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Basic Features of the Software Reliability Models
Single Failure Model

Reliability Growth Model

Weibull and Gamma Failure Class Models
Bayesian Models

Early Life-Cycle Prediction Models
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= [t 1s important to be able to

= Predict probability of failure of a component or
system

s Estimate the mean time to the next failure

= Predict number of (remaining) failures
during the development.

= Such tasks are the target of the reliability
management models.
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Software Reliability Models
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extent of execution,
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&) Failure Specification /1

l

(N
s

Time based failure specification

1) Time of failure

Failure | Failure | Failure
. . no. times interval
2) Time interval (hours) | (hours)
b 1 10 10
between failures T T
3 32 13
3) 4 43 11
5 58 15
6 70 12
7 88 18
4) 8 103 15
9 125 22
10 150 25
11 169 19
12 199 30
13 231 32
14 256 25
15 296 40

| 4
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) Failure Specification /2

l

s

I —

1) Failure based failure specification
Time(s) Cu'mulative Failures in
2 ) . 123a11ures 12nterval
3) Cumulative failure [o—rs :
up to a given time |2 - 1
4) TFailures 1 :

experienced 1n a
time interval
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=L r

far@ucalgary.ca



i

,Two Reliability Questions

~ Single failure specification:

= What 1s the probability of failure of a system
(or a component)?

Multiple failure specification: __
s If a system (or a component) fails at time 7/, tz,;ﬂf
i,
= What is the expected time of the next failure?
= What is the probability of the next failure?

|
|a=U [ i
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, Various Reliability Models /1

= Exponential Failure Class Models
= Jelinski-Moranda model (JM)

S
(3
/AL

4

s
N

= Nonhomogeneous Poisson Process model (NHPP)

= Schneidewind model

= Musa’s Basic Execution Time model (BET)
= Hyperexponential model (HE)

= Others
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") Various Reliability Models /2
AN

VAINZE
— =» Weibull and Gamma Failure Class Models z

= Weibull model (WM) _
= S-shaped Reliability Growth model (SRG)
= Infinite Failure Category Models

s Duane’s model

i
|

s Geometric model

=

= Musa-Okumoto Logarithmic Poisson model
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i‘b Various Reliability Models /3
|EX N

—

= Bayesian Models z
= Littlewood-Verrall Model —

m Early Life-Cycle Prediction Models

= Phase-based model
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?ﬂ'@ How to Choose a SRE Model”

m Collect failure data (failure specification)

1

= Examine data (Density distribution vs. Cumulative
distribution)

= Select a model

» Estimate model parameters

s Customize model using the estimated parameters
s Goodness-of-fit test

s Make reliability predictions
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@ﬁ@ Randomness /1

= Random actions in reliability engineering:
= Introduction of defects into the code and their removal

= Execution of the test-cases, etc.

= We should define some random processes to
represent the randomness

s How to handle randomness?

s Collect failure data through testing

= Find a distribution function that is a best-fit for the
collected data

= Make assumptions about the presence of errors and

reliability
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G?@b Randomness /2

| Nl . .
= \What i1s a random variable?

= A random variable x on a sample space S 1s a rule that
assigns a numerical value to each outcome of S (a function "
of S 1nto a set of real numbers)

= In reliability modeling what can be represented
by random variable?

= Number of failures in an interval

= Time of failure within an interval

m ctC.

A V4 AV 4 N A V4 N AV 4
7\ N\ N 7\ N /N oo

Previous Current time interva_l
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) Probability Distribution /1

l
= Suppose that a random variable X assigns a

finite number of values to a sample space §'

= Then X induces a distribution function fthat

assigns probabilities to the points in R, -

Rx ={x1, x2, x3, ..., Xn}

f(xr) = P( X=xx)

far@ucalgary.ca



%) Probability Distribution /2
SLN%L ; .

— m The set of ordered pairs [xx, f(xk)] 1s usually
represented by a table or a graph (histogram)

i

~ 20 7 77

H H H ins

T T T

cy

15 -+ —

Frequen
=
o
Il

(Failure/time unit

(@) al
I

1 15 2 25 3 35 4 45 5

Time (days)

s The expected value of X, denoted by E(X) 1s
defined by

E(X) =x1f(x1) + x2f(x2) + ...+ Xnf(xn)
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ti‘@ Probability Distribution /3

l
|

m Let M(t) be a random process representing the
number of failures at time ¢

= The mean function u(?) represents the expected
number of failures at time ¢

u(t) = E(M(2))

= Failure intensity is the rate of change of the expected '
number of failures with respect to time

At) =d u(t)/dt
= A(?) 1s the number of failures per unit time

= A(?) 1s an instantaneous value
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?‘@ Probability Distribution /4

‘ l
| m Discrete distributions:

= Binomial distribution
= Poisson distribution

= Continuous distributions:
= Normal / Gaussian distribution
= Lognormal distribution
= Weibull distribution
= Rayleigh distribution
= Exponential distribution
I' (Gamma) distribution
v2 (Kai1 square) distribution
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?‘ﬁ:\!b Binomial Distribution /1

— = Gives probability of exact number
of successes 1n n independent
trials, when probability of success
p on single trial 1s a constant.

= Situations Wlth only 2 outcomes ..
(success or failure) (1645-1705)

= Probability remains the same for
all independent trials (Bernoull
trials)
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= Probability of exactly x successes:

!

n X n—x
fx)=ar——= 1P ¢ =
X (n —X )
: number of trials

f(x)  :probability of x successes 1n 7 trials
p : probability of success

q : probability of failure

p+q=I

px

q
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?‘@D Binomial Distribution /2

1

Flr)= () s

r)=2| | a

n : number of trials x=0 X

f(x) : probability of x
successes in 7 trials

p : probability of success

g : probability of failure

p+q=1I

F(r) : probability of obtaining
r or fewer successes 1n
n trials

Calculating F(r) becomes increasingly
difficult as n (sample set) gets larger

It 1s possible to find an approximate
solution by means of a normal
distribution
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Binomial Distribution /3

45;1»

l
= Common shapes of binomial distribution E
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Figure from.: Montgomery et al. “Engineering StatisticSs Bl
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far@ucalgary.ca



i

. ° ° ° ° °
iﬁ*‘b Example: Binomial Distribution
il

— = Acceptance sampling:

= A lot 1s accepted 1f not more than 2 defectives are found

in a sample of 6. The defect probability 1s 25%.

= Probability of having exactly 2 defects in the lot is:

D)= @ 0.25° x0.75" =0.297

= Probability of having more than 4 defects 1n the lot 1s:

F(r>4)=F(5)+ F(6)= @ 0.25° x 0.75' +0.25° =0.0046
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) Example 2

l

I —

= In a company there are 4 file servers each having -
the exact replica of a data set. The probability of
failure for each server 1s 10%.

= Probability of having 2 servers fail:
4
f(2)= (2) 0.1 x 0.9 = 0.0486
= Probability of having more than 3 servers fail:

F(r>2)=F(3)+F(4)= (j] 0.I'x0.9' +0.1* = 0.00036
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) Poisson Distribution /1

l

= Some events are rather rare, they don’t
happen that often. Still, over a period of
time, we want to say something about
the nature of rare events.

= Poisson distribution 1s special case of

binomial distribution (either p or ¢ 1s
very small and »n very large) |
Simeon Poisson =

= Conditions under which a Poisson (1781-1840) -
distribution holds
= counts of rare events, 1.e. small probability
= all events are independent

= average rate (usually denoted by w) does
not change over the period of interest

I —
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G?‘@D Poisson Distribution /2

= Poisson distribution is a special case of
binomial distribution (either p or g 1s very
small and »n very large): u=np

f(x)=F-e* x=0,1,2,...
X!

u: mean rate of occurrence (in statistics literature 1s
usually denoted by 1)
X : observed number of failures

I2E0 1 g
=L r
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) Poisson Distribution /3

= Common shapes of Poisson distribution ”

1.0 1.0, 1.0 -
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Figure from.: Montgomery et al. “Engineering StatisticSs Bl
oo, 250, |3e0 |50 MSCHULIGHED
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) Example: Poisson Distribution

l
~ = Suppose that the defect rate is only 2%

find the probability that there are 3 defective
items 1n a sample of 100 1tems.

u=np=100x0.02 =2

3 -2
TR S ;e ~0.18
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N —
x Uniform model:

= Probability of failure is
fixed.
1 ¢t<T

f(t):{o T

= EXxponential model:

= Probability of failure
changes exponentially
over time

f(t)=2e™”

1 Hardware Reliability Models
\,

Warrlanty

Release (-
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) Single Failure Model /1

(N
S

= Probability Density Function

(PDF): depicting changes of

the probability of failure up to a |

given time ¢.
A common form of PDF 1s
exponential distribution

Usually we want to know how
long a component will behave
correctly before it fails, i.e., the

probability of failure from time  f'(¢) =<

0 up to a given time .

2

Exponential PDF:

r/fie—/it

0
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?‘ﬁ:\!’ Single Failure Model /2

i

l
|

= Cumulative Density
Function (CDF):
depicting cumulative
failures up to a given
time .

= For exponential

distribution, CDF is: 1o >0]
F(t)=+ >

far@ucalgary.ca



(4, Single Failure Model /3

|

= Reliability function R(t): defined as a component
functioning without failure until time ¢, that 1s, the
probability that the time to failure 1s greater than .

RO=[7() =1-F()

= For exponential distribution, with a constant failure
rate A:
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.,Smgle Failure Model /4

= What is the expected value of failure at time 77

= [t 1s the mean of the probability density function (PDF),
named mean time to failure (MTTF)

E(T)=] "t f(r)dt

= For exponential distribution, MTTF 1is:

MTTF:l

A
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Ll ,Smgle Failure Model /5

= Median time to failure (Im): a point in time that the
probability of failure before and after #» are equal.

t:(‘jtf(t)dtz% or F(tm)z%

= Failure (hazard) Rate z(t): Probability density function
divided by reliability function.

For exponential distribution, z(z) 1s: A

far@ucalgary.ca
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%) Single Failure Model /6

l

= System Reliability: is the multiplication of
the reliability of 1ts components. (for serial
systems, 1.€., with no redundancy)

Rynen (=T TR ()

= For exponential distribution:

_ At At At AN Aptet A, )
R siem (t) —e " e e’ =e
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@@ Single Failure Model /7

l
|

= System Cumulative Failure (hazard) Rate: -
1s the sum of the failure rate of its |
components.

Zonen ()= 222 (1)

= For exponential distribution:

Zsystem (t):ﬂ'l +2’2 +“.+ﬂ’n :Zn:/li
i=l1
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@m Reliability Growth Models /1

S =s For hardware systems one can assume that the probability of .
failure (probability density function, PDF) for all failures are -
the same (e.g., replacing a faulty hardware component with

an 1dentical working one).

= [n software, however, we want to “fix” the problem, i.e., have |
a lower probability for the remaining failures after a repair -
(or longer Ati = ti-ti-1). Therefore, we need a model for
reliability growth (i.e., reliability change over time).

past now future

N\ l N\
] | | | t"
ot .. iz i 4. 'me

tf"“i of last time of next (ith) failure
(i-1") failure  _ {5 pe predicted
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4?@ Reliability Growth Models /2

l
|

= In reliability growth models we are assuming -
some effort of fault removal. This leads to a
variable failure intensity A(t).

= Every reliability growth model 1s based on -
specific assumptions concerning the change of -
failure intensity A(t) through the process of =
fault removal.
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4?@ Reliability Growth Models /3

l
|

= Common software reliability growth models
are:

= Basic Exponential model
= Logarithmic Poisson model

= The basic exponential model assumes finite
failures (vo) 1n infinite time.

= The logarithmic Poisson model assumes
infinite failures.
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= Software systems are

l

Validity of the Models

ln:reased fmlure .
rate due to side
eﬂ‘ecis -

changed (updated)
many times during
their life cycle.

The models are good
for one revision
period rather than the
whole life cycle.

Failure rate

Actual curve

A\ 4
—
=
2D
(0]

&
|‘

Revision
Period 1

A
A\ 4

Revision
Period 4

Figure i from Prel'ssman s boo
JIJ I _, [ - ]
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iﬂ'@ Reliability Growth Models /4

l

i

Variables involved in reliability growth
models:

1) Failure itensity (A): number of failures per
natural or time unit.

2) Execution time (t): time since the program 1s
running. Execution time may be different from
calendar time.

3) Mean failures experienced (u1): mean failures
experienced 1n a time interval.
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Mean failures

ty Growth Models /9

10

Mean value function A
!
i e
t
]
I rruey
1
I
I -
Time £
: Time ¢ A : p=’
l —
: ! Fallure Intensity _
I 1

5 10
Time (hr)

Figure from Musa' s book

10

(failures/hr)

Faillure intensity

Failure(s) Probability

in t?me Elapsed time Elapsed time
pefiod (1 hour) (5 hours)
0 0.10 0.01

1 0.18 0.02

2 0.22 0.03

3 0.16 0.04

4 0.11 0.05

5 0.08 0.07

6 0.05 0.09

7 0.04 0.12

8 0.03 0.16

9 0.02 0.13

10 0.01 0.10

11 0 0.07

12 0 0.05

13 0 0.03

14 0 0.02

15 0 0.01
Mean 3:._0_4_ o 7;7 :
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i‘b Reliability Growth Models /6
|G

—

= Failure intensity (A)
versus execution time

(1)

Failure intensity A

Basic model

Logarithmic Poisson model

Execution time

5

A, A, Initial failure intensity

A,0t+1 v, Total failures

¢ Decay parameter

i J/—'igure from /|/lu|sa’s book
|20 350 :
|| 1 1
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D Reliability Growth Models /7

i
| EN A

= Failure intensity (1)
versus mean failures

experienced (W)

(B) z(y):%[

(P) A()=Ay e

Failure intensity A

Initial failure
intensity A,

Basic model

Logarithmic Poisson model

5

Total
failures

Vo
Mean failures experienced p

i J/—'igure from /|/lu|sa’s book
|20 a50 E
|| 1 1
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D Reliability Growth Models /8

|'

s Mean failures

experienced (L) versus

execution time (1)

B) u(r)=v

Logarithmic Polsson

Total fallures

Baslc model

S

Exacution time v

i J/—'igure from /|/lu|sa’s book
|20 350 : .
|| 1 1
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How to Use the Models?

= Release criteria (time):

time required to test the |

system to reach a target 3 b

failure intensity: <
V Z Ob]e;’t:ive

(B) At=—"In-% | i i T—_
/10 ZF
1 1 1 Execution time © ":

(P) Ar= 9 [ % v 7 A, : Present failure intensity

A . Target failure intensity

__Figure from Musa' s book
[z00 [=50 8
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— = Release criteria (failure):
time required to test the
system to reach a target

et Initial failure
number of failures: ’g intensity A,
E Basic model
V A
(B) A ILI — Z(; ( ﬂ’P o ﬂ/F ) g Logarithmic Poisson model E
Total
1 ﬂ/ Mean failures experienced p :__
= I » . . 4
(P) Au= 5 lnﬂ_ A, . Present failure intensity
2 A . Target failure i j
s get 1ailure intensity

it J/—'igure from Musa' s book Sl
il =] 44 | PR
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ﬂ\'b Reliability Metrics

— = Mean time to failure (MTTF): Usually calculated by .
dividing the total operating time of the units tested by the total -
number of failures encountered (assuming that the failure rate -
1S constant). 53

s Example:

=« MTTF for Windows 2000 Professional is 2893 hours or 72 workweeks"
(40 hours per week).

m MTTF for Windows NT Workstation is 919 hours or 23 workweeks.
m MTTF for Windows 98 is 216 hours or 5 workweeks.

= Mean time to repair (MTTR): mean time to repair a
(software) component.

= Mean time between failures (MTBF):
MTBF = MTTF + MTTR

far@ucalgary.ca 53 @



iﬂ'@ Reliability Metrics: Availability

‘ l

=50 Software System Availability (4):

A(t): : or l(t)z I_A(t)
1+ ¢, A(2) t, A(t)
A 1s failure intensity
Im 1s downtime per failure
= Another definition of availability:
MTTF _ MTTF

A

" MTTF + MTTR MTBF

= Example: If a product must be available 99% of time and

downtime 1s 6 min, then A 1s about 0.1 failure per hour (1
failure per 10 hours) and MTTF=594 min.

s o
|3
|50 |80
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4?@ Reliability Metrics: Reliability

l
|

» Software System Reliability (R):

Z(t) _ —In tR(t) DR l—i{(t)

A 1s failure intensity

for R(t) > 095

R 1s reliability
¢t 1s natural unit (time, etc.)

= Example: for A=0.001 or 1 failure for 1000 hours,
reliability (R) 1s around 0.992 for 8 hours of
operation.
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D Example

i

In reliability growth testing of a software system
the failure data fits to both the Exponential model
and Logarithmic Poisson model. The model
parameters are given below:

Exponential model Logarithmic Poisson model
A, = 20 failures/CPU hour A, = 50 failures/CPU hour
v, = 120 failures 0 = 0.025 failures

= Assume for both cases below that you start from

the mitial failure intensity.
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iﬁm Example (cont’d)

— = Determine the additional failure and additional —

execution time required to reach a failure intensity
objective of 10 failure/CPU hour for both models.

For Basic model:

Au=2(2,=2,) = 122(? (20-10)=60 failures
0 et
Yo de 120420416 cPU hour 2

Ry A s 2
For Poisson model:
1 | A o il 50

Au=—In = In—=64 failures
e 2, T 0025 10 %

Arzl 1—1 = : (L—Lj:3.2 CPU hour
A 0.025\10 50

=

|z00 |350
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ii;‘b Example (cont’d)

m  Repeat the same calculation for a failure intensity -
objective of 1 failure/CPU hour for both models. -

:.l.'||

For Basic model:

12
Ap = ﬁ(lp —Ar)= L —(20-1)=114 failures
pr="o1n2e 21291, 20 18 Py hour 3
Ao A 201
For Poisson model: 3
Agl= lln Al In i 156  failures "3

6 A, 0025 1 i

AT:l X = : (l—ij:39.2 CPU hour
. A, ) 0.025\1 50

oo, [250
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S0
) Example (cont’d

4, Examele (cont'd)

— = Based on the experiment’s results compare the two

model results and explain what will happen to the

additional execution time required when the failure

intensity objective gets smaller.

As failure intensity gets smaller the additional
failures and execution time required to reach
them become substantially larger for Logarithmic
Poisson model than the Basic model.

Therefore the Basic model gives an optimistic
estimation while Logarithmic Poisson model offers
a pessimistic one.
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(7)) Gamma Failure Class Models
NG .
= The generalized o e ]
gamma distribution s ] o
(total 3 parameters, AT
1.€., scale, shape, i

location) includes
other distributions as
special cases based sy
on the values of the |
parameters. I T

=
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@m Weibull Model /1

| NG . . .. DA . L
m Failure distribution 1s Weibull distribution
rather than exponential

= Depending on the values of the parameters
(total 3 parameters, 1.e., scale, shape, 3
location), the Weibull distribution can be used
to model a variety of behaviours
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QL ﬂ\'b Weibull Model /2

= Assumptions:

la B

= Total number of faults 1s bounded

s The time to failure 1s distributed as Weibull
distribution

= The number of faults detected in each interval are
independent for any finite collection of times "

= Data requirement:
= Fault counts on each testing interval: f1, 12, ..., fa
= Completion time of each period: ¢4, 12, ..., tn
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{7) Weibull Model /3
Nﬂ\{k\!
— = The Weibull distribution has the probability density function -
T _ ol S Y
flT) = g ( 7) e <_ﬂr£)
7] 7

where S(7)20,T7>0o0r v,3>0,1 >0,— co<y< oo

= 1 = scale parameter
= [ = shape parameter (i.e., slope)
= ¥ = location parameter

s Cumulative density function, cdf :

T—j)ﬁ

EF(IU ::1_—-E_< e

e
1= 1 5[
|50 |80

far@ucalgary.ca



@@ Weibull Model /4

ik Religbility

= Failure intensity

(T BT -4\
”“—m—;(—n )

s Model parameters: n (scale parameter), 3 (shape or
slope parameter) and y (location parameter)
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ti‘@ Bayesian Models /1

Fe = The previous models allow change in the reliability only when_.
an error occurs. ]

= Assumptions:

= [fno failures occur while the software 1s tested then the reliability |
should increase, reflecting the growing confidence in the software by |
the user. !

= Different faults have different impacts on reliability. The number of
faults 1s not as important as their impacts.
= Reliability 1s a reflection of both the number of faults that
have been detected and the amount of failure-free operation.

m Uses prior distribution representing the “past data” and a
posterior distribution to incorporate past and “current data”.

15 fa! )
| + r
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%\‘» Early Life-Cycle Models /1

I Most of the reliability growth models predict reliability at the
later stages of development life cycle, i.e., during testing stage. -
However, if a software organization waits until all necessary -
data is available to collect, what usually happens 1s that it 1s
already too late to make proper improvements in software
reliability to achieve the reliability goal.

= Question: Would it be possible to predict reliability at the
carlier stages?

= Models that relate early stage data to reliability are needed.

= Typical early stage data: requirements, man-power build-up, -
development process, error injection rate and trends, code size -
estimates, etc.
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The Raleigh-Putnam Model

—
&y
NG

Total Defect Rate

m [t 1s usually assumed that
over the life of the project
the faults detected (per
month) will resemble a
Raleigh curve

= The rate of expending effort
1s proportional to the rate of
committing errors. Putnam

assumes that the rate of
effort expenditure is a
Raleigh curve.
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Source: QSM Web page
http://www.gsm.com/
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\ ﬂ\'b ELCM: The Process /1

= Obtain the milestones for the schedule:
= Start date and total months in project

= Date of expected full operational capability - td

= Estimate the total number of faults over the life of the
project - Er.

= A Raleigh curve can be generated by solving for
cach month t using this equation:

b = 6172 t><e£3%12j
m ’
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(i) ELCM: The Process /2
=5 Use this profile to gauge the fault detection process
during each phase of development.

s In particular, this profile can be used to gauge the =
original schedule estimate and the prediction for the -
total number of defects. '

s For example, the estimated number of defects
impacts the height of the curve while the schedule
impacts the length of the curve.

n If the actual defect curve 1s significantly different
from the predicted curve then one or both of these
parameters may have been estimated incorrectly and —
should be brought to the attention of management.
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- Reliability Growth Model

| Assumptions vs. Practice

N
6
By,

Assumptions

In practice

Software does not change and
defects are fixed immediately

Software changes rapidly and certain defects are
scheduled to be fixed in a later date

Testing Operational Profile
(OP)

Focus on functional testing. It is difficult to define
OP and perform operational tests.

Constant test effort and
independent failure intervals

Varying test effort (due to holidays and vacations)
and failure intervals may vary

All failures are observable

Testing in a controlled environment may be
different from running software in live environment

Collect failure reports

Collect defect reports. Any kind of defect observed
is recorded. Not all reports address a failure

Remaining failures are either
constant or decreasing

Remaining failures may actually increase due to
improper bug fixes

[Stringfellow & Andrews 200,
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