

Seminar:

Computational Geometry and Geometric Computing

Kickoff-Meeting

Eric Berberich Ben Galehouse Michael Sagraloff

Max Planck Institute for Informatics

Outline

Computational Geometry

- Design and analyse algorithms and data structures for geometric settings
- Combinatorial problems
- how to reduce the overall number of operations
- sparse data structures
- Algebraic problems
- fundamental layer for many algorithms in CG
- in particular, for non-linear objects
- Examples: Convex hull of points (in plane/space), nearest-neighbor queries, Voronoi diagrams, arrangement computations, topology of curves and surfaces, polynomial system solving,...

Geometric Computing

- Implement algorithms and data structures for geometric settings
- doubles (fixed precision floating-points) are evil
- sufficient for many instances in linear scenarios, but
- for non-linear objects we have to deal with larger errors in floating point computations
- "algorithm engineering": filter techniques, parallel evaluation

Geometric Computing

- Implement algorithms and data structures for geometric settings
- doubles (fixed precision floating-points) are evil - usually
- sufficient for many instances in linear scenarios, but
- for non-linear objects we have to deal with larger errors in floating point computations
- "algorithm engineering": filter techniques, parallel evaluation

CG vs. GC

Computational Geometry

- leads to theoretically best algorithms
- ignores constant factors, relies on unimplemented earlier work
- often makes assumption: General position, real-RAM (exact computation with real values)

Geometric Computing

- reformulate algorithms to handle any input
- "real-RAM" implementation
- algebraic methods in the literature are either numerical (fast, not certifying) or symbolic (slow, exact)
- combining both worlds to increase efficiency

The Group

- Department 1: Headed by Kurt Mehlhorn
- 5 subgroup leaders
- about 20 PostDocs, about 20 PhD students, 2 secretaries
- many HiWis (research assistent), B.Sc.-, M.Sc.-students
- Subgroups:
- Foundations and Discrete Maths
- Combinatorial Optimiziation
- Bio-inspired computing
- Algorithmic Game Theory
- Geometric Computing

Involvement of the subgroup

－Research in Computational Geometry was always there （various number of people）
－Geometric Computing（really compute on PC）
－LedA ${ }^{1}$ has a geometry kernel since early 90s－for linear objects（more recent：circles）
－1996：CGAL ${ }^{2}$ was founded by research sites across Europe （one is D1）
－Goal：Make theory available as software！
－several EU－Research projects

[^0]
Involvment of the subgroup - cont'd

- since 2001: focus on non-linear objects in GC-seeting: circles, conics, and beyond
- 2001-2004: Effective Computational Geometry (ECG)
- 2004-2007: Algorithmc for Complex Shapes (ACS)
- 2001: D1 founded Exacus-project ${ }^{3}$
- since 2006: EXACUS merges into CGAL (merge not complete, but no more dev in Exacus)

[^1]
Eric Berberich

- Grew up in Saarland, joined Saarland Uni 1999
- 2001: Seminar Effective Computational Geometry
- 2002: Lecture Effective Computational Geometry
- 2002: Fopra about Arrangements of Conics
- 2004: Diplom about Quadric intersection curves
- 2008: PhD on 2.5 dimensional arrangements (of algebraic
- 2009: PostDoc in Tel-Aviv on arrangements and Minkowski deconstruction
- 2010: PostDoc at MPI - running a seminar

Eric Berberich

- Grew up in Saarland, joined Saarland Uni 1999
- 2001: Seminar Effective Computational Geometry
- 2002: Lecture Effective Computational Geometry
- 2002: Fopra about Arrangements of Conics
- 2004: Diplom about Quadric intersection curves
- 2008: PhD on 2.5 dimensional arrangements (of algebraic objects)
- 2009: PostDoc in Tel-Aviv on arrangements and Minkowski deconstruction
- 2010: PostDoc at MPI - running a seminar

Eric Berberich

- Grew up in Saarland, joined Saarland Uni 1999
- 2001: Seminar Effective Computational Geometry
- 2002: Lecture Effective Computational Geometry
- 2002: Fopra about Arrangements of Conics
- 2004: Diplom about Quadric intersection curves
- 2008: PhD on 2.5 dimensional arrangements (of algebraic objects)
- 2009: PostDoc in Tel-Aviv on arrangements and Minkowski deconstruction
- 2010: PostDoc at MPI - running a seminar

Ben Galehouse

- Grew up in Ohio
- PhD at New York Universiy 2009 (Subdivision based meshing)
- Focus so far is on subdivision based meshing, but starting to diversify.
- Started Postdoc at MPII, November 2009

Michael Sagraloff

- Grew up in Bavaria, joined University in Bayreuth 1998 (Math/Algebraic Geometry)
- 2002-2005: PhD at Saarland University (Algebraic Geometry: classification of algebraic curves)
- 2005-now: Postdoc at MPII - heading the Geometric Computing group
- main interest in the "algebraic stuff"
- complexity analysis of root solvers/topology computation
- combination of numerical/symbolic methods
- adaptive algorithms

Now: Who are you?

- Please introduce yourself with name, studies, previous courses, interests
- What attracts you in our course? Expectations?
- Use a few sentences!

3 Goals

- Cover a specific exciting area of research in various details, i.e., with the help of (recent) scientific articles
- Make you familiar with (scientific) work: reading, understanding, discussion, presentation, writing
- Join our group as HiWi or for a thesis

Weekly Meeting

- There won't be Pizza every week.
- We meet for 2hours
- 60-75min talk
- 10-15min questions
- 10-15min discussion

Issues

- Problem 1: Find a time that suits all attendees
- Problem 2: When is the first usual meeting?

Weekly Meeting

- There won't be Pizza every week.
- We meet for 2hours
- 60-75min talk
- 10-15min questions
- 10-15min discussion

Issues

- Problem 1: Find a time that suits all attendees
- Problem 2: When is the first usual meeting?

Grading rubic

7 CreditPoints

- Mandatory: Participation
- 75\% Talk
- 25% Summary of up to 4 pages (LATEX)

Supervision

We are happy to

- preview your slides (strongly encouraged)
- comment on draft versions of your topic summary

Contact us by email to schedule meetings.

Literature

General:

- Book: de Berg, Cheong, van Kreveld, Overmars: Computational Geometry: Algorithms and Applications
- Book: Basu, Pollack, Roy: Algorithms in Real Algebraic Geometry Available online at http://www.math.purdue.edu/ sbasu/
- Book: LaValle: Motion Planning Available online at http://planning.cs.uiuc.edu/
- Website: www.cgal.org
- CGGC-Lecture Winter Term 2009/2010 with a lot of material: http://www.mpi-inf.mpg.de/departments/d1/teaching/ws09_10/CGGC
- Main references provided by us
- Using more is encouraged

Literature

General:

- Book: de Berg, Cheong, van Kreveld, Overmars: Computational Geometry: Algorithms and Applications
- Book: Basu, Pollack, Roy:

Algorithms in Real Algebraic Geometry
Available online at http://www.math.purdue.edu/ sbasu/

- Book: LaValle: Motion Planning

Available online at http://planning.cs.uiuc.edu/

- Website: www.cgal. org
- CGGC-Lecture Winter Term 2009/2010 with a lot of material: http://www.mpi-inf.mpg.de/departments/d1/teaching/ws09_10/CGGC

Topic:

- Main references provided by us
- Using more is encouraged

Minkowski Sums and Offsets

Minkowski sum

For sets $X, Y: M=X \oplus Y:=\{x+y \mid x \in X, y \in Y\}$

X, Y polygonal

- Convex decomposition
- Convolution cycle
X polygona, Y a disk $=$ offset
- Exact constructions
- Approximation

- Extension: Real-time offsets of triangle soups on the GPU

Minkowski Sums and Offsets

Minkowski sum

For sets $X, Y: M=X \oplus Y:=\{x+y \mid x \in X, y \in Y\}$

X, Y polygonal

- Convex decomposition
- Convolution cycle
X polygonal, Y a disk $=$ offset
- Exact constructions

- Approximation
- Extension: Real-time offsets of triangle soups on the GPU

Minkowski Sums and Offsets

Minkowski sum

For sets $X, Y: M=X \oplus Y:=\{x+y \mid x \in X, y \in Y\}$
X, Y polygonal

- Convex decomposition
- Convolution cycle
X polygonal, Y a disk = offset
- Exact constructions

- Approximation
- Extension: Real-time offsets of triangle soups on the GPU

Offset Deconstruction

Reverse direction

Given a polygonal shape P, two real parameters $r, \varepsilon>0$. Is Q a close approximation (Hausdorff-distance $\leq \varepsilon$) of the r-offset of another (unknown) polygonal shape P^{*}.

- decision algorithm
- greedy construction for convex input

Offset Deconstruction

Reverse direction

Given a polygonal shape P, two real parameters $r, \varepsilon>0$. Is Q a close approximation (Hausdorff-distance $\leq \varepsilon$) of the r-offset of another (unknown) polygonal shape P^{*}.
If so, find a nice-looking P.

- decision algorithm
- greedy construction for convex input

Offset Deconstruction

Reverse direction

Given a polygonal shape P, two real parameters $r, \varepsilon>0$. Is Q a close approximation (Hausdorff-distance $\leq \varepsilon$) of the r-offset of another (unknown) polygonal shape P^{\star}.
If so, find a nice-looking P.

- decision algorithm
- greedy construction for convex input

Voronoi Diagram and Medial Axis

Voronoi Diagram

Given a set of sites in the plane, compute a decomposition of the plane such that each site owns one cell and is closest site to all points of the cell it owns.

- New algorithm that relates to edges of a VD to the medial axis of an augmented planar domain
- Can be also used for computing offsets

Voronoi Diagram and Medial Axis

Voronoi Diagram

Given a set of sites in the plane, compute a decomposition of the plane such that each site owns one cell and is closest site to all points of the cell it owns.

- New algorithm that relates to edges of a VD to the medial axis of an augmented planar domain
- Can be also used for computing offsets

2D Straight Skeleton

Straight Skeleton (simplified definition)

The straight skeleton of a polygon is given by moving the edges at a fixed rate, and watching where the vertices go.

- similar to medial axis
- not a voronoi diagram!
- interesing applications: "roofing", terrain reconstructions, origami folding, planar motion planning, offset construction

Robot Motion Planning (Sampling)

Moving pieces

Is is possible to move a piece in a space from position A to positition B without colliding with any obstacle?

- Definition of Configuration Space
- Techniques: Rapid Exploring Dense Tree, Visibility Roadmap

Nef Polyhedra (in 2d and 3d)

Nef-Polyhedra

A Nef-polyhedron in dimension d is a point set $X \subset \mathbb{R}^{d}$ generated from a finite number of open halfspaces by set complement and set intersection operations.

Towards "Nef"-Quadrics

Quadric

Algebraic surface of degree 2: Ellipsoids, Paraboloid, Hypberboloid,...

- Given a set of intersecting quadrics: Compute how they are connected, and which volumes they induced (bounded by faces, edges, vertices)
- Two steps: (1) Adjacency graph (2) Neighborhood maps

Towards "Nef"-Quadrics

Quadric

Algebraic surface of degree 2: Ellipsoids, Paraboloid, Hypberboloid,...

- Given a set of intersecting quadrics: Compute how they are connected, and which volumes they induced (bounded by faces, edges, vertices)
- Two steps: (1) Adjacency graph (2) Neighborhood maps

Towards "Nef"-Quadrics

Quadric

Algebraic surface of degree 2: Ellipsoids, Paraboloid, Hypberboloid,...

- Given a set of intersecting quadrics: Compute how they are connected, and which volumes they induced (bounded by faces, edges, vertices)
- Two steps: (1) Adjacency graph (2) Neighborhood maps

Subdivision

- One approach to analyzing implicit surfaces is to subdivide a finite domain into regions until each region is "simple".
- Using interval arithmetic system, it is possible to handle non-singular problems in an essentially numeric way.
- Literature:
- Simon Plantinga and Gert Vegter "Isotopic Meshing of Implicit Surfaces", 2005 - A classic and very well studied algorithm.
- Long Lin and Chee Yap "Adaptive Isotopic Approximation of Nonsingular Curves: the Parametrizability and Nonlocal Isotopy Approach", 2009 - An example of recent work extending the Plantinga-Vegter algorithm.

Numerical solvers

－Finding roots of polynomials using numerical（floating point） computation is one of the oldest problems in computer science literature．
－Typically，these methods combine some variant of Newton iteration with various theoretic results and guarantee convergence when all roots are simple．
－Literature：
－Dario Andrea Bini＂Numerical computation of polynomial zeros by means of Aberth＇s method＂， 1995

Shortest Path among Discs

- The problem is to find the shortest path between two points in the plane which avoids a given collection of discs.
- Problem is interesting because exact solutions can be found, even though the problem is in a sense transcendental.
- Literature:
- Yap, et al. "Shortest Path amidst Disc Obstacles is Computable", 2005

Snap Rounding

－One approach to the analysis of exact geometric structures is to find and compute using a low precision approximation of them．
－The result is a solution to an approximated problem，but certain properties can be preserved．
－Literature：
－Dan Halperin and Eli Packer＂Iterated snap Rounding＂， 2001
－Arno Eigenwillig et al．，＂Snap Rounding of B’ezier Curves＂， 2007

Controlled Perturbation

Problem
 Exact computation is often very challenging: you have to deal with degeneracies and costly symbolic computations. But: Can we compute the exact result for nearby input, at least, without this additional effort?

- framework for CP.
- general analysis: how much precision is needed for certain geometric predicates.
- application to well-known algorithms
- many research problems: so far, CP has only been applied to "linear problems".

Eval - a real root solver

Problem

Given a polynomial $f \in \mathbb{R}[x]$, determine a set of disjoint intervals (boxes) that contain all real (complex) roots of f.

- "simplest" approach checks whether an interval contains a root of f or its derivative f^{\prime}.
- if an interval / contains no root of f^{\prime}, then it suffices to check endpoints of I.
- testing for roots with interval arithmetic
- efficiency in comparison to more sophisticated methods (Sturm/Descartes)
- generalization to complex roots and polynomials with approximate coefficients.

Quadratic interval refinement

Problem

Given a polynomial $f \in \mathbb{R}[x]$ and an isolating interval for a root of f, how can we get arbitrary good approximations of the root in an efficient way.

- simple binary research is not good enough (only linear convergence)
- Newton like methods (approximation of the polynomial by a linear function) lead to quadratic convergence.
- complexity of approximating a root up to a certain precision.

Algebraic Curve Analysis via RUR

Problem

Given a polynomial $f \in \mathbb{Z}[x, y]$, describe the set C of all points $(x, y) \in \mathbb{R}^{2}$ with $f(x, y)=0$. Compute a linear isotopic approximation of C.

- CAD approach vs. RUR approach
- determine critical points and connect them in appropriate manner

Surface Analysis/Triangulation

Problem

Given a polynomial $f \in \mathbb{Z}[x, y, z]$, describe the set S of all points $(x, y, z) \in \mathbb{R}^{3}$ with $f(x, y, z)=0$. Compute a triangular mesh which is isotopic to S.

-"generalization" of topology computation for curves

- new ideas for adjacency computation/vertical lines
- open problems: arrangements of surfaces, complexity of
triangulation

Surface Analysis/Triangulation

Problem

Given a polynomial $f \in \mathbb{Z}[x, y, z]$, describe the set S of all points $(x, y, z) \in \mathbb{R}^{3}$ with $f(x, y, z)=0$. Compute a triangular mesh which is isotopic to S.

- $f=z^{4}+(-5) \cdot z^{2}+\left(y^{4}+(-5)\right.$.
 $\left.y^{2}+\left(x^{4}+(-5) \cdot x^{2}+10\right)\right)$
- "generalization" of topology computation for curves
- new ideas for adjacency computation/vertical lines
- open problems: arrangements of surfaces, complexity of triangulation

... and now: Problem 3

The Assignment

- There are research papers about this problem!
- We do ...

... and now: Problem 3

The Assignment

- There are research papers about this problem!
- We do ... something sophisticated on the whiteboard :-)

[^0]: ${ }^{1}$ Library of Efficient Data Structures and Algorithms
 ${ }^{2}$ Computational Geometry Algorithms Library

[^1]: ${ }^{3}$ Libary for Efficient and eXact Algorithms for CUrves and Surfaces

