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ChapterChapter 2 Section 12 Section 1

B i F t f SRE M d lB i F t f SRE M d lBasic Features of SRE ModelsBasic Features of SRE Models
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GoalGoalGoalGoal
 It is important to be able to  

 Predict probability of failure of a component or 
system 

 Estimate the mean time to the next failure
 Predict number of (remaining) failures
during the development.

 Such tasks are the target of the reliabilitySuch tasks are the target of the reliability 
management models.
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Software Reliability ModelsSoftware Reliability ModelsSoftware Reliability ModelsSoftware Reliability Models
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Failure Specification /1Failure Specification /1Failure Specification /1Failure Specification /1

1) Time of failure Time based failure specification)
2) Time interval 

between failures

Failure 
no.

Failure 
times 
(hours)

Failure 
interval 
(hours)

1 10 10

2 19 9

3) Cumulative failure 
up to a given time

2 19 9

3 32 13

4 43 11

5 58 15

6 70 12p g
4) Failures 

experienced in a 

6 70 12

7 88 18

8 103 15

9 125 22

10 150 25p
time interval

10 150 25

11 169 19

12 199 30

13 231 32

14 256 25
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Failure Specification  /2Failure Specification  /2Failure Specification  /2Failure Specification  /2

1) Time of failure Failure based failure specification)
2) Time interval 

between failures

Time(s) Cumulative 
Failures

Failures in  
interval

30 2 2

60 5 3

90 7 2

3) Cumulative failure 
up to a given time

90 7 2

120 8 1

150 10 2

180 11 1

210 12 1
p g

4) Failures 
experienced in a 

210 12 1

240 13 1

270 14 1

p
time interval
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Two Reliability QuestionsTwo Reliability QuestionsTwo Reliability QuestionsTwo Reliability Questions
Single failure specification:
 What is the probability of failure of a system 

(or a component)?( p )

Multiple failure specification:Multiple failure specification:
 If a system (or a component) fails at time t1, t2, 

t…, ti-1, 
 What is the expected time of the next failure? 

far@ucalgary.ca 9
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Various Reliability Models  /1Various Reliability Models  /1Various Reliability Models  /1Various Reliability Models  /1
 Exponential Failure Class ModelsExponential Failure Class Models

 Jelinski-Moranda model (JM)
 Nonhomogeneous Poisson Process model (NHPP)
 Schneidewind model
 Musa’s Basic Execution Time model (BET)
 Hyperexponential model (HE)
 Others 
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Various Reliability Models  /2Various Reliability Models  /2Various Reliability Models  /2Various Reliability Models  /2
 Weibull and Gamma Failure Class ModelsWeibull and Gamma Failure Class Models

 Weibull model (WM)
 S-shaped Reliability Growth model (SRG)

 Infinite Failure Category ModelsInfinite Failure Category Models
 Duane’s model u e s ode
 Geometric model
 Musa-Okumoto Logarithmic Poisson model Musa Okumoto Logarithmic Poisson model
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Various Reliability Models  /3Various Reliability Models  /3Various Reliability Models  /3Various Reliability Models  /3
 Bayesian ModelsBayesian Models

 Littlewood-Verrall Model

 Early LifeEarly Life--Cycle Prediction ModelsCycle Prediction Models
 Phase-based modelse b sed ode
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How to Choose a SRE Model?How to Choose a SRE Model?How to Choose a SRE Model?How to Choose a SRE Model?
 Collect failure data (failure specification)
 Examine data (Density distribution vs. Cumulative 

distribution)
l d l Select a model

 Estimate model parameters
 Customize model using the estimated parameters
 Goodness-of-fit test
 Make reliability predictions
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Chapter 2 Chapter 2 Section 2Section 2

B k dB k dBackground: Background: 
Randomness & ProbabilityRandomness & Probability
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Randomness  /1Randomness  /1Randomness  /1Randomness  /1
 Random actions in reliability engineering:

 Introduction of defects into the code and their removal
 Execution of the test-cases, etc.

W h ld d fi dd t We should define some random processes random processes to 
represent the randomness
How to handle randomness? How to handle randomness?
 Collect failure data through testing
 Find a distribution function that is a best-fit for the Find a distribution function that is a best fit for the 

collected data
 Make assumptions about the presence of errors and 

far@ucalgary.ca 15
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Randomness  /2Randomness  /2Randomness  /2Randomness  /2
 What is a random variable?

 A random variable x on a sample space S is a rule that 
assigns a numerical value to each outcome of S (a function 
of S into a set of real numbers))

 In reliability modeling what can be represented 
by random variable?
 Number of failures in an interval 
 Time of failure within an interval
 etc.
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Probability Distribution  /1Probability Distribution  /1Probability Distribution  /1Probability Distribution  /1
 Suppose that a random variable X assigns a 

finite number of values to a sample space S
 Then X induces a distribution function f that f f

assigns probabilities to the points in Rx

Rx ={x1, x2, x3, …, xn}Rx {x1, x2, x3, …, xn}
f(xk) = P( X=xk)
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Probability Distribution  /2Probability Distribution  /2Probability Distribution  /2Probability Distribution  /2
 The set of ordered pairs [xk, f(xk)] is usually 

represented by a table or a graph (histogram)represented by a table or a graph (histogram)
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 The expected value of X, denoted by E(X) is 

1 1.5 2 2.5 3 3.5 4 4.5 5

Time (days)

p , y ( )
defined by

E(X) = x1 f(x1) + x2 f(x2) + …+ xn f(xn) 
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Probability Distribution  /3Probability Distribution  /3Probability Distribution  /3Probability Distribution  /3
 Let M(t) be a random process representing the 

number of failures at time tnumber of failures at time t
 The mean function  μ(t) represents the expected 

number of failures at time t
μ(t) = E(M(t))

 Failure intensity is the rate of change of the expected y g p
number of failures with respect to time

λ(t) = d μ(t) / dt
 (t) is the number of failures per unit time
 (t) is an instantaneous value
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Probability Distribution  /4Probability Distribution  /4Probability Distribution  /4Probability Distribution  /4
 Discrete distributions: 

 Binomial distribution Binomial distribution 
 Poisson distribution 

 Continuous distributions: 
 Normal / Gaussian distribution 
 Lognormal distribution 
 Weibull distribution W
 Rayleigh distribution
 Exponential distribution 
 (Gamma) distribution  (Gamma) distribution 

 2 (Kai square) distribution
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Binomial Distribution  /1Binomial Distribution  /1Binomial Distribution  /1Binomial Distribution  /1
 Gives probability of exact number 

f i i d d tof successes in n independent 
trials, when probability of success 
p on single trial is a constantp on single trial is a constant. 

 Situations with only 2 outcomes 
(success or failure)

Jakob Bernoulli 
(1645-1705)
Jakob Bernoulli 
(1645-1705)(success or failure) 

 Probability remains the same for 
all independent trials (Bernoulli

(1645 1705)(1645 1705)

all independent trials (Bernoulli 
trials)
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Binomial Distribution  /1Binomial Distribution  /1Binomial Distribution  /1Binomial Distribution  /1
 Probability of exactly x successes: 

  xnxxnx qp
n

qpnxf 







!

 
 

qp
x

qp
xnx

xf 








 !!

n : number of trials 
f(x) : probability of x successes in n trials 

b bili fp : probability of success 
q : probability of failure 

p + q =1
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Binomial Distribution  /2Binomial Distribution  /2Binomial Distribution  /2Binomial Distribution  /2
 Probability of having upto r successes:

  xnx
r

qp
n

rF  









n : number of trials 
f(x) : probability of x

successes in n trials

 
x

qp
x

 



0

successes in n trials 
p : probability of success 
q : probability of failure 
p + q =1

Calculating F(r) becomes increasingly 
difficult as n (sample set) gets largerp q

F(r) : probability of obtaining
r or fewer successes in 
n trials

It is possible to find an approximate 
solution by means of a normal 
distribution
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Binomial Distribution  /3Binomial Distribution  /3Binomial Distribution  /3Binomial Distribution  /3
 Common shapes of binomial distribution
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Figure from: Montgomery et al.  “Engineering Statistics”



Example: Binomial DistributionExample: Binomial DistributionExample: Binomial DistributionExample: Binomial Distribution
 Acceptance sampling:Acceptance sampling:

A l t i t d if t th 2 d f ti f d A lot is accepted if not more than 2 defectives are found 
in a sample of 6. The defect probability is 25%.

 Probability of having exactly 2 defects in the lot is:y g y

  297.075.025.0
2
6

2 42 







f

 Probability of having more than 4 defects in the lot is:





      0046.025.075.025.0
5
6

654 615 







 FFrF
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Example 2Example 2Example 2Example 2
 In a company there are 4 file servers each having 

th t li f d t t Th b bilit fthe exact replica of a data set. The probability of 
failure for each server is 10%.
Probability of having 2 servers fail: Probability of having 2 servers fail:

  2 24
2 0.1 0.9 0.0486

2
f

 
   
 

 Probability of having more than 3 servers fail:

 
2 
 

      3 1 44
2 3 4 0.1 0.9 0.1 0.00036

3
F r F F  
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Poisson Distribution  /1Poisson Distribution  /1Poisson Distribution  /1Poisson Distribution  /1
 Some events are rather rare, they don’t 

happen that often Still over a period ofhappen that often. Still, over a period of 
time, we want to say something about 
the nature of rare events. 
P i di ib i i i l f Poisson distribution is special case of 
binomial distribution (either p or q is 
very small and n very large)y y g )

 Conditions under which a Poisson 
distribution holds 
 counts of rare events i e small probability

Simeon Poisson 
(1781-1840)

Simeon Poisson 
(1781-1840)

 counts of rare events, i.e. small probability 
 all events are independent 
 average rate (usually denoted by ) does 

t h th i d f i t t

far@ucalgary.ca 27
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Poisson Distribution  /2Poisson Distribution  /2Poisson Distribution  /2Poisson Distribution  /2
 Poisson distribution is a special case of 

binomial distribution (either p or q is very 
small and n very large):  =np

0 1 2xe
μ

f(x) μ
x

  0,1,2,...  xe
x!

f(x) 

: mean rate of occurrence (in statistics literature is 
usually denoted by ) 

x : observed number of failures
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x : observed number of failures



Poisson Distribution  /3 Poisson Distribution  /3 Poisson Distribution  /3 Poisson Distribution  /3 
 Common shapes of Poisson distribution
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Figure from: Montgomery et al.  “Engineering Statistics”



Example: Poisson DistributionExample: Poisson DistributionExample: Poisson DistributionExample: Poisson Distribution
 Suppose that the defect rate is only 2% 

find the probability that there are 3 defective 
items in a sample of 100 items.

202.0100  np

  18.0
3

23 !

23





exf  

3!
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ChapterChapter 2 Section 32 Section 3

Si l F il M d lSi l F il M d lSingle Failure ModelSingle Failure Model
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Hardware Reliability ModelsHardware Reliability ModelsHardware Reliability ModelsHardware Reliability Models
 Uniform model: f Warranty

 Probability of failure is 
fixed.

 
1 t T


Exponential model:

 
0

f t
t T


  

t
T

f Exponential model:
 Probability of failure 

changes exponentially 

f

0
Release
time

g p y
over time

  tf t e  
t

T
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Single Failure Model /1Single Failure Model /1Single Failure Model /1Single Failure Model /1

 Probability Density Function y y
(PDF): depicting changes of 
the probability of failure up to a 
given time tgiven time t. 

 A common form of PDF is 
exponential distribution

 Usually we want to know how 
long a component will behave 
correctly before it fails i the

Exponential PDF:
t correctly before it fails, i.e., the 

probability of failure from time 
0 up to a given time t.

  0
0 0

te t
f t

t
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Single Failure Model /2Single Failure Model /2Single Failure Model /2Single Failure Model /2
 Cumulative Density 

F ti (CDF)Function (CDF):
depicting cumulative 
failures up to a givenfailures up to a given 
time t.

 For exponential

   
0

t
F t f t 

 For exponential 
distribution, CDF is:   1 0

0 0

te t
F t

t
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Single Failure Model /3Single Failure Model /3Single Failure Model /3Single Failure Model /3
 Reliability function R(t): defined as a component 

f ti i ith t f il til ti t th t i thfunctioning without failure until time t, that is, the 
probability that the time to failure is greater than t. 



F ti l di t ib ti ith t t f il

     tFtftR
t

 


1

 For exponential distribution, with a constant failure 
rate :

  tR t e 
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Single Failure Model /4Single Failure Model /4Single Failure Model /4Single Failure Model /4
 What is the expected value of failure at time T?

It i th f th b bilit d it f ti (PDF) It is the mean of the probability density function (PDF), 
named mean time to failure (MTTF)

   
0

E T t f t dt


 
 For exponential distribution, MTTF is:

11MTTF
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Single Failure Model /5Single Failure Model /5Single Failure Model /5Single Failure Model /5
 Median time to failure (tm): a point in time that the 

b bili f f il b f d f t lprobability of failure before and after tm are equal.

   1 1
2 2

mt

mt f t dt or F t 

 Failure (hazard) Rate z(t): Probability density function 

   
0

2 2mt f t dt o t

y y
divided by reliability function.

   
 

f t
z t 

For exponential distribution, z(t) is: 

   R t
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Single Failure Model /6Single Failure Model /6Single Failure Model /6Single Failure Model /6
 System Reliability: is the multiplication of 

the reliability of its components. (for serial 
systems, i.e., with no redundancy)

n

F ti l di t ib ti

   
1

n

system i
i

R t R t



 For exponential distribution:

   1 21 2 nn ttt tR t e e e e            

  1

n

i
i

system

t

R t e e e e

R t
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Single Failure Model /7Single Failure Model /7Single Failure Model /7Single Failure Model /7
 System Cumulative Failure (hazard) Rate:

is the sum of the failure rate of its 
components.

   
1

n

system i
i

z t z t



 For exponential distribution:

1i

  1 2
1

n

system n i
i

z t    
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ChapterChapter 2 Section 42 Section 4

R li bilit G th M d lR li bilit G th M d lReliability Growth ModelReliability Growth Model
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Reliability Growth Models Reliability Growth Models /1/1Reliability Growth Models Reliability Growth Models /1/1
 For hardware systems one can assume that the probability of 

failure (probability density function, PDF) for all failures arefailure (probability density function, PDF) for all failures are 
the same (e.g.,  replacing a faulty hardware component with 
an identical working one).

 In software however we want to “fix” the problem i e have In software, however, we want to fix  the problem, i.e., have 
a lower probability for the remaining failures after a repair 
(or longer Δti = ti-ti-1). Therefore, we need a model for 
reliability growth (i e reliability change over time)reliability growth (i.e., reliability change over time).
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Reliability Growth Models  /2Reliability Growth Models  /2Reliability Growth Models  /2Reliability Growth Models  /2
 In reliability growth models we are assuming 

some effort of fault removal. This leads to a 
variable failure intensity (t). 

 Every reliability growth model is based on 
specific assumptions concerning the change of 
failure intensity (t) through the process of 
fault removal. 
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Reliability Growth Models  /3Reliability Growth Models  /3Reliability Growth Models  /3Reliability Growth Models  /3
 Common software reliability growth models 

are: 
 Basic Exponential model
 Logarithmic Poisson model

 The basic exponential model assumes finite p
failures (0) in infinite time.

 The logarithmic Poisson model assumes The logarithmic Poisson model assumes 
infinite failures.
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Validity of the ModelsValidity of the ModelsValidity of the ModelsValidity of the Models
 Software systems are 

changed (updated)changed (updated) 
many times during 
their life cycle.

 The models are good 
for one revision 
period rather than theperiod rather than the 
whole life cycle.

Revision
Period 1

Revision
Period 4
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Reliability Growth Models  /4Reliability Growth Models  /4Reliability Growth Models  /4Reliability Growth Models  /4
 Variables involved in reliability growth 

models:
1) Failure intensity (): number of failures per 

natural or time unit. 
2) Execution time (): time since the program is 

i i i b diff frunning. Execution time may be different from 
calendar time. 
M f il i d ( ) f il3) Mean failures experienced (): mean failures 
experienced in a time interval.
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Reliability Growth Models /9Reliability Growth Models /9Reliability Growth Models /9Reliability Growth Models /9
Failure(s) 
in time 

i d

Probability

Elapsed time Elapsed time
period (1 hour) (5 hours)

0 0.10 0.01

1 0.18 0.02

2 0.22 0.03

3 0.16 0.04

4 0.11 0.05

5 0.08 0.07

6 0.05 0.09

7 0.04 0.12

8 0.03 0.16

9 0.02 0.13

10 0.01 0.10

11 0 0.07

12 0 0.05

13 0 0.03

14 0 0.02

far@ucalgary.ca 47

15 0 0.01

Mean 3.04 7.77Figure from Musa’s book



Reliability Growth Models /6Reliability Growth Models /6Reliability Growth Models /6Reliability Growth Models /6
 Failure intensity () 

ti tiversus execution time 
()

0 
 
 
  

 

0
0

0

(B)

( )

e   



 
 

0 Initial failure intensity  0

0

(P)
1

 
 




0

0

Initial failure intensity
Total failures
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Decay parameter
Figure from Musa’s book



Reliability Growth Models /7Reliability Growth Models /7Reliability Growth Models /7Reliability Growth Models /7
 Failure intensity () 

f ilversus mean failures 
experienced ()

   0
0

1(B)   


 
  

 

  0(P) e    
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Reliability Growth Models /8Reliability Growth Models /8Reliability Growth Models /8Reliability Growth Models /8
 Mean failures 

i d ( )experienced () versus 
execution time ()

0 
  

 
0

0
0 1(B) e


  

 
 

 
  
  

   0
1 ln 1(P)    
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How to Use the Models?How to Use the Models?How to Use the Models?How to Use the Models?
 Release criteria (time):

ti i d t t t thtime required to test the 
system to reach a target 
failure intensity:failure intensity: 

0( ) ln PB  
 0

0

( ) ln

1 1 1

P

F

B 
 

 

 
( ) 1 1 1

F P

P 
  
 

   
 

:  Present failure intensity
:  Target failure intensity

P

F
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How to Use the Models?How to Use the Models?How to Use the Models?How to Use the Models?
 Release criteria (failure):

time required to test thetime required to test the 
system to reach a target 
number of failures: 

 0(B)     F 
0

(B)

1

P F  




  

:  Present failure intensity
:  Target failure intensity

P

F




(P) 1 ln P

F
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Reliability MetricsReliability MetricsReliability MetricsReliability Metrics
 Mean time to failure (MTTF): Usually calculated by 

dividing the total operating time of the units tested by the total g p g y
number of failures encountered (assuming that the failure rate 
is constant). 

 Example:
 MTTF for Windows 2000 Professional is 2893 hours or 72 workweeks 

(40 hours per week). 
 MTTF for Windows NT Workstation is 919 hours or 23 workweeks. 

MTTF for Windows 98 is 216 hours or 5 workweeks MTTF for Windows 98 is 216 hours or 5 workweeks. 
 Mean time to repair (MTTR): mean time to repair a 

(software) component.  
Mean time between failures (MTBF): Mean time between failures (MTBF): 

MTBF = MTTF + MTTR 
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Reliability Metrics:Reliability Metrics: AvailabilityAvailabilityReliability Metrics:Reliability Metrics: AvailabilityAvailability
 Software System Availability (A):

 11 A t

 is failure intensity

       
 

11
1 m m

A t
A t or t

t t t A t



 



tm is downtime per failure
 Another definition of availability:

MTTF MTTFA
MTTF MTTR MTBF

 


 Example: If a product must be available 99% of time and 
downtime is 6 min, then  is about 0.1 failure per hour (1 
failure per 10 hours) and MTTF=594 min
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Reliability Metrics:Reliability Metrics: ReliabilityReliabilityReliability Metrics:Reliability Metrics: ReliabilityReliability
 Software System Reliability (R):

       ln 1
0.95

R t R t
t or for R t

t t
 

 
  

 is failure intensity
R is reliability
t is natural unit (time, etc.) 

 Example: for =0.001 or 1 failure for 1000 hours, 
reliability (R) is around 0.992 for 8 hours of 
operation.
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ExampleExampleExampleExample
 In reliability growth testing of a software system 

th f il d t fit t b th th E ti l d lthe failure data fits to both the Exponential model 
and Logarithmic Poisson model. The model 
parameters are given below:parameters are given below:

Exponential model Logarithmic Poisson model
λ 20 f il /CPU h λ 50 f il /CPU h

Ass me for both cases belo that o start from

λ0 = 20 failures/CPU hour λ0 = 50 failures/CPU hour
ν0 = 120 failures θ = 0.025 failures

 Assume for both cases below that you start from 
the initial failure intensity.
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Example  (cont’d)Example  (cont’d)Example  (cont d)Example  (cont d)
 Determine the additional failure and additional 

execution time required to reach a failure intensityexecution time required to reach a failure intensity 
objective of 10 failure/CPU hour for both models. 

F B i d l

   0

0

For Basic model:
120 20 10 60
20

120 20

P F failures  




     

0

0

120 20ln ln 4.16
20 10

For Poisson model:
1 1 50

P

F

CPU hour 
 



   

1 1 50ln ln 64
0.025 10

1 1 1 1 1 1 3.2

P

F

failures

CPU hour
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Example  (cont’d)Example  (cont’d)Example  (cont d)Example  (cont d)
 Repeat the same calculation for a failure intensity 

objective of 1 failure/CPU hour for both modelsobjective of 1 failure/CPU hour for both models.

For Basic model:

   0

0

0

120 20 1 114
20

120 20ln ln 18

P F

P

failures

CPU hour

  

 

     

 0

0

ln ln 18
20 1

For Poisson model:
1 1 50

P

F

CPU hour
 



   

1 1 50ln ln 156
0.025 1

1 1 1 1 1 1 39.2
0 025 1 50

P

F

failures

CPU hour
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Example  (cont’d)Example  (cont’d)Example  (cont d)Example  (cont d)
 Based on the experiment’s results compare the two 

model results and explain what will happen to themodel results and explain what will happen to the 
additional execution time required when the failure 
intensity objective gets smaller. 

As failure intensity gets smaller the additional 
failures and execution time required to reachfailures and execution time required to reach 
them become substantially larger for Logarithmic 
Poisson model than the Basic model. 

Therefore the Basic model gives an optimistic 
estimation while Logarithmic Poisson model offers 

i i ti
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ChapterChapter 2 Section 52 Section 5

W ib ll d GW ib ll d GWeibull and Gamma Weibull and Gamma 
Failure Class ModelsFailure Class Models
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Gamma Failure Class ModelsGamma Failure Class ModelsGamma Failure Class ModelsGamma Failure Class Models
 The generalized 

gamma distribution 
(total 3 parameters, 
i.e., scale, shape, 
location) includes 
other distributions as 
special cases based 
on the values of the 
parameters. 
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Reference: http://www.weibull.com/



Weibull Model  /1Weibull Model  /1Weibull Model  /1Weibull Model  /1
 Failure distribution is Weibull distribution 

rather than exponential
 Depending on the values of the parameters p g p

(total 3 parameters, i.e., scale, shape, 
location), the Weibull distribution can be used 
to model a variety of behaviours
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Weibull Model  /2Weibull Model  /2Weibull Model  /2Weibull Model  /2
 Assumptions:Assumptions:

 Total number of faults is bounded
 The time to failure is distributed as Weibull 

distributiondistribution
 The number of faults detected in each interval are 

independent for any finite collection of timesindependent for any finite collection of times
 Data requirement:Data requirement:

 Fault counts on each testing interval: f1, f2, …, fn Fault counts on each testing interval: f1, f2, …, fn

 Completion time of each period: t1, t2, …, tn
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Weibull Model  /3Weibull Model  /3Weibull Model  /3Weibull Model  /3
 The Weibull distribution has the probability density function 

where
  = scale parameter p
  = shape parameter (i.e., slope)
  = location parameter

C l i d i f i df Cumulative density function, cdf : 
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Weibull Model  /4Weibull Model  /4Weibull Model  /4Weibull Model  /4
 Reliability

 Failure intensity

 Model parameters:  (scale parameter),  (shape or 
slope parameter) and   (location parameter)
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Weibull Model  /5Weibull Model  /5Weibull Model  /5Weibull Model  /5

far@ucalgary.ca 66

Reference: http://www.weibull.com/



ChapterChapter 2 Section 62 Section 6

B i M d lB i M d lBayesian ModelsBayesian Models
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Bayesian Models  /1Bayesian Models  /1Bayesian Models  /1Bayesian Models  /1
 The previous models allow change in the reliability only when 

an error occurs.an error occurs. 
 Assumptions:Assumptions:

 If no failures occur while the software is tested then the reliability 
should increase reflecting the growing confidence in the software byshould increase, reflecting the growing confidence in the software by 
the user.

 Different faults have different impacts on reliability. The number of 
faults is not as important as their impacts.p p

 Reliability is a reflection of both the number of faults that 
have been detected and the amount of failure-free operation. 

 Uses prior distribution representing the “past data” and a Uses prior distribution representing the past data  and a 
posterior distribution to incorporate past and “current data”.
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Bayesian Models  /2Bayesian Models  /2Bayesian Models  /2Bayesian Models  /2
 Takes more 

“subjective” 
view of 
failure

 Steps of 
Bayesian 
approach
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Chapter Chapter 2 2 Section 7Section 7

E l LifE l Lif C lC lEarly LifeEarly Life--Cycle Cycle 
Prediction ModelsPrediction Models

far@ucalgary.ca 70



Early LifeEarly Life--Cycle Models  /1Cycle Models  /1Early LifeEarly Life--Cycle Models  /1Cycle Models  /1
 Most of the reliability growth models predict reliability at the 

later stages of development life cycle, i.e., during testing stage.later stages of development life cycle, i.e., during testing stage. 
However, if a software organization waits until all necessary 
data is available to collect, what usually happens is that it is 
already too late to make proper improvements in softwarealready too late to make proper improvements in software 
reliability to achieve the reliability goal. 

 Question: Would it be possible to predict reliability at the 
earlier stages?earlier stages?

 Models that relate early stage data to reliability are needed.
 Typical early stage data: requirements, man-power build-up, 

development process, error injection rate and trends, code size 
estimates, etc.
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The The RaleighRaleigh--Putnam ModelPutnam ModelThe The RaleighRaleigh--Putnam ModelPutnam Model

 It is usually assumed that 
over the life of the project 
the faults detected (per 
month) will resemble a 
Raleigh curve

 The rate of expending effort 
is proportional to the rate of p p
committing errors. Putnam 
assumes that the rate of 
effort expenditure is a Source: QSM Web page

http://www qsm com/effort expenditure is a 
Raleigh curve. 

http://www.qsm.com/
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ELCM: The Process /1ELCM: The Process /1ELCM: The Process /1ELCM: The Process /1
 Obtain the milestones for the schedule: 

St t d t d t t l th i j t Start date and total months in project
 Date of expected full operational capability - td

 Estimate the total number of faults over the life of the Estimate the total number of faults over the life of the 
project - Er. 

 A Raleigh curve can be generated by solving for 
h h i hi ieach month t using this equation:
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ELCM: The Process /2ELCM: The Process /2ELCM: The Process /2ELCM: The Process /2
 Use this profile to gauge the fault detection process 

during each phase of development.during each phase of development. 
 In particular, this profile can be used to gauge the 

original schedule estimate and the prediction for the 
total number of defectstotal number of defects. 

 For example, the estimated number of defects 
impacts the height of the curve while the schedule p g
impacts the length of the curve. 

 If the actual defect curve is significantly different 
from the predicted curve then one or both of thesefrom the predicted curve then one or both of these 
parameters may have been estimated incorrectly and 
should be brought to the attention of management.

far@ucalgary.ca 75



Reliability Growth Model Reliability Growth Model 
Assumptions vs  PracticeAssumptions vs  PracticeAssumptions vs. PracticeAssumptions vs. Practice

A ti I tiAssumptions  In practice 
Software does not change and 
defects are fixed immediately

Software changes rapidly and certain defects are 
scheduled to be fixed in a later date

Testing Operational Profile  
(OP)

Focus on functional testing. It is difficult to define 
OP and perform operational tests. 

Constant test effort and 
independent failure intervals

Varying test effort (due to holidays and vacations) 
and failure intervals may varyindependent failure intervals and failure intervals may vary

All failures are observable Testing in a controlled environment may be 
different from running software in live environment

C ll t f il t C ll t d f t t A ki d f d f t b dCollect failure reports Collect defect reports. Any kind of defect observed 
is recorded. Not all reports address a failure 

Remaining failures are either 
constant or decreasing

Remaining failures may actually increase due to 
improper bug fixes
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[Stringfellow & Andrews 2002]
constant or decreasing improper bug fixes
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