv
{

UUT | U ∈ RN×N−n, UTU = I
}

=
{

A∈ SN | I º A º 0 , 〈I , A 〉= N− n
}

(90)

This set (92), argument to conv{ } , comprises the extreme points of this Fantope (90).
An optimal solution W to (1800a), that is an extreme point, is known in closed form
(p.567): Given ordered diagonalization G⋆ = QΛQT∈ SN

+ (§A.5.1), then direction matrix

W = U⋆U⋆T is optimal and extreme where U⋆ = Q(: , n+1:N)∈RN×N−n. Eigenvalue
vector λ(W ) has 1 in each entry corresponding to the N− n smallest entries of δ(Λ) and
has 0 elsewhere. By (221) (223), polar direction −W can be regarded as pointing toward
the set of all rank-n (or less) positive semidefinite matrices whose nullspace contains that
of G⋆. For that particular closed-form solution W , consequently, (confer (812))

N
∑

i=n+1

λ(G⋆)i = 〈G⋆, W 〉 = λ(G⋆)Tλ(W ) ≥ 0 (776)

This is the connection to cardinality minimization of vectors;4.26 id est, eigenvalue λ
cardinality (rank) is analogous to vector x cardinality via (812): for positive semidefinite X

∑

i λ(X)i = tr X = ‖X‖∗2 ⇔ ‖x‖1
√

∑

i λ(X)2i =
√

trX2 = ‖X‖F ⇔ ‖x‖2

max
i

{λ(X)i} = ‖X‖2 ⇔ ‖x‖∞
(777)

So that this method, for constraining rank, will not be misconstrued under closed-form
solution W to (1800a): Define (confer (221))

Sn , {(I−W )G(I−W ) |G∈ SN} = {X∈ SN | N (X) ⊇ N (G⋆)} (778)

as the symmetric subspace of rank≤n matrices whose nullspace contains N (G⋆).
Then projection of G⋆ on Sn is (I−W )G⋆(I−W ). (§E.7) Direction of projection is
−WG⋆W . (Figure 89) tr(WG⋆W ) is a measure of proximity to Sn because its orthogonal
complement is S⊥

n = {WGW |G∈ SN} ; the point being, convex iteration incorporating
constrained tr(WGW ) = 〈G , W 〉 minimization is not a projection method: certainly, not
on these two subspaces.

4.26 not trace minimization of a nonnegative diagonal matrix δ(x) as in [146, §1] [318, §2]. To make
rank-constrained problem (773) resemble cardinality problem (529), we could make C an affine subset:

find X∈ S
N

subject to A svec X = b
X º 0
rank X ≤ n
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Sn

S⊥
n

(I−W )G⋆(I−W )

WG⋆W

G⋆

Figure 89: (confer Figure 180) Projection of G⋆ on subspace Sn of rank≤n matrices
whose nullspace contains N (G⋆). This direction W is closed-form solution to (1800a).

I

0
S2

+

∂H = {G | 〈G , I 〉 = κ}

Figure 90: (confer Figure 106) Trace heuristic can be interpreted as minimization of a
hyperplane, with normal I , over positive semidefinite cone drawn here in isometrically
isomorphic R3. Polar of direction vector W = I points toward origin.
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Closed-form solution W to problem (1800a), though efficient, comes with a caveat :
there exist cases where this projection matrix solution W does not provide the shortest
route to an optimal rank-n solution G⋆ ; id est, direction W is not unique. So we
sometimes choose to solve (1800a) instead of employing a known closed-form solution.

When direction matrix W = I , as in the trace heuristic for example, then −W points
directly at the origin (the rank-0 PSD matrix, Figure 90). Vector inner-product of an
optimization variable with direction matrix W is therefore a generalization of the trace
heuristic (§7.2.2.1) for rank minimization; −W is instead trained toward the boundary of
the positive semidefinite cone.

4.4.1.2 convergence

We study convergence to ascertain conditions under which a direction matrix will reveal
a feasible solution G , of rank n or less, to semidefinite program (774). Denote by W ⋆

a particular optimal direction matrix from semidefinite program (1800a) such that (775)
holds (feasible rankG≤n found). Then we define global convergence of the iteration (774)
(1800a) to correspond with this vanishing vector inner-product (775) of optimal solutions.

Because this iterative technique for constraining rank is not a projection method, it
can find a rank-n solution G⋆ ((775) will be satisfied) only if at least one exists in the
feasible set of program (774).

4.4.1.2.1 Proof. Suppose 〈G⋆, W 〉= τ is satisfied for some nonnegative constant τ
after any particular iteration (774) (1800a) of the two minimization problems. Once
a particular value of τ is achieved, it can never be exceeded by subsequent iterations
because existence of feasible G and W having that vector inner-product τ has been
established simultaneously in each problem. Because the infimum of vector inner-product
of two positive semidefinite matrix variables is zero, the nonincreasing sequence of
iterations is thus bounded below hence convergent because any bounded monotonic
sequence in R is convergent. [274, §1.2] [43, §1.1] Local convergence to some nonnegative
objective value τ is thereby established. ¨

Local convergence, in this context, means convergence to a fixed point of possibly
infeasible rank. Only local convergence can be established because objective 〈G , W 〉 ,
when instead regarded simultaneously in two variables (G , W ) , is generally multimodal.
(§3.8.0.0.3)

Local convergence, convergence to τ 6= 0 and definition of a stall, never implies
nonexistence of a rank-n feasible solution to (774). A nonexistent rank-n feasible solution
would mean certain failure to converge globally by definition (775) (convergence to τ 6= 0)
but, as proved, convex iteration always converges locally if not globally.

When a rank-n feasible solution to (774) exists, it remains an open problem to
state conditions under which 〈G⋆, W ⋆〉= τ =0 (775) is achieved by iterative solution
of semidefinite programs (774) and (1800a). Then rankG⋆≤ n and pair (G⋆, W ⋆)
becomes a globally optimal fixed point of iteration. There can be no proof of global
convergence because of the implicit high-dimensional multimodal manifold in variables
(G , W ). When stall occurs, direction vector W can be manipulated to steer out;
e.g, reversal of search direction as in Example 4.6.0.0.1, or reinitialization to a random
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rank-(N− n) matrix in the same positive semidefinite cone face (§2.9.2.3) demanded by
the current iterate: given ordered diagonalization G⋆ = QΛQT∈ SN , then W = U⋆ΦU⋆T

where U⋆ = Q(: , n+1:N)∈RN×N−n and where eigenvalue vector λ(W )1:N−n = λ(Φ) has
nonnegative uniformly distributed random entries in (0, 1] by selection of Φ∈SN−n

+ while
λ(W )N−n+1:N = 0. Zero eigenvalues act as memory while randomness largely reduces
likelihood of stall. When this direction works, rank and objective sequence 〈G⋆, W 〉 with
respect to iteration tend to be noisily monotonic.

4.4.1.2.2 Exercise. Completely positive semidefinite matrix. [41]

Given rank-2 positive semidefinite matrix G =





0.50 0.55 0.20
0.55 0.61 0.22
0.20 0.22 0.08



, find a positive

factorization G = XTX (985) by solving

find
X∈R2×3

X ≥ 0

subject to Z =

[

I X
XT G

]

º 0

rankZ ≤ 2

(779)

via convex iteration. H

4.4.1.2.3 Exercise. Nonnegative matrix factorization.

Given rank-2 nonnegative matrix X =





17 28 42
16 47 51
17 82 72



, find a nonnegative factorization

X = WH (780)

by solving
find

A∈S3, B∈S3, W∈R3×2, H∈R2×3

W , H

subject to Z =





I WT H
W A X
HT XT B



º 0

W ≥ 0
H ≥ 0
rankZ ≤ 2

(781)

which follows from the fact, at optimality,

Z⋆ =





I
W
HT





[ I WT H ]

(782)

Use the known closed-form solution for a direction vector Y to regulate rank by convex
iteration; set Z⋆ = QΛQT∈ S8 to an ordered diagonalization and U⋆ = Q(: , 3:8)∈R8×6,
then Y = U⋆U⋆T (§4.4.1.1).



4.4. RANK-CONSTRAINED SEMIDEFINITE PROGRAM 271

Figure 91: Sensor-network localization in R2, illustrating connectivity and circular
radio-range per sensor. Smaller dark grey regions each hold an anchor at their center;
known fixed sensor positions. Sensor/anchor distance is measurable with negligible
uncertainty for sensor within those grey regions. (Graphic by Geoff Merrett)

In summary, initialize Y then iterate numerical solution of (convex) semidefinite
program

minimize
A∈S3, B∈S3, W∈R3×2, H∈R2×3

〈Z , Y 〉

subject to Z =





I WT H
W A X
HT XT B



º 0

W ≥ 0
H ≥ 0

(783)

with Y = U⋆U⋆T until convergence (which is global and occurs in very few iterations for
this instance). H

Now, an application to optimal regulation of affine dimension:

4.4.1.2.4 Example. Sensor-Network Localization and Wireless Location.
Heuristic solution to a sensor-network localization problem, proposed by Carter, Jin,

http://eprints.soton.ac.uk/260546/1/1046.pdf
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Saunders, & Ye in [75],4.27 is limited to two Euclidean dimensions and applies semidefinite
programming (SDP) to little subproblems. There, a large network is partitioned into
smaller subnetworks (as small as one sensor − a mobile point, whereabouts unknown) and
then semidefinite programming and heuristics called spaseloc are applied to localize each
and every partition by two-dimensional distance geometry. Their partitioning procedure
is one-pass, yet termed iterative; a term applicable only insofar as adjoining partitions can
share localized sensors and anchors (absolute sensor positions known a priori). But there
is no iteration on the entire network, hence the term “iterative” is perhaps inappropriate.
As partitions are selected based on “rule sets” (heuristics, not geographics), they also term
the partitioning adaptive. But no adaptation of a partition actually occurs once it has
been determined.

One can reasonably argue that semidefinite programming methods are unnecessary
for localization of small partitions of large sensor networks. [295] [90] In the past, these
nonlinear localization problems were solved algebraically and computed by least squares
solution to hyperbolic equations; called multilateration.4.28 [244] [282] Indeed, practical
contemporary numerical methods for global positioning (GPS) by satellite do not rely on
convex optimization. [308]

Modern distance geometry is inextricably melded with semidefinite programming. The
beauty of semidefinite programming, as relates to localization, lies in convex expression
of classical multilateration: So & Ye showed [338] that the problem of finding unique
solution, to a noiseless nonlinear system describing the common point of intersection of
hyperspheres in real Euclidean vector space, can be expressed as a semidefinite program
via distance geometry.

But the need for SDP methods in Carter & Jin et alii is enigmatic for two more
reasons: 1) guessing solution to a partition whose intersensor measurement data
or connectivity is inadequate for localization by distance geometry, 2) reliance on
complicated and extensive heuristics for partitioning a large network that could instead
be efficiently solved whole by one semidefinite program [240, §3]. While partitions range
in size between 2 and 10 sensors, 5 sensors optimally, heuristics provided are only for
two spatial dimensions (no higher-dimensional heuristics are proposed). For these small
numbers it remains unclarified as to precisely what advantage is gained over traditional
least squares: it is difficult to determine what part of their noise performance is attributable
to SDP and what part is attributable to their heuristic geometry.

Partitioning of large sensor networks is a compromise to rapid growth of SDP
computational intensity with problem size. But when impact of noise on distance
measurement is of most concern, one is averse to a partitioning scheme because noise-effects
vary inversely with problem size. [54, §2.2] (§5.13.2) Since an individual partition’s solution
is not iterated in Carter & Jin and is interdependent with adjoining partitions, we expect
errors to propagate from one partition to the next; the ultimate partition solved, expected
to suffer most.

Heuristics often fail on real-world data because of unanticipated circumstances.

4.27The paper constitutes Jin’s dissertation for University of Toronto [232] although her name appears as
second author. Ye’s authorship is honorary.
4.28

Multilateration − literally, having many sides; shape of a geometric figure formed by nearly intersecting
lines of position. In navigation systems, therefore: Obtaining a fix from multiple lines of position.
Multilateration can be regarded as noisy trilateration.

http://www.stanford.edu/group/SOL/dissertations/holly-thesis.pdf
http://www.convexoptimization.com/TOOLS/multilateration.pdf
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When heuristics fail, generally they are repaired by adding more heuristics. Tenuous
is any presumption, for example, that distance measurement errors have distribution
characterized by circular contours of equal probability about an unknown sensor-location.
(Figure 91) That presumption effectively appears within Carter & Jin’s optimization
problem statement as affine equality constraints relating unknowns to distance
measurements that are corrupted by noise. Yet in most all urban environments, this
measurement noise is more aptly characterized by ellipsoids of varying orientation and
eccentricity as one recedes from a sensor. (Figure 140) Each unknown sensor must
therefore instead be bound to its own particular range of distance, primarily determined
by the terrain.4.29 The nonconvex problem we must instead solve is:

find
i , j ∈ I

{xi , xj}
subject to dij ≤ ‖xi − xj‖2 ≤ dij

(784)

where xi represents sensor location, and where dij and dij respectively represent lower

and upper bounds on measured distance-square from ith to j th sensor (or from sensor
to anchor). Figure 96 illustrates contours of equal sensor-location uncertainty. By
establishing these individual upper and lower bounds, orientation and eccentricity can
effectively be incorporated into the problem statement.

Generally speaking, there can be no unique solution to the sensor-network localization
problem because there is no unique formulation; that is the art of Optimization. Any
optimal solution obtained depends on whether or how a network is partitioned, whether
distance data is complete, presence of noise, and how the problem is formulated. When
a particular formulation is a convex optimization problem, then the set of all optimal
solutions forms a convex set containing the actual or true localization. Measurement
noise precludes equality constraints representing distance. The optimal solution set is
consequently expanded; necessitated by introduction of distance inequalities admitting
more and higher-rank solutions. Even were the optimal solution set a single point, it is
not necessarily the true localization because there is little hope of exact localization by
any algorithm once significant noise is introduced.

Carter & Jin gauge performance of their heuristics to the SDP formulation of author
Biswas whom they regard as vanguard to the art. [15, §1] Biswas posed localization as an
optimization problem minimizing a distance measure. [48] [46] Intuitively, minimization
of any distance measure yields compacted solutions; (confer §6.7.0.0.1) precisely the
anomaly motivating Carter & Jin. Their two-dimensional heuristics outperformed Biswas’
localizations both in execution-time and proximity to the desired result. Perhaps, instead
of heuristics, Biswas’ approach to localization can be improved: [45] [47].

The sensor-network localization problem is considered difficult. [15, §2] Rank
constraints in optimization are considered more difficult. Control of affine dimension
in Carter & Jin is suboptimal because of implicit projection on R2. In what follows, we
present the localization problem as a semidefinite program (equivalent to (784)) having an
explicit rank constraint which controls affine dimension of an optimal solution. We show
how to achieve that rank constraint only if the feasible set contains a matrix of desired
rank. Our problem formulation is extensible to any spatial dimension.

4.29A distinct contour map corresponding to each anchor is required in practice.
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2
3

41

Figure 92: 2-lattice in R2, hand-drawn. Nodes 3 and 4 are anchors; remaining nodes are
sensors. Radio range of sensor 1 indicated by arc.

proposed standardized test

Jin proposes an academic test in two-dimensional real Euclidean space R2 that we adopt.
In essence, this test is a localization of sensors and anchors arranged in a regular triangular
lattice. Lattice connectivity is solely determined by sensor radio range; a connectivity
graph is assumed incomplete. In the interest of test standardization, we propose adoption
of a few small examples: Figure 92 through Figure 95 and their particular connectivity
represented by matrices (785) through (788) respectively.

0 • ? •
• 0 • •
? • 0 ◦
• • ◦ 0

(785)

Matrix entries dot • indicate measurable distance between nodes while unknown
distance is denoted by ? (question mark). Matrix entries hollow dot ◦ represent known
distance between anchors (to high accuracy) while zero distance is denoted 0. Because
measured distances are quite unreliable in practice, our solution to the localization problem
substitutes a distinct range of possible distance for each measurable distance; equality
constraints exist only for anchors.

Anchors are chosen so as to increase difficulty for algorithms dependent on existence
of sensors in their convex hull. The challenge is to find a solution in two dimensions close
to the true sensor positions given incomplete noisy intersensor distance information.
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7

8

91 2

3 4

5 6

Figure 93: 3-lattice in R2, hand-drawn. Nodes 7, 8, and 9 are anchors; remaining nodes
are sensors. Radio range of sensor 1 indicated by arc.

0 • • ? • ? ? • •
• 0 • • ? • ? • •
• • 0 • • • • • •
? • • 0 ? • • • •
• ? • ? 0 • • • •
? • • • • 0 • • •
? ? • • • • 0 ◦ ◦
• • • • • • ◦ 0 ◦
• • • • • • ◦ ◦ 0

(786)



276 CHAPTER 4. SEMIDEFINITE PROGRAMMING

2

9

4

8

10

147

3161

15 5 6

13 11 12

Figure 94: 4-lattice in R2, hand-drawn. Nodes 13, 14, 15, and 16 are anchors; remaining
nodes are sensors. Radio range of sensor 1 indicated by arc.

0 ? ? • ? ? • ? ? ? ? ? ? ? • •
? 0 • • • • ? • ? ? ? ? ? • • •
? • 0 ? • • ? ? • ? ? ? ? ? • •
• • ? 0 • ? • • ? • ? ? • • • •
? • • • 0 • ? • • ? • • • • • •
? • • ? • 0 ? • • ? • • ? ? ? ?
• ? ? • ? ? 0 ? ? • ? ? • • • •
? • ? • • • ? 0 • • • • • • • •
? ? • ? • • ? • 0 ? • • • ? • ?
? ? ? • ? ? • • ? 0 • ? • • • ?
? ? ? ? • • ? • • • 0 • • • • ?
? ? ? ? • • ? • • ? • 0 ? ? ? ?
? ? ? • • ? • • • • • ? 0 ◦ ◦ ◦
? • ? • • ? • • ? • • ? ◦ 0 ◦ ◦
• • • • • ? • • • • • ? ◦ ◦ 0 ◦
• • • • • ? • • ? ? ? ? ◦ ◦ ◦ 0

(787)
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3

16

25

15

17

22

9

421

13 14

18 21 19 20

5 6 24 7 8

10 23 11 12

Figure 95: 5-lattice in R2. Nodes 21 through 25 are anchors.

0 • ? ? • • ? ? • ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
• 0 ? ? • • ? ? ? • ? ? ? ? ? ? ? ? ? ? ? ? ? • •
? ? 0 • ? • • • ? ? • • ? ? ? ? ? ? ? ? ? ? • • •
? ? • 0 ? ? • • ? ? ? • ? ? ? ? ? ? ? ? ? ? ? • ?
• • ? ? 0 • ? ? • • ? ? • • ? ? • ? ? ? ? ? • ? •
• • • ? • 0 • ? • • • ? ? • ? ? ? ? ? ? ? ? • • •
? ? • • ? • 0 • ? ? • • ? ? • • ? ? ? ? ? ? • • •
? ? • • ? ? • 0 ? ? • • ? ? • • ? ? ? ? ? ? ? • ?
• ? ? ? • • ? ? 0 • ? ? • • ? ? • • ? ? ? ? ? ? ?
? • ? ? • • ? ? • 0 • ? • • ? ? ? • ? ? • • • • •
? ? • ? ? • • • ? • 0 • ? • • • ? ? • ? ? • • • •
? ? • • ? ? • • ? ? • 0 ? ? • • ? ? • • ? • • • ?
? ? ? ? • ? ? ? • • ? ? 0 • ? ? • • ? ? • • ? ? ?
? ? ? ? • • ? ? • • • ? • 0 • ? • • • ? • • • • ?
? ? ? ? ? ? • • ? ? • • ? • 0 • ? ? • • • • • • ?
? ? ? ? ? ? • • ? ? • • ? ? • 0 ? ? • • ? • ? ? ?
? ? ? ? • ? ? ? • ? ? ? • • ? ? 0 • ? ? • ? ? ? ?
? ? ? ? ? ? ? ? • • ? ? • • ? ? • 0 • ? • • • ? ?
? ? ? ? ? ? ? ? ? ? • • ? • • • ? • 0 • • • • ? ?
? ? ? ? ? ? ? ? ? ? ? • ? ? • • ? ? • 0 • • ? ? ?
? ? ? ? ? ? ? ? ? • ? ? • • • ? • • • • 0 ◦ ◦ ◦ ◦
? ? ? ? ? ? ? ? ? • • • • • • • ? • • • ◦ 0 ◦ ◦ ◦
? ? • ? • • • ? ? • • • ? • • ? ? • • ? ◦ ◦ 0 ◦ ◦
? • • • ? • • • ? • • • ? • • ? ? ? ? ? ◦ ◦ ◦ 0 ◦
? • • ? • • • ? ? • • ? ? ? ? ? ? ? ? ? ◦ ◦ ◦ ◦ 0

(788)
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M
A
R

K
E
T
 S

t.

Figure 96: Location uncertainty ellipsoid in R2 for each of 15 sensors • within three city
blocks in downtown San Francisco. (Data by Polaris Wireless.)

problem statement

Ascribe points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of a matrix X ;

X = [x1 · · · xN ] ∈ Rn×N (76)

where N is regarded as cardinality of list X . Positive semidefinite matrix XTX , formed
from inner product of the list, is a Gram matrix ; [266, §3.6]

G = XTX =



















‖x1‖2 xT
1x2 xT

1x3 · · · xT
1xN

xT
2x1 ‖x2‖2 xT

2x3 · · · xT
2xN

xT
3x1 xT

3x2 ‖x3‖2 . . . xT
3xN

...
...

. . .
. . .

...
xT
Nx1 xT

Nx2 xT
Nx3 · · · ‖xN‖2



















∈ SN
+ (985)

where SN
+ is the convex cone of N ×N positive semidefinite matrices in the symmetric

matrix subspace SN .

Existence of noise precludes measured distance from the input data. We instead assign
measured distance to a range estimate specified by individual upper and lower bounds: dij

is an upper bound on distance-square from ith to j th sensor, while dij is a lower bound.
These bounds become the input data. Each measurement range is presumed different from
the others because of measurement uncertainty; e.g, Figure 96.

http://www.polariswireless.com
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Our mathematical treatment of anchors and sensors is not dichotomized.4.30 A sensor
position that is known a priori to high accuracy (with absolute certainty) x̌i is called an
anchor. Then the sensor-network localization problem (784) can be expressed equivalently:
Given a number m of anchors and a set of indices I (corresponding to all measurable
distances • ), for 0 < n < N

find
G∈SN , X∈Rn×N

X

subject to dij ≤ 〈G , (ei − ej)(ei − ej)
T〉 ≤ dij ∀(i , j)∈ I

〈G , eie
T
i 〉 = ‖x̌i‖2 , i = N−m + 1 . . . N

〈G , (eie
T
j + ej e

T
i )/2〉 = x̌T

i x̌j , i < j , ∀ i , j∈{N−m + 1 . . . N}
X(: , N−m + 1:N) = [ x̌N−m+1 · · · x̌N ]

Z =

[

I X
XT G

]

º 0

rankZ = n (789)

where ei is the ith member of the standard basis for RN . Distance-square

dij = ‖xi − xj‖2
2 = 〈xi − xj , xi − xj〉 (972)

is related to Gram matrix entries G, [gij ] by vector inner-product

dij = gii + gjj − 2gij

= 〈G , (ei − ej)(ei − ej)
T〉 = tr(GT(ei − ej)(ei − ej)

T)
(987)

hence the scalar inequalities. Each linear equality constraint in G∈ SN represents a
hyperplane in isometrically isomorphic Euclidean vector space RN(N+1)/2, while each
linear inequality pair represents a convex Euclidean body known as slab.4.31 By Schur
complement (§A.4), any solution (G , X) provides comparison with respect to the positive
semidefinite cone

G º XTX (1025)

which is a convex relaxation of the desired equality constraint

[

I X
XT G

]

=

[

I
XT

]

[ I X ]
(1026)

The rank constraint insures this equality holds, by Theorem A.4.0.1.3, thus restricting
solution to Rn. Assuming full-rank solution (list) X

rankZ = rankG = rankX (790)

4.30Wireless location problem thus stated identically; difference being: fewer sensors.
4.31 an intersection of two parallel but opposing halfspaces (Figure 13). In terms of position X , this
distance slab can be thought of as a thick hypershell instead of a hypersphere boundary.
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convex equivalent problem statement

Problem statement (789) is nonconvex because of the rank constraint. We do not eliminate
or ignore the rank constraint; rather, we find a convex way to enforce it: for 0 < n < N

minimize
G∈SN , X∈Rn×N

〈Z , W 〉
subject to dij ≤ 〈G , (ei − ej)(ei − ej)

T〉 ≤ dij ∀(i , j)∈ I
〈G , eie

T
i 〉 = ‖x̌i‖2 , i = N−m + 1 . . . N

〈G , (eie
T
j + ej e

T
i )/2〉 = x̌T

i x̌j , i < j , ∀ i , j∈{N−m + 1 . . . N}
X(: , N−m + 1:N) = [ x̌N−m+1 · · · x̌N ]

Z =

[

I X
XT G

]

º 0 (791)

Convex function trZ is a well-known heuristic whose sole purpose is to represent convex
envelope of rankZ . (§7.2.2.1) In this convex optimization problem (791), a semidefinite
program, we substitute a vector inner-product objective function for trace;

trZ = 〈Z , I 〉 ← 〈Z , W 〉 (792)

a generalization of the trace heuristic for minimizing convex envelope of rank, where
W ∈ SN+n

+ is constant with respect to (791). Matrix W is normal to a hyperplane in

SN+n minimized over a convex feasible set specified by the constraints in (791). Matrix
W is chosen so −W points in direction of rank-n feasible solutions G . For properly
chosen W , problem (791) becomes an equivalent to (789). Thus the purpose of vector
inner-product objective (792) is to locate a rank-n feasible Gram matrix assumed existent
on the boundary of positive semidefinite cone SN

+ , as explained beginning in §4.4.1; how
to choose direction vector W is explained there and in what follows:

direction matrix W

Denote by Z⋆ an optimal composite matrix from semidefinite program (791). Then
for Z⋆∈ SN+n whose eigenvalues λ(Z⋆)∈RN+n are arranged in nonincreasing order,
(Ky Fan)

N+n
∑

i=n+1

λ(Z⋆)i = minimize
W∈ SN+n

〈Z⋆, W 〉
subject to 0 ¹ W ¹ I

trW = N

(1800a)

which has an optimal solution that is known in closed form (p.567, §4.4.1.1). This
eigenvalue sum is zero when Z⋆ has rank n or less.

Foreknowledge of optimal Z⋆, to make possible this search for W , implies iteration;
id est, semidefinite program (791) is solved for Z⋆ initializing W = I or W = 0. Once
found, Z⋆ becomes constant in semidefinite program (1800a) where a new normal direction
W is found as its optimal solution. Then this cycle (791) (1800a) iterates until convergence.
When rankZ⋆ = n , solution via this convex iteration solves sensor-network localization
problem (784) and its equivalent (789).
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Figure 97: Typical solution for 2-lattice in Figure 92 with noise factor η = 0.1 . Two red
rightmost nodes are anchors; two remaining nodes are sensors. Radio range of sensor 1
indicated by arc; radius = 1.14 . Actual sensor indicated by target # while its localization
is indicated by bullet • . Rank-2 solution found in 1 iteration (791) (1800a) subject to
reflection error.
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Figure 98: Typical solution for 3-lattice in Figure 93 with noise factor η = 0.1 . Three red
vertical middle nodes are anchors; remaining nodes are sensors. Radio range of sensor 1
indicated by arc; radius = 1.12 . Actual sensor indicated by target # while its localization
is indicated by bullet • . Rank-2 solution found in 2 iterations (791) (1800a).
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Figure 99: Typical solution for 4-lattice in Figure 94 with noise factor η = 0.1 . Four
red vertical middle-left nodes are anchors; remaining nodes are sensors. Radio range of
sensor 1 indicated by arc; radius = 0.75 . Actual sensor indicated by target # while its
localization is indicated by bullet • . Rank-2 solution found in 7 iterations (791) (1800a).
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Figure 100: Typical solution for 5-lattice in Figure 95 with noise factor η = 0.1 . Five red
vertical middle nodes are anchors; remaining nodes are sensors. Radio range of sensor 1
indicated by arc; radius = 0.56 . Actual sensor indicated by target # while its localization
is indicated by bullet • . Rank-2 solution found in 3 iterations (791) (1800a).
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Figure 101: Typical solution for 10-lattice with noise factor η = 0.1 compares better than
Carter & Jin [75, fig.4.2]. Ten red vertical middle nodes are anchors; the rest are sensors.
Radio range of sensor 1 indicated by arc; radius = 0.25 . Actual sensor indicated by target
# while its localization is indicated by bullet • . Rank-2 solution found in 5 iterations
(791) (1800a).
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Figure 102: Typical localization of 100 randomized noiseless sensors (η = 0) is exact despite
incomplete EDM. Ten red vertical middle nodes are anchors; remaining nodes are sensors.
Radio range of sensor at origin indicated by arc; radius = 0.25 . Actual sensor indicated
by target # while its localization is indicated by bullet • . Rank-2 solution found in 3
iterations (791) (1800a).
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Figure 103: Typical solution for 100 randomized sensors with noise factor η = 0.1 ;
worst measured average sensor error ≈ 0.0044 compares better than Carter & Jin’s 0.0154
computed in 0.71s [75, p.19]. Ten red vertical middle nodes are anchors; same as before.
Remaining nodes are sensors. Interior anchor placement makes localization difficult. Radio
range of sensor at origin indicated by arc; radius = 0.25 . Actual sensor indicated by target
# while its localization is indicated by bullet • . After 1 iteration rankG=92, after 2
iterations rankG=4. Rank-2 solution found in 3 iterations (791) (1800a). (Regular
lattice in Figure 101 is actually harder to solve, requiring more iterations.) Runtime for
SDPT3 [367] under cvx [183] is a few minutes on 2009 vintage laptop Core 2 Duo CPU
(Intel T6400@2GHz, 800MHz FSB).
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numerical solution

In all examples to follow, number of anchors

m =
√

N (793)

equals square root of cardinality N of list X . Indices set I identifying all measurable
distances • is ascertained from connectivity matrix (785), (786), (787), or (788). We
solve iteration (791) (1800a) in dimension n = 2 for each respective example illustrated
in Figure 92 through Figure 95.

In presence of negligible noise, true position is reliably localized for every standardized
example; noteworthy insofar as each example represents an incomplete graph. This implies
that the set of all optimal solutions having least rank must be small.

To make the examples interesting and consistent with previous work, we randomize
each range of distance-square that bounds 〈G , (ei−ej)(ei−ej)

T〉 in (791); id est, for each
and every (i , j)∈ I

dij = dij(1 +
√

3 η χ
l
)2

dij = dij(1 −
√

3 η χ
l+1

)2
(794)

where η = 0.1 is a constant noise factor, χ
l
is the lth sample of a noise process realization

uniformly distributed in the interval (0, 1) like rand(1) from Matlab, and dij is actual
distance-square from ith to j th sensor. Because of distinct function calls to rand() , each
range of distance-square [ dij , dij ] is not necessarily centered on actual distance-square

dij . Unit stochastic variance is provided by factor
√

3.

Figure 97 through Figure 100 each illustrate one realization of numerical solution
to the standardized lattice problems posed by Figure 92 through Figure 95 respectively.
Exact localization, by any method, is impossible because of measurement noise. Certainly,
by inspection of their published graphical data, our results are better than those of
Carter & Jin. (Figure 101, 102, 103) Obviously our solutions do not suffer from those
compaction-type errors (clustering of localized sensors) exhibited by Biswas’ graphical
results for the same noise factor η .

localization example conclusion

Solution to this sensor-network localization problem became apparent by understanding
geometry of optimization. Trace of a matrix, to a student of linear algebra, is perhaps
a sum of eigenvalues. But to us, trace represents the normal I to some hyperplane in
Euclidean vector space. (Figure 90)

Our solutions are globally optimal, requiring: 1) no centralized-gradient postprocessing
heuristic refinement as in [45] because there is effectively no relaxation of (789) at global
optimality, 2) no implicit postprojection on rank-2 positive semidefinite matrices induced
by nonzero G−XTX denoting suboptimality as occurs in [46] [47] [48] [75] [232] [240];
indeed, G⋆ = X⋆TX⋆ by convex iteration.

Numerical solution to noisy problems, containing sensor variables well in excess of
100, becomes difficult via the holistic semidefinite program we proposed. When problem
size is within reach of contemporary general-purpose semidefinite program solvers, then
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the convex iteration we presented inherently overcomes limitations of Carter & Jin with
respect to both noise performance and ability to localize in any desired affine dimension.

The legacy of Carter, Jin, Saunders, & Ye [75] is a sobering demonstration of the need
for more efficient methods for solution of semidefinite programs, while that of So & Ye
[338] forever bonds distance geometry to semidefinite programming. Elegance of our
semidefinite problem statement (791), for constraining affine dimension of sensor-network
localization, should provide some impetus to focus more research on computational
intensity of general-purpose semidefinite program solvers. An approach different from
interior-point methods is required; higher speed and greater accuracy from a simplex-like
solver is what is needed. 2

4.4.1.2.5 Example. Nonnegative spectral factorization. (confer §3.8.1.0.2)
Having found optimal real coefficient vectors v⋆, u⋆ for a sixteenth order magnitude square
transfer function, evaluated along the ω axis (p.229),

|H(ω)|2 = H(ω)H(−ω) =
1 + v⋆

1ω2 + v⋆
2ω4 + . . . + v⋆

8ω16

1 + u⋆
1ω

2 + u⋆
2ω

4 + . . . + u⋆
8ω

16
(657)

we wish to find real coefficients b , a for corresponding Fourier transform

H(ω) =
1 + b1ω + b2(ω)2 + . . . + b8(ω)8

1 + a1ω + a2(ω)2 + . . . + a8(ω)8
(654)

These coefficients b , a , v⋆, u⋆ are related through simultaneous nonlinear algebraic
equations:

v⋆
1 = b2

1 − 2b2 , u⋆
1 = a2

1 − 2a2

v⋆
2 = b2

2 − 2b1b3 + 2b4 , u⋆
2 = a2

2 − 2a1a3 + 2a4

v⋆
3 = b2

3 − 2b2b4 + 2b1b5 − 2b6 , u⋆
3 = a2

3 − 2a2a4 + 2a1a5 − 2a6

v⋆
4 = b2

4 − 2b3b5 + 2b2b6 − 2b1b7 + 2b8 , u⋆
4 = a2

4 − 2a3a5 + 2a2a6 − 2a1a7 + 2a8

v⋆
5 = b2

5 − 2b4b6 + 2b3b7 − 2b2b8 , u⋆
5 = a2

5 − 2a4a6 + 2a3a7 − 2a2a8

v⋆
6 = b2

6 − 2b5b7 + 2b4b8 , u⋆
6 = a2

6 − 2a5a7 + 2a4a8

v⋆
7 = b2

7 − 2b6b8 , u⋆
7 = a2

7 − 2a6a8

v⋆
8 = b2

8 , u⋆
8 = a2

8 (795)

Define a rank-one matrix

G(b),

[

1
b

]

[ 1 bT ]
=





























1 b1 b2 b3 b4 b5 b6 b7 b8

b1 b2
1 b1b2 b1b3 b1b4 b1b5 b1b6 b1b7 b1b8

b2 b1b2 b2
2 b2b3 b2b4 b2b5 b2b6 b2b7 b2b8

b3 b1b3 b2b3 b2
3 b3b4 b3b5 b3b6 b3b7 b3b8

b4 b1b4 b2b4 b3b4 b2
4 b4b5 b4b6 b4b7 b4b8

b5 b1b5 b2b5 b3b5 b4b5 b2
5 b5b6 b5b7 b5b8

b6 b1b6 b2b6 b3b6 b4b6 b5b6 b2
6 b6b7 b6b8

b7 b1b7 b2b7 b3b7 b4b7 b5b7 b6b7 b2
7 b7b8

b8 b1b8 b2b8 b3b8 b4b8 b5b8 b6b8 b7b8 b2
8





























∈ S9 (796)

(Matrix G(a) is similarly defined.) Observe that v⋆ in (795) is formed by summing
antidiagonals of G(b) whose entries alternate sign. A particular sum is specified by a
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8th order Laplace

4th order 4th order

2nd 2nd 2nd 2nd

level

1

2

3

Figure 104: Nonnegative spectral factorization, high order bisection strategy. η =8th order
Laplace transform corresponds to 2η =16th order magnitude square transfer function.
Because numerator v and denominator u are factored separately, number of factorizations
=2(log2(η)−1). In the text, double dots v̈ , ü connote first bifurcation (level 2). Triple
dots

...
v ,

...
u connote second bifurcations (level 3). Factors per level =2level−1.

predetermined symmetric constant matrix Ai (confer (57)) from a set {Ai∈ S9, i=1 . . . 8}.
With

A =





svec(A1)
T

...
svec(A8)

T



∈ R8×9(9+1)/2 (688)

as previously defined in §4.1.1, all the sums (795) may be stated as two linear equalities
A svec G(b)= v⋆ and A svec G(a)=u⋆. Then the problem of finding coefficients b may be
stated as a feasibility problem4.32

find
G∈S9

b ∈ R8

subject to A svec G = v⋆
[

1
b

]

= G(: , 1)

b º 0
(G º 0)
rankG = 1

(797)

The rank-one constraint is handled by convex iteration, as explained in §4.4.1. Positive
semidefiniteness is parenthetical here because, for rank-one matrices, symmetry is
necessary and sufficient (§A.3.1.0.7). 2

4.32 separately from the similar optimization problem to find vector a . Stability requires aº0 with
additional constraints on a . Minimum phase requires bº0 plus more constraints on b that are missing
from problem statement (797). Both stability and minimum phase may be enforced, subsequent to spectral
factorization, by negating positive real parts of poles and zeros respectively in order to move them into
the left half (Laplace) s-plane with no impact to |H(ω)|.
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4.4.1.2.6 Example. Nonnegative spectral factorization II.
The purpose of spectral factorization, in electronics, is to facilitate high order filter
implementation in the form of passive and active circuitry. Cascades of second order
(Laplace) sections are preferred because component sensitivity becomes manageable and
because needed complex poles and zeros cannot be obtained from a first order section.

Nonnegative spectral factorization on a magnitude square transfer function, evaluated
along the ω axis, was performed in Example 4.4.1.2.5 to recover its corresponding Fourier
transform.4.33 In this example, we nonnegatively decompose a high order magnitude
square transfer function into a product of successively lower order magnitude square
transfer functions. Once fourth order magnitude square functions are found, then
corresponding second order Laplace transfer function coefficients are ascertained from
(656) and then passive component values can be determined from those coefficients.

Our strategy, for an eighth order Laplace transfer function, is illustrated in Figure 104.
We begin at the tree’s level 2 factorization. Nonnegative decomposition of a 16th order
magnitude square transfer function into two 8th order functions

1 + v⋆
1ω2 + v⋆

2ω4 + . . . + v⋆
8ω16

1 + u⋆
1ω

2 + u⋆
2ω

4 + . . . + u⋆
8ω

16
=

1 + v̈1ω
2 + v̈2ω

4 + v̈3ω
6 + v̈4ω

8

1 + ü1ω2 + ü2ω4 + ü3ω6 + ü4ω8

1 + v̈5ω
2 + v̈6ω

4 + v̈7ω
6 + v̈8ω

8

1 + ü5ω2 + ü6ω4 + ü7ω6 + ü8ω8

(798)

implies these simultaneous algebraic identifications with known real coefficient vectors
v⋆, u⋆ :

v⋆
1 = v̈1 + v̈5 , u⋆

1 = ü1 + ü5

v⋆
2 = v̈2 + v̈6 + v̈1v̈5 , u⋆

2 = ü2 + ü6 + ü1ü5

v⋆
3 = v̈3 + v̈7 + v̈1v̈6 + v̈2v̈5 , u⋆

3 = ü3 + ü7 + ü1ü6 + ü2ü5

v⋆
4 = v̈4 + v̈8 + v̈1v̈7 + v̈2v̈6 + v̈3v̈5 , u⋆

4 = ü4 + ü8 + ü1ü7 + ü2ü6 + ü3ü5

v⋆
5 = v̈4v̈5 + v̈3v̈6 + v̈2v̈7 + v̈1v̈8 , u⋆

5 = ü4ü5 + ü3ü6 + ü2ü7 + ü1ü8

v⋆
6 = v̈4v̈6 + v̈3v̈7 + v̈2v̈8 , u⋆

6 = ü4ü6 + ü3ü7 + ü2ü8

v⋆
7 = v̈4v̈7 + v̈3v̈8 , u⋆

7 = ü4ü7 + ü3ü8

v⋆
8 = v̈4v̈8 , u⋆

8 = ü4ü8

(799)

Now define a rank-one matrix for the numerator

G(v̈),

[

1
v̈

]

[ 1 v̈T ]
=





























1 v̈1 v̈2 v̈3 v̈4 v̈5 v̈6 v̈7 v̈8

v̈1 v̈2
1 v̈1v̈2 v̈1v̈3 v̈1v̈4 v̈1v̈5 v̈1v̈6 v̈1v̈7 v̈1v̈8

v̈2 v̈1v̈2 v̈2
2 v̈2v̈3 v̈2v̈4 v̈2v̈5 v̈2v̈6 v̈2v̈7 v̈2v̈8

v̈3 v̈1v̈3 v̈2v̈3 v̈2
3 v̈3v̈4 v̈3v̈5 v̈3v̈6 v̈3v̈7 v̈3v̈8

v̈4 v̈1v̈4 v̈2v̈4 v̈3v̈4 v̈2
4 v̈4v̈5 v̈4v̈6 v̈4v̈7 v̈4v̈8

v̈5 v̈1v̈5 v̈2v̈5 v̈3v̈5 v̈4v̈5 v̈2
5 v̈5v̈6 v̈5v̈7 v̈5v̈8

v̈6 v̈1v̈6 v̈2v̈6 v̈3v̈6 v̈4v̈6 v̈5v̈6 v̈2
6 v̈6v̈7 v̈6v̈8

v̈7 v̈1v̈7 v̈2v̈7 v̈3v̈7 v̈4v̈7 v̈5v̈7 v̈6v̈7 v̈2
7 v̈7v̈8

v̈8 v̈1v̈8 v̈2v̈8 v̈3v̈8 v̈4v̈8 v̈5v̈8 v̈6v̈8 v̈7v̈8 v̈2
8





























∈ S9 (800)

(Matrix G(ü) is defined similarly for the denominator.) Terms in (799) are picked
out of G(v̈) by a predetermined symmetric constant matrix Äi (confer (57)) from a set

4.33When there are no poles on the ω axis, a Laplace transform can be recovered from a Fourier transform
by substitution ω←s .
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{Äi∈ S9, i=1 . . . 8}. Populating rows of

A =







svec(Ä1)
T

...

svec(Ä8)
T






∈ R8×9(9+1)/2 (688)

with vectorized Äi (as in §4.1.1), sums (799) are succinctly represented by two linear
equalities A svec G(v̈)= v⋆ and A svec G(ü)=u⋆. Then this spectral factorization in v̈
may be posed as a feasibility problem

find
G∈S9

v̈ ∈ R8

subject to A svec G = v⋆
[

1
v̈

]

= G(: , 1)

v̈ º 0
(G º 0)
rankG = 1

(801)

Having found two 8th order square spectral factors in nonnegative v̈⋆ from (801), two
pairs of 4th order level 3 factors remain to be found:

1 + v̈⋆
1ω2 + v̈⋆

2ω4 + v̈⋆
3ω6 + v̈⋆

4ω8

1 + ü⋆
1ω

2 + ü⋆
2ω

4 + ü⋆
3ω

6 + ü⋆
4ω

8
=

1 +
...
v1ω

2 +
...
v2ω

4

1 +
...
u1ω2 +

...
u2ω4

1 +
...
v3ω

2 +
...
v4ω

4

1 +
...
u3ω2 +

...
u4ω4

(802)

1 + v̈⋆
5ω2 + v̈⋆

6ω4 + v̈⋆
7ω6 + v̈⋆

8ω8

1 + ü⋆
5ω

2 + ü⋆
6ω

4 + ü⋆
7ω

6 + ü⋆
8ω

8
=

1 +
...
v5ω

2 +
...
v6ω

4

1 +
...
u5ω2 +

...
u6ω4

1 +
...
v7ω

2 +
...
v8ω

4

1 +
...
u7ω2 +

...
u8ω4

(803)

v̈⋆
1 =

...
v1 +

...
v3 , ü⋆

1 =
...
u1 +

...
u3

v̈⋆
2 =

...
v2 +

...
v4 +

...
v1

...
v3 , ü⋆

2 =
...
u2 +

...
u4 +

...
u1

...
u3

v̈⋆
3 =

...
v1

...
v4 +

...
v2

...
v3 , ü⋆

3 =
...
u1

...
u4 +

...
u2

...
u3

v̈⋆
4 =

...
v2

...
v4 , ü⋆

4 =
...
u2

...
u4

(804)

v̈⋆
5 =

...
v5 +

...
v7 , ü⋆

5 =
...
u5 +

...
u7

v̈⋆
6 =

...
v6 +

...
v8 +

...
v5

...
v7 , ü⋆

6 =
...
u6 +

...
u8 +

...
u5

...
u7

v̈⋆
7 =

...
v5

...
v8 +

...
v6

...
v7 , ü⋆

7 =
...
u5

...
u8 +

...
u6

...
u7

v̈⋆
8 =

...
v6

...
v8 , ü⋆

8 =
...
u6

...
u8

(805)

G(
...
v),

[

1
...
v

]

[ 1
...
vT ]

=





























1
...
v1

...
v2

...
v3

...
v4

...
v5

...
v6

...
v7

...
v8

...
v1

...
v2
1

...
v1

...
v2

...
v1

...
v3

...
v1

...
v4

...
v1

...
v5

...
v1

...
v6

...
v1

...
v7

...
v1

...
v8

...
v2

...
v1

...
v2

...
v2
2

...
v2

...
v3

...
v2

...
v4

...
v2

...
v5

...
v2

...
v6

...
v2

...
v7

...
v2

...
v8

...
v3

...
v1

...
v3

...
v2

...
v3

...
v2
3

...
v3

...
v4

...
v3

...
v5

...
v3

...
v6

...
v3

...
v7

...
v3

...
v8

...
v4

...
v1

...
v4

...
v2

...
v4

...
v3

...
v4

...
v2
4

...
v4

...
v5

...
v4

...
v6

...
v4

...
v7

...
v4

...
v8

...
v5

...
v1

...
v5

...
v2

...
v5

...
v3

...
v5

...
v4

...
v5

...
v2
5

...
v5

...
v6

...
v5

...
v7

...
v5

...
v8

...
v6

...
v1

...
v6

...
v2

...
v6

...
v3

...
v6

...
v4

...
v6

...
v5

...
v6

...
v2
6

...
v6

...
v7

...
v6

...
v8

...
v7

...
v1

...
v7

...
v2

...
v7

...
v3

...
v7

...
v4

...
v7

...
v5

...
v7

...
v6

...
v7

...
v2
7

...
v7

...
v8

...
v8

...
v1

...
v8

...
v2

...
v8

...
v3

...
v8

...
v4

...
v8

...
v5

...
v8

...
v6

...
v8

...
v7

...
v8

...
v2
8





























∈ S9 (806)
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f(Z)

rankZ

k

wc

w

0

〈Z , W 〉

Figure 105: Regularization curve, parametrized by weight w for real convex objective f
minimization (808) with rank constraint to k by convex iteration, illustrates discontinuity
in f .

Setting

A =







svec(
...
A1)

T

...

svec(
...
A8)

T






∈ R8×9(9+1)/2 (688)

then all level 3 (Figure 104) nonnegative spectral factorization coefficients
...
v are found

at once by solving

find
G∈S9

...
v ∈ R8

subject to A svec G = v̈⋆
[

1
...
v

]

= G(: , 1)

...
v º 0
(G º 0)
rankG = 1

(807)

The feasibility problem to find
...
u is similar. All second order Laplace transfer function

coefficients can be found via (656). 2
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4.4.2 regularization

We test the convex iteration technique, for constraining rank, over a wide range of problems
beyond localization of randomized positions (Figure 103); e.g, stress (§7.2.2.7.1), ball
packing (§5.4.2.2.6), and cardinality (§4.6). We have had some success introducing the
direction matrix inner-product (792) as a regularization term4.34

minimize
Z∈SN

f(Z) + w〈Z , W 〉
subject to Z ∈ C

Z º 0

(808)

minimize
W∈ SN

f(Z⋆) + w〈Z⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = N − n

(809)

whose purpose is to constrain rank, affine dimension, or cardinality:

The abstraction, that is Figure 105, is a synopsis; a broad generalization of
accumulated empirical evidence: There exists a critical (smallest) weight wc • for which a
minimal-rank constraint is just met. Graphical discontinuity can subsequently exist when
there is a range of greater w providing required rank k but not necessarily increasing a
minimization objective function f ; e.g, §4.6.0.0.2. Positive scalar w is chosen via bisection
so that 〈Z ,W 〉 just vanishes.

4.5 Constraining cardinality

The convex iteration technique for constraining rank can be applied to cardinality
problems. There are parallels in its development analogous to how prototypical
semidefinite program (687) resembles linear program (301) on page 240 [421]:

4.5.1 nonnegative variable

Our goal has been to reliably constrain rank in a semidefinite program. There is a direct
analogy to linear programming that is simpler to present but, perhaps, more difficult to
solve. In Optimization, that analogy is known as the cardinality problem.

Consider a feasibility problem Ax = b , but with an upper bound k on cardinality
‖x‖0 of a nonnegative solution x : for A∈Rm×n and vector b∈R(A)

find x ∈ Rn

subject to Ax = b

x º 0

‖x‖0 ≤ k

(529)

4.34 called multiobjective- or vector optimization. Proof of convergence for this convex iteration is identical
to that in §4.4.1.2.1 because f is a convex real function, hence bounded below, and f(Z⋆) is constant in
(809).
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where ‖x‖0 ≤ k means4.35 vector x has at most k nonzero entries; such a vector is
presumed existent in the feasible set. Nonnegativity constraint xº 0 is analogous to
positive semidefiniteness; the notation means vector x belongs to the nonnegative orthant
Rn

+ . Cardinality is quasiconcave on Rn
+ just as rank is quasiconcave on Sn

+ . [63, §3.4.2]

4.5.1.1 direction vector

We propose that cardinality-constrained feasibility problem (529) can be equivalently
expressed as iteration of a sequence of two convex problems: for 0≤k≤n−1

minimize
x∈R

n
〈x , y〉

subject to Ax = b

x º 0

(156)

n
∑

i=k+1

π(x⋆)i = minimize
y∈R

n
〈x⋆, y〉

subject to 0 ¹ y ¹ 1

yT1 = n − k

(524)

where π is the (nonincreasing) presorting function. This sequence is iterated until x⋆Ty⋆

vanishes; id est, until desired cardinality is achieved. But this global convergence cannot
always be guaranteed.4.36

Problem (524) is analogous to the rank constraint problem; (p.266)
N

∑

i=k+1

λ(G⋆)i = minimize
W∈ SN

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = N − k

(1800a)

Linear program (524) sums the n−k smallest entries from vector x . In context of
problem (529), we want n−k entries of x to sum to zero; id est, we want a globally
optimal objective x⋆Ty⋆ to vanish: more generally, (confer (775))

n
∑

i=k+1

π(|x⋆|)i = 〈|x⋆| , y⋆〉 = |x⋆|Ty⋆ , 0 (810)

defines global convergence for the iteration. Then n−k entries of x⋆ are themselves zero
whenever their absolute sum is, and cardinality of x⋆∈ Rn is at most k . Optimal direction
vector y⋆ is defined as any nonnegative vector for which

(529)

find x ∈ Rn

subject to Ax = b

x º 0

‖x‖0 ≤ k

≡
minimize

x∈R
n

〈x , y⋆〉
subject to Ax = b

x º 0

(156)

Existence of such a y⋆, whose nonzero entries are complementary to those of x⋆, is obvious
assuming existence of a cardinality-k solution x⋆.

4.35Although it is a metric (§5.2), cardinality ‖x‖0 cannot be a norm (§3.2) because it is not positively
homogeneous.
4.36When it succeeds, a sequence may be regarded as a homotopy to minimal 0-norm.
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1

0

R3

+

∂H = {x | 〈x , 1〉 = κ}

∂H

Figure 106: (confer Figure 90) 1-norm heuristic for cardinality minimization can be
interpreted as minimization of a hyperplane, ∂H with normal 1, over nonnegative orthant
drawn here in R3. Polar of direction vector y = 1 points toward origin.

4.5.1.2 direction vector interpretation

(confer §4.4.1.1) Vector y may be interpreted as a negative search direction; it points
opposite to direction of movement of hyperplane {x | 〈x , y〉= τ} in a minimization of
real linear function 〈x , y〉 over the feasible set in linear program (156). (p.67) Direction
vector y is not unique. The feasible set of direction vectors in (524) is the convex hull of
all cardinality-(n−k) one-vectors; videlicet,

conv{u∈Rn | cardu = n − k , ui∈{0, 1}} = {a∈Rn | 1 º a º 0 , 〈1 , a〉= n − k} (811)

This set, argument to conv{ } , comprises the extreme points of set (811) which is a
nonnegative hypercube slice. An optimal solution y to (524), that is an extreme point
of its feasible set, is known in closed form: it has 1 in each entry corresponding to the
n−k smallest entries of x⋆ and has 0 elsewhere. That particular polar direction −y can
be interpreted4.37 by Proposition 7.1.3.0.3 as pointing toward the nonnegative orthant
in the Cartesian subspace, whose basis is a subset of the Cartesian axes, containing all
cardinality k (or less) vectors having the same ordering as x⋆. Consequently, for that
closed-form solution, (confer (776))

n
∑

i=k+1

π(|x⋆|)i = 〈|x⋆| , y〉 = |x⋆|Ty ≥ 0 (812)

4.37Convex iteration (156) (524) is not a projection method because there is no thresholding or discard of
variable-vector x entries. An optimal direction vector y must always reside on the feasible set boundary
in (524) page 292; id est, it is ill-advised to attempt simultaneous optimization of variables x and y .
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When y = 1, as in 1-norm minimization for example, then polar direction −y points
directly at the origin (the cardinality-0 nonnegative vector) as in Figure 106. We
sometimes solve (524) instead of employing a known closed form because a direction
vector is not unique. Setting direction vector y instead in accordance with an iterative
inverse weighting scheme, called reweighting [176], was described for the 1-norm by Huo
[223, §4.11.3] in 1999.

4.5.1.3 convergence can mean stalling

Convex iteration (156) (524) always converges to a locally optimal solution, a fixed point
of possibly infeasible cardinality, by virtue of a monotonically nonincreasing real objective
sequence. [274, §1.2] [43, §1.1] There can be no proof of global convergence, defined
by (810). Constraining cardinality, solution to problem (529), can often be achieved but
simple examples can be contrived that stall at a fixed point of infeasible cardinality;
at a positive objective value 〈x⋆, y〉= τ >0. Direction vector y is then manipulated,
as countermeasure, to steer out of local minima; e.g, complete randomization as in
Example 4.5.1.5.1, or reinitialization to a random cardinality-(n−k) vector in the same
nonnegative orthant face demanded by the current iterate: y has nonnegative uniformly
distributed random entries in (0, 1] corresponding to the n−k smallest entries of x⋆

and has 0 elsewhere. Zero entries behave like memory or state while randomness greatly
diminishes likelihood of a stall. When this particular heuristic is successful, cardinality
and objective sequence 〈x⋆, y〉 versus iteration are characterized by noisy monotonicity.

4.5.1.4 algebraic derivation of direction vector for convex iteration

In §3.2.2.1.3, the compressed sensing problem was precisely represented as a nonconvex
difference of convex functions bounded below by 0

find x ∈ Rn

subject to Ax = b
x º 0
‖x‖0 ≤ k

≡
minimize

x∈R
n

‖x‖1 − ‖x‖n
k

subject to Ax = b
x º 0

(529)

where convex k-largest norm ‖x‖n
k

is monotonic on Rn
+ . There we showed how (529) is

equivalently stated in terms of gradients

minimize
x∈R

n

〈

x , ∇‖x‖1 − ∇‖x‖n
k

〉

subject to Ax = b
x º 0

(813)

because
‖x‖1 = xT∇‖x‖1 , ‖x‖n

k
= xT∇‖x‖n

k
, x º 0 (814)

The objective function from (813) is a directional derivative (at x in direction x , §D.1.6,
confer §D.1.4.1.1) of the objective function from (529) while the direction vector of convex
iteration

y = ∇‖x‖1 − ∇‖x‖n
k

(815)
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is an objective gradient where ∇‖x‖1 =∇1Tx = 1 under nonnegativity and

∇‖x‖n
k

= ∇zTx = arg maximize
z∈R

n
zTx

subject to 0 ¹ z ¹ 1
zT1 = k











, x º 0 (532)

is not unique. Substituting 1 − z ← z the direction vector becomes

y = 1 − arg maximize
z∈R

n
zTx ← arg minimize

z∈R
n

zTx

subject to 0 ¹ z ¹ 1 subject to 0 ¹ z ¹ 1
zT1 = k zT1 = n − k

(524)

4.5.1.5 optimality conditions for compressed sensing

Now we see how global optimality conditions can be stated without reference to a dual
problem: From conditions (468) for optimality of (529), it is necessary [63, §5.5.3] that

x⋆ º 0 (1)

Ax⋆ = b (2)

∇‖x⋆‖1 − ∇‖x⋆‖n
k

+ ATν⋆ º 0 (3)

〈∇‖x⋆‖1 − ∇‖x⋆‖n
k

+ ATν⋆, x⋆〉 = 0 (4ℓ)

(816)

These conditions must hold at any optimal solution (locally or globally). By (814), the
fourth condition is identical to

‖x⋆‖1 − ‖x⋆‖n
k

+ ν⋆TAx⋆ = 0 (4ℓ) (817)

Because a 1-norm

‖x‖1 = ‖x‖n
k

+ ‖π(|x|)k+1:n‖1 (818)

is separable into k largest and n−k smallest absolute entries,

‖π(|x|)k+1:n‖1 = 0 ⇔ ‖x‖0 ≤ k (4g) (819)

is a necessary condition for global optimality. By assumption, matrix A is fat and
b 6= 0 ⇒ Ax⋆ 6= 0. This means ν⋆∈ N (AT)⊂ Rm, and ν⋆ = 0 when A is full-rank. By
definition, ∇‖x‖1 º ∇‖x‖n

k
always holds. Assuming existence of a cardinality-k solution,

then only three of the four conditions are necessary and sufficient for global optimality of
(529):

x⋆ º 0 (1)

Ax⋆ = b (2)

‖x⋆‖1 − ‖x⋆‖n
k

= 0 (4g)
(820)

meaning, global optimality of a feasible solution to (529) is identified by a zero objective.
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m > k log2(1+n/k)

minimize
x

‖x‖1

subject to Ax = b
(517)

minimize
x

‖x‖1

subject to Ax = b
x º 0

(522)

Figure 107: For Gaussian random matrix A∈Rm×n, graph illustrates Donoho/Tanner
least lower bound on number of measurements m below which recovery of k-sparse n-length
signal x by linear programming fails with overwhelming probability. Hard problems are
below curve, but not the reverse; id est, failure above depends on proximity. Inequality
demarcates approximation (dashed curve) empirically observed in [24]. Problems having
nonnegativity constraint (dotted) are easier to solve. [133] [134]
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4.5.1.5.1 Example. Sparsest solution to Ax = b . [73] [129]
(confer Example 4.5.2.0.4) Problem (720) has sparsest solution not easily recoverable by
least 1-norm; id est, not by compressed sensing because of proximity to a theoretical lower
bound on number of measurements m depicted in Figure 107: for A∈Rm×n

� Given data from Example 4.2.3.1.1, for m=3, n=6, k=1

A =





−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2− 1

3

−9 4 8 1
4

1
9

1
4− 1

9



 , b =





1
1
2
1
4



 (720)

the sparsest solution to classical linear equation Ax = b is x = e4∈R6 (confer (733)).

Although the sparsest solution is recoverable by inspection, we discern it instead by convex
iteration; namely, by iterating problem sequence (156) (524) on page 292. From the
numerical data given, cardinality ‖x‖0 = 1 is expected. Iteration continues until xTy
vanishes (to within some numerical precision); id est, until desired cardinality is achieved.
But this comes not without a stall.

Stalling, whose occurrence is sensitive to initial conditions of convex iteration, is a
consequence of finding a local minimum of a multimodal objective 〈x , y〉 when regarded
as simultaneously variable in x and y . (§3.8.0.0.3) Stalls are simply detected as fixed
points x of infeasible cardinality, sometimes remedied by reinitializing direction vector y
to a random positive state.

Bolstered by success in breaking out of a stall, we then apply convex iteration to 22,000
randomized problems:

� Given random data for m=3, n=6, k=1, in Matlab notation

A=randn(3 , 6), index=round(5∗rand(1)) + 1, b=rand(1)∗A(: , index) (821)

the sparsest solution x∝eindex is a scaled standard basis vector.

Without convex iteration or a nonnegativity constraint xº 0, rate of failure for this
minimal cardinality problem Ax=b by 1-norm minimization of x is 22%. That failure
rate drops to 6% with a nonnegativity constraint. If we then engage convex iteration,
detect stalls, and randomly reinitialize the direction vector, failure rate drops to 0% but
the amount of computation is approximately doubled. 2

Stalling is not an inevitable behavior. For some problem types (beyond mere Ax = b),
convex iteration succeeds nearly all the time. Here is a cardinality problem, with noise,
whose statement is just a bit more intricate but easy to solve in a few convex iterations:

4.5.1.5.2 Example. Signal dropout. [132, §6.2]
Signal dropout is an old problem; well studied from both an industrial and academic
perspective. Essentially dropout means momentary loss or gap in a signal, while passing
through some channel, caused by some man-made or natural phenomenon. The signal
lost is assumed completely destroyed somehow. What remains within the time-gap is
system or idle channel noise. The signal could be voice over Internet protocol (VoIP), for
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example, audio data from a compact disc (CD) or video data from a digital video disc
(DVD), a television transmission over cable or the airwaves, or a typically ravaged cell
phone communication, etcetera.

Here we consider signal dropout in a discrete-time signal corrupted by additive white
noise assumed uncorrelated to the signal. The linear channel is assumed to introduce
no filtering. We create a discretized windowed signal for this example by positively
combining k randomly chosen vectors from a discrete cosine transform (DCT) basis
denoted Ψ∈Rn×n. Frequency increases, in the Fourier sense, from DC toward Nyquist as
column index of basis Ψ increases. Otherwise, details of the basis are unimportant except
for its orthogonality ΨT = Ψ−1. Transmitted signal is denoted

s = Ψz ∈ Rn (822)

whose upper bound on DCT basis coefficient cardinality card z≤ k is assumed known;4.38

hence a critical assumption: transmitted signal s is sparsely supported (k < n) on the DCT
basis. It is further assumed that nonzero signal coefficients in vector z place each chosen
basis vector above the noise floor.

We also assume that the gap’s beginning and ending in time are precisely localized to
within a sample; id est, index ℓ locates the last sample prior to the gap’s onset, while
index n−ℓ+1 locates the first sample subsequent to the gap: for rectangularly windowed
received signal g possessing a time-gap loss and additive noise η∈Rn

g =





s1:ℓ + η1:ℓ

ηℓ+1:n−ℓ

sn−ℓ+1:n + ηn−ℓ+1:n



∈ Rn (823)

The window is thereby centered on the gap and short enough so that the DCT spectrum
of signal s can be assumed static over the window’s duration n . Signal to noise ratio
within this window is defined

SNR , 20 log

∥

∥

∥

∥

[

s1:ℓ

sn−ℓ+1:n

]∥

∥

∥

∥

‖η‖ (824)

In absence of noise, knowing the signal DCT basis and having a good estimate of basis
coefficient cardinality makes perfectly reconstructing gap-loss easy: it amounts to solving
a linear system of equations and requires little or no optimization; with caveat, number
of equations exceeds cardinality of signal representation (roughly ℓ≥ k) with respect to
DCT basis.

But addition of a significant amount of noise η increases level of difficulty dramatically;
a 1-norm based method of reducing cardinality, for example, almost always returns
DCT basis coefficients numbering in excess of minimal cardinality. We speculate that is
because signal cardinality 2ℓ becomes the predominant cardinality. DCT basis coefficient
cardinality is an explicit constraint to the optimization problem we shall pose: In presence
of noise, constraints equating reconstructed signal f to received signal g are not possible.

4.38This simplifies exposition, although it may be an unrealistic assumption in many applications.
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Figure 108: (a) Signal dropout in signal s corrupted by noise η (SNR =10dB, g = s + η).
Flatline indicates duration of signal dropout. (b) Reconstructed signal f (red) overlaid
with corrupted signal g .
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Figure 109: (a) Error signal power (reconstruction f less original noiseless signal s) is
36dB below s . (b) Original signal s overlaid with reconstruction f (red) from signal g
having dropout plus noise.
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We can instead formulate the dropout recovery problem as a best approximation:

minimize
x∈R

n

∥

∥

∥

∥

[

f1:ℓ − g1:ℓ

fn−ℓ+1:n − gn−ℓ+1:n

]∥

∥

∥

∥

subject to f = Ψx
x º 0
card x ≤ k

(825)

We propose solving this nonconvex problem (825) by moving the cardinality constraint
to the objective as a regularization term as explained in §4.5; id est, by iteration of two
convex problems until convergence:

minimize
x∈R

n
〈x , y〉 +

∥

∥

∥

∥

[

f1:ℓ − g1:ℓ

fn−ℓ+1:n − gn−ℓ+1:n

]∥

∥

∥

∥

subject to f = Ψx
x º 0

(826)

and
minimize

y∈R
n

〈x⋆, y〉
subject to 0 ¹ y ¹ 1

yT1 = n − k

(524)

Signal cardinality 2ℓ is implicit to the problem statement. When number of samples in
the dropout region exceeds half the window size, then that deficient cardinality of signal
remaining becomes a source of degradation to reconstruction in presence of noise. Thus, by
observation, we divine a reconstruction rule for this signal dropout problem to attain good
noise suppression: ℓ must exceed a maximum of cardinality bounds; 2ℓ ≥ max{2k , n/2}.

Figure 108 and Figure 109 show one realization of this dropout problem. Original
signal s is created by adding four (k = 4) randomly selected DCT basis vectors, from
Ψ (n = 500 in this example), whose amplitudes are randomly selected from a uniform
distribution above the noise floor; in the interval [10−10/20, 1]. Then a 240-sample dropout
is realized (ℓ = 130) and Gaussian noise η added to make corrupted signal g (from which
a best approximation f will be made) having 10dB signal to noise ratio (824). The time
gap contains much noise, as apparent from Figure 108a. But in only a few iterations (826)
(524), original signal s is recovered with relative error power 36dB down; illustrated in
Figure 109. Correct cardinality is also recovered (cardx = card z) along with the basis
vector indices used to make original signal s . Approximation error is due to DCT basis
coefficient estimate error. When this experiment is repeated 1000 times on noisy signals
averaging 10dB SNR, the correct cardinality and indices are recovered 99% of the time
with average relative error power 30dB down. Without noise, we get perfect reconstruction
in one iteration. [405, Matlab code] 2

4.5.1.6 Compressed sensing geometry with a nonnegative variable

It is well known that cardinality problem (529), on page 197, is easier to solve by linear
programming when variable x is nonnegatively constrained than when not; e.g, Figure 75,
Figure 107. We postulate a simple geometrical explanation:
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R3

A= {x∈R3 |Ax=b}

F
y

cS = {x | x º 0 , 1Tx ≤ c}

Figure 110: Simplex S is convex hull of origin and all cardinality-1 nonnegative vectors of
unit norm (its vertices). Line A , intersecting two-dimensional (cardinality-2) face F of
nonnegative simplex cS , emerges from cS at a cardinality-1 vertex. S equals nonnegative
orthant R3

+ ∩ 1-norm ball B1 (Figure 74). Kissing point achieved when • (on edge) meets
A as simplex contracts (as scalar c diminishes) under optimization (522).
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Figure 74 illustrates 1-norm ball B1 in R3 and affine subset A defined {x∈R3 |Ax=b}.
Prototypical compressed sensing problem, for A∈Rm×n

minimize
x

‖x‖1

subject to Ax = b
(517)

is solved when the 1-norm ball B1 kisses the affine subset.
If variable x is constrained to the nonnegative orthant

minimize
x∈R

n
‖x‖1

subject to Ax = b
x º 0

≡
minimize

x∈R
n

1Tx

subject to Ax = b
x º 0

≡
minimize
c∈R , x∈R

n
c

subject to Ax = b
x ∈ cS

(522)

then 1-norm ball B1 becomes nonnegative simplex S in Figure 110 where

cS = {[ I∈Rn×n 0∈Rn ]a | aT1= c , aº0} = {x | x º 0 , 1Tx ≤ c} (827)

Nonnegative simplex S is the convex hull of its vertices. All n+1 vertices of S are
constituted by standard basis vectors and the origin. In other words, all its nonzero
extreme points are cardinality-1.

Affine subset A kisses nonnegative simplex c⋆S at optimality of (522). A kissing point
is achieved at x⋆ for optimal c⋆ as B1 or S contracts. Whereas 1-norm ball B1 has
only six vertices in R3 corresponding to cardinality-1 solutions, simplex S has three edges
(along the Cartesian axes) containing an infinity of cardinality-1 solutions. And whereas
B1 has twelve edges containing cardinality-2 solutions, S has three (out of total four)
facets constituting cardinality-2 solutions. In other words, likelihood of a low-cardinality
solution is higher by kissing nonnegative simplex S (522) than by kissing 1-norm ball B1

(517) because facial dimension (corresponding to given cardinality) is higher in S .
Empirically, this observation also holds in other Euclidean dimensions (Figure 75,

Figure 107).

4.5.1.7 cardinality-1 compressed sensing problem always solvable

In the special case of cardinality-1 feasible solution to nonnegative compressed sensing
problem (522), there is a geometrical interpretation that leads to an algorithm.

Figure 110 illustrates a cardinality-1 feasible solution to problem (522) in R3 ; a vertex
solution. But first-octant S of 1-norm ball B1 does not kiss line A ; which would be an
optimality condition. How can we perform optimization and make A intersect S at a
vertex? Assuming that nonnegative cardinality-1 solutions exist in the feasible set, it so
happens:

4.5.1.7.1 Algorithm. Deprecation.
Columns of measurement matrix A , corresponding to high cardinality solution of
(522)4.39 found by Simplex method [98], may be deprecated and the problem solved

4.39Because signed compressed sensing problem (517) can be equivalently expressed in a nonnegative
variable, as we learned in Example 3.2.0.0.1 (p.194), and because a cardinality-1 constraint in (517)
transforms to a cardinality-1 constraint in its nonnegative equivalent (521), then this cardinality-1 recursive
reconstruction algorithm continues to hold for a signed variable as in (517).
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again with those columns missing. Such columns are recursively removed from A until a
cardinality-1 solution is found. ¶

This algorithm intimates that either a solution to problem (522) is cardinality-1 or
column indices of A , corresponding to a higher cardinality solution, do not intersect that
index corresponding to a cardinality-1 feasible solution.

When problem (522) is first solved, in the example of Figure 110, solution is
cardinality-2 at a kissing point on that edge of simplex cS indicated by • . Imagining
that the corresponding cardinality-2 face F has collapsed, as a result of zeroing those two
extreme points whose convex hull constructs that same edge • of F , then the simplex
collapses to a line segment along the y axis. When that line segment kisses A , then the
cardinality-1 vertex solution illustrated has been found.4.40

4.5.1.7.2 Proof (pending). Deprecation algorithm 4.5.1.7.1.
We require proof that a cardinality-1 feasible solution to (522) cannot exist within
a higher cardinality optimal solution found by Simplex method; for only then can
corresponding columns of A be eliminated without precluding cardinality-1 at optimality
of the deprecated problem. Crucial is the Simplex method of solution because then an
optimal solution is guaranteed to reside at a vertex of the feasible set. [98, p.158] [16, p.2]

¥

Although it is more efficient (compared with our algorithm) to search over individual
columns of matrix A for a cardinality-1 solution known a priori to exist, tables are turned
when cardinality exceeds 1 :

4.5.2 cardinality-k geometric presolver

This idea of deprecating columns has foundation in convex cone theory. (§2.13.4.3)
Removing columns (and rows)4.41 from A∈Rm×n in a linear program like (522) (§3.2)
is known in the industry as presolving ;4.42 the elimination of redundant constraints and
identically zero variables prior to numerical solution. We offer a different and geometric
presolver:

Two interpretations of the constraints from problem (522) are realized in Figure 111.
Assuming that a cardinality-k solution exists and matrix A describes a pointed polyhedral
cone K= {Ax | xº 0} , as in Figure 111b, columns are removed from A if they do not
belong to the smallest face F of K containing vector b ; those columns correspond to
0-entries in variable vector x (and vice versa). Generators of that smallest face always hold
a minimal cardinality solution, in other words, because a generator outside the smallest
face (having positive coefficient) would violate the assumption that b belongs to that face.

4.40A similar argument holds for any orientation of line A and cardinality-1 point of emergence from
simplex cS . This cardinality-1 reconstruction algorithm also holds more generally when affine subset A
has any higher dimension n−m .
4.41Rows of matrix A are removed based upon linear dependence. Assuming b∈R(A) , corresponding
entries of vector b may also be removed without loss of generality.
4.42The conic technique proposed here can exceed performance of the best industrial presolvers in terms
of number of columns removed, but not in execution time. This geometric presolver becomes attractive
when a linear or integer program is not solvable by other means; perhaps because of sheer dimension.
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Figure 111: Constraint interpretations: (a) Halfspace-description of feasible set in problem
(522) is a polyhedron P formed by intersection of nonnegative orthant Rn

+with hyperplanes
A prescribed by equality constraint. (Drawing by Pedro Sánchez.) (b) Vertex-description
of constraints in problem (522): point b belongs to polyhedral cone K= {Ax | xº 0}.
Number of extreme directions in K may exceed dimensionality of ambient space.

http://commons.wikimedia.org/wiki/File:Half_Space.svg
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Benefit accrues when vector b does not belong to relative interior of K ; there would
be no columns to remove were b∈rel intK since the smallest face becomes cone K itself
(Example 4.5.2.0.4). Were b an extreme direction, at the other end of the spectrum, then
the smallest face is an edge that is a ray containing b ; this geometrically describes a
cardinality-1 case where all columns, save one, would be removed from A .

When vector b resides in a face F of K that is not cone K itself, benefit is realized
as a reduction in computational intensity because the consequent equivalent problem has
smaller dimension. Number of columns removed depends completely on geometry of a
given problem; particularly, location of b within K . In the example of Figure 111b,
interpreted literally in R3, all but two columns of A are discarded by our presolver when
b belongs to facet F .

There are always exactly n linear feasibility problems to solve in order to discern
generators of the smallest face of K containing b ; the topic of §2.13.4.3.4.43

4.5.2.0.3 Exercise. Minimal cardinality generators.
Prove that generators of the smallest face F of K= {Ax | xº 0} containing vector b always
hold a minimal cardinality solution to Ax = b . H

4.5.2.0.4 Example. Presolving for cardinality-2 solution to Ax = b .
(confer Example 4.5.1.5.1) Again taking data from Example 4.2.3.1.1 (A∈Rm×n, desired
cardinality of x is k), for m=3, n=6, k=2

A =





−1 1 8 1 1 0

−3 2 8 1
2

1
3

1
2− 1

3

−9 4 8 1
4

1
9

1
4− 1

9



 , b =





1
1
2
1
4



 (720)

proper cone K= {Ax | xº 0} is pointed as proven by method of §2.12.2.2. A cardinality-2
solution is known to exist; sum of the last two columns of matrix A . Generators of the
smallest face that contains vector b , found by the method in Example 2.13.4.3.1, comprise
the entire A matrix because b∈ intK (§2.13.4.2.4). So geometry of this particular problem
does not permit number of generators to be reduced below n by discerning the smallest
face.4.44 2

There is wondrous bonus to presolving when a constraint matrix is sparse. After
columns are removed by theory of convex cones (finding the smallest face), some remaining
rows may become 0T, identical to other rows, or nonnegative. When nonnegative
rows appear in an equality constraint to 0, all nonnegative variables corresponding to
nonnegative entries in those rows must vanish (§A.7.1); meaning, more columns may be
removed. Once rows and columns have been removed from a constraint matrix, even more
rows and columns may be removed by repeating the presolver procedure.

4.43Comparison of computational intensity for this conic presolver to a brute force search would pit

combinatorial complexity, a binomial coefficient ∝
(

n
k

)

, against polynomial complexity; n linear

feasibility problems plus numerical solution of the presolved problem.
4.44But a canonical set of conically independent generators of K comprise only the first two and last two
columns of A .
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4.5.3 constraining cardinality of signed variable

Now consider a feasibility problem equivalent to the classical problem from linear algebra
Ax = b , but with an upper bound k on cardinality ‖x‖0 : for vector b∈R(A)

find x ∈ Rn

subject to Ax = b

‖x‖0 ≤ k

(828)

where ‖x‖0≤ k means vector x has at most k nonzero entries; such a vector is presumed
existent in the feasible set. Convex iteration (§4.5.1) utilizes a nonnegative variable; so
absolute value |x| is needed here. We propose that nonconvex problem (828) can be
equivalently written as a sequence of convex problems that move the cardinality constraint
to the objective:

minimize
x∈R

n
〈|x| , y〉

subject to Ax = b
≡

minimize
x∈R

n , t∈R
n

〈t , y + ε1〉
subject to Ax = b

−t ¹ x ¹ t

(829)

minimize
y∈R

n
〈t⋆, y + ε1〉

subject to 0 ¹ y ¹ 1

yT1 = n − k

(524)

where ε is a relatively small positive constant. This sequence is iterated until a direction
vector y is found that makes |x⋆|Ty⋆ vanish. The term 〈t , ε1〉 in (829) is necessary to
determine absolute value |x⋆|= t⋆ (§3.2) because vector y can have zero-valued entries.
By initializing y to (1−ε)1, the first iteration of problem (829) is a 1-norm problem
(513); id est,

minimize
x∈R

n , t∈R
n

〈t , 1〉
subject to Ax = b

−t ¹ x ¹ t

≡
minimize

x∈R
n

‖x‖1

subject to Ax = b
(517)

Subsequent iterations of problem (829) engaging cardinality term 〈t , y〉 can be interpreted
as corrections to this 1-norm problem leading to a 0-norm solution; vector y can be
interpreted as a direction of search.

4.5.3.1 local convergence

As before (§4.5.1.3), convex iteration (829) (524) always converges to a locally optimal
solution; a fixed point of possibly infeasible cardinality.

4.5.3.2 simple variations on a signed variable

Several useful equivalents to linear programs (829) (524) are easily devised, but their
geometrical interpretation is not as apparent: e.g, equivalent in the limit ε→0+

minimize
x∈R

n , t∈R
n

〈t , y〉
subject to Ax = b

−t ¹ x ¹ t

(830)
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minimize
y∈R

n
〈|x⋆| , y〉

subject to 0 ¹ y ¹ 1

yT1 = n − k

(524)

We get another equivalent to linear programs (829) (524), in the limit, by interpreting
problem (517) as infimum to a vertex-description of the 1-norm ball (Figure 74,
Example 3.2.0.0.1, confer (516)):

minimize
x∈R

n
‖x‖1

subject to Ax = b
≡

minimize
a∈R2n

〈a , y〉
subject to [A −A ]a = b

a º 0

(831)

minimize
y∈R2n

〈a⋆, y〉
subject to 0 ¹ y ¹ 1

yT1 = 2n − k

(524)

where x⋆ = [ I −I ]a⋆ ; from which it may be construed that any vector 1-norm
minimization problem has equivalent expression in a nonnegative variable.

4.6 Cardinality and rank constraint examples

4.6.0.0.1 Example. Projection on ellipsoid boundary. [53] [161, §5.1] [263, §2]
Consider classical linear equation Ax = b but with constraint on norm of solution x , given
matrices C , fat A , and vector b∈R(A)

find x ∈ RN

subject to Ax = b

‖Cx‖ = 1

(832)

The set {x | ‖Cx‖=1} (2) describes an ellipsoid boundary (Figure 15). This is a
nonconvex problem because solution is constrained to that boundary. Assign

G =

[

Cx
1

]

[xTCT 1 ]
=

[

X Cx
xTCT 1

]

,

[

CxxTCT Cx
xTCT 1

]

∈ SN+1 (833)

Any rank-1 solution must have this form. (§B.1.0.2) Ellipsoidally constrained feasibility
problem (832) is equivalent to:

find
X∈SN

x ∈ RN

subject to Ax = b

G =

[

X Cx
xTCT 1

]

(º 0)

rankG = 1

tr X = 1

(834)
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This is transformed to an equivalent convex problem by moving the rank constraint to the
objective: We iterate solution of

minimize
X∈SN , x∈RN

〈G , Y 〉
subject to Ax = b

G =

[

X Cx
xTCT 1

]

º 0

tr X = 1

(835)

with
minimize
Y ∈ SN+1

〈G⋆, Y 〉
subject to 0 ¹ Y ¹ I

tr Y = N

(836)

until convergence. Initially 0, direction matrix Y ∈ SN+1 regulates rank. (1800a)
Singular value decomposition G⋆ = UΣQT∈ SN+1

+ (§A.6) provides a new direction matrix
Y = U(: , 2:N+1)U(: , 2:N+1)T that optimally solves (836) at each iteration. An optimal
solution to (832) is thereby found in a few iterations, making convex problem (835) its
equivalent.

It remains possible for the iteration to stall; were a rank-1 G matrix not found. In
that case, the current search direction is momentarily reversed with an added randomized
element:

Y = −U(: , 2 :N+1) ∗ (U(: , 2 :N+1)′ + randn(N , 1) ∗ U(: , 1)′) (837)

in Matlab notation. This heuristic is quite effective for problem (832) which is
exceptionally easy to solve by convex iteration.

When b /∈R(A) then problem (832) must be restated as a projection:

minimize
x∈RN

‖Ax − b‖
subject to ‖Cx‖ = 1

(838)

This is a projection of point b on an ellipsoid boundary because any affine transformation
of an ellipsoid remains an ellipsoid. Problem (835) in turn becomes

minimize
X∈SN , x∈RN

〈G , Y 〉 + ‖Ax − b‖

subject to G =

[

X Cx
xTCT 1

]

º 0

tr X = 1

(839)

We iterate this with calculation (836) of direction matrix Y as before until a rank-1
G matrix is found. 2

4.6.0.0.2 Example. Orthonormal Procrustes. [53]
Example 4.6.0.0.1 is extensible. An orthonormal matrix Q∈Rn×p is characterized
QTQ = I . Consider the particular case Q = [x y ]∈Rn×2 as variable to a Procrustes
problem (§C.3): given A∈Rm×n and B∈Rm×2

minimize
Q∈R

n×2

‖AQ − B‖F

subject to QTQ = I
(840)
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which is nonconvex. By vectorizing matrix Q we can make the assignment:

G =





x
y

1





[xT yT 1 ]
=





X Z x
ZT Y y
xT yT 1



,





xxT xyT x
yxT yyT y
xT yT 1



∈ S2n+1 (841)

Now orthonormal Procrustes problem (840) can be equivalently restated:

minimize
X , Y ∈ S , Z , x , y

‖A[x y ] − B‖F

subject to G =





X Z x
ZT Y y
xT yT 1



(º 0)

rankG = 1

trX = 1

trY = 1

trZ = 0

(842)

To solve this, we form the convex problem sequence:

minimize
X , Y , Z , x , y

‖A[x y ]−B‖F + 〈G , W 〉

subject to G =





X Z x
ZT Y y
xT yT 1



 º 0

trX = 1

trY = 1

trZ = 0

(843)

and
minimize
W∈ S2n+1

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

tr W = 2n

(844)

which has an optimal solution W that is known in closed form (p.567). These two problems
are iterated until convergence and a rank-1 G matrix is found. A good initial value for
direction matrix W is 0. Optimal Q⋆ equals [x⋆ y⋆ ].

Numerically, this Procrustes problem is easy to solve; a solution seems always to be
found in one or few iterations. This problem formulation is extensible, of course, to
orthogonal (square) matrices Q . 2

4.6.0.0.3 Example. Combinatorial Procrustes problem.
In case A ,B∈Rn, when vector A = ΞB is known to be a permutation of vector B ,
solution to orthogonal Procrustes problem

minimize
X∈R

n×n
‖A − XB‖F

subject to XT = X−1
(1812)
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is not necessarily a permutation matrix Ξ even though an optimal objective value of 0
is found by the known analytical solution (§C.3). The simplest method of solution finds
permutation matrix X⋆ = Ξ simply by sorting vector B with respect to A .

Instead of sorting, we design two different convex problems each of whose optimal
solution is a permutation matrix: one design is based on rank constraint, the other on
cardinality. Because permutation matrices are sparse by definition, we depart from a
traditional Procrustes problem by instead demanding a vector 1-norm which is known to
produce solutions more sparse than Frobenius’ norm.

There are two principal facts exploited by the first convex iteration design (§4.4.1) we
propose. Permutation matrices Ξ constitute:

1) the set of all nonnegative orthogonal matrices,

2) all points extreme to the polyhedron (100) of doubly stochastic matrices.

That means:

1) norm of each row and column is 1 ,4.45

‖Ξ(: , i)‖ = 1 , ‖Ξ(i , :)‖ = 1 , i=1 . . . n (845)

2) sum of each nonnegative row and column is 1, (§2.3.2.0.4)

ΞT1=1 , Ξ1=1 , Ξ≥ 0 (846)

solution via rank constraint
The idea is to individually constrain each column of variable matrix X to have unity
norm. Matrix X must also belong to that polyhedron, (100) in the nonnegative orthant,
implied by constraints (846); so each row-sum and column-sum of X must also be unity.
It is this combination of nonnegativity, sum, and sum square constraints that extracts the
permutation matrices: (Figure 112) given nonzero vectors A , B

minimize
X∈R

n×n, Gi∈ S
n+1

‖A − XB‖1 + w
n
∑

i=1

〈Gi , Wi〉

subject to
Gi =

[

Gi(1 :n , 1:n) X(: , i)
X(: , i)T 1

]

º 0

tr Gi = 2







, i=1 . . . n

XT1 = 1
X1 = 1
X ≥ 0

(847)

4.45This fact would be superfluous were the objective of minimization linear, because the permutation
matrices reside at the extreme points of a polyhedron (100) implied by (846). But as posed, only
either rows or columns need be constrained to unit norm because matrix orthogonality implies transpose
orthogonality. (§B.5.2) Absence of vanishing inner product constraints that help define orthogonality, like
tr Z = 0 from Example 4.6.0.0.2, is a consequence of nonnegativity; id est, the only orthogonal matrices
having exclusively nonnegative entries are permutations of the Identity.
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{X(: , i) | 1TX(: , i) = 1}

{X(: , i) | X(: , i)TX(: , i) = 1}

Figure 112: Permutation matrix ith column-sum and column-norm constraint, abstract
in two dimensions, when rank-1 constraint is satisfied. Optimal solutions reside at
intersection of hyperplane with unit circle.

where w≈ 10 positively weights the rank regularization term. Optimal solutions G⋆
i are

key to finding direction matrices Wi for the next iteration of semidefinite programs
(847) (848):

minimize
Wi∈ S

n+1
〈G⋆

i , Wi 〉
subject to 0 ¹ Wi ¹ I

tr Wi = n











, i=1 . . . n (848)

Direction matrices thus found lead toward rank-1 matrices G⋆
i on subsequent iterations.

Constraint on trace of G⋆
i normalizes the ith column of X⋆ to unity because (confer p.377)

G⋆
i =

[

X⋆(: , i)
1

]

[X⋆(: , i)T 1 ]
(849)

at convergence. Binary-valued X⋆ column entries result from the further sum constraint
X1=1. Columnar orthogonality is a consequence of the further transpose-sum constraint
XT1=1 in conjunction with nonnegativity constraint X≥ 0 ; but we leave proof of
orthogonality an exercise. The optimal objective value is 0 for both semidefinite programs
when vectors A and B are related by permutation. In any case, optimal solution X⋆

becomes a permutation matrix Ξ .
Because there are n direction matrices Wi to find, it can be advantageous to invoke

a known closed-form solution for each from page 567. What makes this combinatorial
problem more tractable are relatively small semidefinite constraints in (847). (confer (843))
When a permutation A of vector B exists, number of iterations can be as small as 1. But
this combinatorial Procrustes problem can be made even more challenging when vector A
has repeated entries.
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solution via cardinality constraint
Now the idea is to force solution at a vertex of permutation polyhedron (100) by finding
a solution of desired sparsity. Because permutation matrix X is n-sparse by assumption,
this combinatorial Procrustes problem may instead be formulated as a compressed sensing
problem with convex iteration on cardinality of vectorized X (§4.5.1): given nonzero
vectors A , B

minimize
X∈R

n×n
‖A − XB‖1 + w〈X , Y 〉

subject to XT1 = 1
X1 = 1
X ≥ 0

(850)

where direction vector Y is an optimal solution to

minimize
Y ∈R

n×n
〈X⋆, Y 〉

subject to 0 ≤ Y ≤ 1

1TY 1 = n2− n

(524)

each a linear program. In this circumstance, use of closed-form solution for direction
vector Y is discouraged. When vector A is a permutation of B , both linear programs
have objectives that converge to 0. When vectors A and B are permutations and no entries
of A are repeated, optimal solution X⋆ can be found as soon as the first iteration.

In any case, X⋆ = Ξ is a permutation matrix. 2

4.6.0.0.4 Exercise. Combinatorial Procrustes constraints.
Assume that the objective of semidefinite program (847) is 0 at optimality. Prove that the
constraints in program (847) are necessary and sufficient to produce a permutation matrix
as optimal solution. Alternatively and equivalently, prove those constraints necessary and
sufficient to optimally produce a nonnegative orthogonal matrix. H

4.6.0.0.5 Example. Tractable polynomial constraint.
The set of all coefficients for which a multivariate polynomial were convex is generally
difficult to determine. But the ability to handle rank constraints makes any nonconvex
polynomial constraint transformable to a convex constraint. All optimization problems
having polynomial objective and polynomial constraints can be reformulated as a
semidefinite program with a rank-1 constraint. [302] Suppose we require

3 + 2x − xy ≤ 0 (851)

Identify

G =





x
y

1





[x y 1 ]
=





x2 xy x
xy y2 y

x y 1



∈ S3 (852)

Then nonconvex polynomial constraint (851) is equivalent to constraint set

tr(GA) ≤ 0
G33 = 1
(G º 0)
rankG = 1

(853)
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with direct correspondence to sense of trace inequality where G is assumed symmetric
(§B.1.0.2) and

A =





0 − 1
2 1

− 1
2 0 0
1 0 3



∈ S3 (854)

Then the method of convex iteration from §4.4.1 is applied to implement the rank
constraint. 2

4.6.0.0.6 Exercise. Binary Pythagorean theorem.
The technique in Example 4.6.0.0.5 is extensible to any quadratic constraint; e.g,
xTA x + 2bTx + c ≤ 0 , xTA x + 2bTx + c ≥ 0 , and xTA x + 2bTx + c = 0. Write a
rank-constrained semidefinite program to solve (Figure 112)

{

x + y = 1
x2+ y2 = 1

(855)

whose feasible set is not connected. Implement this system in cvx [183] by convex iteration.
H

4.6.0.0.7 Example. High order polynomials.
Consider nonconvex problem from Canadian Mathematical Olympiad 1999:

find
x , y , z∈R

x , y , z

subject to x2y + y2z + z2x = 22

33

x + y + z = 1
x , y , z ≥ 0

(856)

We wish to solve for, what is known to be, a tight upper bound 22

33
on the constrained

polynomial x2y + y2z + z2x by transformation to a rank-constrained semidefinite
program. First identify

G =









x
y
z
1









[x y z 1 ]

=









x2 xy zx x
xy y2 yz y
zx yz z2 z
x y z 1









∈ S4 (857)

X =





















x2

y2

z2

x
y
z
1





















[x2 y2 z2 x y z 1 ]

=





















x4 x2y2 z2x2 x3 x2y zx2 x2

x2y2 y4 y2z2 xy2 y3 y2z y2

z2x2 y2z2 z4 z2x yz2 z3 z2

x3 xy2 z2x x2 xy zx x
x2y y3 yz2 xy y2 yz y
zx2 y2z z3 zx yz z2 z
x2 y2 z2 x y z 1





















∈ S7

(858)

http://www.math.ucla.edu/~tao/putnam
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then apply convex iteration (§4.4.1) to implement rank constraints:

find
A , C∈S , b

b

subject to tr(XE) = 22

33

G =

[

A b
bT 1

]

(º 0)

X =





C

[

δ(A)
b

]

[

δ(A)T bT
]

1



(º 0)

1Tb = 1
b º 0
rankG = 1
rankX = 1

(859)

where

E =





















0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0





















1

2
∈ S7 (860)

[399, Matlab code]. Positive semidefiniteness is optional only when rank-1 constraints
are explicit by Theorem A.3.1.0.7. Optimal solution (x , y , z)=(0 , 2

3 , 1
3 ) to problem (856)

is not unique. 2

4.6.0.0.8 Exercise. Motzkin polynomial.
Prove xy2+ x2y − 3xy + 1 to be nonnegative on the nonnegative orthant. H

4.6.0.0.9 Example. Boolean vector satisfying Ax ¹ b . (confer §4.2.3.1.1)
Now we consider solution to a discrete problem whose only known analytical method of
solution is combinatorial in complexity: given A∈RM×N and b∈RM

find x ∈ RN

subject to Ax¹ b

δ(xxT) = 1

(861)

This nonconvex problem demands a Boolean solution [xi =±1, i=1 . . . N ].

Assign a rank-1 matrix of variables; symmetric variable matrix X and solution
vector x :

G =

[

x
1

]

[xT 1 ]
=

[

X x
xT 1

]

,

[

xxT x
xT 1

]

∈ SN+1 (862)

Then design an equivalent semidefinite feasibility problem to find a Boolean solution to

https://lids.mit.edu/research/research-highlights/sum-squares-and-polynomial-convexity
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Ax¹ b :

find
X∈SN

x ∈ RN

subject to Ax¹ b

G =

[

X x
xT 1

]

(º 0)

rankG = 1

δ(X) = 1

(863)

where x⋆
i ∈ {−1, 1} , i=1 . . . N . The two variables X and x are made dependent via

their assignment to rank-1 matrix G . By (1711), an optimal rank-1 matrix G⋆ must take
the form (862).

As before, we regularize the rank constraint by introducing a direction matrix Y into
the objective:

minimize
X∈SN , x∈RN

〈G , Y 〉
subject to Ax¹ b

G =

[

X x
xT 1

]

º 0

δ(X) = 1

(864)

Solution of this semidefinite program is iterated with calculation of the direction matrix
Y from semidefinite program (836). At convergence, in the sense (775), convex problem
(864) becomes equivalent to nonconvex Boolean problem (861).

Direction matrix Y can be an orthogonal projector having closed-form expression, by
(1800a), although convex iteration is not a projection method. (§4.4.1.1) Given randomized
data A and b for a large problem, we find that stalling becomes likely (convergence of
the iteration to a positive objective 〈G⋆, Y 〉). To overcome this behavior, we introduce
a heuristic into the implementation on Wıκımization [389] that momentarily reverses
direction of search (like (837)) upon stall detection. We find that rate of convergence can
be sped significantly by detecting stalls early. 2

4.6.0.0.10 Example. Variable-vector normalization.
Suppose, within some convex optimization problem, we want vector variables x , y∈RN

constrained by a nonconvex equality:

x‖y‖ = y (865)

id est, ‖x‖= 1 and x points in the same direction as y 6=0 ; e.g,

minimize
x , y

f(x , y)

subject to (x , y)∈ C
x‖y‖ = y

(866)

where f is some convex function and C is some convex set. We can realize the nonconvex
equality by constraining rank and adding a regularization term to the objective. Make the
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assignment:

G =





x
y

1





[xT yT 1 ]
=





X Z x
Z Y y
xT yT 1



,





xxT xyT x
yxT yyT y
xT yT 1



∈ S2N+1 (867)

where X , Y ∈ SN , also Z∈ SN [sic ] . Any rank-1 solution must take the form of (867).
(§B.1) The problem statement equivalent to (866) is then written

minimize
X , Y ∈ S , Z , x , y

f(x , y) + ‖X − Y ‖F

subject to (x , y)∈ C

G =





X Z x
Z Y y
xT yT 1



(º 0)

rankG = 1

tr(X) = 1

δ(Z) º 0

(868)

The trace constraint on X normalizes vector x while the diagonal constraint on Z
maintains sign between respective entries of x and y . Regularization term ‖X−Y ‖F

then makes x equal to y to within a real scalar; (§C.2.0.0.2) in this case, a positive scalar.
To make this program solvable by convex iteration, as explained in Example 4.4.1.2.4 and
other previous examples, we move the rank constraint to the objective

minimize
X , Y , Z , x , y

f(x , y) + ‖X − Y ‖F + 〈G , W 〉
subject to (x , y)∈ C

G =





X Z x
Z Y y
xT yT 1



º 0

tr(X) = 1

δ(Z) º 0

(869)

by introducing a direction matrix W found from (1800a):

minimize
W∈ S2N+1

〈G⋆, W 〉
subject to 0 ¹ W ¹ I

trW = 2N

(870)

This semidefinite program has an optimal solution that is known in closed form. Iteration
(869) (870) terminates when rankG = 1 and linear regularization 〈G , W 〉 vanishes to
within some numerical tolerance in (869); typically, in two iterations. If function f
competes too much with the regularization, positively weighting each regularization term
will become required. At convergence, problem (869) becomes a convex equivalent to the
original nonconvex problem (866). 2
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Figure 113: A cut partitions nodes {i=1 . . . 16} of this graph into S and S ′. Linear arcs
have circled weights. The problem is to find a cut maximizing total weight of all arcs
linking partitions made by the cut.
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4.6.0.0.11 Example. fast max cut. [120]

Let Γ be an n-node graph, and let the arcs (i , j) of the graph be associated
with . . . weights aij . The problem is to find a cut of the largest possible weight,
i.e., to partition the set of nodes into two parts S , S ′ in such a way that the
total weight of all arcs linking S and S ′ (i.e., with one incident node in S and
the other one in S ′ [Figure 113]) is as large as possible. −[35, §4.3.3]

Literature on the max cut problem is vast because this problem has elegant primal
and dual formulation, its solution is very difficult, and there exist many commercial
applications; e.g, semiconductor design [136], quantum computing [426].

Our purpose here is to demonstrate how iteration of two simple convex problems can
quickly converge to an optimal solution of the max cut problem with a 98% success rate,
on average.4.46 max cut is stated:

maximize
x

∑

1≤i<j≤n

aij(1 − xi xj)
1
2

subject to δ(xxT) = 1
(871)

where [aij ] are real arc weights, and binary vector x = [xi]∈Rn corresponds to the n
nodes; specifically,

node i ∈ S ⇔ xi = 1
node i ∈ S ′ ⇔ xi = −1

(872)

If nodes i and j have the same binary value xi and xj , then they belong to the same
partition and contribute nothing to the cut. Arc (i , j) traverses the cut, otherwise, adding
its weight aij to the cut.

max cut statement (871) is the same as, for A = [aij ]∈ Sn

maximize
x

1
4 〈11T− xxT, A〉

subject to δ(xxT) = 1
(873)

Because of Boolean assumption δ(xxT) = 1

〈11T− xxT, A〉 = 〈xxT, δ(A1) − A〉 (874)

so problem (873) is the same as

maximize
x

1
4 〈xxT, δ(A1) − A〉

subject to δ(xxT) = 1
(875)

This max cut problem is combinatorial (nonconvex).

Because an estimate of upper bound to max cut is needed to ascertain
convergence when vector x has large dimension, we digress to derive the dual
problem: Directly from (875), its Lagrangian is [63, §5.1.5] (1507)

L(x , ν) = 1
4 〈xxT, δ(A1) − A〉 + 〈ν , δ(xxT) − 1〉

= 1
4 〈xxT, δ(A1) − A〉 + 〈δ(ν) , xxT〉 − 〈ν , 1〉

= 1
4 〈xxT, δ(A1 + 4ν) − A〉 − 〈ν , 1〉

(876)

4.46We term our solution to max cut fast because we sacrifice a little accuracy to achieve speed; id est,
only about two or three convex iterations, achieved by heavily weighting a rank regularization term.
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where quadratic xT(δ(A1+ 4ν)−A)x has supremum 0 if δ(A1+ 4ν)−A is
negative semidefinite, and has supremum ∞ otherwise. The finite supremum

g(ν) = sup
x

L(x , ν) =

{

−〈ν , 1〉 , A − δ(A1 + 4ν) º 0
∞ otherwise

(877)

is chosen to be the objective of minimization to dual (convex) problem

minimize
ν

−νT1

subject to A − δ(A1 + 4ν) º 0
(878)

whose optimal value provides a least upper bound to max cut, but is not tight
( 1

4 〈xxT, δ(A1)−A〉< g(ν) , duality gap is nonzero). [171] In fact, we find that
the bound’s variance with problem instance is too large to be useful for this
problem; thus ending our digression.4.47

To transform max cut to its convex equivalent, first define

X = xxT∈ Sn (883)

then max cut (875) becomes

maximize
X∈ S

n

1
4 〈X , δ(A1) − A〉

subject to δ(X) = 1
(X º 0)
rankX = 1

(879)

whose rank constraint can be regularized as in

maximize
X∈ S

n

1
4 〈X , δ(A1) − A〉 − w〈X , W 〉

subject to δ(X) = 1
X º 0

(880)

where w≈1000 is a nonnegative fixed weight, and W is a direction matrix determined
from

n
∑

i=2

λ(X⋆)i = minimize
W∈ S

n
〈X⋆, W 〉

subject to 0 ¹ W ¹ I

trW = n − 1

(1800a)

which has an optimal solution that is known in closed form. These two problems (880)
and (1800a) are iterated until convergence as defined on page 266.

4.47Taking the dual of dual problem (878) would provide (879) but without the rank constraint. [164]
Dual of a dual of even a convex primal problem is not necessarily the same primal problem; although,
optimal solution of one can be obtained from the other.
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Because convex problem statement (880) is so elegant, it is numerically solvable for
large binary vectors within reasonable time.4.48 To test our convex iterative method, we
compare an optimal convex result to an actual solution of the max cut problem found
by performing a brute force combinatorial search of (875)4.49 for a tight upper bound.
Search-time limits binary vector lengths to 24 bits (about five days CPU time). 98%
accuracy, actually obtained, is independent of binary vector length (12, 13, 20, 24) when
averaged over more than 231 problem instances including planar, randomized, and toroidal
graphs.4.50 When failure occurred, large and small errors were manifest. That same 98%
average accuracy is presumed maintained when binary vector length is further increased.
A Matlab program is provided on Wıκımization [394]. 2

4.6.0.0.12 Example. Cardinality/rank problem.
d’Aspremont, El Ghaoui, Jordan, & Lanckriet [99] propose approximating a positive
semidefinite matrix A∈ SN

+ by a rank-one matrix having constraint on cardinality c :
for 0 < c < N

minimize
z

‖A − zzT‖F

subject to card z ≤ c
(881)

which, they explain, is a hard problem equivalent to

maximize
x

xTA x

subject to ‖x‖ = 1

card x ≤ c

(882)

where z ,
√

λx and where optimal solution x⋆ is a principal eigenvector (1793) (§A.5) of
A and λ = x⋆TA x⋆ is the principal eigenvalue [174, p.331] when c is true cardinality of
that eigenvector. This is principal component analysis with a cardinality constraint which
controls solution sparsity. Define the matrix variable

X , xxT∈ SN (883)

whose desired rank is 1, and whose desired diagonal cardinality

card δ(X) ≡ card x (884)

is equivalent to cardinality c of vector x . Then we can transform cardinality
problem (882) to an equivalent problem in new variable X :4.51

4.48We solved for a length-250 binary vector in only a few minutes and convex iterations on a 2006 vintage
laptop Core 2 CPU (Intel T7400@2.16GHz, 666MHz FSB).
4.49 more computationally intensive than the proposed convex iteration by many orders of magnitude.
Solving max cut by searching over all binary vectors of length 100, for example, would occupy a
contemporary supercomputer for a million years.
4.50Existence of a polynomial-time approximation to max cut with accuracy provably better than 94.11%
would refute NP-hardness; which H̊astad believes to be highly unlikely. [197, thm.8.2] [198]
4.51A semidefiniteness constraint Xº 0 is not required, theoretically, because positive semidefiniteness
of a rank-1 matrix is enforced by symmetry. (Theorem A.3.1.0.7)
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maximize
X∈SN

〈X , A〉
subject to 〈X , I 〉 = 1

(X º 0)

rankX = 1

card δ(X) ≤ c

(885)

We transform problem (885) to an equivalent convex problem by introducing two
direction matrices into regularization terms: W to achieve desired cardinality card δ(X) ,
and Y to find an approximating rank-one matrix X :

maximize
X∈SN

〈X , A − w1Y 〉 − w2〈δ(X) , δ(W )〉
subject to 〈X , I 〉 = 1

X º 0

(886)

where w1 and w2 are positive scalars respectively weighting tr(XY ) and δ(X)Tδ(W )
just enough to insure that they vanish to within some numerical precision, where direction
matrix Y is an optimal solution to semidefinite program

minimize
Y ∈ SN

〈X⋆, Y 〉
subject to 0 ¹ Y ¹ I

trY = N − 1

(887)

and where diagonal direction matrix W ∈ SN optimally solves linear program

minimize
W=δ2(W )

〈δ(X⋆) , δ(W )〉
subject to 0 ¹ δ(W ) ¹ 1

trW = N − c

(888)

Both direction matrix programs are derived from (1800a) whose analytical solution is
known but is not necessarily unique. We emphasize (confer p.266): because this iteration
(886) (887) (888) (initial Y,W = 0) is not a projection method (§4.4.1.1), success relies
on existence of matrices in the feasible set of (886) having desired rank and diagonal
cardinality. In particular, the feasible set of convex problem (886) is a Fantope (91) whose
extreme points constitute the set of all normalized rank-one matrices; among those are
found rank-one matrices of any desired diagonal cardinality.

Convex problem (886) is neither a relaxation of cardinality problem (882); instead,
problem (886) becomes a convex equivalent to (882) at global convergence of iteration
(886) (887) (888). Because the feasible set of convex problem (886) contains all normalized
(§B.1) symmetric rank-one matrices of every nonzero diagonal cardinality, a constraint too
low or high in cardinality c will not prevent solution. An optimal rank-one solution X⋆,
whose diagonal cardinality is equal to cardinality of a principal eigenvector of matrix A ,
will produce the least residual Frobenius norm (to within machine noise processes) in the
original problem statement (881). 2
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phantom(256)

Figure 114: Shepp-Logan phantom from Matlab image processing toolbox.

4.6.0.0.13 Example. Compressive sampling of a phantom.
In Summer 2004, Candès, Romberg, & Tao [73] and Donoho [129] released papers on
perfect signal reconstruction from samples that stand in violation of Shannon’s classical
sampling theorem. These defiant signals are assumed sparse inherently or under some
sparsifying affine transformation. Essentially, they proposed sparse sampling theorems
asserting average sample rate independent of signal bandwidth and less than Shannon’s
rate.

minimum sampling rate:

� of Ω-bandlimited signal: 2Ω ([301, §3.2] Shannon)

� of k-sparse length-n signal: k log2(1+n/k) (Figure 107 Candès/Donoho)

Certainly, much was already known about nonuniform or random sampling [37]
[224] and about subsampling or multirate systems [95] [376]. Vetterli, Marziliano, & Blu
[385] had congealed a theory of noiseless signal reconstruction, in May 2001, from
samples that violate the Shannon rate. [404, Sampling Sparsity ] They anticipated the
sparsifying transform by recognizing: it is the innovation (onset) of functions constituting
a (not necessarily bandlimited) signal that determines minimum sampling rate for perfect
reconstruction. Average onset (sparsity), Vetterli et alii call, the rate of innovation.
Vector inner-products that Candès/Donoho call samples or measurements, Vetterli
calls projections. From those projections Vetterli demonstrates reconstruction (by
digital signal processing and “root finding”) of a Dirac comb, the very same
prototypical signal from which Candès probabilistically derives minimum sampling
rate [Compressive Sampling and Frontiers in Signal Processing , University of Minnesota,
June 6, 2007]. Combining their terminology, we paraphrase a sparse sampling theorem:

� Minimum sampling rate, asserted by Candès/Donoho, ∝ Vetterli’s rate of innovation
(a.k.a: information rate, degrees of freedom [ibidem June 5, 2007]).

What distinguishes these researchers are their methods of reconstruction.

http://www.convexoptimization.com/wikimization/index.php/Video#Compressive_Sampling.2C_Compressed_Sensing_-_Emmanuel_Candes_.28California_Institute_of_Technology.29_University_of_Minnesota.2C_Summer_2007
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Properties of the 1-norm were also well understood by June 2004 finding applications
in deconvolution of linear systems [87], constrained linear regression (Lasso) [366] [336],
and basis pursuit [81] [229]. But never before had there been a formalized and rigorous
sense that perfect reconstruction were possible by convex optimization of 1-norm when
information lost in a subsampling process became nonrecoverable by classical methods.
Donoho named this discovery compressed sensing to describe a nonadaptive perfect
reconstruction method by means of linear programming. By the time Candès’ and
Donoho’s landmark papers were finally published by IEEE in 2006, compressed sensing was
old news that had spawned intense research which still persists; notably, from prominent
members of the wavelet community.

Reconstruction of the Shepp-Logan phantom (Figure 114), from a severely aliased
image (Figure 116) obtained by Magnetic Resonance Imaging (MRI), was the impetus
driving Candès’ quest for a sparse sampling theorem. He realized that line segments
appearing in the aliased image were regions of high total variation. There is great
motivation, in the medical community, to apply compressed sensing to MRI because it
translates to reduced scan-time which brings great technological and physiological benefits.
MRI is now about 35 years old, beginning in 1973 with Nobel laureate Paul Lauterbur
from Stony Brook USA. There has been much progress in MRI and compressed sensing
since 2004, but there have also been indications of 1-norm abandonment (indigenous to
reconstruction by compressed sensing) in favor of criteria closer to 0-norm because of
a correspondingly smaller number of measurements required to accurately reconstruct a
sparse signal:4.52

5481 complex samples (22 radial lines, ≈256 complex samples per) were required in
June 2004 to reconstruct a noiseless 256×256-pixel Shepp-Logan phantom by 1-norm
minimization of an image-gradient integral estimate called total variation; id est, 8.4%
subsampling of 65536 data. [73, §1.1] [72, §3.2] It was soon discovered that reconstruction
of the Shepp-Logan phantom were possible with only 2521 complex samples (10 radial
lines, Figure 115); 3.8% subsampled data input to a (nonconvex) 1

2 -norm total-variation
minimization. [79, §IIIA] The closer to 0-norm, the fewer the samples required for perfect
reconstruction.

Passage of a few years witnessed an algorithmic speedup and dramatic reduction
in minimum number of samples required for perfect reconstruction of the noiseless
Shepp-Logan phantom. But minimization of total variation is ideally suited to recovery of
any piecewise-constant image, like a phantom, because gradient of such images is highly
sparse by design.

There is no inherent characteristic of real-life MRI images that would make reasonable
an expectation of sparse gradient. Sparsification of a discrete image-gradient tends to
preserve edges. Then minimization of total variation seeks an image having fewest edges.
There is no deeper theoretical foundation than that. When applied to human brain scan or
angiogram, with as much as 20% of 256×256 Fourier samples, we have observed4.53 a 30dB

4.52Efficient techniques continually emerge urging 1-norm criteria abandonment; [84] [375] [374, §IID] e.g,
five techniques for compressed sensing are compared in [38] demonstrating that 1-norm performance limits
for cardinality minimization can be reliably exceeded.
4.53Experiments with real-life images were performed by Christine Law at Lucas Center for Imaging,
Stanford University.

http://www.convexoptimization.com/wikimization/index.php/Optimization_Videos#June_5_2007_.C2.A0Underdetermined_Systems_of_Linear_Equations
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image/reconstruction-error ratio4.54 barrier that seems impenetrable by the total-variation
objective. Total-variation minimization has met with moderate success, in retrospect,
only because some medical images are moderately piecewise-constant signals. One simply
hopes a reconstruction, that is in some sense equal to a known subset of samples and
whose gradient is most sparse, is that unique image we seek.4.55

The total-variation objective, operating on an image, is expressible as norm of a linear
transformation (907). It is natural to ask whether there exist other sparsifying transforms
that might break the real-life 30dB barrier (any sampling pattern @20% 256×256 data)
in MRI. There has been much research into application of wavelets, discrete cosine
transform (DCT), randomized orthogonal bases, splines, etcetera, but with suspiciously
little focus on objective measures like image/error or illustration of difference images; the
predominant basis of comparison instead being subjectively visual (Duensing & Huang,
ISMRM Toronto 2008).4.56 Despite choice of transform, there seems yet to have been a
breakthrough of the 30dB barrier. Application of compressed sensing to MRI, therefore,
remains fertile in 2008 for continued research.

Lagrangian form of compressed sensing in imaging
We now repeat Candès’ image reconstruction experiment from 2004 which led to discovery
of sparse sampling theorems. [73, §1.2] But we achieve perfect reconstruction with an
algorithm based on vanishing gradient of a compressed sensing problem’s Lagrangian,
which is computationally efficient. Our contraction method (p.330) is fast also because
matrix multiplications are replaced by fast Fourier transforms and number of constraints is
cut in half by sampling symmetrically. Convex iteration for cardinality minimization (§4.5)
is incorporated which allows perfect reconstruction of a phantom at 4.1% subsampling
rate; 50% Candès’ rate. By making neighboring-pixel selection adaptive, convex iteration
reduces discrete image-gradient sparsity of the Shepp-Logan phantom to 1.9% ; 33% lower
than previously reported.

We demonstrate application of discrete image-gradient sparsification to the
n×n=256×256 Shepp-Logan phantom, simulating idealized acquisition of MRI data by
radial sampling in the Fourier domain (Figure 115).4.57 Define a Nyquist-centric discrete
Fourier transform (DFT) matrix

4.54Noise considered here is due only to the reconstruction process itself; id est, noise in excess of that
produced by the best reconstruction of an image from a complete set of samples in the sense of Shannon.
At less than 30dB image/error, artifacts generally remain visible to the naked eye. We estimate about
50dB is required to eliminate noticeable distortion in a visual A/B comparison.
4.55In vascular radiology, diagnoses are almost exclusively based on morphology of vessels and, in
particular, presence of stenoses. There is a compelling argument for total-variation reconstruction of
magnetic resonance angiogram because it helps isolate structures of particular interest.
4.56I have never calculated the PSNR of these reconstructed images [of Barbara]. −Jean-Luc Starck

The sparsity of the image is the percentage of transform coefficients sufficient for diagnostic-quality
reconstruction. Of course the term “diagnostic quality” is subjective. . . . I have yet to see an “objective”
measure of image quality. Difference images, in my experience, definitely do not tell the whole story.
Often I would show people some of my results and get mixed responses, but when I add artificial Gaussian
noise to an image, often people say that it looks better. −Michael Lustig
4.57 k-space is conventional acquisition terminology indicating domain of the continuous raw data provided
by an MRI machine. An image is reconstructed by inverse discrete Fourier transform of that data
interpolated on a Cartesian grid in two dimensions.

http://www.convexoptimization.com/wikimization/index.php/Video#International_Society_for_Magnetic_Resonance_in_Medicine_.28ISMRM_Toronto_2008.29
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F ,

















1 1 1 1 · · · 1
1 e−2π/n e−4π/n e−6π/n · · · e−(n−1)2π/n

1 e−4π/n e−8π/n e−12π/n · · · e−(n−1)4π/n

1 e−6π/n e−12π/n e−18π/n · · · e−(n−1)6π/n

...
...

...
...

. . .
...

1 e−(n−1)2π/n e−(n−1)4π/n e−(n−1)6π/n · · · e−(n−1)22π/n

















1√
n
∈ Cn×n

(889)

a symmetric (nonHermitian) unitary matrix characterized

F = FT

F−1 = FH (890)

Denoting an unknown image U ∈Rn×n, its two-dimensional discrete Fourier transform F

is

F(U) , F UF (891)

hence the inverse discrete transform

U = FHF(U)FH (892)

From §A.1.1 no.31 we have a vectorized two-dimensional DFT via Kronecker product ⊗

vec F(U) , (F⊗F ) vecU (893)

and from (892) its inverse [182, p.24]

vecU = (FH⊗FH)(F⊗F ) vecU = (FHF ⊗ FHF ) vecU (894)

Idealized radial sampling in the Fourier domain can be simulated by Hadamard product
◦ with a binary mask Φ∈ Rn×n whose nonzero entries could, for example, correspond
with the radial line segments in Figure 115. To make the mask Nyquist-centric, like DFT
matrix F , define a circulant [184] symmetric permutation matrix4.58

Θ ,

[

0 I
I 0

]

∈ Sn (895)

Then given subsampled Fourier domain (MRI k-space) measurements in incomplete
K∈Cn×n, we might constrain F(U) thus:

ΘΦΘ ◦ F UF = K (896)

and in vector form, (42) (1888)

δ(vec ΘΦΘ)(F⊗F ) vecU = vec K (897)

Because measurements K are complex, there are actually twice the number of equality
constraints as there are measurements.

4.58Matlab fftshift()
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Φ

Figure 115: MRI radial sampling pattern, in DC-centric Fourier domain, representing 4.1%
(10 lines) subsampled data. Only half of these complex samples, in any halfspace about
the origin in theory, need be acquired for a real image because of conjugate symmetry.
Due to MRI machine imperfections, samples are generally taken over full extent of each
radial line segment. MRI acquisition time is proportional to number of lines.

We can cut that number of constraints in half via vertical and horizontal mask Φ
symmetry which forces the imaginary inverse transform to 0 : The inverse subsampled
transform in matrix form is

FH(ΘΦΘ ◦ F UF )FH = FHKFH (898)

and in vector form

(FH⊗FH)δ(vec ΘΦΘ)(F⊗F ) vecU = (FH⊗FH) vec K (899)

later abbreviated
P vecU = f (900)

where
P , (FH⊗FH)δ(vec ΘΦΘ)(F⊗F ) ∈ Cn2×n2

(901)

Because of idempotence P = P 2, P is a projection matrix. Because of its Hermitian
symmetry [182, p.24]

P = (FH⊗FH)δ(vec ΘΦΘ)(F⊗F ) = (F⊗F )Hδ(vec ΘΦΘ)(FH⊗FH)H = PH (902)

P is an orthogonal projector.4.59 P vecU is real when P is real; id est, when for positive
even integer n

Φ =

[

Φ11 Φ(1 , 2:n)Ξ
ΞΦ(2:n , 1) ΞΦ(2:n , 2:n)Ξ

]

∈ Rn×n (903)

4.59 (901) is a diagonalization of matrix P whose binary eigenvalues are δ(vec ΘΦΘ) while the
corresponding eigenvectors constitute the columns of unitary matrix FH⊗FH.
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vec−1 f

Figure 116: Aliasing of Shepp-Logan phantom in Figure 114 resulting from k-space
subsampling pattern in Figure 115. This image is real because binary mask Φ is vertically
and horizontally symmetric. It is remarkable that the phantom can be reconstructed, by
convex iteration, given only U0 = vec−1f .

where Ξ∈Sn−1 is the order-reversing permutation matrix (1828). In words, this necessary
and sufficient condition on Φ (for a real inverse subsampled transform [301, p.53]) demands
vertical symmetry about row n

2 +1 and horizontal symmetry4.60 about column n
2 +1.

Define

∆ ,



























1 0 0

−1 1 0

−1 1
. . .

. . .
. . .

. . .

. . . 1 0

0T −1 1



























∈ Rn×n (904)

Express an image-gradient estimate

∇U ,









U ∆
U ∆T

∆ U
∆T U









∈ R4n×n (905)

that is a simple first-order difference of neighboring pixels (Figure 117) to the right, left,

4.60This condition on Φ applies to both DC- and Nyquist-centric DFT matrices.
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above, and below.4.61 By §A.1.1 no.31, its vectorization: for Ψi∈Rn2×n2

vec∇U =









∆T⊗ I
∆ ⊗ I
I ⊗ ∆
I ⊗ ∆T









vecU ,









Ψ1

ΨT
1

Ψ2

ΨT
2









vecU , ΨvecU ∈ R4n2

(906)

where Ψ∈R4n2×n2

. A total-variation minimization for reconstructing MRI image U ,
that is known suboptimal [223] [74], may be concisely posed

minimize
U

‖ΨvecU‖1

subject to P vecU = f
(907)

where
f = (FH⊗FH) vec K ∈ Cn2

(908)

is the known inverse subsampled Fourier data (a vectorized aliased image, Figure 116),
and where a norm of discrete image-gradient ∇U is equivalently expressed as norm of a
linear transformation ΨvecU .

Although this simple problem statement (907) is equivalent to a linear program (§3.2),
its numerical solution is beyond the capability of even the most highly regarded of
contemporary commercial solvers.4.62 Our only recourse is to recast the problem in
Lagrangian form (§3.1.2.2.2) and write customized code to solve it:

minimize
U

〈|ΨvecU| , y〉
subject to P vecU = f

(a)

≡
minimize

U
〈|ΨvecU| , y〉 + 1

2λ‖P vecU − f‖2
2 (b)

(909)

where multiobjective parameter λ∈R+ is quite large (λ≈1E8) so as to enforce the equality
constraint: P vecU−f = 0 ⇔ ‖P vecU−f‖2

2 =0 (§A.7.1). We introduce a direction

vector y∈R4n2

+ as part of a convex iteration (§4.5.3) to overcome that known suboptimal
minimization of discrete image-gradient cardinality: id est, there exists a vector y⋆ with
entries y⋆

i ∈ {0, 1} such that

minimize
U

‖ΨvecU‖0

subject to P vecU = f
≡ minimize

U
〈|ΨvecU| , y⋆〉 + 1

2λ‖P vecU − f‖2
2 (910)

Existence of such a y⋆, complementary to an optimal vector ΨvecU⋆, is obvious by
definition of global optimality 〈|ΨvecU⋆| , y⋆〉= 0 (810) under which a cardinality-c
optimal objective ‖ΨvecU⋆‖0 is assumed to exist.

4.61There is significant improvement in reconstruction quality by augmentation of a nominally two-point
discrete image-gradient estimate to four points per pixel by inclusion of two polar directions. Improvement
is due to centering; symmetry of discrete differences about a central pixel. We find small improvement on
real-life images, ≈1dB empirically, by further augmentation with diagonally adjacent pixel differences.
4.62 for images as small as 128×128 pixels. Obstacle to numerical solution is not a computer resource:
e.g, execution time, memory. The obstacle is, in fact, inadequate numerical precision. Even when all
dependent equality constraints are manually removed, the best commercial solvers fail simply because
computer numerics become nonsense; id est, numerical errors enter significant digits and the algorithm
exits prematurely, loops indefinitely, or produces an infeasible solution.
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Figure 117: Neighboring-pixel stencil [375] for image-gradient estimation on Cartesian
grid. Implementation selects adaptively from darkest four • about central. Continuous
image-gradient from two pixels holds only in a limit. For discrete differences, better
practical estimates are obtained when centered.

Because (909b) is an unconstrained convex problem, a zero objective function gradient
is necessary and sufficient for optimality (§2.13.3); id est, (§D.2.1)

ΨTδ(y) sgn(ΨvecU ) + λPH(P vecU − f ) = 0 (911)

Because of P idempotence and Hermitian symmetry and sgn(x)= x/|x| , this is equivalent
to

lim
ǫ→0

(

ΨTδ(y)δ(|ΨvecU| + ǫ1)−1 Ψ + λP
)

vecU = λPf (912)

where small positive constant ǫ∈R+ has been introduced for invertibility. Speaking
more analytically, introduction of ǫ serves to uniquely define the objective’s gradient
everywhere in the function domain; id est, it transforms absolute value in (909b) from a
function differentiable almost everywhere into a differentiable function. An example of
such a transformation in one dimension is illustrated in Figure 118. When small enough
for practical purposes4.63 (ǫ≈1E-3), we may ignore the limiting operation. Then the
mapping, for 0¹ y¹ 1

vecU t+1 =
(

ΨTδ(y)δ(|ΨvecU t| + ǫ1)−1 Ψ + λP
)−1

λPf (913)

is a contraction in U t that can be solved recursively in t for its unique fixed point ; id est,
until U t+1→ U t . [243, p.300] [219, p.155] Calculating this inversion directly is not possible

4.63We are looking for at least 50dB image/error ratio from only 4.1% subsampled data (10 radial lines in
k-space). With this setting of ǫ , we actually attain in excess of 100dB from a simple Matlab program in
about a minute on a 2006 vintage laptop Core 2 CPU (Intel T7400@2.16GHz, 666MHz FSB). By trading
execution time and treating discrete image-gradient cardinality as a known quantity for this phantom,
over 160dB is achievable.
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∫ x

−1
y

|y|+ǫ dy

|x|

Figure 118: Real absolute value function f2(x)= |x| on x∈ [−1, 1] from Figure 72b
superimposed upon integral of its derivative at ǫ=0.05 which smooths objective function.

for large matrices on contemporary computers because of numerical precision, so instead
we apply the conjugate gradient method of solution to

(

ΨTδ(y)δ(|ΨvecU t| + ǫ1)−1 Ψ + λP
)

vecU t+1 = λPf (914)

which is linear in U t+1 at each recursion in the Matlab program [390].4.64

Observe that P (901), in the equality constraint from problem (909a), is not a
fat matrix.4.65 Although number of Fourier samples taken is equal to the number of
nonzero entries in binary mask Φ , matrix P is square but never actually formed during
computation. Rather, a two-dimensional fast Fourier transform of U is computed followed
by masking with ΘΦΘ and then an inverse fast Fourier transform. This technique
significantly reduces memory requirements and, together with contraction method of
solution, is the principal reason for relatively fast computation.

convex iteration
By convex iteration we mean alternation of solution to (909a) and (915) until convergence.
Direction vector y is initialized to 1 until the first fixed point is found; which means, the
contraction recursion begins calculating a (1-norm) solution U⋆ to (907) via problem
(909b). Once U⋆ is found, vector y is updated according to an estimate of discrete

image-gradient cardinality c : Sum of the 4n2− c smallest entries of |ΨvecU⋆|∈R4n2

is
the optimal objective value from a linear program, for 0≤c≤ 4n2− 1 (524)

4n2
∑

i=c+1

π(|ΨvecU⋆|)i = minimize
y∈R4n2

〈|ΨvecU⋆| , y〉
subject to 0 ¹ y ¹ 1

yT1 = 4n2− c

(915)

where π is the nonlinear permutation-operator sorting its vector argument into
nonincreasing order. An optimal solution y to (915), that is an extreme point of its feasible

4.64Conjugate gradient method requires positive definiteness. [166, §4.8.3.2]
4.65Fat is typical of compressed sensing problems; e.g, [72] [79].

http://www.convexoptimization.com/wikimization/index.php/Matlab_for_Convex_Optimization_%26_Euclidean_Distance_Geometry#Compressive_Sampling_of_Images_by_Convex_Iteration__Shepp-Logan_phantom
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set, is known in closed form: it has 1 in each entry corresponding to the 4n2− c smallest
entries of |ΨvecU⋆| and has 0 elsewhere. −p.293 Updated image U⋆ is assigned to U t ,
the contraction is recomputed solving (909b), direction vector y is updated again, and so
on until convergence which is guaranteed by virtue of a monotonically nonincreasing real
sequence of objective values in (909a) and (915).

There are two features that distinguish problem formulation (909b) and our particular
implementation of it [390, Matlab code]:

1) An image-gradient estimate may engage any combination of four adjacent pixels.
In other words, the algorithm is not locked into a four-point gradient estimate
(Figure 117); number of points constituting an estimate is directly determined by
direction vector y .4.66 Indeed, we find only c = 5092 zero entries in y⋆ for the
Shepp-Logan phantom; meaning, discrete image-gradient sparsity is actually closer
to 1.9% than the 3% reported elsewhere; e.g, [374, §IIB].

2) Numerical precision of the fixed point of contraction (913) (≈1E-2 for perfect
reconstruction @−103dB error) is a parameter to the implementation; meaning,
direction vector y is updated after contraction begins but prior to its culmination.
Impact of this idiosyncrasy tends toward simultaneous optimization in variables U
and y while insuring y settles on a boundary point of its feasible set (nonnegative
hypercube slice) in (915) at every iteration; for only a boundary point4.67 can yield
the sum of smallest entries in |ΨvecU⋆|.

Perfect reconstruction of the Shepp-Logan phantom (at 103dB image/error) is achieved
in a Matlab minute with 4.1% subsampled data (2671 complex samples); well below an
11% least lower bound predicted by the sparse sampling theorem. Because reconstruction
approaches optimal solution to a 0-norm problem, minimum number of Fourier-domain
samples is bounded below by cardinality of discrete image-gradient at 1.9%. 2

4.6.0.0.14 Exercise. Contraction operator.
Determine conditions on λ and ǫ under which ΨTδ(y)δ(|ΨvecU t| + ǫ1)−1 Ψ + λP from
(914) is positive definite and (913) is a contraction. H

4.6.0.0.15 Example. Eternity II.
A tessellation puzzle game, playable by children, commenced world-wide in July 2007;
introduced in London by Christopher Walter Monckton, 3rd Viscount Monckton of
Brenchley. Called Eternity II, its name derives from an estimate of time that would pass
while trying all allowable tilings of puzzle pieces before obtaining a complete solution. By
the end of 2008, a complete solution had not yet been found although a $10,000 USD
prize was awarded for a high score 467 (out of 480=2

√
M(

√
M−1)) obtained by heuristic

methods.4.68 No prize was awarded for 2009 and 2010. Game-rules state that a $2M prize

4.66This adaptive gradient was not contrived. It is an artifact of the convex iteration method for minimal
cardinality solution; in this case, cardinality minimization of a discrete image-gradient.
4.67Simultaneous optimization of these two variables U and y should never be a pinnacle of aspiration;
for then, optimal y might not attain a boundary point.
4.68That score means all but a few of the 256 pieces had been placed successfully (including the mandatory
piece). Although distance between 467 to 480 is relatively small, there is apparently vast distance to a
solution because no complete solution was found in 2009.
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(a) pieces

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

(b) one solution

13 4 16 5

3 2 10 11

12 14 6 8

1 15 7 9

(c) colors

e1

e2

e3

e4

Figure 119: Eternity II is a board game in the puzzle genre. (a) Shown are all of the
16 puzzle pieces (indexed as in the tableau alongside) from a scaled-down computerized
demonstration-version on the TOMY website. Puzzle pieces are square and triangularly
partitioned into four colors (with associated symbols). Pieces may be moved, removed,
and rotated at random on a 4×4 board. (b) Illustrated is one complete solution to
this puzzle whose solution is not unique. The piece, whose border is lightly outlined, was
placed last in this realization. There is no mandatory piece placement as for the full game,
except the grey board-boundary. Solution time for a human is typically on the order of a
minute. (c) This puzzle has four colors, indexed 1 through 4 ; grey corresponds to 0.

http://www.eternityii.ro/try-eternity2-online/index.htm
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would be awarded to the first person who completely solves the puzzle before December 31,
2010, but the prize remains unclaimed after the deadline.

The full game comprises M = 256 square pieces and a 16×16 gridded board
(Figure 120) whose complete tessellation is considered NP-hard.4.69 [361] [113] A player
may tile, retile, and rotate pieces, indexed 1 through 256, in any order face-up on the
square board. Pieces are immutable in the sense that each is characterized by 4 colors
(and their uniquely associated symbols), one at each edge, which are not necessarily the
same per piece or from piece to piece; id est, different pieces may or may not have some
edge-colors in common. There are L = 22 distinct edge-colors plus a solid grey. The object
of the game is to completely tile the board with pieces whose touching edges have identical
color. The boundary of the board must be colored grey.

full-game rules

1) Any puzzle piece may be rotated face-up in quadrature and placed or replaced on
the square board.

2) Only one piece may occupy any particular cell on the board.

3) All adjacent pieces must match in color (and symbol) at their touching edges.

4) Solid grey edges must appear all along the board’s boundary.

5) One mandatory piece (numbered 139 in the full game) must have a predetermined
orientation in a predetermined cell on the board.

6) The board must be tiled completely (covered).

A scaled-down demonstration version of the game is illustrated in Figure 119.
Differences between the full game (Figure 120) and scaled-down game are the number of
edge-colors L (22 versus 4, ignoring solid grey), number of pieces M (256 versus 16), and
a single mandatory piece placement interior to the board in the full game. The scaled-down
game has four distinct edge-colors, plus a solid grey, whose coding is illustrated in
Figure 119c.

� L = 22 distinct edge-colors and number of puzzle pieces M = 256 and
board-dimension

√
M ×

√
M = 16×16 for the full game.

� There are L = 4 distinct edge-colors and M = 16 pieces and dimension√
M ×

√
M = 4×4 for the scaled-down demonstration board.

4.69Even so, combinatorial-intensity brute-force backtracking methods can solve similar puzzles in minutes
given M =196 pieces on a 14×14 test board; as demonstrated by Yannick Kirschhoffer. There is a steep
rise in level of difficulty going to a 15×15 board.

http://sourceforge.net/projects/eternityii
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248

7
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9

252

11

254

13

256

15

121

Figure 120: Eternity II full-game board (16×16, not actual size). Grid facilitates piece
placement within unit-square cell; one piece per cell.

Euclidean distance intractability
If each square puzzle piece were characterized by four points in quadrature, one point
representing board coordinates and color per edge, then Euclidean distance geometry
would be suitable for solving this puzzle. Since all interpoint distances per piece are
known, this game may be regarded as a Euclidean distance matrix completion problem4.70

in EDM4M . Because distance information provides for reconstruction of point position to
within an isometry (§5.5), piece translation and rotation are isometric transformations that
abide by rules of the game.4.71 Convex constraints can be devised to prevent puzzle-piece
reflection and to quantize rotation such that piece-edges stay aligned with the board
boundary. (§5.5.2.0.1)

But manipulating such a large EDM is too numerically difficult for contemporary
general-purpose semidefinite program solvers which incorporate interior-point methods;
indeed, they are hard-pressed to find a solution for variable matrices of dimension as
small as 100. Our challenge, therefore, is to express this game’s rules as constraints in a
convex and numerically tractable way so as to find one solution from a googol of possible
combinations.4.72

4.70(§6.7) Were edge-points ordered sequentially with piece number, then this EDM would have a
block-diagonal structure of known entries.
4.71Translation occurs when a piece moves on the board in Figure 120, rotation occurs when colors are
aligned with a neighboring piece.
4.72There exists at least one solution; their exact number is unknown although Monckton insists they
number in thousands. Ignoring boundary constraints and the single mandatory piece placement in the full
game, a loose upper bound on number of combinations is M ! 4M = 256! 4256. That number gets loosened:
150638!/(256!(150638−256)!) after presolving Eternity II (937).

http://www.youtube.com/watch?v=qxNucOJunys
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p61

p62

p63

p64

P6 = [ p61 p62 p63 p64 ]T∈ R4×L

Figure 121: Demo-game piece P6 illustrating edge-color • p6j ∈RL counterclockwise
ordering in j beginning from right.

permutation polyhedron strategy
To each puzzle piece, from a set of M pieces {Pi , i=1 . . . M } , assign an index i
representing a unique piece-number. Each square piece is characterized by four colors,
in quadrature, corresponding to its four edges. Each color pij ∈RL is represented by

eℓ∈RL an L-dimensional standard basis vector or 0 if grey. These four edge-colors are
represented in a 4×L-dimensional matrix; one matrix per piece

Pi , [ pi1 pi2 pi3 pi4 ]T∈ R4×L, i=1 . . . M (916)

In other words, each distinct nongrey color is assigned a unique corresponding index
ℓ∈ {1 . . . L} identifying a standard basis vector eℓ∈RL (Figure 119c) that becomes a
vector pij ∈ {e1 . . . eL , 0}⊂RL constituting matrix Pi representing a particular piece.
Rows {pT

ij , j =1 . . . 4} of Pi are ordered counterclockwise as in Figure 121. Color data is

given in Figure 122 for the demonstration board. Then matrix Pi describes the ith piece,
excepting its orientation and location on the board.

Our strategy to solve Eternity II is to first vectorize the board, with respect to the
whole pieces, and then relax a very hard combinatorial problem: All pieces are initially
placed, as in Figure 122, in order of their given index. Then the vectorized game-board
has initial state, as in Figure 122, represented within a matrix

P ,







P1

...
PM






∈ R4M×L (917)

Moving pieces about the square board all at once corresponds to permuting pieces Pi on
the vectorized board represented by matrix P , while rotating the ith piece is equivalent to
circularly shifting row indices of Pi (rowwise permutation). This permutation problem, as
stated, is doubly combinatorial (M ! 4M combinations) because we must find a permutation
of pieces (M !)

Ξ ∈ RM×M (918)

and a rotation Πi∈R4×4 of each individual piece (4M ) that solve the puzzle;

(Ξ ⊗ I4)ΠP = (Ξ ⊗ I4)







Π1P1
...

ΠMPM






∈ R4M×L (919)
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[ e3 0 0 e1 ]T

[ e2 e4 e4 e4 ]T

[ e2 e1 0 e1 ]T

[ e4 e1 0 e1 ]T

[0 0 e3 e1 ]T

[ e2 e2 e4 e2 ]T

[ e2 e3 0 e3 ]T

[ e4 e3 0 e3 ]T

[0 e3 e3 0 ]T

[ e2 e2 e4 e4 ]T

[ e2 e3 0 e1 ]T

[ e4 e1 0 e3 ]T

[0 e1 e1 0 ]T

[ e2 e2 e4 e4 ]T

[ e2 e1 0 e3 ]T

[ e4 e3 0 e1 ]T

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

Figure 122: Vectorized demo-game board has M = 16 matrices in R4×L describing initial
state of game pieces; 4 colors per puzzle-piece (Figure 121), L=4 colors total in game
(Figure 119c). So that color difference measurement remains unweighted, standard basis
vectors in RL represent color.
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where

Πi∈ {π1 , π2 , π3 , π4} ,























1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









,









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









,









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0























(920)

Π ,







Π1 0
. . .

0 ΠM






∈ R4M×4M (921)

Initial game-board state P (917) corresponds to Ξ = I and Πi = π1 = I ∀ i .
Circulant [184] permutation matrices {π1 , π2 , π3 , π4}⊂ R4×4 correspond to clockwise
piece-rotations {0◦, 90◦, 180◦, 270◦}.

Rules of the game dictate that adjacent pieces on the square board have colors that
match at their touching edges as in Figure 119b.4.73 A complete match is therefore
equivalent to demanding that a constraint, comprising numeric color differences between
2
√

M(
√

M−1) touching edges, vanish. Because the vectorized board layout is fixed and
its cells are loaded or reloaded with pieces during play, locations of adjacent edges in
R4M×L are known a priori. We need simply form differences between colors from adjacent
edges of pieces loaded into those known locations (Figure 123). Each difference may be
represented by a constant vector from a set {∆i∈R4M , i=1 . . . 2

√
M(

√
M−1)}. Defining

sparse constant fat matrix

∆ ,







∆T
1
...

∆T
2
√

M(
√

M−1)






∈ R2

√
M(

√
M−1)×4M (922)

whose entries belong to {−1, 0, 1} , then the desired constraint is

∆(Ξ ⊗ I4)ΠP = 0 ∈ R2
√

M(
√

M−1)×L (923)

Boundary of the square board must be colored grey. This means there are 4
√

M
boundary locations in R4M×L that must have value 0T. These can all be lumped into
one equality constraint

βT(Ξ ⊗ I4)ΠP 1 = 0 (924)

where β∈R4M is a sparse constant vector having entries in {0, 1} complementary to the
known 4

√
M zeros (Figure 123).

By combining variables:

Φ , (Ξ ⊗ I4)Π ∈ R4M×4M (925)

this square matrix becomes a structured permutation matrix replacing the product of
permutation matrices. Partition the composite variable Φ into blocks

Φ ,







φ11 · · · φ1M

...
. . .

...
φM1 · · · φMM






∈ R4M×4M (926)

4.73Piece adjacencies on the square board map linearly to the vectorized board, of course.



4.6. CARDINALITY AND RANK CONSTRAINT EXAMPLES 339

Figure 123: Initial piece state. © indicate boundary β , line segments indicate differences
∆ (922). Entries are indices ℓ identifying standard basis vectors eℓ∈RL from Figure 122.
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M = 16

Φ⋆

Figure 124: Sparsity pattern for composite permutation matrix Φ⋆∈R4M×4M representing
solution from Figure 119b. Each four-point cluster represents a circulant permutation
matrix from (920). Any M =16-piece solution may be verified on the TOMY website.

where Φ⋆
ij ∈ {0, 1} because (920)

φ⋆
ij ∈ {π1 , π2 , π3 , π4 , 0}⊂ R4×4 (927)

An optimal composite permutation matrix Φ⋆ is represented pictorially in Figure 124.
Now we ask what are necessary conditions on Φ⋆ at optimality:

� 4M -sparsity and nonnegativity.

� Each column has one 1. Each row has one 1.

� Entries along each and every diagonal of each and every 4×4 block φ⋆
ij are equal.

� Corner pair of 2×2 submatrices on antidiagonal of each and every 4×4 block φ⋆
ij

are equal.

We want an objective function whose global optimum, if attained, certifies that the puzzle
has been solved. Then, in terms of this Φ partitioning (926), the Eternity II problem is a
minimization of cardinality

minimize
Φ∈R4M×4M

‖ vec Φ‖0

subject to ∆ΦP = 0
βTΦP 1 = 0
Φ1 = 1
ΦT1 = 1
(I ⊗ Rd)Φ(I ⊗ RT

d ) = (I ⊗ Sd)Φ(I ⊗ ST
d )

(I ⊗ Rφ)Φ(I ⊗ ST
φ ) = (I ⊗ Sφ)Φ(I ⊗ RT

φ )

(e121⊗ I4)
TΦ(e139⊗ I4) = π3

Φ ≥ 0

(928)

http://www.eternityii.ro/try-eternity2-online/index.htm
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which is convex in the constraints where e121 , e139∈RM are members of the standard
basis representing mandatory piece placement in the full game,4.74 and where

Rd ,





1 0
1 0

1 0



∈ R3×4, Sd ,





0 1
0 1

0 1



∈ R3×4 (929)

Rφ ,

[

1 0 0 0
0 1 0 0

]

∈ R2×4, Sφ ,

[

0 0 1 0
0 0 0 1

]

∈ R2×4 (930)

These matrices R and S enforce circulance.4.75 Mandatory piece placement in the full
game requires the equality constraint in π3 . Constraints Φ1=1 and ΦT1=1 confine
nonnegative Φ to the permutation polyhedron (100) in R4M×4M . The feasible set of
problem (928) is an intersection of the permutation polyhedron with a large number
of hyperplanes. Any vertex in the permutation polyhedron, which is the convex hull
of permutation matrices, has minimal cardinality. (§2.3.2.0.4) The intersection contains
a vertex of the permutation polyhedron because a solution Φ⋆ cannot otherwise be a
permutation matrix; such a solution is known to exist, so it must also be a vertex of the
intersection.4.76

In the vectorized variable, problem (928) is equivalent to

minimize
Φ∈R4M×4M

‖ vec Φ‖0

subject to (PT⊗ ∆)vec Φ = 0
(P 1 ⊗ β)Tvec Φ = 0
(1T

4M ⊗ I4M ) vec Φ = 14M

(I4M ⊗ 1T
4M ) vec Φ = 14M

(I ⊗ Rd ⊗ I ⊗ Rd − I ⊗ Sd ⊗ I ⊗ Sd) vec Φ = 0
(I ⊗ Sφ ⊗ I ⊗ Rφ − I ⊗ Rφ ⊗ I ⊗ Sφ) vec Φ = 0

(e139⊗ I4 ⊗ e121⊗ I4)
Tvec Φ = vec π3

Φ ≥ 0

(931)

This problem is abbreviated:

minimize
Φ∈R4M×4M

‖ vec Φ‖0

subject to E vec Φ = τ
Φ ≥ 0

(932)

where E∈R2L
√

M(
√

M−1)+8M+13M2+17×16M2

is sparse and optimal objective value is 4M ;
dimension of E is 864,593× 1,048,576. A compressed sensing paradigm [73] is not inherent
here. To solve this by linear programming, a direction vector is introduced for cardinality
minimization as in §4.5. It is critical, in this case, to add enough random noise to the

4.74 meaning that piece numbered 139 by the game designer must be placed in cell 121 on the vectorized
board (Figure 120) with orientation π3 (p.338).
4.75Since 0 is the trivial circulant matrix, application is democratic over all blocks φij .
4.76Vertex means zero-dimensional exposed face (§2.6.1.0.1); intersection with a strictly supporting
hyperplane. There can be no further intersection with a feasible affine subset that would enlarge that
face; id est, a vertex of the permutation polyhedron persists in the feasible set.
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direction vector so as to insure a vertex solution [98, p.158]. For the demonstration game,
in fact, choosing a direction vector randomly will find an optimal solution in only a few
iterations.4.77 But for the full game, numerical errors prevent solution of (932); number
of equality constraints 864,593 is too large.4.78 So again, we reformulate the problem:

canonical Eternity II
Because each block φij of Φ (926) is optimally circulant having only four degrees of freedom
(927), we may take as variable every fourth column of Φ :

Φ̃ , [ Φ(: , 1) Φ(: , 5) Φ(: , 9) · · · Φ(: , 4M−3) ] ∈ R4M×M (933)

where Φ̃ij ∈ {0, 1}. Then, for ei∈R4

Φ = (Φ̃⊗ eT
1 ) + (I ⊗π4)(Φ̃⊗ eT

2 ) + (I ⊗π3)(Φ̃⊗ eT
3 ) + (I ⊗π2)(Φ̃⊗ eT

4 ) ∈ R4M×4M (934)

From §A.1.1 no.31 and no.40

vec Φ = (I ⊗ e1 ⊗ I4M + I ⊗ e2 ⊗ I ⊗ π4 + I ⊗ e3 ⊗ I ⊗ π3 + I ⊗ e4 ⊗ I ⊗ π2) vec Φ̃

, Y vec Φ̃ ∈ R16M2 (935)

where Y ∈ R16M2×4M2

. Permutation polyhedron (100) now demands that each
consecutive quadruple of adjacent rows of Φ̃ sum to 1 : (I ⊗ 1T

4 )Φ̃1=1. Constraints
in R and S (which are most numerous) may be dropped because circulance of φij is built
into Φ-reconstruction formula (934). Eternity II (931) is thus equivalently transformed

minimize
Φ̃∈R4M×M

‖ vec Φ̃‖0

subject to (PT⊗ ∆)Y vec Φ̃ = 0

(P 1 ⊗ β)TY vec Φ̃ = 0

(1T⊗ I ⊗ 1T
4 ) vec Φ̃ = 1

(I ⊗ 1T
4M ) vec Φ̃ = 1

(e139⊗ e1⊗ e121⊗ I4)
TY vec Φ̃ = π3e1

Φ̃ ≥ 0

(936)

whose optimal objective value is M with Φ̃⋆-entries in {0, 1} and where e1∈ R4

(§A.1.1 no.39) and e121 , e139∈RM . In abbreviation

minimize
Φ̃∈R4M×M

‖ vec Φ̃‖0

subject to Ẽ vec Φ̃ = τ̃

Φ̃ ≥ 0

(937)

4.77This can only mean: there are many optimal solutions. A simplex-method solver is required for
numerical solution; interior-point methods will not work. A randomized direction vector also works for
Clue Puzzles provided by the toy maker: similar 6×6 and 6×12 puzzles whose solution each provide a
clue to solution of the full game. Even better is a nonnegative uniformly distributed randomized direction
vector having 4M entries (M entries, in case (937)), corresponding to the largest entries of Φ⋆, zeroed.
4.78Saunders’ program lusol can reduce that number to 797,508 constraints by eliminating linearly
dependent rows of matrix E , but that reduction is not enough to overcome numerical issues with the best
contemporary linear program solvers.

http://www.convexoptimization.com/wikimization/index.php/Saunders
http://www.stanford.edu/group/SOL/software/lusol
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of reformulation (936), number of equality constraints is now 11,077; an order of magnitude

fewer constraints than (932) from where sparse Ẽ∈R2L
√

M(
√

M−1)+2M+5×4M2

replaces the
E matrix. Number of columns in matrix Ẽ has been reduced from a million to 262,144;
dimension of Ẽ goes to 11,077× 262,144. But this dimension remains out of reach of most
highly regarded contemporary academic and commercial linear program solvers because of
numerical failure; especially disappointing insofar as sparsity of Ẽ is high with only 0.07%
nonzero entries∈ {−1, 0, 1, 2} ; element {2} arising only in the β constraint which is soon
to disappear after presolving.

Variable vec Φ̃ itself is too large in dimension. Notice that the constraint in β , which
zeroes the board at its edges, has all positive coefficients. The zero sum means that all
vec Φ̃ entries, corresponding to nonzero entries in row vector (P 1 ⊗ β)TY , must be zero.
For the full game, this means we may immediately eliminate 57,840 variables from 262,144.
After zero-row and dependent row removal, dimension of Ẽ goes to 10,054× 204,304 with
entries in {−1, 0, 1}.

polyhedral cone theory
Eternity II problem (937) constraints are interpretable in the language of convex cones:
The columns of matrix Ẽ constitute a set of generators for a pointed polyhedral cone
K= {Ẽ vec Φ̃ | Φ̃≥0}. (§2.12.2.2) Even more intriguing is the observation: vector τ̃ resides
on that polyhedral cone’s boundary. (§2.13.4.2.4)

We may apply techniques from §2.13.4.3 to prune generators not belonging to the
smallest face of that cone, to which τ̃ belongs, because generators of that smallest face
must hold a minimal cardinality solution. Matrix dimension is thereby reduced:4.79 The
ith column Ẽ(: , i) of matrix Ẽ belongs to the smallest face F of K that contains τ̃ if and
only if

find
Φ̃∈R4M×M , µ∈R

Φ̃ , µ

subject to µτ̃ − Ẽ(: , i) = Ẽ vec Φ̃

vec Φ̃ º 0

(375)

is feasible. By a transformation of Saunders, this linear feasibility problem is the same as

find
Φ̃∈R4M×M , µ∈R

Φ̃ , µ

subject to Ẽ vec Φ̃ = µτ̃

vec Φ̃ º 0

(vec Φ̃)i ≥ 1

(938)

A minimal cardinality solution to Eternity II (937) implicitly constrains Φ̃⋆ to be binary.
So this test (938) of membership to F(K∋ τ̃ ) may be tightened to a test of (vec Φ̃)i =1 ;

4.79Column elimination can be quite dramatic but is dependent upon problem geometry. By method of
convex cones, we discard 53,666 more columns via Saunders’ pdco; a total of 111,506 columns removed
from 262,144 leaving all remaining column entries unaltered. Following dependent row removal via lusol,
dimension of Ẽ becomes 7,362× 150,638 ; call that A . Any process of discarding rows and columns prior
to optimization is presolving.

http://www.convexoptimization.com/wikimization/index.php/Saunders
http://www.stanford.edu/group/SOL/software/pdco
http://www.stanford.edu/group/SOL/software/lusol
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id est, for i=1 . . . 4M 2 distinct feasibility problems

find
Φ̃∈R4M×M

Φ̃

subject to Ẽ vec Φ̃ = τ̃

vec Φ̃ º 0

(vec Φ̃)i = 1

(939)

whose feasible set is a proper subset of that in (938). Real variable µ can be set to
1 because if it must not be, then feasible (vec Φ̃)i =1 could not be feasible to Eternity
II (937). If infeasible here in (939), then the only choice remaining for (vec Φ̃)i is 0 ;
meaning, column Ẽ(: , i) may be discarded after all columns have been tested. This
tightened problem (939) therefore tells us two things when feasible: Ẽ(: , i) belongs to the
smallest face of K that contains τ̃ , and (vec Φ̃)i constitutes a nonzero vertex-coordinate
of permutation polyhedron (100). After presolving via this conic pruning method (with
subsequent zero-row and dependent row removal), dimension of Ẽ goes to 7,362× 150,638.

generators of smallest face are conically independent
Designate A∈R7362×150638 , Rm×n as matrix Ẽ after having discarded all generators not
in the smallest face F of cone K that contains τ̃ . The Eternity II problem (937) becomes

minimize
x∈R

n
‖x‖0

subject to Ax = b
x º 0

(940)

To further prune all generators relatively interior to that smallest face, we may
subsequently test for conic dependence as described in §2.10 (280): for i=1 . . . 150,638

find x
subject to Ax = A(: , i)

x º 0
xi = 0

(941)

where x is vec Φ̃ corresponding to columns of Ẽ not previously discarded by (939).4.80

If feasible, then column A(: , i) is a conically dependent generator of the smallest face
and must be discarded from matrix A before proceeding with test of remaining columns.
It turns out, for Eternity II: generators of the smallest face, previously found via (939),
comprise a minimal set; id est, (941) is never feasible and so no column of A can be
discarded (A remains unaltered).4.81

affinity for maximization
Designate vector b∈Rm to be τ̃ after discarding all entries corresponding to dependent
rows in Ẽ ; id est, b is τ̃ subsequent to presolving. Then Eternity II resembles Figure 33a

4.80Discarded entries in vec Φ̃ are optimally 0.
4.81One cannot help but notice a binary selection of variable by tests (939) and (941): Geometrical test
(939) (smallest face) checks feasibility of vector entry 1 while geometrical test (941) (conic independence)
checks feasibility of 0. Changing 1 to 0 in (939) is always feasible for Eternity II.
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(not (b)) because variable x is implicitly bounded above by design; 1º x by confinement
of Φ in (928) to the permutation polyhedron (100), for i=1 . . . 150,638

1 = maximize
x

xi

subject to Ax = b
x º 0

(942)

Unity is always attainable, by (939). By (933) this means (§4.5.1.4)

M = maximize
y(x) , x

(1 − y)Tx

subject to Ax = b
x º 0

≡
maximize

x
‖x‖n

M
subject to Ax = b

x º 0

(943)

where

y = 1 − ∇‖x‖n
M

(815)

is a direction vector from the technique of convex iteration in §4.5.1.1 and ‖x‖n
M

is a

k-largest norm (§3.2.2.1, k=M). When upper bound M in (943) is met, solution x
will be optimal for Eternity II because it must then be a Boolean vector with minimal
cardinality M .

Maximization of convex function ‖x‖n
M

(monotonic on Rn
+) is not a convex problem,

though the constraints are convex. [325, §32] This problem formulation is unusual,
nevertheless, insofar as its geometrical visualization is quite clear. We therefore choose
to work with a complementary direction vector z , in what follows, in predilection for a
mental picture of convex function maximization.

direction vector is optimal solution at global convergence
Instead of solving (943), which is difficult, we propose iterating a convex problem sequence:
for 1 − y ← z

maximize
x∈R

n
zTx

subject to Ax = b
x º 0

(944)

maximize
z∈R

n
zTx⋆

subject to 0 ¹ z ¹ 1

zT1 = M

(525)

Variable x is implicitly bounded above at unity by design of A . A globally optimal
complementary direction vector z⋆ will always exactly match an optimal solution x⋆ for
convex iteration of any problem formulated as maximization of a Boolean variable; here
we have

z⋆Tx⋆ , M (945)
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rumination

� Adding a few more clue pieces makes the problem harder in the sense that solution
space is diminished; the target gets smaller.

� Because z⋆ = x⋆, Eternity II can instead be formulated equivalently as a
convex-quadratic maximization:

maximize
x∈R

n
xTx

subject to Ax = b
x º 0

(946)

a nonconvex problem but requiring no convex iteration. If it were possible to form
a nullspace basis Z , for A of about equal sparsity,4.82 such that

x = Z ξ + xp (115)

then the equivalent problem formulation

maximize
ξ

(Z ξ + xp)T(Z ξ + xp)

subject to Z ξ + xp º 0
(947)

might invoke optimality conditions as obtained in [213, thm.8]4.83. 2

4.7 Constraining rank of indefinite matrices

Example 4.7.0.0.1, which follows, demonstrates that convex iteration is more generally
applicable: to indefinite or nonsquare matrices X∈ Rm×n ; not only to positive
semidefinite matrices. Indeed,

find
X∈R

m×n
X

subject to X ∈ C
rankX ≤ k

≡

find
X, Y, Z

X

subject to X ∈ C
G =

[

Y X
XT Z

]

rankG ≤ k

(948)

Proof. rankG ≤ k ⇒ rankX ≤ k because X is the projection of composite matrix G
on subspace Rm×n. For symmetric Y and Z , any rank-k positive semidefinite composite
matrix G can be factored into rank-k terms R ; G = RTR where R , [B C ] and
rankB, rankC ≤ rankR and B∈Rk×m and C∈Rk×n. Because Y and Z and X = BTC
are variable, (1554) rankX ≤ rankB, rank C ≤ rankR = rankG is tight. ¨

4.82Define sparsity as ratio of number of nonzero entries to matrix-dimension product. For matrices, the
average number of nonzeros per row or column is easier to understand and likely to be small for typical
LP problems, independent of the dimensions. −Michael Saunders
4.83. . . the assumptions in Theorem 8 ask for the Qi being positive definite (see the top of the page of
Theorem 8). I must confess that I do not remember why. −Jean-Baptiste Hiriart-Urruty
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So there must exist an optimal direction vector W ⋆ such that

find
X, Y, Z

X

subject to X ∈ C
G =

[

Y X
XT Z

]

rankG ≤ k

≡

minimize
X, Y, Z

〈G , W ⋆〉

subject to X ∈ C
G =

[

Y X
XT Z

]

º 0

(949)

Were W ⋆ = I , by (1785) the optimal resulting trace objective would be equivalent to
the minimization of nuclear norm of X over C . This means:

� (confer p.194) The argument of any nuclear norm minimization problem may be
replaced with a composite semidefinite variable of the same optimal rank but doubly
dimensioned.

Then Figure 90 becomes an accurate geometrical description of a consequent composite
semidefinite problem objective. But there are better direction vectors than Identity I
which occurs only under special conditions:

4.7.0.0.1 Example. Compressed sensing, compressive sampling. [318]
As our modern technology-driven civilization acquires and exploits ever-increasing
amounts of data, everyone now knows that most of the data we acquire can be thrown
away with almost no perceptual loss − witness the broad success of lossy compression
formats for sounds, images, and specialized technical data. The phenomenon of ubiquitous
compressibility raises very natural questions: Why go to so much effort to acquire all the
data when most of what we get will be thrown away? Can’t we just directly measure the
part that won’t end up being thrown away? −David Donoho [129]

Lossy data compression techniques like JPEG are popular, but it is also well known that
compression artifacts become quite perceptible with signal postprocessing that goes beyond
mere playback of a compressed signal. [236] [261] Spatial or audio frequencies presumed
masked by a simultaneity are not encoded, for example, so rendered imperceptible even
with significant postfiltering (of the compressed signal) that is meant to reveal them;
id est, desirable artifacts are forever lost, so highly compressed data is not amenable to
analysis and postprocessing: e.g, sound effects [102] [103] [105] or image enhancement
(Adobe Photoshop).4.84 Further, there can be no universally acceptable unique metric of
perception for gauging exactly how much data can be tossed. For these reasons, there will
always be need for raw (noncompressed) data.

In this example we throw out only so much information as to leave perfect
reconstruction within reach. Specifically, the MIT logo in Figure 125 is perfectly
reconstructed from 700 time-sequential samples {yi} acquired by the one-pixel camera
illustrated in Figure 126. The MIT-logo image in this example impinges a 46×81

4.84As simple a process as upward scaling of signal amplitude or image size will always introduce noise;
even to a noncompressed signal. But scaling-noise is particularly noticeable in a JPEG-compressed image;
e.g, text or any sharp edge.



348 CHAPTER 4. SEMIDEFINITE PROGRAMMING

Figure 125: Massachusetts Institute of Technology (MIT) logo, including its white
boundary, may be interpreted as a rank-5 matrix. (Stanford University logo rank is much
higher;) This constitutes Scene Y observed by the one-pixel camera in Figure 126 for
Example 4.7.0.0.1.

array micromirror device. This mirror array is modulated by a pseudonoise source
that independently positions all the individual mirrors. A single photodiode (one pixel)
integrates incident light from all mirrors. After stabilizing the mirrors to a fixed
but pseudorandom pattern, light so collected is then digitized into one sample yi

by analog-to-digital (A/D) conversion. This sampling process is repeated with the
micromirror array modulated to a new pseudorandom pattern.

The most important questions are: How many samples do we need for perfect
reconstruction? Does that number of samples represent compression of the original data?

We claim that perfect reconstruction of the MIT logo can be reliably achieved with as
few as 700 samples y=[yi]∈R700 from this one-pixel camera. That number represents
only 19% of information obtainable from 3726 micromirrors.4.85 (Figure 127)

Our approach to reconstruction is to look for low-rank solution to an underdetermined
system:

find
X∈R46×81

X

subject to A vec X = y
rankX ≤ 5

(950)

where vec X is the vectorized (37) unknown image matrix. Each row of fat matrix A is one
realization of a pseudorandom pattern applied to the micromirrors. Since these patterns
are deterministic (known), then the ith sample yi equals A(i , :) vec Y ; id est, y = A vec Y .
Perfect reconstruction here means optimal solution X⋆ equals scene Y ∈ R46×81 to within
machine precision.

Because variable matrix X is generally not square or positive semidefinite, we constrain

4.85That number (700 samples) is difficult to achieve, as reported in [318, §6]. If a minimal basis for the
MIT logo were instead constructed, only five rows or columns worth of data (from a 46×81 matrix) are
linearly independent. This means a lower bound on achievable compression is about 5×46 = 230 samples
plus 81 samples column encoding; which corresponds to 8% of the original information. (Figure 127)
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Y

yi

Figure 126: One-pixel camera. Compressive imaging camera block diagram. Incident
lightfield (corresponding to the desired image Y ) is reflected off a digital micromirror
device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern
supplied by the random number generators (RNG). Each different mirror pattern produces
a voltage at the single photodiode that corresponds to one measurement yi . −[362] [409]

0 1000 2000 3000 3726

1 2 3 4 5

samples

Figure 127: Estimates of compression for various encoding methods:
1) linear interpolation (140 samples),
2) minimal columnar basis (311 samples),
3) convex iteration (700 samples) can achieve lower bound predicted by compressed sensing

(670 samples, n=46×81, k =140, Figure 107) whereas nuclear norm minimization
alone does not [318, §6],

4) JPEG @100% quality (2588 samples),
5) no compression (3726 samples).
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its rank by rewriting the problem equivalently

find
W1∈R46×46, W2∈R81×81, X∈R46×81

X

subject to A vec X = y

rank

[

W1 X
XT W2

]

≤ 5

(951)

This rank constraint on the composite (block) matrix insures rankX≤ 5 for any choice
of dimensionally compatible matrices W1 and W2 . But to solve this problem by convex
iteration, we alternate solution of semidefinite program

minimize
W1∈ S46, W2∈ S81, X∈R46×81

tr

([

W1 X
XT W2

]

Z

)

subject to A vec X = y
[

W1 X
XT W2

]

º 0

(952)

with semidefinite program

minimize
Z∈ S46+81

tr

([

W1 X
XT W2

]⋆

Z

)

subject to 0 ¹ Z ¹ I

trZ = 46 + 81 − 5

(953)

(which has optimal solution known in closed form, p.567) until a rank-5 composite matrix
is found.

With 1000 samples {yi} , convergence occurs in two iterations; 700 samples require
more than ten iterations but reconstruction remains perfect. Iterating more admits taking
of fewer samples. Reconstruction is independent of pseudorandom sequence parameters;
e.g, binary sequences succeed with the same efficiency as Gaussian or uniformly distributed
sequences. 2

4.7.1 rank-constraint midsummary

We find that this direction matrix idea works well and quite independently of desired
rank or affine dimension. This idea of direction matrix is good principally because of
its simplicity: When confronted with a problem otherwise convex if not for a rank or
cardinality constraint, then that constraint becomes a linear regularization term in the
objective.

There exists a common thread through all these Examples; that being, convex iteration
with a direction matrix as normal to a linear regularization (a generalization of the
well-known trace heuristic). But each problem type (per Example) possesses its own
idiosyncrasies that slightly modify how a rank-constrained optimal solution is actually
obtained: The ball packing problem in Chapter 5.4.2.2.6, for example, requires a problem
sequence in a progressively larger number of balls to find a good initial value for the
direction matrix, whereas many of the examples in the present chapter require an initial
value of 0. Finding a Boolean solution in Example 4.6.0.0.9 requires a procedure to detect
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stalls, while other problems have no such requirement. The combinatorial Procrustes
problem in Example 4.6.0.0.3 allows use of a known closed-form solution for direction
vector when solved via rank constraint, but not when solved via cardinality constraint.
Some problems require a careful weighting of the regularization term, whereas other
problems do not, and so on. It would be nice if there were a universally applicable method
for constraining rank; one that is less susceptible to quirks of a particular problem type.

Poor initialization of the direction matrix from the regularization can lead to an
erroneous result. We speculate one reason to be a simple dearth of optimal solutions
of desired rank or cardinality;4.86 an unfortunate choice of initial search direction leading
astray. Ease of solution by convex iteration occurs when optimal solutions abound. With
this speculation in mind, we now propose a further generalization of convex iteration for
constraining rank that attempts to ameliorate quirks and unify problem types:

4.8 Convex Iteration rank-1

We now develop a general method for constraining rank that first decomposes a given
problem via standard diagonalization of matrices (§A.5). This method is motivated
by observation (§4.4.1.1) that an optimal direction matrix can be simultaneously
diagonalizable with an optimal variable matrix. This suggests minimization of an
objective function directly in terms of eigenvalues. A second motivating observation is
that variable orthogonal matrices seem easily found by convex iteration; e.g, Procrustes
Example 4.6.0.0.2.

4.8.1 rank-1 transformation

It turns out that this general method always requires solution to a rank-1 constrained
problem regardless of desired rank ρ from the original problem. To demonstrate, we pose
a semidefinite feasibility problem

find X∈ Sn

subject to A svec X = b

X º 0

rankX ≤ ρ

(954)

given an upper bound 0 < ρ < n on rank, a vector b∈Rm, and typically fat full-rank

A =





svec(A1)
T

...
svec(Am)T



∈ Rm×n(n+1)/2 (688)

where Ai∈ Sn, i=1 . . . m . So, for symmetric matrix vectorization svec as defined in (56),

A svec X =





tr(A1 X)
...

tr(Am X)



 (689)

4.86In Convex Optimization, an optimal solution generally comes from a convex set of optimal solutions;
(§3.1.2.1) that set can be large.
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This program (954) is a statement of the classical problem of finding a matrix X of
maximum rank ρ in the intersection of the positive semidefinite cone with a given number
m of hyperplanes in the subspace of symmetric matrices Sn. [27, §II.13] [25, §2.2] Such a
matrix is presumed to exist.

To begin transformation of (954), express the nonincreasingly ordered diagonalization
(§A.5.1) of positive semidefinite variable matrix

X , QΛQT =

n
∑

i=1

λi Qii ∈ Sn (955)

which is a sum of rank-1 orthogonal projection matrices Qii weighted by eigenvalues λi

where Qij , qiq
T
j ∈ Rn×n, Q = [ q1 · · · qn ]∈Rn×n, QT = Q−1, Λii = λi ∈ R , and

Λ =











λ1 0
λ2

. . .

0T λn











∈ Sn (956)

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 . Recall the fact:

Λ º 0 ⇔ X º 0 (1539)

From orthogonal matrix Q in ordered diagonalization (955) of variable X , take a matrix

U , [u1 · · · uρ ] , Q(: , 1:ρ)
√

Λ(1:ρ , 1:ρ) =
[

√

λ1 q1 · · ·
√

λρ qρ

]

∈ Rn×ρ (957)

Then U has orthogonal but unnormalized columns;

X = UUT =

ρ
∑

i=1

uiu
T
i ,

ρ
∑

i=1

Uii =

ρ
∑

i=1

λi qiq
T
i ∈ Sn (958)

Make an assignment

Z =







u1

...
uρ







[uT
1 · · · uT

ρ ]
∈ Snρ

=







U11 · · · U1ρ
...

. . .
...

UT
1ρ · · · Uρρ






,







u1u
T
1 · · · u1u

T
ρ

...
. . .

...
uρu

T
1 · · · uρu

T
ρ







(959)
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Then transformation of (954) to its rank-1 equivalent is:

find
Uii∈S

n , Uij∈R
n×n

X =

ρ
∑

i=1

Uii

subject to Z =







U11 · · · U1ρ
...

. . .
...

UT
1ρ · · · Uρρ






(º 0)

A svec

ρ
∑

i=1

Uii = b

tr Uij = 0 i < j = 2 . . . ρ

rankZ = 1

(960)

Symmetry is necessary and sufficient for positive semidefiniteness of a rank-1 matrix.
(§A.3.1.0.7) Matrix X is positive semidefinite whenever Z is. (§A.3.1.0.4, §A.3.1.0.2) This
new problem always enforces a rank-1 constraint on matrix Z ; id est, regardless of upper
bound on rank ρ of variable matrix X , this equivalent problem always poses a rank-1
constraint. We propose solving (960) by iteration of convex problem

minimize
Uii∈S

n , Uij∈R
n×n

tr(Z W )

subject to Z =







U11 · · · U1ρ
...

. . .
...

UT
1ρ · · · Uρρ






º 0

A svec

ρ
∑

i=1

Uii = b

tr Uij = 0 i < j = 2 . . . ρ

(961)

with convex problem
minimize

W∈ S
nρ

tr(Z⋆ W )

subject to 0 ¹ W ¹ I

trW = nρ − 1

(962)

the latter providing direction of search W for a rank-1 matrix Z in (961). These convex
problems (961) (962) are iterated until a rank-1 Z matrix is found (until the objective
of (961) vanishes). Initial value of direction matrix W is the Identity. For subsequent
iterations, an optimal solution to (962) has closed form (p.567).

Because of the nonconvex nature of a rank-constrained problem, there can be no proof
of global convergence of this convex iteration. But this iteration always converges to a local
minimum because the sequence of objective values is monotonic and nonincreasing; any
monotonically nonincreasing real sequence converges. [274, §1.2] [43, §1.1] A rank ρ matrix
X solving the original problem (954) is found when the objective in (961) converges to 0 ;
a certificate of global optimality for the convex iteration. In practice, incidence of global
convergence is quite high (99.99% [392]); failures being mostly attributable to numerical
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accuracy. Upper bound ρ on rank of positive semidefinite matrix X is assured by rank-1
optimal matrix Z .

4.8.1.0.1 Example. Singular value decomposition by convex iteration. [173]
This diagonal decomposition technique (transformation to a rank-1 problem) is extensible
to other problem types; e.g, [241, §III]. Rank-1 transformation makes singular value
decomposition (SVD, §A.6) possible by convex iteration because orthogonality constraints
may then be introduced. We learn that any uniqueness properties, the SVD of
rank-ρ matrix X , US V T∈ Rm×n might enjoy, stem from demand for singular vector
orthonormality.4.87

Assignment Z∈ S2mρ+nρ+ρ+1
+ is key to finding the SVD of X by convex optimization:

find
H , J

U , δ(S) , V

subject to Z =













1 vec(H)T vec(U)T δ(S)T vec(V )T

vec H
vec U J
δ(S)
vec V













º 0

δ(S) º 0
H = US
X = HV T

HUT symmetry
UTH perpendicularity
tr

(

H(: , i)H(: , i)T
)

= S(i , i)2 i=1 . . . ρ
tr

(

H(: , i)U(: , i)T
)

= S(i , i) i=1 . . . ρ
H orthogonality
U , V orthonormality
rankZ = 1

(963)

where variable matrix J ∈ S2mρ+nρ+ρ
+ is a large partition of Z , where given rank-ρ matrix

X∈ Rm×n is subject to SVD in unknown orthonormal matrices U ∈ Rm×ρ and V ∈ Rn×ρ

and unknown diagonal matrix of singular values S∈Rρ×ρ, and where introduction of
variable H , US∈Rm×ρ makes identification of input X = HV T possible within partition
J . Orthogonality constraints on columns of H , within J , and orthonormality constraints
on columns of U and V are critical; videlicet, h⊥ v ⇔ tr(hvT)=0 ; vTv=1 ⇔ tr(vvT)=1.

Symmetric matrix Z is positive semidefinite rank-1 at optimality, regardless of ρ . That
rank constraint is the only nonconvex constraint in (963); the only constraint that cannot
be directly implemented in a convex manner per partition J . But the rank constraint is
handled well by convex iteration. Matlab implementation of SVD by convex iteration is
intricate although incidence of global convergence is 99.99% [406], barring numerical error.

2

4.87Otherwise, there exist many similarly structured tripartite nonorthogonal matrix decompositions; in
place of ρ nonzero singular values, diagonal matrix S would instead hold exactly ρ coordinates; orthonormal
columns in U and V would become merely linearly independent.
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svec W1

svec W2

svec W3

m1

m2

Figure 128: W1 , W2 , and W3 represent the last three direction vectors in a sequence.
m1 represents the midpoint between direction vectors W1 and W2 ; m2 is the midpoint of
W2 and W3 . Straight line passes through midpoints.

4.8.2 convex iteration accelerant

Convex iteration can be made to converge faster; sometimes, by orders of magnitude. The
idea here is to determine whether the last three direction vectors are close to their fit to
a straight line. When three direction vectors are close to a straight line, then the last
direction vector may be replaced with its extrapolation along that line.

To reduce computation time, the fitted line is not a best fit. Instead, the midpoint
between each pair of iteration-adjacent direction vectors is calculated (Figure 128). A
straight line is uniquely defined by two midpoints in any dimension. The distance of each
direction vector to the line is calculated, then those three distances summed. When a sum
is small, three direction vectors are deemed close to the line determined by them.

What is meant above by close and small depends on the particular problem type at
hand. For the parameters and normalized random data chosen for two Matlab realizations
[392] [406] on Wıκımization (corresponding to problems (960) and (963)), small is
numerically defined to be 1 or less in the statement if straight < 1 whose purpose
is to determine straightness of the last three direction vectors of convex iteration. The
smaller the value of the normalized sum called straight , the closer the last three direction
vectors are to a straight line. Variable straight is bounded below by 0 which indicates
three direction vectors precisely on the line going through them.

If linear extrapolation goes too far, then the objective of convex iteration will increase
or a solver may fail numerically. In either case, one must forget the last iteration and back
up the linear extrapolation until the objective decreases. These techniques are illustrated
by the Matlab programs.
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4.8.2.0.1 Exercise. SVD by convex iteration.
Write every constraint in (963), beginning with H =US downward excepting the rank
constraint, as an affine expression of variable matrix J .4.88 H

4.88Hint: [406].


