
Sending and Receiving Data via Bluetooth

with an Android Device

Brian Wirsing

March 26, 2014

Abstract

 Android developers often need to use Bluetooth in their projects. Unfortunately,

Bluetooth can be confusing to use for those unfamiliar with the process. This application note

details a method to utilize Bluetooth in order to communicate with a microcontroller. This

method includes verifying Bluetooth support and status, pairing and connecting to the

microcontroller’s Bluetooth module, and sending and receiving data serially.

Introduction

Bluetooth is a popular method of communication between devices. Many smartphones

today have the capability to communicate using Bluetooth. This is useful to mobile application

developers whose apps require a wireless communication protocol. However, utilizing the

Bluetooth API can be difficult for first-time users. The objective of this application note is to

explain how to use the Bluetooth tools available to an Android developer in order to send and

receive data to and from another device wirelessly.

Preliminary Hardware / Software

Figure 1. Bluetooth Module – Arduino Uno Connectivity

The Android device will be communicating with a Bluetooth module connected to an

Arduino Uno microcontroller. These components are connected as shown in Figure 1. The

source code used on the Arduino is shown in Source 1. The operation of this code is outside the

scope of this application note. However, what is important is the following: If the Android sends

the Arduino an asterisk character (*), the Arduino will send the Android a random value between

0 and 999 followed by “#”, which is used as a terminating character.

#include <SoftwareSerial.h>

const int RX_PIN = 2;
const int TX_PIN = 3;
SoftwareSerial serial(RX_PIN, TX_PIN);
char commandChar;

void setup ()
{

serial.begin (9600);
andomSeed(analogRead(0))

}

void loop ()
{

if(serial.available())
{

commandChar = serial.read();
switch(commandChar)
{

case '*':
serial.print(random(1000) + "#");
break;

}
}

}
Source 1. Arduino source code

The programming environment used to program the Android is Eclipse, which is

included in the Android Development Tools (ADT) bundle [1]. Other IDE’s may also work, but

Eclipse is already configured correctly in the ADT bundle, so it is easier to use, as well as being

proven to work already.

Issues

There are several issues that must be overcome before the Android device can

successfully transmit and receive data via Bluetooth. First, the Android must determine if it

supports Bluetooth, and if it does, if Bluetooth is turned on. Then, it must pair and connect with

the Bluetooth module on the Arduino. Finally, the Android must actually send and receive data.

Receiving data will be particularly troublesome.

Steps

In order for this method to work, the Android will have to be paired with the Arduino’s

Bluetooth module. To do this, find the Android’s Bluetooth settings and select the Arduino’s

Bluetooth module in order to pair with it. If the Bluetooth module does not appear, verify that it

is connected to the Arduino correctly, and make sure that the Arduino is receiving power. Also,

to ensure that the two devices connect correctly, unpair with all other Bluetooth devices.

package com.example.bluetoothconnection;

import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;

public class MainActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

Source 2. Starting code

The first programming step is to create a new Android Application Project in Eclipse.

Doing so will generate code similar to that in Source 2. The first thing the program should do is

determine if the Android device supports Bluetooth. To do this, create a BluetoothAdapter object

using the function getDefaultAdapter(). If this returns null, then the Android device does not

support Bluetooth. Source 3 shows how to do this. Add this code to OnCreate().

mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();
if (mBluetoothAdapter == null) {

// Device does not support Bluetooth
}

Source 3. Determine if Android supports Bluetooth

If getDefaultAdapter does not return null, then the Android supports Bluetooth. The next

step is to determine if Bluetooth is enabled, and if it is not enabled, to enable it. Source 4

accomplishes this task, checking if the BluetoothAdapter is enabled and reacting accordingly.

Add it after Source 3.

if (!mBluetoothAdapter.isEnabled()) {

Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(enableBtIntent, 1);

}
Source 4. Turn on Bluetooth if disabled

 Next, the program has to retrieve the actual Bluetooth device it will communicate with, in

this case the Arduino’s Bluetooth module. The BluetoothAdapter’s getBondedDevices() function

will do this. This function puts all of the Android’s currently-paired devices into a storage

structure called a “Set”. Since only the Arduino’s Bluetooth module is paired with the Android

(which was done at the beginning of these instructions), only this device will be in the Set.

Assign this device to a BluetoothDevice variable. Source 5 demonstrates these steps. Add it after

Source 4.

Set<BluetoothDevice> pairedDevices = mBluetoothAdapter.getBondedDevices();
if (pairedDevices.size() > 0) {

for (BluetoothDevice device : pairedDevices) {
mDevice = device;

}
}

Source 5. Get the Bluetooth module device

At this point, the Android has the Arduino’s Bluetooth module stored in a

BluetoothDevice object. The next objective is to form the connection between the Android and

the Arduino. This work should take place in separate thread. This is because forming a

connection can block a thread for a significant amount of time. Up until now, all of the

program’s code has been written in the main thread, or “user interface thread” (UI thread). The

UI thread should never be blocked. Therefore, create a new thread class where the connection

will form. Source 6 shows the code to accomplish this. Add it as an inner class of the main class.

private class ConnectThread extends Thread {

private final BluetoothSocket mmSocket;
private final BluetoothDevice mmDevice;
private static final UUID MY_UUID = UUID.fromString("00001101-0000-1000-8000-
00805f9b34fb");

public ConnectThread(BluetoothDevice device) {

BluetoothSocket tmp = null;
mmDevice = device;
try {

tmp = device.createRfcommSocketToServiceRecord(MY_UUID);
} catch (IOException e) { }
mmSocket = tmp;

}

public void run() {

mBluetoothAdapter.cancelDiscovery();
try {

mmSocket.connect();
} catch (IOException connectException) {

try {
mSocket.close();

} catch (IOException closeException) { }
return;

}
}

public void cancel() {

try {
mmSocket.close();

} catch (IOException e) { }
}

}
Source 6. Thread used for connecting Bluetooth devices

This thread requires a BluetoothDevice as a parameter and uses it to create a

BluetoothSocket. This socket is what Bluetooth uses to transfer data between devices. The UUID

used in Source 6 tells the socket that data will be transferred serially, which means one byte at a

time. To use this thread, add the code in Source 7 to the end of onCreate().

mConnectThread = new ConnectThread(mDevice);
mConnectThread.start();

Source 7. Creating the connection thread

The code will now connect the Arduino’s Bluetooth module with the Android. The last

objective is to send and receive data using this connection. Like connecting, transferring data is

time-intensive and can block the thread, so this work should also take place in a separate thread.

Create another inner thread class like that shown in Source 8. This is the most complex code in

the program. The thread requires a BluetoothSocket as a parameter and uses it to create an

InputStream and and OutputStream. The InputStream is used for reading data coming from the

Arduino, and the OutputStream is used for sending data to the Arduino.

Writing data is easier than reading data. The only data this program has to send is the

asterisk character, for when it wants to receive a random number from the Arduino. To do so,

convert “*” to a byte using the String class’s getBytes() function. Then, call the

ConnectedThread’s write(byte[]) function, using the converted “*” as the parameter. This will

put the “*” into the Android’s OutputStream, which will send “*” to the Arduino’s InputStream.

In turn, the Arduino will send a random number between 0 and 999 followed by “#”, which will

arrive in the Android’s InputStream.

Reading the InputStream is much tougher than writing. This is because multiple samples

of data can arrive in the InputStream between readings. This is why the “#” terminating character

is required. When data is read in the InputStream, it is moved to the end of a buffer. After this

happens, the buffer is iterated through, beginning at the location after the last “#” was found (this

may have happened before this InputStream reading). If another “#” is found, the program

“handles” the data between the previously-found “#” and this new “#”. This process continues

until the end of the buffer. If the last character in the buffer is a “#”, the buffer is cleared after the

data between the last 2 “#”s is handled.

 When the program obtains the data between 2 “#”s, it is often desired to use it in the UI

thread. In order to send data from a separate thread to the UI thread, a Handler must be used.

Source 9 shows the handler code to manage this data. Add this to the main class. This Handler

converts the entire buffer’s contents from a byte array to a string, and then saves the correct

portion of it into writemessage. This writemessage string stores the random number generated

and sent from the Arduino.

private class ConnectedThread extends Thread {
private final BluetoothSocket mmSocket;
private final InputStream mmInStream;
private final OutputStream mmOutStream;

public ConnectedThread(BluetoothSocket socket) {

mmSocket = socket;
InputStream tmpIn = null;
OutputStream tmpOut = null;
try {

tmpIn = socket.getInputStream();
tmpOut = socket.getOutputStream();

} catch (IOException e) { }

mmInStream = tmpIn;
mmOutStream = tmpOut;

}

public void run() {

byte[] buffer = new byte[1024];
int begin = 0;
int bytes = 0;
while (true) {

try {
bytes += mmInStream.read(buffer, bytes, buffer.length - bytes);
for(int i = begin; i < bytes; i++) {

if(buffer[i] == "#".getBytes()[0]) {
mHandler.obtainMessage(1, begin, i, buffer).sendToTarget();
begin = i + 1;
if(i == bytes - 1) {

bytes = 0;
begin = 0;

}
}

}
} catch (IOException e) {

break;
}

}
}

public void write(byte[] bytes) {

try {
mmOutStream.write(bytes);

} catch (IOException e) { }
}

public void cancel() {

try {
mmSocket.close();

} catch (IOException e) { }
}

}
Source 8. Thread used for transferring data

Handler mHandler = new Handler() {

@Override
public void handleMessage(Message msg) {

byte[] writeBuf = (byte[]) msg.obj;
int begin = (int)msg.arg1;
int end = (int)msg.arg2;

switch(msg.what) {

case 1:
String writeMessage = new String(writeBuf);
writeMessage = writeMessage.substring(begin, end);
break;

}
}

};
Source 9. Handler code

The program is almost complete. The last step is to create and start the data thread. Add the code

in Source 10 to the end of ConnectThread’s run() function.

mConnectedThread = new ConnectedThread(mmSocket);
mConnectedThread.start();

Source 10. Creating the data transfer thread

Results

 With the completed code, the program will run correctly. When the Android program is

first opened, it determines if Bluetooth is supported by the device, as well as whether or not

Bluetooth is enabled. After this, it finds the Arduino’s Bluetooth module paired with the Android

and uses it to form a connection. This connection process creates a socket that both devices will

use to receive and transmit data. When the Android sends the Arduino a “*” character, the

Arduino sends back a random number between 0 and 999, followed by a “#” character. The

Android parses the incoming data and stores only the number portion in a string called

writemessage. Thus, data transmission using Bluetooth is achieved.

Conclusions

Utilizing Bluetooth in Android applications can be daunting for those unfamiliar with the

process. However, prior experience with Android’s Bluetooth API can reduce the learning curve

tremendously. This application note can help Android developers gain this experience. This is

helpful because Bluetooth is a popular, well-supported, and effective protocol for wireless

communication, and can enhance mobile apps that require such a protocol.

References

[1] http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/index.html

