

Senior Design II - Summer 2012

Reconnaissance and Demolition Super Attack Tank

Group 7 -

Jeff Hildebrandt

Dylan Lambe

Mick Muzac

Bradley Raley

6 August, 2012

ii

Table of Contents

Section Page
1.0 Executive Summary ……………………………………………………………………... 1
2.0 Project Description ……………………………………………………………………… 2
 2.1 Project Motivation and Goals ………………………………………………………… 2
 2.2 Objectives ………………………………………………………………………………. 4
 2.3 Project requirements and Specifications ………………………………………….. 5
 2.3.1 Software Requirements and Specifications ………………………………….. 6
 2.3.2 Hardware Specifications and Requirements ………………………………….. 7
3.0 Research …………………………………………………………………………………. 9
 3.1: Existing Similar Devices …………………………………………………………... 9
 3.2 Relevant Technologies ……………………………………………………………… 11
 3.3 GUI Research ………………………………………………………………………….. 13
 3.4 Camera Research ….……………………………………………………………… 15
 3.5 Video Processing Research …………………………………………………………. 17
 3.6 Microcontroller Research ……………………………………………………………. 20
 3.7 Wireless Communication Research ……………………………………………….. 22
 3.8 Comunications ………………………………………………………………………… 24
 3.8.1 Inter-process Communications ……………………………………………….. 24
 3.9 Autonomy and Sensors Research ……………………………………………….. 25
 3.9.1 Introduction ………………………………………………………………………. 25
 3.9.2 Sensing Type 1 Obstructions ……………………………………………….. 26
 3.9.3 Sensing Type 2 Obstructions ………………………………………………. 30
 3.9.4 Heading and Searching ………………………………………………………… 32
 3.10 Vocal Command Recognition Research ……………………………………….. 35
 3.10.1 Introduction …………………………………………………………………….. 35
 3.10.2 Sphinx-4 …………………………………………………………………….. 36
 3.10.3 Port Audio …………………………………………………………………….. 37
 3.10.4 Android …………………………………………………………………….. 38
 3.10.5 Possible Solution …………………………………………………………… 39
 4.0 Project Hardware and Software Design Details …………………………………… 42
 4.1 Hierarchy of Decisions ……………………………………………………………….. 42
 4.2 GUI Design ……………………………………………………………………………. 44
 4.3 Tank Design …………………………………………………………………………… 46
 4.4 – Turret Design ……………………………………………………………………….. 48
 4.4.1 – Turret Functionality ……………………………………………………………. 48
 4.4.2 The Gun ………………………………………………………………………….. 51
 4.4.3 - Servo Selection Process ……………………………………………………… 53
 4.5 Video Processing ……………………………………………………………………. 56
 4.6 Autonomous Design ………………………………………………………………… 58
 4.6.1 Supporting Sensors ……………………………………………………………… 58
 4.6.2 Autonomous Design – C# Control Functions ………………………………… 60
 4.6.3 Microcontroller Code ……………………………………………………………. 62
 4.7 Power Allocation …………………………………………………………………….. 65
 4.7.1 Power Routing ………………………………………………………………….. 66
 4.7.2 Power Source …………………………………………………………………….. 68
 4.8 Color Recognition …………………………………………………………………… 69
 4.9 Targeting System …………………………………………………………………… 71
 4.10 Voice Control ……………………………………………………………………….. 72
 4.11 Wireless Communication Design …………………………………………………. 73
 4.12 Control Using the Microcontroller ………………………………………………… 75
 4.13 Microcontroller Layout ……………………………………………………………… 77
5.0 Design Summary ……………………………………………………………………….. 80
 5.0.1 Software Design Summary ………………………………………………………. 81

iii

 5.0.2 Hardware Summary ……………………………………………………………….. 81
 5.1 Video Processing Class Diagram …………………………………………………… 84
6.0 PCB Design ……………………………………………………………………………… 88
 6.0.1 PCB Overview ……………………………………………………………………… 88
 6.0.2 PCB Circuit Layout …………………………………………………………………. 89
7.0 Project Prototype Testing ……………………………………………………………… 90
 7.1 Hardware Test Environment ……………………………………………………….. 90
 7.2 Hardware Specific testing ………………………………………………………….. 90
 7.3 Software Test Environment ………………………………………………………… 91
 7.4 Vocal Command Testin …………………………………………………………. 92
 7.5 Autonomous Design – C# Control Functions Testing ………………………….. 93
 7.6 Color Recognition Testing ………………………………………………………… 94
 7.7 Microcontroller Code Testing ……………………………………………………… 96
 7.8 Targeting System Testing …………………………………………………………… 98
 7.9 Video Processing Testing …………………………………………………………… 100
 7.10 GUI Testing …………………………………………………………………………… 101
 7.11 Wireless Communication Testing ………………………………………………….. 102
8.0 Administrative Content …………………………………………………………………. 104
 8.1 Milestone Discussion …………………………………………………………………. 104
 8.2 Budget and Finance Discussion …………………………………………………… 108
 8.2.1 Bill of Materials …………………………………………………………………… 108
 8.2.2 Financing Issues ………………………………………………………………….. 109
9.0 Post Implementation ………………………………………………………………….. 110

 9.1 High Level Software Design ……………………………………………………… 110
 9.1.1 Color Recognition …………………………………………………………….. 110
 9.1.2 FPS ………………………………………………………………………………… 112
 9.1.3 GUI ………………………………………………………………………………… 112
 9.1.4 Main ………………………………………………………………………………… 113
 9.1.5 Phone Server …………………………………………………………………… 113
 9.1.6 Robot Motion …………………………………………………………………… 113
 9.1.7 Shape Recognition ………………………………………………………………. 114
 9.1.8 Targeting …………………………………………………………………………. 115
 9.1.9 Video Processing ………………………………………………………………. 115
 9.1.10 WiFi Bee Client ………………………………………………………………. 115
 9.2 Sensor and Microcontroller Overview ………………………………………….... 116
 9.2.1 Dual Controller Architecture …………………………………………………… 116
 9.2.2 Sensor Overview ………………………………………………………………. 117
 9.3 Circuit Design Changes …………………………………………………………….. 118

1

1.0 Executive Summary

The Reconnaissance and Demolition Super Attack Tank, also known as RADSAT,
is a small, autonomous, robotic tank that has hardware and software capabilities
allowing it to locate a target, track it, and accurately fire plastic BB's at the target.
The tank supports two separate modes of operation, the ability to be manually
controlled via a laptop as well as the ability to be set to autonomous mode.
These functions are supported by video imaging as well as close object detection
via infrared and ultrasonic sensors for obstacle avoidance. RADSAT itself
contains a voltage source to power all of its components, a microcontroller to
execute all of the commands, and a wireless chip that can receive commands
from the laptop via WiFi. While in autonomous mode, the tanks movement
decisions and route planning algorithm are dictated by the sensors and video
image processing. These computations are processed and transmitted in real-
time and allow RADSAT to successfully locate a target. For complete control, the
user is provided with a convenient GUI, as well as software that can accept voice
commands via an Android phone.

The primary motivation for the design and implementation of RADSAT came from
the group’s desire to develop a robot. Mainly focusing on the software
development side, most of the research and design went into the functions that
were to carry out RADSAT’s mission of autonomously locating a target.
Additionally, the software design that went into RADSAT can be adapted into a
real world design for military applications, as autonomous vehicles keep human
lives out of danger. An artist’s rendering of RADSAT can be seen in figure 1.0.1
below.

Figure 1.0.1: Drawing of the complete tank.

2

2.0 Project Description

2.1 Project Motivation and Goals

The motivation behind the RADSAT was a combination of wanting to make
something fun as well as something that would look good on a resume. Because
the group was founded upon the idea of making a voice controlled robot, the
group was excited to combine ideas and to make an interesting and exciting
robot. The idea was the RADSAT. The RADSAT is a mostly autonomous, WiFi
controlled, sensor equipped tank that will shoot air-soft bullets at colors specified
through voice control, as well as return a video feed. The motivation and goals
for the individual features of our project are as follows:

Autonomous – the reason an autonomous robot was chosen is mainly for the
challenge behind it. An autonomous robot is far more interesting than a manually
controlled robot, as it requires not only lot more software design, but also the
addition of sensors. Becoming autonomous will give our project a greater depth
and will give the group ample experience with software and hardware integration.
Even though becoming autonomous will be a greater challenge, the reward of
experience will be more than enough to make up for it.

WiFi Controlled – WiFi seemed like the obvious choice for the project. WiFi has
a fairly far range and can easily be extended with repeaters. This will allow the
RADSAT to roam freely, with only a small chance of losing a signal. WiFi can
also travel through walls, so even if the RADSAT leaves the room it will not lose
signal. The laptops being used for the project are also pre-equipped to
communicate with WiFi, so extra parts will not have to be bought. In addition,
microcontrollers can easily be equipped with parts that will make them WiFi
compatible, and several exist which already have WiFi chips built into their
system. This will allow us to easily communicate signals back and forth from the
tank to the laptop, at very high speeds. The most important decision for making
the RADSAT WiFi, is because there aren’t any existing projects involving sending
a video feed through either Bluetooth or radio waves that had anywhere near as
good of results as WiFi.

Sensors – the initial decision for the RADSAT was to not equip the robot with
sensors, and have all obstacle detection be solely within the video processing
software. However, through research, it was discovered that the RADSAT will be
far more efficient if sensors are used in parallel with the video processing
software. The sensors will be able to preemptively detect when the robot is going
to hit a wall or object, thus creating a smarter robot that will be able to find its way
through any sort of obstacle.

RC Tank – the initial decision was to use a regular RC car as a base, but when it
was decided to make the robot shoot at targets, the decision was changed and

3

an RC tank was decided upon. One reason was because the RC tank comes
pre-equipped with an air-soft rifle and rotating turret. Although, the rifle and turret
are most likely going to be modified, that route is far easier than creating
everything from scratch. The RC tank was also chosen because the motion
controls are simpler than going with an RC car. The tank only has two controls:
left track move and right track move. This will make programming for obstacle
avoidance much simpler, because we will not have to concern ourselves with the
hassle of turning a wheel. The tank’s base will also be large enough to mount a
camera, as well as whatever power (battery, breadboard) and controllers that will
be needed.

Color Specified Targets – Adding color specified targets added an extra layer of
difficulty to the RADSAT project, and after successfully being able to
autonomously track certain colors using a coding algorithm, the groups’
programming ability will greatly increase. Colors were chosen over shapes or
anything else, because color recognition seemed more reliable than shapes, and
movement would be extremely difficult because the robots movement would have
to differentiate between the RADSAT’s movements between the target’s
movements.

Voice Control – a voice controlled robot was the basis for the group. This was
the very first feature the group thought the RADSAT should include, so of course
we had to include it within the project. Nowadays, it seems with phones and
computers everything is able to be controlled with voice. Voice control technology
is becoming a very relevant technology, so it was figured having voice control
experience would be beneficial. Having voice control will also allow the robot to
still be autonomous while at the same time allow the user to control it.

Returning a Video Feed – the motivation behind returning a video feed is to have
a robot which can operate effectively even when not in direct line of site. Even if
the robot leaves the site of the user, the user can still easily see where the robot
is and what it is seeing. The video feed is also the most important thing for the
RADSAT to function correctly. The video feed will be used for almost all tasks,
such as obstacle avoidance, color recognition, and targeting. Without the video
feed the RADSAT would have to be completely redesigned.

So, the idea for a robot was first conceived through a joint group mentality to
design and build a robot. Although, the idea started from the idea of simply
making a voice controlled robot, several ideas grew from there. From watching a
YouTube video featuring a WiFi controlled robot, the group decided to expand to
different interfaces. Also, through brainstorming and research it was decided to
add a video feed and color recognition. Then finally, with a discussion to make
the RADSAT more challenging, it was decided to make it fully autonomous. The
RADSAT started as a novel idea at first, but has evolved into something that will
truly become great.

4

2.2 Objectives

The RADSAT robot is going to have some objectives that it will have to achieve.
Each component of the RADSAT robot is going to try to achieve a certain number
of standards that will be put forth. While thinking of objectives it is very important
to think of the group’s experience levels as well as the amount of extra money
the group is going to have on hand. The following are the objectives of each
different section of the RADSAT:

WiFi Controlled – The objective here is to have a communication from a laptop to
the robot via a WiFi connection. The computer will be able to send signals to the
robot which controls various functions. For instance, if the laptop sends a signal
of 10, then the RADSAT will know to move forward. The signal send and receive
rate should be almost instantaneous, enough so, that the user doesn’t notice any
lag between the signal being sent, and the signal being received.

Return a Video Feed – The video feed which is returned should have a fairly
decent picture, without much lag. Preferably no lag, however that may be very
hard to achieve because of the amount of editing the video feed will have to go
through, prior to being displayed on the GUI.

User Friendly GUI – The GUI should be very intuitive, with only a few buttons and
only a few changeable settings. The GUI should intuitively be able to be used by
anyone who wishes to control the robot. Also, the GUI should have a
professional look and feel, as though it could be marketed.

Voice Controlled – The voice control feature will probably be one of the hardest
things that is going to be implemented for the robot. This feature needs to be
able to distinguish several different commands that will be input by the user. For
example, when a user says the word “red”, the program must recognize that the
word was a color, and know that the target color is now red. The following words
will hopefully be able to be recognized by voice command: fire, red, green, blue,
stop, lock.

Sensors – The sensors should be able to sense all objects in its way, including
but not limited to smaller objects, such as chair legs. Three sensors planned to
become implemented onto the RADSAT; two infrared sensors, as well as one
sonar sensor. The infrared sensors should be able to detect when the RADSAT
becomes close to any walls, and the sonar sensor will be able to sense any
objects within the direct path of the RADSAT. Whenever the sensors sense
something, the RADSAT should be able to react accordingly. For example, if the
RADSAT is about to run into a wall, the sensors should be able to recognize the
event about to occur and correct its path.

Autonomous – The objective here is to make the RADSAT mostly autonomous,
and react to only to a few simple commands. When a certain color is given, the

5

RADSAT should be able to search, and find the color, then target the color with
its airsoft rifle. The sensor implementation will allow for free autonomous
movement without the fault of running into objects.

Color Recognition – The RADSAT should be able to distinguish at least three
different colors. When a certain color is specified, the GUI will display to the user
the objects which are being recognized. The whole screen should turn grey,
except for the color which was previously specified. By doing this the user will be
able to fully recognize exactly what the RADSAT is seeing and the available
targets to shoot.

Shoot at Targets – The targets in question will be the color that the user specifies.
The RADSAT should be fairly accurate with the chosen targets. In that, the
RADSAT will find the exact center of the chosen target, and because the rifle will
be powerful enough to shoot in a straight line, when the RADSAT shoots it should
hit in the direct center of the target. On the GUI display, a crosshair will be
displayed on the current area that the RADSAT is targeted at. This way the user
doesn’t shoot at an unwanted target.

Power Consumption – The RADSAT will be powered by a single rechargeable
battery. The RADSAT should remain in operation for at least fifteen minutes off
of a single charge. However, since so many things will be added to the RC tank
to make the RADSAT operational, having extremely high hopes for low power
consumption didn’t seem like a logical choice. There will be several high power
devices on the RADSAT, such as a camera, several sensors and a
microcontroller.

Relatively low cost – with every part that is purchased, the different components
will be compared, and the cheapest option will be chosen. For instance, when
choosing a microcontroller, we the less expensive, less powerful, fully integrated
model was chosen, rather than the more expensive, more expansive model, and
through this process saved $30.

Sturdy – The RADSAT will be fairly sturdy. It should be able to survive a several
collisions and still be completely intact. Bumpers will be placed on the side of the
RADSAT to ensure any collision will be cushioned, and the delicate components
will remain untouched.

Responsive - The RADSAT will be very responsive to any commands given. In
that, there will be little, to no lag time between different commands, and the
RADSAT will do only what it is commanded to do.

2.3 Project requirements and Specifications

Once broad objectives and goals have been established for RADSAT, hardware
and software requirements and specifications were slowly introduced as research

6

progressed. Outlining requirements and specifications became necessary not
only to facilitate research, but to also organize and lay the groundwork for all of
RADSAT's future design work.

2.3.1 Software Requirements and Specifications

One of the most important requirements inherently embodied in the idea of a
reconnaissance vehicle able to recognize vocal commands is that it should have
autonomous features, and a number of different algorithms to control it. Figure
2.3.1 summarizes various major software components of the project and the
different inputs and outputs each will be able to interface with. One aspect that is
left open in the figure is the manifestation of each depicted block. Certain blocks
may certainly be consolidated or otherwise simplified, and almost all blocks are
likely to be divisible.

Figure 2.3.1: Software block diagram displaying general software requirements (colors

denote person administratively responsible).

The main control block is considered the brains of the software portion of the
entire system. It is the only block that must have some method of communicating
with every other block. Its main requirement is to process several pieces of
information received, make an informed decision based on several different
factors, and to send a resulting command to RADSAT. Its decision and checking
process also includes verifying that it does not attempt to send contradicting
commands to RADSAT. Such commands could have arbitrary results if RADSAT
is not explicitly programmed to disregard contradictions. The word recognition

7

algorithm's job is to process vocal input into a format understandable by the
control block. The GUI's functionality must include displaying a video stream to
the user and accepting direct user commands. Although vision processing and
targeting go hand in hand, the two blocks have very different functionality. Vision
processing only has to accept a camera feed, and convert that into something
more usable. The targeting algorithm must be able to process that information
further and determine if the target is present. If the target is present, it must
determine where in the image it's located and the correct angle to set the turret.
The server interface, simply provides an interface to facilitate communication
between RADSAT and the controlling computer. Detailed software specifications
for RADSAT are concisely represented in Table 2.3.1.

Spec.

Specification

1 The ability to recognize a set of at least 10 spoken words and to
successfully translate them into a usable format.

2 Must be able to accept a verbal command whose length is a
maximum of 5 seconds.

3 Verbal commands must be translated within 5 seconds from the
end of the command.

4 Must recognize the differences between a minimum of 5 different
colors.

5 Must have the ability to view a live video stream transmitted from
RADSAT at a frame rate of at least 20 frames per second.

6 The targeting algorithm must identify a 12x12in target from a
minimum distance of 15 feet.

7 All non-vocal commands must be processed and sent to RADSAT
within 500ms of issuance.

Table 2.3.1: Software specifications for RADSAT.

2.3.2 Hardware Specifications and
Requirements

For reference as this project is developed and designed, and for guidance as to
the end goal of this project, the following requirement list and specification table
have been devised. They are meant to be comprehensive, yet concise. Ideally,
the following statements are realistic and achievable within the bounds of our
budget and time resources. As this project progresses, the requirements may
have to change.

Requirements:

-The vehicle shall have one battery to drive all systems; two batteries maximum.

8

-The vehicle shall be able to quickly move in a straight line and turn while moving
or while still.
-The vehicle shall have sufficient sensors to avoid real-world obstacles.
-The vehicle shall be equipped with a camera able to relay video information.
-The vehicle shall be able to aim and fire an airsoft gun.
-The airsoft gun shall shoot rapidly and accurately.
-The vehicle shall be appropriately sized.
-The vehicle shall be able to operate in various types of terrain.

Specifications:

 Table 2.3.2.1: Specifications for hardware. By chance, each item has three

specifications.

It should be noted that the relationship between the battery life, the battery
capacity and the total amp draw on the battery is denoted as ____mAh *
1A/1000mA * 60 min./1h * 1/___A = ___minutes. To make sure the specifications
involved in this calculation are realistic it will be tested with hypothetical values:
Selecting a battery with a 2,000mAh capacity, and assuming a 3A average total
draw on the battery from all systems, and assuming no energy is lost to heat and
inefficiency, it should be able to operate for 40 minutes. This number is above the
minimum of 30 minutes. If the anticipated parameters are correct, battery life will
not be an issue.

The other specifications rely mostly on the parameters of the parts bought and
steps will be taken to ensure they are met, at the time of selecting the part. For
example, in the section discussing servos the torque exerted on the servo is
calculated and a servo is selected to meet the torque specification. Other
specifications are not readily derivable now, such as the speed the tank will
travel, but will be easily attainable after prototyping is under way. At that time,
steps can be taken to alter or correct for areas that are not on par with
specifications. Similarly for requirements, if during prototyping a facet of a
component falls short of its requirement, it will be remedied using data collected
pertaining to that particular shortcoming.

Item Spec1 Spec2 Spec3

Battery >7 Volts >2000mAh >30 min. life

Chassis >20in. Length >10in. Width <30 lbs

TurretServo1 >720° range Standard size >3 kg/cm torque

TurretServo2 90° range Standard size >4.6 kg/cm

Drive system ≈5 mi/h >15° climbing <2A draw

Airsoft Gun ≈150 fps ≈200 BB mag. 100 rounds/min.

9

3.0 Research

3.1: Existing Similar Devices

Looking at similar vehicles one might notice that most of them fall into one of two
categories: pre-made toys and home-made hobbyist projects. The majority of the
toy radio controlled airsoft shooting tanks are modeled after real tanks such as
the Panther or M1. A typical example of what is on the market can be seen
below:

Figure 3.1.1: A radio controlled 1:16 scale German Tiger I Panzer. With permission from

Bananahobby.com

These tanks usually cost around one-hundred to one-hundred fifty dollars.
Smaller, 1:24 scale tanks are lower in price. These tanks typically have rotating
turrets and can shoot arisoft BB's. Many of them have smoke and sound features
for a more realistic effect. They can drive over rough terrain and some can even
drive through shallow puddles. According to a handful of customer reviews, these
tanks are sometimes lacking in quality, breaking after only a few uses.

The other class of tanks are those built for fun. These are usually completely
custom and for the most part every one of them is different. People sometimes
buy treaded bases, make their own, or buy one of the above mentioned tanks
and strip it down to use the parts. Anyhow, this approach is very interesting for
this project because it will be most similar to them. An example of a wifi camera
equipped tank is shown below.

This particular robot has four important things in common with the project at
hand: It has a wireless camera to transmit video, it has the ability to pan and tilt
the camera, it has wireless communication between the PC and the robot, and it
is a treaded vehicle. The write-up about it is not exactly a wealth of information,
but it does say that the camera cannot be on the same frequency as the Xbee

10

wireless module. In this case a 2.4 GHz Xbee and a 900 MHz wireless camera
were used. The main differences are that RADSAT will have an airsoft gun and a
PCB instead of an ardiuno board.

Figure 3.1.2: Boe-bot robot with Xbee.

With permission from JeffBr from letsmakerobots.com

Another project worth mentioning is a senior design project found on the same
website. It is called RES-Q-ME and is designed for rescuing lost or trapped
people in disaster situations. It is a treaded tank that interfaces to a computer
wirelessly and has a camera. This robot has a camera and infrared navigation
and can be controlled by an iPod touch. It uses an Arduino Mini Pro as its
processor. The robot can be seen in the figure below:

Figure 3.1.3: The RES-Q-ME with permission from Jacob Frieda

11

It shares similarities with RADSAT in that it is a senior design project that focuses
on a tank which has a camera and drives autonomously while communicating
with a computer via wireless. It uses an arduino and servo drivers for the motors
instead of an fully custom PCB. RADSAT will differ in that it will have a PCB with
the microcontroller, wireless shield and power distribution and control
components all on it with no superfluous components. It will also have automatic
camera tracking systems and a gun to fire at targets.

3.2 Relevant Technologies

With the goals and objectives of this project decided upon, it is necessary to
spend some time researching other models and projects that implement similar
technologies to this project. Although there does not seem to be a design that
has implemented all of the technologies for the specific mission of RADSAT,
there does exist a plethora of projects that implement one or more of the
technologies that are to be implemented by RADSAT. The research done on
these projects will be extremely helpful to the team when it comes down to the
development and implementation of RADSAT.

The technologies that will be focused on during this research include those that
will have to be programmed by the team in order for RADSAT to carry out its
objectives. This includes video processing, color recognition, an autonomous
search function, and voice command recognition, as well as controlling the
camera and turret on the tank. Furthermore, it will be necessary to research
other projects that have implemented WiFi communication between a wireless
chip and a laptop.

One similar project that was of interest to the team was a tennis ball collecting
robot named Autonomous Ball Collector, or A.B.C., designed by a UCF Senior
Design group from Summer 2010. This project sparked the team’s interest
because of the similar technologies that the A.B.C. robot implemented that are
planned to be implemented by RADSAT. The A.B.C. robot was designed to
search out tennis balls autonomously, scoop them up, and return to a home
base. It did this using a color recognition system similar to the one that is
planned to be implemented in by RADSAT. This goal was accomplished by the
A.B.C. robot by using a Blackfin camera that was capable of recognizing colors
and shapes. Once the image of a tennis balled was discovered, the A.B.C. robot
used video processing to determine the location of the ball so that it could
determine which way to move. The A.B.C. robot also had the capability to
communicate with a laptop via an XBee adapter. This allowed for remote control
of the A.B.C. robot by a user up to 100 feet away. The similar desires for
RADSAT to be able to communicate with a laptop might make the XBee
technology something that the team can further research and implement in the
final design.

12

Another project that was looked at by the team was a WiFi robot developed by a
hobbyist electrical engineer as a “spy” robot. This robot was controlled by a
laptop and was capable of streaming live video via a webcam back to the
computer. Movement was also controlled remotely by the user, and the robot
had a range of 500 meters from the user.

This project has a lot of relevance to RADSAT and could serve as a useful
resource tool. The video streaming and WiFi control are both technologies that
the team hopes to implement with RADSAT. The method that the engineer used
to control the spy robot was a router mounted onto the robot. This allowed the
user to control the robot over the Internet using a wireless access point or with a
WiFi enabled laptop.

While researching voice command robots, the team came across a simple
project that had a detailed tutorial on how to build a voice controlled robot for
roughly $224. This robot, powered by an Axon II microcontroller, responded to
the commands “left”, “right”, and “forward”, as well as a few other commands.
Being similar to the commands that are to be used in the implementation of
RADSAT, this project should prove as a useful resource for the team during the
development stage. A neat and interesting aspect of this robot, being
programmed by a Thai engineer, was its ability to also switch its voice recognition
software over to the Thai language and respond to the same commands.

Upon researching the voice command robot above, the team happened to
stumble upon a website that should be an extremely helpful source of information
in the development of RADSAT. The site, www.societyofrobots.com, is loaded
with resources for beginners who are interested in developing their own robot
projects. As this is the first time any team member of RADSAT has ever
attempted to develop a robot, this website will be extremely helpful as a resource
tool. The tutorials, forums, user support, and frequently asked questions section
can assist with the debugging of any issue that the team might come across
during the development of RADSAT.

Finally, the team looked at another senior design project from a class back in
2001at an unspecified school that designed what was called the Autonomous
Search Robot. This robot used an autonomous algorithm to search an entire
room in an attempt to locate and recover a predefined object. Once the object
was found, the robot would use a robotic arm to scoop up the object and place it
inside its body.

This autonomous search robot has some unique technologies that are relevant to
RADSAT and could possibly be further researched and developed by the team
later on. First, the search algorithm that the robot implemented stored
knowledge of everything it processed on its webcam, not just the object it was
searching for. The robot was able to distinguish between its objective, other
objects, and walls within the room, and map them relative to one another by their

13

distance apart. Once the robot had identified all of the walls and searched the
entire enclosed space, it was able to deem the mission complete. The idea of
storing the processed images as a map inside the robots “brain” is an interesting
concept that may be worth looking into as the search algorithm implemented by
RADSAT.

Another interesting technology with the ASR was its ability to pick up its objective
using a robotic arm. In order to accomplish this, the robot needed to know the
exact location of the objective and its position relative to the robot in order to
accurately aim the arm. This was accomplished by using an infrared sensor that
was able to precisely determine the distance of the object. As RADSAT should
be able to fire accurately at its target, knowing the distance of the target from
RADSAT will be of much use.

With the research that has been completed on these technologies, the team has
a much broader knowledge base that will be used to develop RADSAT. The
projects that were the scope of the research each had unique qualities that may
further assist the team during the design stages. Though the technology
implemented by RADSAT will be unique and developed by the team for
RADSAT’s specific purposes, these technologies can be used as a basis for what
has been developed and implemented by other engineers in past projects and
designs.

3.3 GUI Research

As the tank will be controlled using a laptop, a graphical user interface will need
to be researched for the project. This GUI will need to include all of the
commands that the tank is expected to respond to and carry out. These
commands will be transmitted via a wireless connection to the microcontroller on
the tank.

The commands and operations that the tank should respond to for this project
are listed in the Table 3.3.1 below:

Command Description

Connect Creates a connection between the tank and
laptop

Tank: Forward, backward,
left, right

Moves the tank in the specified direction

Turret: Up, down, left, right Rotates the turret and camera in the specified
direction

Auto-Search Sets the tank to autonomously seek out a target

Fire Fires a shot at the target

Exit Breaks the connection between the tank and
laptop

Table 3.3.1: GUI Commands

14

Given that the tank is within the specified range of the laptop, the tank should be
able to respond to these commands immediately. This will be accomplished by
transmitting specific signals to the tank every time a command is used. Once the
signal is received, the tank should respond and act according to the above
descriptions.

As well as the commands that the GUI must implement, it must also be able to
stream live video from the tank. This video should be captured by the webcam
mounted on top of the tank, and should be available in real time to be viewed on
the laptop. This will allow the user to control the tank remotely, as well as
monitor the tanks progress when the auto-search function is enabled.

3.4 Camera Research

Through research, a way to stream video from the RADSAT to a laptop must be
found. There of course exist several ways to do this, and the goal is to find the
method which is best suitable for the project. There are a few issues that the
camera must be able to overcome. They are: the camera must have a color
video feed, it must be able to send the video feed back to a laptop, and it must be
able to operate at an appropriate speed.

Idea 1: Mount a router and wired IP security camera directly on the tank. - This
idea stemmed from the iAndroBot.net, WiFi Robot project. This project involved
hacking a router, plugging a network security camera directly into it, then
returning a video feed to a server on the laptop. This idea was the original
intention for the project, and at first glance, it seemed as though it was a good
idea.

First of all, the implementation wouldn't be very hard, and the robot would
essentially be creating its own wireless network. Because the robot had its own
wireless network, there would be no additional hardware required in order for the
laptop to communicate with the robot. Then, in order to make the router able to
communicate with the laptop, new firmware and hardware would have to be
added. Tomato, which is an open source, Linux based firmware for routers,
would have to be installed to overwrite the router's existing firmware. The
Tomato firmware would allow the router to be reprogrammed to fit the robot’s
needs. For the hardware addition of the router, a serial port would have to be
added, which will have certain signals applied to each pin, and the robot would
receive and apply accordingly. The security camera would be very easy to install.
The security camera would simply plug into the router, as it would do in a normal
situation, and no addition firmware or hardware would have to be added to it.
Once everything has been properly installed, the router would place the video
feed on a server which would be read by the laptop.

15

This idea meets the design's target goals; however, there are just a few
problems. For one, mounting an entire router on the robot would take up a lot of
space, space which could be used for additional power, micro-controllers, or
sensors. It would also look very unsightly to have a giant router mounted on top
of a robot. Another problem with this design is its lack of real world application.
This project can only exist inside of the hobbyist world, as no company would
actually hack a router for one of their projects. The company in question would
most likely use a cheaper, less troublesome method.

Idea 2: Bluetooth Web-Camera - The Bluetooth web-camera is a relatively new
product on the market, and would give the group experience for any Bluetooth
development that might want to be done in the future. Bluetooth has several
advantages. For example, the Bluetooth web-camera can operate at around 2.1
mega-bytes per second, which would allow for a fairly decent video stream, and
connectivity between the camera and laptop would also be very simple.
Bluetooth also requires very little power to run effectively, one battery charge can
last up to four hours. However, Bluetooth has several downsides as well.

The main deterrent from using a Bluetooth web-camera is: the camera has a max
range of only thirty feet. Thirty feet is not an incredibly short distance, and would
still be okay for a robot as long as the user was going to always be in the same
room as it, but the RADSAT is designed to search, which might result in going to
additional rooms. Although range extenders can be applied, the native ability of
only thirty feet, and the only other option of purchasing additional hardware is
lacking, when compared to other options (i.e. WiFi). Also, a Bluetooth webcam is
around three times the price of a comparable WiFi camera, which would be a
waste of money for such limited options. So, even though Bluetooth is an option
which will succeed for the project, it simply is not the preferred option.

Idea 3: 2.4 GHz Wireless Camera - The second place option for the project, is a
2.4 GHz wireless camera. The 2.4 GHz wireless camera has some very nice
options. For instance, the camera has a long range (about 450 feet), is fairly
inexpensive, (some) can communicate directly to a USB receiver, and it can
efficiently send data which allows for good video resolution.

However, despite all the positives of this set-up, there is one thing that prevents
the 2.4 GHz wireless camera from being the optimum choice for this project; the
fact that it just hasn’t been done before. Through the research for this project,
there wasn’t a single example of someone being able to receive and manipulate
a video feed from a 2.4 GHz wireless camera. Since the group is still at the
beginning stages of programming, and know nothing about grabbing a USB
video feed, trying a concept which there are absolutely no guidelines for, would
be an unnecessary challenge. Especially since the video feed is one of the most
important aspects of the project. So, even though the 2.4 GHz wireless camera
has all the specs we desire, it would just be too difficult and too time consuming
to implement.

16

Idea 4: WiFi Security Camera - After some extensive research, the WiFi security
camera became the optimum choice for this project. The WiFi security camera
has long range, is inexpensive, streams in a digital format, is wireless, and
displays the video on an easy to access local server. The camera’s range is
limited only by the range of the router it is hooked up to. So, potentially with the
use of repeaters, the range can be as far as necessary. The camera also was
around half the price of any other type of camera, with just as many, if not more
features. Also having the camera stream in a digital format eliminates the hassle
of converting an analog signal to a digital one, which means that the computer
can easily read it, and it can immediately be altered as necessary. The camera is
able to submit wireless signals on its own, without the need of relying on any
other devices, which is a huge bonus as video processing is one of the most
important aspects of the project. The camera displays the image it is capturing
onto a local server, with any IP address of your choosing, this makes receiving
the stream quite easy to implement.

Figure 3.4.1: WansView WiFi Security Camera

Permission Pending From Amazon.com

There a two main options to choose from when deciding on a WiFi security
camera. There is the JPEG format, and the MJPEG format. The JPEG format is
far simpler than the MJPEG format. The camera simply places a JPEG picture
on the server at its designated frames-per-second speed. This allows anyone to
easily access the JPEGS by infinitely sending requests for the JPEG on the
server. The MJPEG format is much more difficult to implement, because there is
a constant stream, which has to be broken apart to be able to work on it.
However, the MJPEG format is superior despite the difficulty involved. This is
because, instead of an infinite stream of requests to the camera server, there
only needs to be one. This results in more processing power left for other
functions. So, the WiFi security camera seems like the best choice for the
project, as no other camera type has all the necessary features at an affordable
price.

17

 Router with

IP Camera

Bluetooth

Camera

2.4 GHz

Camera

WiFi

Camera

Speed 11 mbps 2.1 mbps Comparable 11 mpbs

Video Location Server USB Interface USB Interface Server

Data Type Digital Digital Analog Digital

Distance 230 ft 30 ft 450 ft 230 ft

Table 3.4.2: Camera Research Summary

3.5 Video Processing Research

The process chosen for the video stream was the MJPEG format. This research
is used to find a way to take a video stream (which exists on a server that was
created by a WiFi security camera) and convert it into usable code within C#.

As with anything, there are many ways to approach processing of an MJPEG
video source. There are several libraries and programs which already exist that
allow for editing and streaming of a MJPEG video stream within a program. The
goal is to find the simplest and most reliable way to accomplish all that is
necessary for the project. The following are the different sources that were
discovered to help with this process:

AForge.Video Libraries - This is a collection of libraries done in C# which has
libraries for all types of video formats. Out of all the classes within this library, the
class which is most relevant for the project is MJPEGStream. The
MJPEGStream library allows the input and viewing of a URL address for an
MJPEG stream (such as the address for a wireless security camera). The
MJPEGStream class has instances for username and password, as well as
several different functions for starting and stopping receiving the feed, and can
also return a bitmap image. From this research, it seems that this library is the
core for all video processing for C#, and almost every MJPEG stream project
found, uses these libraries. So, these libraries will most definitely be used within
the RADSAT project.

OpenCV Libraries – These libraries exist for C#, and offer everything that might
be needed in order to complete an MJPEG stream. It can read in, and display an
MJPEG stream and has tons of different examples where this has easily been
implemented. These libraries seem very good and may be used for the RADSAT
if there is any trouble with getting AForge.Video Libraries working. However,
many of the programs which have been proven to work for the WansView WiFi
video camera stream were using the AForge.Video Libraries. Therefore, for that
reason alone the OpenCV Libraries were not chosen.

Camera Vision - video surveillance on C# - This is an open source video
surveillance project developed by Andrew Kirillov. The purpose behind this
project was to stream several different IP surveillance cameras, from different
sources and different manufactures into one convenient split screen view.

18

Through the advice given from this source, it was determined that going with an
MJPEG stream was the optimum choice for video surveillance streaming. His
reasoning was, because an MJPEG stream required only one attempt to access
the stream, where with a JPEG stream, infinite attempts to access the stream
would have to be implemented.

On his website he gives a general overview on the steps to acquire an MJPEG
stream, which are:

1. To discover the type and retrieve the boundary

2. Read in the initial portion of the stream to search for the boundary

3. To continuously read in data until you receive a new boundary

4. Extract the image

5. Process and edit the image

6. Steps 3-5 continue in a loop until commanded to stop

This was a good source for information on how to retrieve an MJPEG stream in
C#. However, when running his program and attempting to view the video feed,
the video feed did not show up. So, his program will be used as a reference only.

VLC Media Player - The VLC media player is an open source media player that
can play virtually any type of video format. It has support for DVD, audio CD,
VDC, most multimedia files such as AVI and MKV, as well as various streaming
protocols such as MJPEG. It is widely regarded as the best media player that is
available today.

While trying various methods and programs to extract the video feed from the
WiFi camera server, VLC media player was the first source that was able to
successfully view the video feed. This was a huge step which allowed the project
to progress, since it was now known that there was some way to successfully
extract the video feed, and that the location of the video feed was correct. It was
discovered that it was possible to retrieve the video stream, and that the correct
address was chosen.

Since VLC media player is open source everyone has access to its extensive
libraries. Within these libraries there are several classes which allow for the
extraction and manipulation of MJPEG video feeds, as well as various methods
to delay and manipulate the streams. Although VLC media player is written in
C++ the libraries should still be compatible with C# and will still be used as a
good resource.

Java MJPEG - Java is the programming language which most of the group
members are most comfortable with. Therefore by looking at the Java MJPEG

19

project’s code, the process of retrieving an MJPEG video was understood better.
It seems the process isn’t too different for both Java and C#.

The Java MJPEG project uses the java.net, java.io, java.awt, and java.imageio
libraries. The main class extends java’s existing class “InputStream”. Java’s
InputStream works by continuously reading in bytes from some source of data, in
this situation it would be for reading in bytes from the MJPEG stream. The Java
MJPEG project first establishes the stream, then tries to connect to a specified
password protected URL. Following that, it reads in the data from that URL and,
if the location is correct, then only the data for the MJPEG stream should be
located there. It then reads in every pixel, byte by byte, and returns a completed
image.

The process for Java MJPEG is almost identical to the process of retrieving an
MJPEG stream with C# code. However, java.net is just not up to the standards
as C# for this type of operation. Even though this program works, the quality of
the stream was just not of the same caliber as many of the MJPEG stream
projects that were done in C#. One reason that was speculated for the lack of
quality of the Java stream, was because of the lack of thread usage. The
threads used in the C# libraries enable processing of different sections of the
stream, at different times, which allows multitasking and allows for faster speeds.
Also, because this is the only MJPEG stream project that was found in Java, it
proves that C# is most likely the optimum choice.

iSpy - iSpy is an open source project for maintaining and manipulating several
different streams, from several different WiFi security cameras. This project’s
libraries seem to be the best choice for the project. It is the best because it uses
the VLC media player’s libraries as well as the libraries from AForge.Video, as
well as many of its own.

20

Figure 3.5.1: iSpy MJPEG Stream

The video feed from the WiFi camera ran the smoothest within this program as
compared to any other source. iSpy also has several examples of manipulating
the video feed that it receives, with options such as contrast control, and motion
detection. Since the project relies heavily on the manipulation of the MJPEG
video feed, having a few examples on how to successfully do it will be very
helpful. So, because of the success of this program and the several examples it
provides, it will be used as our primary source for information.

3.6 Microcontroller Research

The microcontroller that will be used in the RADSAT project needs to have a
certain number of specific needs in order for it to be used for the project. Most
importantly it needs to be cheap. Since there are no plans on using the actual
microcontroller in the final stages of the robot build. Therefore, finding the
cheapest microcontroller possible is the optimal choice. The microcontroller will
only be used to give an idea of what needs to go onto the RADSAT’s PCB board.

Also, the microcontroller of course has to be WiFi enabled, or at least have the
option of adding a WiFi module to it. Without this part, there will be no way for
the laptop to communicate with the RADSAT. Also, the WiFi part doesn’t need to
be extremely powerful since the data being sent and received from it will be in
bytes, or kilobytes at most.

The microcontroller also needs to have a USB port plug-in. This is necessary so
the board can be easily programmed. Although, there are other means of

21

programming a board, programming a board via a USB port is what have been
taught within UCF’s classes, and will make programming much easier, also no
solder connections will have to be made onto the board.

Finally, the board needs to have a minimum of seven I/O ports, and four analog
inputs. The seven I/O ports is the exact number that is needed in order to control
every part of the RC tank. The four analog inputs is the exact number that is
needed in order to receive a value from every sensor that is going to be equipped
to the RADSAT. The following are the microcontrollers that were researched for
use with the RADSAT:

ConnectCore Wi-9P 9215 - This board is essentially a dream board for the
RADSAT project, it does everything the RADSAT could possibly ever need to do
and more. It has a very powerful 150 MHz ARM core processor, but for the
purposes of moving around only bytes of data, it is a little bit overkill. It also
features eclipse-based programming and debugging, which is a platform that the
group is very familiar with. The ConnectCore is Linux based, has tons of existing
libraries, has 80 I/O pins, and can receive data from a cloud server, which would
enable operation of the RADSAT, even if the RADSAT wasn’t connected to the
same network as the laptop.

All of these features that the ConnectCore has are great, but are outside the
scope of the RADSAT project. Also, it was priced at a staggering $499.
Although, the ConnectCore did give a good idea of what was out on the market,
and what possible future project can be capable of, it was simply too much to
handle.

WiFly Shield - This is an add-on part, which can be attached to any Arduino
board. This is a nice piece of equipment which meets many of the RADSAT’s
needs. It’s small, takes very little power (has a sleep mode), can communicate
with 2.4GHz IEEE 802.11b/g, has ten I/O pins, and eight analog inputs. It also
has an attached breadboard for development. With all that, this WiFi shield could
easily be a solution for the RADSAT. However, if possible, a totally integrated
WiFi shield would be preferred, and at $89.95, this is not the cheapest option
available.

RedBack Arduino Compatible WiFi Microcontroller - The RedBack is a WiFi
module which is about the size of a quarter. The small size would make the
RADSAT lighter, and would enable the RADSAT to either go faster, or have
additional parts added to it. It can attach to any Arduino board which has five I/O
pins available. This allows for a huge selection of Arduino boards that could be
chosen. It can also connect at 1megabyte to 2 megabytes per second, which is
more than enough speed for the RADSAT. The only problem with this set-up is
that the chip itself costs $75, and because it is not integrated with the board, it
will take up five I/O pins. For the price of $75, we can purchase both the
development board and shield from a cheaper, slightly larger model.

22

Arduino Duemilanove and WiShield - The Arduino Duemilanove and WiShield in
combination are the ideal microprocessor for the RADSAT. It has fourteen digital
I/O pins, twelve analog input pins, USB connectivity, has a 328P processor (slow
by normal means, but perfect for what we’ll be using it for), and to buy both, it
costs only $75, which when all put together equals exactly what we’re looking for,
for our project. The only problem though, is again the WiShield is separate from
the microcontroller itself. The WiShield uses seven of the Duemilanove pins to
operate, which would leave no extra pins for development, in the case that a pin
breaks or expansion is needed, additional parts would have to be purchased,
which is not a desired scenario.

Figure 3.6.1: DiamondBack

CuteDigi.com Permission Granted

DiamondBack Arduino Compatible WiFi Microcontroller - This is the board the
group ended up going with. Essentially it is exactly the Arduino Duemilanove and
WiShield, only they’re already both together on the same chip, opening all digital
I/O ports. Therefore the Diamondback is the perfect microcontroller for the
project.

3.7 Wireless Communication Research

In order to communicate with the RADSAT from a laptop computer, several
methods of communication will need to be researched to figure out which method
will best serve the groups purposes. Through initial research, several
possibilities for communicating have already been discovered. One such method
would be to mount a wireless router onto the robot. Another would be to use

23

something known as an XBee adapter, with an XBee transmitter connected to the
laptop and an XBee receiver connected to the robot. One final option that will be
looked at is the idea of using a microcontroller with Wifi capabilities built into the
chip.

As researched earlier, it is possible to setup up a router that can be used for
communication between the microcontroller and laptop over a wireless network,
or connected directly to a Wifi enabled laptop. This would require physically
mounting the router onto the RADSAT, which may take up more space than
desired and would add additional weight to the robot. If this were done, however,
the router would be able to receive signals from the laptop and could forward
them on to the microcontroller. There are many routers out on the market that
are easily hackable for this purpose, and there wouldn’t be an issue developing
software in C capable of running on the router.

As another option seen in use by the team while researching the A.B.C. robot
discussed earlier was that of using an XBee adapter for wireless communication.
This would require two pieces of hardware, an XBee receiver connected to the
robot and an XBee transmitter connected to the computer. This would mean that
the RADSAT would only be controllable by one laptop that had the XBee
transmitter connected to it, as opposed to any laptop with WiFi capability.
Though they would be light weight and wouldn’t take up much room on the
RADSAT, they would be an additional cost of about $10 each. The software
examples and support provided for the XBee adapters, however, is very
abundant, and there would be little problem learning how to setup the wireless
connection.

Finally, the team looked at microcontrollers that had Wifi capability built into the
board. Specifically, the team looked at the Arduino Diamondback microcontroller.
This microcontroller, priced at about $75, has 802.11b (Wifi) wireless capability at
1 and 2 Mbps. This would allow the RADSAT to connect to any Wifi enabled
computer with no additional hardware needed. As the Wishield used for
connectivity would be built onto the microcontroller, it would not require the use of
much additional space, and would not add much weight to the overall design.

Looking at all of the options, the Table 3.7.1 below was created to compare the
different methods that the team would be able to choose from in order to create a
wireless connection between the RADSAT and a laptop for control over the
robots functions:

24

Option Router XBee Diamondback

Pros Easy to hack,
already owned by
team, easy to
program

Small, affordable,
easy to setup, a
lot of support
offered

Less setup
required, easy
to program,
connection to
any wifi enabled
laptop

Cons Bulky, extra
weight

Limits control to
one computer

More expensive
option

Table 3.7.1: Wireless communication comparison

In the end, the team decided upon using the Diamondback microcontroller from
Arduino as a basis for designing a unique PCB to create the wireless connection.
Though this microcontroller will be used in the initial design of the RADSAT, it will
be the PCB that is used in the final design. This will allow the team more
opportunities for design. Set up and coding for the diamondback microcontroller
will be looked at in later sections, and will be used as the basis of the final coding
for the PCB.

3.8 Communications

As specified in the software requirements and requirements section, RADSAT's
many different functionalities and algorithms must have some method of relaying
information to and from both the software components and the hardware
components.

3.8.1 Inter-process Communications

RADSAT's various software components must either be able to communicate
with one another, or be consolidated into one program. In the case of GUI and
the main control components, it is natural to think that they would indeed be one
in the same program (in fact, virtually all C# components will be within the same
program). A number of major conflicts arise when considering any number
components written in different programming languages. Although the
components may not need to directly communicate with one another, eventually,
down the line, indirect communication must happen. There are a few different
ways to implement inter-program communications, all with their advantages and
disadvantages. This section will only cover three of the methods: file system (or a
central database), sockets, or using sub-processing.

Using a file system to enable communications between two different processes is
a rather simplistic solution, but can still be effective. If an intermediate file is used
between processes, then each process would be required to have read and write
access to the file. To ensure consistency, virtually all reputable operating systems
will restrict a file from being accessed if another process is accessing the file in

25

such a way that the contents could be changed. To help mitigate the effects of
being denied access to a file, each process could alternate turns with a timer.
Alternatively, the same concept could be applied to a database. Most databases
are equipped to handle concurrent access on the order of hundreds of users (and
many are able to handle thousands), so finding one capable of handling two
processes would be trivial. However, the biggest disadvantage is the fact that the
additional overhead of a database would add to the time needed to process
information sent to and from RADSAT.

Another option could be to use sockets to communicate over IP between two
separate processes on the same system. This approach has the advantage of
being a hugely platform independent solution. The latency time would be
contained because communication over IP between two systems on the same
network is minor, but when communicating with two processes on the same
system is very negligible. While C# has very developer friendly classes to handle
communication over sockets, C is not as simple to use. It would likely add
another level of complexity in the form of having to use a library like Winsock to
handle the communication.

Sub-processing is by far the most robust option that will be considered. It
essentially allows for direct communication between a host process and its slave
process.

3.9 Autonomy and Sensors Research

3.9.1 Introduction

Implementing autonomous path finding is already a challenge in and of itself, but
when coupled with the fact that RADSAT will not possess a method of knowing
its exact absolute position at any given point in time (because of the lack of
GPS), the feat starts to seem even more insurmountable. One advantage that
RADSAT has is that its objective isn't to go from point A to point B with minimal
cost, but to start at point A and find a potentially hidden point B. Because finding
the most optimal path without first knowing the location of point B is impossible,
minimizing cost should be done by ensuring that the same area is searched the
fewest possible number of times. To adequately search a given area, RADSAT
only needs two pieces of information. The first necessity is the relative distance
between it and any obstructions that are within range, both in front and to the
sides of its body. A way to identify the color that it is searching for once an
instruction has been given to it is the second. Another life saving advantage of
RADSAT is that sensing obstructions and identifying colors are independent and
one can be researched and designed without regards to the other.

There are generally two basic types of obstructions. The first type consists
primarily of walls and objects with large surface areas in both the X-Z and Y-Z

26

planes. The next type of obstruction are objects that are generally "thinner" than
the former type and have relatively small surface areas. The most notable
example of this kind of obstruction is a chair's leg, which is also known as an
autonomous robot's arch-nemesis because of the high level of difficulty that
exists in detecting them. In order to achieve an acceptable level of autonomy,
RADSAT will need methods of detecting both type 1 and type 2 obstructions, as
well as obstructions that are derived from the combination of both types (e.g. a
thin structure with a large surface area on one side). Ideally, in a perfect world,
there would be one sensor that would be able to identify all types of obstructions
with near perfect accuracy. In the real world, different types of obstructions need
to have different methods of detection to minimize costs and maximize efficiency.

3.9.2 Sensing Type 1 Obstructions

During the very early researching phases of developing RADSAT, the team
initially had the idea of using a number of flex/force sensors, each as a type of
robotic feeler, effectively transforming them into proximity sensors (referred to as
feeler sensors in this section). This idea was quickly dismissed as research
progressed because of their limited usage and because of the inability to directly
generate an output voltage (due to the sensors being based on the concept of
variable resistance). It is also generally impossible to use multiple feeler sensors
to consistently detect obstructions that are smaller than the minimum distance
between sensors. This claim is easily verifiable when viewing sensors that are
mounted, and as such, feeler sensors will not be covered to a great extent in this
section. They will, however, be mentioned sporadically for comparison purposes.
Infrared sensors are only able to detect obstructions that are sufficiently wide
because, like feeler sensors, they can only detect type 2 obstructions in very
specific circumstances. However, ultrasonic sensors (sometimes referred to as
sonar sensors), are slightly more complex than their infrared counterparts and
generally cost more. Both work using the same general concept: send some kind
of a signal and take note of the time it takes to receive a reflection, or the angle at
which the reflection is returned. Although the concept is very simple and intuitive,
there are complications that arise when trying to incorporate either type of sensor
in RADSAT.

There are generally two relevant types of proximity sensors; digital sensors and
analog sensors. Both types are able to detect obstructions within their respective
ranges, but the major difference is in the method used to deliver that information
to the microcontroller. Digital sensors are sensors that are only able to inform of
the existence of obstructions that are within range. This type of sensor is able to
output a high voltage level when something is detected, but neglects to include
information regarding the distance to the obstruction. Analog sensors are those
that output an analog voltage that somehow relates the output voltage to the
distance to the obstruction. Of course, there are some types of digital sensors
that are able to give distance information using multiple output lines, though
these sensors are very expensive.

27

Sensor GP2Y0D02YK GP2Y0A02YK FSL0095103ST MB1210

Method Infrared Infrared
Physical
Contact

Ultrasonic

Output Digital Voltage
Analog
Voltage

Variable
Resistance

Multiple

Real Distance No Yes Yes Yes

Range (Min) 20cm 20cm 0cm 20cm

Range (Max) 150cm 150cm 11.43cm 765cm

Vcc (V) 4.5 to 5.5V 4.5 to 5.5V N/A 3.3 to 5V

Vo (V)
-0.3 to (Vcc +

0.3)
-0.3 to (Vcc +

0.3)
N/A 0 to 3V

Approx. Price $12 $15 $15 $45

Table 3.9.2.1: Comparison of GP2Y0D02YK, GP2Y0A02YK, FSL0095103ST,
and the MB1210 proximity sensors.

The GP2Y0A02YK (figure 3.9.2.2) and GP2Y0A02YK infrared sensors both use
triangulation to determine the distance between it and the obstructing object by
calculating the angle between the infrared signal sent and the one reflected back.
The voltage output is generally between 0.4 and 3.0V when it detects the
incoming reflection and generally has a minimum usable range of about 20cm.
More importantly, it is able to detect obstructions up to a maximum of 150cm
which makes it one of the most suitable sensors for detecting type one
obstructions.

Figure 3.9.2.2: The Sharp GP2Y0A02YK infrared sensor with the Japan

Solderless Terminal (JST) connector.

A problem with using an analog sensor is while the distance is supposed to
theoretically be proportional (or inversely proportional) to the output voltage, that

28

isn't necessarily true during its actual application. The Sharp sensor's output
voltage increases exponentially as the distance decreases down to a certain
minimum sensing range (which is marginally below the documented minimum).
At that point, a reversal happens and the output voltage decreases linearly as the
distance decreases with both eventually approaching 0. This awkwardly
surprising relationship between the output voltage and the sensing distance
(figure 3.9.2.3) actually introduces two major problems in the design of RADSAT.
Because the usable output voltage has an exponential relationship with the
distance, solving for the distance isn't as simple as just multiplying the voltage by
some constant. The other problem is that every usable output voltage detected at
a distance greater than the reversal distance has a matching and presumably
unusable output voltage that could be the result of sensing an obstruction at
some distance less than the reversal distance. The first problem can potentially
be solved by developing a mathematical function to relate the distance and the
output voltage, but it is much too cumbersome of a process, and can only
achieve approximate results at best. Because of this inconvenience, a rather
unintuitive approach of developing a lookup table will be used to solve the
problem.

Developing a lookup table is quite unintuitive because it requires taking the
continuous, right portion of the graph in figure x and translating those values to
their respective distances at discrete intervals (i.e. sampling the signal). The
length of the interval will depend on the minimum resolution that would be
necessary to meet or exceed the requirements and specifications. Assuming the
maximum interval length is agreed to be an inch, then it would be necessary for
the lookup table to have a minimum of 52 entries (150cm MAX - 20cm MIN,
converted to inches). Specifying an interval smaller than an inch would require
more entries and anything larger than an inch would require fewer entries in the
lookup table.

29

Figure 3.9.2.3: Representation of the relationship between the output voltage and

obstruction distance.

Mapping each voltage to its distance according the graph in figure x is possible,
but doing the inverse and mapping the discrete steps in distance is much simpler
because the change in distance remains constant. Calibrating the sensors is
absolutely necessary because it is very unlikely to receive a sensor that will
follow the manufacturer's output voltages exactly (due to numerous different
factors). The simplest way to calibrate the output of a sensor and to build the
lookup table is to measure the output of the sensor and compare it to the
distance between it and the obstruction. This process eliminates any potential
error associated with the manufacturer's ratings and gives a lookup table that is
guaranteed to be fairly accurate.

Recall that the second problem had to do with a sensor being unable to tell
whether an obstruction was closer than the minimum range or further because
each valid output voltage is related to two different distances. For example, an
output of 2V on the Sharp GP2Y0A02YK sensor could potentially be achieved by
sensing an obstruction at both 10cm (invalid) and at 30cm (valid). Fortunately,
this problem can be solved with clever thinking and using a very intuitive solution.
If the set of invalid values occurs only at distances approximately less than 20cm,
then mounting every infrared sensor in such a way that all possible invalid values
must fall within the tank's outside perimeter (Figure 3.9.2.4) would be an ideal
way to solve the problem of output voltages being associated with more than one
distance.

30

Figure 3.9.2.4: Infrared sensor alignment image depicting valid and invalid output

ranges. Not to scale.

3.9.3 Sensing Type 2 Obstructions

The team initially thought that sensing very thin type 2 obstructions was generally
impossible given the resources available and the scheduled project completion
date. A sensor able to detect this type of very elusive obstruction should logically
be able to sense other types of obstructions as well, because other types of
obstructions are harder to detect. This type of sensor would most likely be
expensive and relatively hard to find, but would probably work extremely well.

Using a feeler sensor to consistently detect these obstructions has already been
established as generally being impossible, so the focus of this section will be to
compare infrared and ultrasonic sensors. Recall that the Sharp GP2Y0A02YK
infrared sensor uses triangulation to determine the distance between it and an
obstruction. An infrared signal is sent from one end of the sensor, and the
receiver on the opposite end receives the signal at some angle (and this angle is
used to calculate the distance). This approach may seem ideal, but after
considering the beam size of the infrared sensor (which is only a few millimeters
in radius), using it to detect type 2 obstructions becomes increasingly difficult.
There exists infrared sensors that are more capable of more broad detection, but
again, these sensors are prohibitively expensive. A solution could be achieved by
simply mounting the sensor on a motor capable of bidirectional rotation in very
small increments (possibly a servomotor). Rather than simply being static, the
infrared beam would instead rotate with the motor, which in turn would allow the
sensor to effectively scan a relatively wide area. This process would eliminate the
problem associated with the lack of a wide beam. Mounting the sensor on top of
the wireless camera (which is required to rotate) could be one possible
configuration. While this solution is perfectly achievable within the allotted
timeframe, it would introduce many layers of additional complexity that could
have otherwise been avoided if RADSAT utilized a suitable sensor.

31

Although very possible, the prospect of using light as a viable medium to
successfully detect type 2 obstructions is very dim. Alternatively, the MaxBotix
MB1210 is a self-calibrating, ultrasonic sensor (figure 3.9.3.1) that uses the
effects of reflecting sound to detect impeding obstructions. Under ideal
conditions, this sensor could accurately detect the existence of obstructions
within a distance of 0cm to a maximum of over 760cm. The sensor has a very
convenient and compact design (very apparent when compared to the Sony
sensor), allowing it to easily be incorporated into the design of RADSAT.

Figure 3.9.3.1: The MaxBotix MB1210 ultrasonic sensor, reprinted under license

(CC BY-NC-SA 3.0) from Sparkfun.com.

The sensor itself has numerous other advantages which justify the increase in
cost over Sharp's GP2Y0A02YK. One of these advantages is that although both
sensors are unable to accurately sense obstructions below a certain minimum
distance (around 20cm in both sensors), the MB1210 does not have the problem
of associating virtually every output voltage with more than one distance. Instead,
if an obstruction is detected at a distance below 20cm, the sensor will output a
voltage equal to what would have otherwise been the output for an obstruction
detected at exactly 20cm. In more concise terms, the sensor's output voltage
remains constant at any distance less than or equal to 20cm. This feature greatly
simplifies the problem of choosing a mounting location for the sensor because
although 20cm is the minimum range, any voltage output values at a distance
below 20cm aren't considered invalid (unless the obstructions are located
between 0mm and 1mm, which is nearly impossible). The value of all analog
output voltages on the MB1210 follow this general equation:

Vcc / 1024 per cm, where Vcc = 5V or 3.3V (1)

Using equation (1), it can be found that a Vcc equal to 5V will result in an output
voltage of approximately 4.9mV per cm, while a Vcc of 3.3V will result in an output
voltage of about 3.2mV per cm. It becomes immediately apparent that another

32

benefit with using this sensor is that the analog output voltage is linear and is
very neatly defined. As such, it becomes unnecessary to construct a lookup table
to handle all of the possible valid output voltages, as is necessary with the
GP2Y0A02YK infrared sensor. Although the maximum range is listed as over
760cm, hardware limits the maximum reported voltage to approximately 700cm
when using 5V and 600cm when using 3.3V.

Although considered unnecessary for RADSAT, another advantage with this
ultrasonic sensor is that it enables reading from a total of three different sensor
outputs (analog voltage, serial digital, and pulse width). If there happened to be a
major design change anywhere down the line which rendered the analog voltage
out port unusable, then there would still exist two other output lines to read
values from. Figure 3.9.3.2 outlines the MB1210's beam pattern and

Figure 3.9.3.2: Beam pattern of the MaxBotix MB1210 ultrasonic sensor.

Reprinted with permission pending from MaxBotix.

3.1.4 Heading and Searching

During the initial brainstorming phases, a debate ensued internally within the
team regarding whether or not it was necessary for RADSAT to have a sensor
that could explicitly calculate its heading. This question is directly related to and
could be directly answered by first determining the kind of searching algorithm
RADSAT would use to find its target. One potential method is to simply move
along the walls of a room and to mostly rely on RADSAT's camera to find its
target before a full lap is complete. If a full lap is completed before the target is
found, from a third person's perspective, another lap would be started. A viewer
would take notice of RADSAT performing rounds around the room an infinite
number of times (worst case), but as far as RADSAT and its inputs are

33

concerned, they are just continuing the search. The problem would generally
occur if the target is in the middle of a rooms so large, that the camera would be
unable to actually find the target or if the target is located in the middle of two
obstructions in the middle of a room. "Around the room" searching could
theoretically work, but it would produce insufficient results and would contain too
many cases where it would simply fail. It is possible to modify the search by
travelling in a random direction if it has been moving free from obstruction for a
certain length of time (essentially lowering the probability that only travelling
along walls would not happen). Although the modification is an improvement, it is
still not as effective as the team would prefer.

A more effective method is for RADSAT to search a room with full knowledge of
its relative facing direction. There are a few different magnetometers and
compass sensors out there, but the one that seems most compatible and easy to
use is Honeywell's HMC6352 Compass module (figure 3.9.3.3). The module
gives has a heading resolution of 0.5 degrees, meaning it can detect a total of
730 different possible headings. Considering the fact that even 50 different
headings would lead to a reasonably precise number, concluding that the sensor
is accurate enough for our purposes can be justified. The biggest drawback this
sensor (and most other inexpensive magnetometers) has is that because it uses
the Earth's magnetic field as its basis for the direction north, if it enters another
magnet's magnetic field, then the HMC6352 will measure north from that
magnet's north pole.

Figure 3.9.3.3: Honeywell HMC6352 Compass module, reprinted under license

(CC BY-NC-SA 3.0) from Sparkfun.com.

With RADSAT now possessing this newfound ability to determine exactly which
direction it is facing, more elaborate searching algorithms can then be to
developed to enable its search both more intuitive, efficient, and robust. The most
intuitive way to search an area is to start anywhere in a room and to travel in one
direction until an obstruction is found, it can then complete a 180 degree rotation
in such a way that it avoids obstructions to the left and to the right and then starts

34

to scan that area until either an obstruction is found, or the target is found, as
shown in the flowchart in figure 3.9.3.4.

Figure 3.9.3.4: Flowchart depicting target searching and obstruction avoidance.

At this point it is both appropriate and necessary to discuss whether the sensor
processing will be handled on board, via the micro-controller, or by the computer.
This depends on a wide range of factors. These include, cost, difficulty, speed,
capabilities, bandwidth, number of sensors. According to the project
requirements the speed at which the robot can respond to the sensors is of high
importance. Even more important is the accuracy and reliability; in a word,
effectiveness. These factors are primary, and factors such as cost, ease of
execution and aesthetics are secondary. A decision will be made based on what
information can be gathered before the prototype is built.

The parallel for this decision is the human brain. In humans the cerebral cortex
processes deep thoughts and can handle complicated situations requiring
reasoning, decisions, judgments and planning. The medulla oblongata, on the

35

other hand, is a more basic part of the brain and handles unconscious
movements, reflexes, and reactions such as making the heart beat, controlling
the muscles used to sneeze, and blinking when something gets near to the eye.

In many ways, RADSAT should process the sensor input like the medulla,
automatically producing one preset action for a given stimulus. This is a starting
point for this discussion. After reviewing the facts, the decision will be made
whether to modify this hypothesis. The four sensors together provide the
following information: The compass will provide directional orientation which will
be useful for determining where the tank has been and is going to be in the very
near future. The two infrared sensors are useful for sensing if the side of the tank
is approaching or close to a wall or obstruction. Finally, the ultrasonic sensor
provides information as to what is in front of the vehicle. These give the tank
spatial relation to its immediate surroundings.

For a given sensor to relay information to the computer or to the microcontroller it
takes such a short time it is almost instant, and therefore, both about the same.
Thus, reaction time is not an issue. The difficulty of programming the
microcontroller to give a response to a sensor input is not high. If, for example,
the data from the sensors was to be recorded and used to construct a virtual map
for memorization of obstacle location, then it would need to be relayed to the
computer. Because that is not within the scope of this project, handling sensor
feedback will be done on the microcontroller. It is the best, easiest and most
reasonable way. This is discussed further in 4.6.3 Microcontroller Design.

3.10 Vocal Command Recognition Research

3.10.1 Introduction

One of the main objectives of RADSAT is the ability to respond to vocal
commands in an effective manner. As such, the ability to analyze an incoming
stream of sound is an absolute necessity. Researching different voice and
speech recognition libraries led us to a plethora of different approaches to solving
the problems associated with designing RADSAT. Most speech recognition
libraries use a general purpose, one size fits all approach to tackle the problems
that they were designed to solve. While these libraries are very useful for
reference purposes, we specifically sought out solutions that have a more
targeted purpose.

The deliberation process for choosing a library to implement to verbal command
recognition software was comprised mostly of the team asking, "which set of
tools made the most sense and allowed for a relatively large amount of potential
expansion later on?". Making the most sense implies that it should probably be
free, easy to integrate the resulting program into the system, and relatively easy
to interface with the actual library. We narrowed it down to using either Android,

36

Port Audio, Sphyinx-4, or general Windows API/.NET libraries. We compared and
contrasted the most relevant aspects of each respective library (Table 3.10.1.1).
Three are very plausible solutions that could be used in the design and
development of RADSAT, but using the various Windows APIs (including .NET
and DirectX libraries) for word recognition are included for comparison purposes
and will not be discussed in detail in this document.

Library Android SDK Port Audio
Windows
API/.NET

Sphinx-4

Platform
Android (Linux

based)
Cross

Platform
Windows

Cross
Platform

Language Java C/C++ .NET Java

Integrability Low High High High

Difficulty Low Medium Medium Low

Recognition Yes No No Yes

Cost Free Free Free Free

Table 3.10.1.1: Audio Library Comparisons.

3.10.2 Sphinx-4

Like Android's speech recognition library, Sphinx-4 is also a Java library able to
translate entire words and phrases (both discrete and continuous) to English
strings. This library is notable not simply because it's another easy to use and
open source Java library, but because it was made in collaboration with many
different educational institutions and research labs. Sphinx-4's documentation
includes the resources needed to use its set of classes effectively and, more
importantly, it includes an overview of the mechanics that power the library. The
most useful part of the overview was their description of HMM (Hidden Markov
Model). HMM (figure 3.10.2.1) is a simple statistical model that essentially has
hidden states with a probability to enter each one of the states. A phoneme in
HMM is the smallest unit of a word and is represented in the figure by the circular
states. Each phoneme has certain properties that are included in the model, and
based on those characteristics, a decision can be made whether or not the
algorithm will enter that state.

37

Figure 3.10.2.1: Sphinx-4 search graph. Reprinted with permission pending from

the Sphinx-4 Foundation.

Although Sphinx-4 is open source and is a great tool to use, it requires very little
actual design, but is very easy to actually implement. It is included in this section
as a reference tool for RADSAT and future development.

3.10.3 Port Audio

Port Audio is a cross platform and relatively low-level audio library used to
interface with recording devices and is able to provide access to an incoming
audio stream for further processing. It is written in C and allows the programmer
to write programs in either C or C++. Its biggest advantage lies with its ability to
be extremely powerful while enabling a great deal of flexibility. Port Audio gives
the developer the ability to specify the recording time, the sample rate, and other
criteria at will. It returns floating point values that represent the level of sound it
has recorded.

Audacity is a free, open source and cross platform program used to record audio
and edit all types of audio files. There are numerous of programs that do the
same thing and can handle the same operations, but what makes Audacity truly
remarkable is that it uses Port Audio to handle the overwhelming majority of its
audio I/O and processing. As shown in Figure 3.10.3.1, Audacity puts many of
Port Audio's features on display as it allows you to record a sound and it
generates a real-time visualization of that sound, which is exactly what the
RADSAT project will need to do.

38

Figure 3.10.3.1: Sampled vocal visualization of the word "red", recorded using

Audacity

3.10.4 Android

Android is a Linux based operating system developed by Google and is largely
focused on being compatible with many different devices including different types
of phones and tablets made by competing manufacturers. The popularity of
Android stems from the fact that it's backed by Google, it runs on many different
mobile devices, and it has a very expansive and robust set of libraries and APIs
that can handle virtually any task a programmer can imagine. One of these
libraries (or packages in Java terminology) includes the code for the
SpeechRecognition class. This class equips even a novice developer with the
ability to recognize incoming sound and to translate that sound into a data string.
All a programmer has to do is let the Android operating system know that it
should start listening for speech. From there Android's built in speech recognition
will handle listening to the user and translating what the user said into something
more usable.

One of the core requirements is that a video feed needs be displayed for the
user. So, it would make logical sense for RADSAT's controlling device to also be
able to display an incoming video feed to allow the user to see what it's seeing
while controlling it. One big disadvantage with using Android is that streaming
video (or even a series of images) from a wireless feed while communicating with
another wireless source seemed extremely difficult, if not impossible to do. When
that inability is combined with having to process vocal commands, doubts began
to arise regarding whether or not an Android app had the ability to process
everything that it was expected to handle.

39

In the beginning, the team was very biased towards using Android as the main
operating system for very obvious reasons. Not only would we have been excited
to be able to deploy the controlling aspects of the system onto cell phones and
tablet devices, but the project itself would be greatly simplified by using Android
SDK's built in classes to do general word recognition for us. However, in the end,
the team decided against using Android as a solution because of its limited
computing capacity and because it would be difficult to integrate all of the
features necessary to adequately control RADSAT.

3.10.5 Possible Solution

The approach that will likely be used to enable voice commands and recognition
in RADSAT is to integrate the open source "Port Audio" sampling C library to
interface with the microphone of a personal computer. The library will allow the
system to stream and sample any sound recorded from the microphone at some
defined frequency and resolution, but does not include any other type of voice
related functions. It is impossible for an algorithm to differentiate between
random blabber, noise, and an actual command without first making some kind of
a comparison. This implies that the first step to verifying a potential command is
to pre-record actual commands and to build a dictionary. The recording and
verification process can happen in one of two ways.

One method is to record an array of fully playable sounds, with each one
representing what an actual command should sound like. Then, when a potential
command is sampled by the user, it can be compared to each one of our
prerecorded sounds until a match with minimal deviation is found. If no suitable
match is found, then the potential command is not considered a verified
command and is discarded. An alternative method is to develop a nonstandard,
custom file format that will contain the length of the sampled command, and an
array of floating point numbers representing sampled points from an already
sampled stream. Any potential command will be re-sampled, stored in a data
structure, and compared to each one of our verified commands. A deviation will
be calculated, and the final steps in this approach will follow those in the first
method. It is important to note that in both cases, the deviation is not calculated
by simple subtraction, but by comparing the change in frequency between two
adjacent (or in some cases, relatively close) points in the sample. This is done to
ensure that the differences in each person's natural tone is compensated for and
acknowledged in the algorithm.

40

Figure 3.10.5.1: Representation of a stored sample of a verified command, an

incoming (potential) command stream, the threshold, and a normalized time axis.

Another problem is determining whether or not the system should consistently
stream sound to the application on an ongoing basis, or if pauses should be
implemented to handle memory and processing limitations. This problem could
be easily circumvented by streaming (but not storing on the hard disk) audio
samples continuously and "freeing" unused data structures that are stored in
memory after receiving samples that are below a certain threshold, consistently,
for some length of time, α. Doing this may introduce undesirable side effects,
especially in uncontrolled environments. The issue is the possibility that constant
noise will produce samples that are always above the threshold, and will result in
the stream never pausing to free memory. For instance, if the aforementioned
low-leveled time limit, α, is set to 60 seconds and low-leveled sound is being
recorded, consistently for 58 seconds, then the stream will continue recording as
expected. However, if a loud sound is heard at 59 seconds, then the time counter
will be reset from 58 and will start to approach α from 0, but the recorded stream
itself will not be reset and memory consumption will continue. To put it concisely,
it's possible for a stream to continue, without pause, indefinitely even though α is
set to any reasonable value. This can be solved by having a universal time limit
that would automatically stop a stream and free data if the stream has been
continuously receiving data for too long.

RADSAT supports two categories of vocal commands: directional and action
commands. Directional commands deal with the movement of RADSAT while
action commands tell it what it should do. Another major difference is that
directional commands do not take precedence over sensory input, while action
commands can, only if RADSAT is able to follow the command. For example, it
will not fire unless it has found and taken aim at its target. Table 3.10.5.1 lists the
description of some of the vocal commands accepted by RADSAT.

41

Command Up Down Left Right Stop Fire Find

Type Direct Direct Direct Direct Action Action Action

Precedence No No No No Yes Yes Yes

Desc.
Moves

up
Moves
down

Moves
left

Moves
right

Stops
RADSAT

Fires
at

target

Con't
Find

Prereq. Sensor Sensor Sensor Sensor None Target None

Table 3.10.5.1: Subset of all vocal commands and their effects.

These commands are only a subset of the full set of vocal commands that
RADSAT will be able to support.

42

4.0 Project Hardware and Software Design
Details

4.1 Hierarchy of Decisions

Throughout the entire project, many choices and decisions were made or
revamped in regards to the final design. In this section, these choices, revamps,
and final decisions are outlined. The discussion that will follow will also include
the teams reasoning for each of the decisions.

At the beginning, the team came together under the idea of building a robot. In
the initial stages, it was not clear or defined at all what the functions of this robot
would be or how they would be carried out. After a few meetings and
deliberations between all of the team members, an initial set of goals was
outlined. Though the project would eventually evolve to its more sophisticated
final design, the goals and objectives that were outlined in these initial meetings
would serve as a basis for the robot that would eventually be dubbed
Reconnaissance and Demolition Super Attack Tank, a.k.a, RADSAT.

First, the team deliberated on what the size of the robot would be. Though a
large robot was discussed, it was unanimously agreed upon by the team that the
robot would be compact and light-weight. With this in mind, the chassis was then
discussed to determine how the robot would move around. Several options were
examined to see what possibilities the group had to choose from. It was agreed
upon at that time that a tank chassis would be best fit for the project and
movement would be easily controllable. With the initial framework coming
together, the idea of a tank sparked the group’s interest of a robot that would be
used as a weapon.

With the idea of a tank now as the motivation for the group’s future workings,
additional goals were laid out. First, specifications for the length, width, height,
and weight of the tank were defined. Following this, it was determined that the
tank should be wireless and controllable from a laptop computer. A discussion
was then held amongst the group of how communication would take place
between the laptop and the tank. It was initially determined that a hackable
router would be connected to the tank. With this router in place, the team would
be able write a program on the laptop that would communicate with the tank by
sending signals to the router. With this design, the group would be able to
manually drive the tank around in the specified radius of the wireless connection.
A webcam was to be hooked up to the router so that it could send a video stream
back to the laptop. Using this video feedback, the group would be able to drive
the tank to a specified target. Once the target was discovered, the group would
be able to issue a command to the tank that would fire the turret at the enemy

43

target. It was at this point that the tank was named RADSAT, in respect to its
nature as a weapon.

With the initial design of RADSAT laid out, the team presented this idea to Dr.
Richie, the electrical engineering and computer engineering Senior Design
instructor at the University of Central Florida. During the group’s discussion with
Dr. Richie of the functions of the RADSAT, it was agreed upon by both parties
that not enough design had been included to satisfy what would be a suitable
Senior Design project. A discussion of new design goals that could be added to
RADSAT took place, and the team returned to the drawing board.

The team, after performing more research on other wireless vehicles that had
been designed by other engineers in the past, then held another meeting
together that would outline the goals for the final design of RADSAT. In order to
add more design to RADSAT that would ultimately lead to a good Senior Design
project, some of the previous decisions that had been made were changed and
some functions that would add more room for design by the team were added.
These changes and decisions are discussed as follows.

The first major change that was made for RADSAT was how it was going to
wirelessly communicate with the laptop. After discussing the idea of a router
attached to the R/C tank’s body, it was ultimately agreed upon that this
implementation would be simply to easy use for a Senior Design project.
Furthermore, the use of a router did not seem to apply well to for real-world
application. The idea of the router was thusly scrapped, and a new solution to
the problem was researched. In the end, it was agreed upon by the group that a
WiFi Shield would be implemented on the team’s PCB to communicate with the
laptop. This offered a functional solution that would offer new opportunities to the
team for designing software for RADSAT.

Next, the group looked at how RADSAT would function in its search for a target.
Though the group agreed that the R/C tank should still be able to be manually
controlled by a human user over via a laptop, this did not seem to be good
enough for the project. In addition to manual control, the group decided that
RADSAT would have an autonomous aspect in the fact that it would be able to
follow a search algorithm to search out and find a target on its own. The team
thus had a whole new design aspect that would be implemented by RADSAT.

In addition to the search algorithm, another opportunity for design presented itself
by including an autonomous feature in RADSAT. Namely, the team would now
be able to research, design, and test the feature of video processing of the
images that were to be captured by the webcam. During its search, RADSAT
would need to make its own decision as to whether or not an image captured by
its webcam was in fact a target. With video processing now an additional design
feature that could be added to RADSAT, the project was beginning to take the

44

shape of a project good enough to be completed during the timeframe allowed by
Senior Design.

With the video processing, the team discussed what would be determined by
RADSAT to be an “enemy” target. Though many options were discussed, i.e.
shape, size, etc., it was determined by the team that RADSAT would search out a
specified color as its target. Color recognition then became the next design
aspect that was to be researched and implemented by the team in the final
design of RADSAT.

With the autonomy of RADSAT, it was next agreed upon by the team that
collision avoidance would need to be implemented in its search function so that
RADSAT would not be crashing into obstacles and objects every time it searched
out a target. With this in mind, it was decided that sensors would be researched
and implemented by RADSAT to perform this collision avoidance. Once again,
another design aspect that RADSAT now had in its arsenal as a good design
project.

Finally, the team decided to add one more function to RADSAT that would add to
its overall design. It was agreed upon by the team that RADSAT would follow
one more method for issuing commands through voice control. Listening to the
human user, the R/C tank would respond to a command that was issued vocally.
This, combined with all of the other functions to be designed that were discussed
above, was then presented to Dr. Richie as the revamped design for the group’s
project.

As can be seen, the meetings and discussions that the group held to determine
the overall functionality of RADSAT led the team from a relatively easy and
uninteresting project into one that would offer the team many opportunities for
design. The above functions were all deemed suitable and reasonable for the
team to complete in the implementation of RADSAT. It was at this point that the
team continued to research all of the implementable functions, and began writing
the documentation for all of the design and testing issues that were to be carried
out for RADSAT.

4.2 GUI Design

The GUI needed for this project is rather simple and does not need to be
exuberant at all. It can be programmed in most object-oriented programming
languages. As the team researched many different GUI’s and how they were
programmed, it was decided that the C# programming language would be used
to program the GUI. An example of what the GUI will look like to control the tank
can be seen in Figure 4.2.1 below.

45

Figure 4.2.1: GUI Design

With this GUI, all of the human commands that RADSAT will respond to can be
sent to the microcontroller. The “Connect” and “Exit” buttons on the left hand
side will respectively establish and break down a connection between RADSAT
and the microcontroller. The “Search” button on the right will have RADSAT
implement the autonomous search algorithm to search out and locate a specified
target. The “Fire” button, also on the right hand side, will be pushed when the
target is found and is to be “destroyed”. This command will not be executed by
RADSAT autonomously, but only at one of the team member’s discretion.

Two sets of directional arrows were required for the design. The first set of
arrows on the left under the title “Tank” will be the arrows that control the
movement of RADSAT. The left and right arrows will rotate RADSAT in the
specified direction, will the “up” and “down” arrows will move RADSAT forward
and backward respectively. The second set of arrows located on the right under
the title “Turret” will be used to rotate the camera and turret. The left and right
arrows will rotate the camera in the specified directions, will the “up” and “down”
arrows will pan the camera upwards towards the ceiling and downwards toward
the floor.

Under the “Live Video Streaming” title will be displayed the images processed by
the microcontroller from the camera. Images will be processed in real time and
displayed on the GUI screen. In this fashion, the user of RADSAT will be able to
see what the turret is aimed towards at all time and will be able to make a good
judgment call of when RADSAT should fire at the target. A delay in the video
display might result in RADSAT firing at an unspecified target, which is an issue
that the team would like to avoid at all costs.

46

4.3 Tank Design

It was decided from the start that the tank body or chassis would be bought as a
prefabricated part. Building a custom chassis would be time consuming and falls
outside the realm of computer or electrical engineering and is therefore
somewhat irrelevant to the purpose of this project. Having made the decision to
buy a chassis there are two routes one can take. The first is to buy an off-the-
shelf RC tank, strip it of its electronics, turret and unnecessary parts, and replace
them with our own electronics and turret assembly. The other option is to search
for a robotic tank base made especially for robot hobbyists to build onto and build
our robot onto it.

If the first option is chosen one of the biggest advantages is that the R/C tank can
be disassembled and provide a glimpse into the physical components of the tank
were planned and put together. This may help in the construction of the physical
aspects of RADSAT by showing how certain problems are resolved. In
anticipation of this step in building the tank, attempts will be made to predict
design problems and resolve them with hypothetical solutions. Again, this is only
in reference to the chassis; electrical and computer engineering design problems
are to be addressed thoroughly and intelligently long before the tank is
assembled.

Other advantages to using an R/C tank body are that they come in a very large
variety of sizes, price ranges, features, and manufacturers. Additionally, there are
consumer reviews and videos, which can be useful in determining how high
quality the tank is, and what can be expected in terms of capabilities and
durability. It is helpful to have an idea of how fast the tank can move and what
kind of terrain it can drive over without getting stuck. These tanks come with
electronics and salvaging parts such as motors and speed controls could save
time and money. Lastly, It could be an advantage or disadvantage, but the visual
appearance of RADSAT will be heavily decided by the chassis chosen for it.

A disadvantage to using an R/C tank is the cost of the product. These are in the
one-hundred dollar price range and that is incentive to look for an alternate way
to obtain a chassis. However, if this option is chosen there is more incentive to
get it right the first time, rather than buy a tank and find that it is insufficient for
the needs of this project. Adding to this disadvantage is the possibility that
advertising could overstate the abilities of the tank or simply make it look bigger
or better than it actually is. Also, there is not a wealth of information available
about how other people have taken these chassis and modified them to make a
custom robot. It has been done, and is certainly possible, but detailed
documentation is lacking, and therefore firsthand experience will have to suffice.

On the other hand, a base built especially for robot hobbyists could be a viable
alternative. These offer the advantage of having surfaces specifically designed
for mounting arduino boards and motors and other necessary robot components.

47

They are readily available on multiple sites, so finding a low-cost one is possible.
People have used these to make simple robots and there are plenty of write-ups
and videos demonstrating their uses.

On the down side, perhaps contrary to one might intuitively think, there are not a
lot of options to choose from, only three were found that fit the description of the
RADSAT project. These bases are between 8 x 4 inches and 9.5 x 9 inches,
which is relatively on the small side. A base that is too small could become
problematic if the robot is prone to tipping over with the weight of the turret
making it top-heavy. The small size may also put limitations on the terrain the
tank can traverse, for example sidewalks and short grass will be okay for any
tank, but long grass and rocky earth may pose problems for a small tank.

The following table shows tanks that are available for purchase for this project.
There is a vast supply of R/C tanks, so a sample was made of the best
candidates for this project. These are the first five items in the list. The latter
three items are the aforementioned robot chassis. As can be seen, by
comparison they are very small. A 1:16 scale R/C tank is best suited to the needs
of this project.

Figure 4.3.1: Abbreviated table of available tank chassis

Given the project requirements and the available options, it was decided that the
SnowLeopard M26 will be purchased for use of its chassis. It is more expensive
than some of the others, but it is most attractive because it has a good reputation
as a reliable and high quality R/C tank. It has a body that looks like it will be the
easiest to work with and it appears to have enough room to fit the necessary
parts onto it, with flat surfaces to make mounting easy.

Tank Name R/C tank (scale) Price Size

SnowLeopard M26 Y (1:16) $95.00 21 x 9 in.

Jagdpanther Y (1:16) $113.00 21 x 9 in.

DAK Pz.Kpfw.IV Ausf.F-1 Y (1:16) $89.00 22 x 9 in.

Heng Long LEOPARD II Y (1:24) $50.00 16 x 6 in.

German Tiger 1 Y (1:16) $85.00 21 x 9 in.

Dagu Rover 5 Chassis N $50.00 9.5 x 9 in.

Boe-Bot Tank Tread Kit N $35.00 8 x 5 in.

Tamiya Track Kit N $16.60 8 x 4 in.

48

Figure 4.3.2: The Snow Leopard M26, a stepping stone to greatness

With permission from www.bananahobby.com

4.4 – Turret Design

4.4.1 – Turret Functionality

This section discusses decisions between continuous rotation servos and 360
degree movement. It also covers possible methods to augment turret direction
with the movement of the base. Other options such as fully aiming with base or
implementing a wireless firing mechanism are discussed as well. The chosen
method will be prototyped and tested. If it fails, the next best choice will be used
or a compromise will be made.

In consideration of a continuous rotation servo for the pan function, there are
both advantages and disadvantages, limitations and freedoms. A continuous pan
would allow the tank to target objects as they circle around it, or as it circles
around them, and would allow for search algorithms to simply rotate the turret in
one direction while attempting to find and identify a target. The drawback of this
system is that wires from the base to the gun and the pan servo would not be
able to twist indefinitely. Possible solutions are wireless signals between the
turret and base, or brushes that make contact with circular tracks, like the
electrical transmission in a slot car track.

For further clarification, see the diagram below. It shows a simplified version of
how electrical current can be transferred from the battery on the base, to the
turret assembly above, while still allowing the turret assembly to infinitely revolve
around the axis through point A.

49

Figure 4.4.1.1: Rotating Power Supply System with Brushes

As practical as the diagram makes it look, this approach is less than ideal for a
number of reasons. The brushes will experience wear over time and need to be
replaced, a bump or jar to the frame may cause momentary open circuit which in
turn would cause the servo to behave erratically, and it would simply be a high
degree of difficulty to build and implement. This idea must be abandoned in
search of more appealing alternatives.

The next choice, if a continuously rotating turret is to be used, is wireless
transmission between the base and turret. This would have the same perks as
the previous method, but would be simpler in that there would be no need to
build an unconventional electrical current transmission system. However, it would
also require a power source and wireless receiver on the turret. Because of the
added weight, the servos would be under addition strain. Possible drawbacks are
sluggish response, broken servos, and loss of communication during electrical
storms due to RF interference.

An alternative solution would be to limit the turret rotation to a 360 degree pan. In
this case, need for awkward linking between the base and turret is eliminated. It
can be simply wired directly to the microcontroller and power source. For this
added simplicity, the only sacrifice is that the turret has a limited turning radius
and therefore if it needs to turn to a specific coordinate but reaches the limit of its
range it must turn all the way back around. For example, in polar coordinates the
same direction can be pointed to by rotating 30 degrees or by rotating -330
degrees. The below figure illustrates the example with a possible situation that
may arise. In this case, the turret points at a moving target starting at point A and

50

moving to point B, when it reaches 360 degrees, its full rotational capacity, it must
turn back and go the long way around.

Figure 4.4.1.2: Original picture used under the Creative Commons Attribution-Share

Alike 3.0 Unported. Attribution goes to Mets501.

This weakness could be highly detrimental to the effectiveness of the tank's
attack if the target is sentient and realizes that it can exploit the “blind spot” that
the tank now has. More realistically, the problems posed here are loss of time
while the turret readjusts, difficulties in coding and refining the targeting system,
and waste of energy to make superfluous movements of the turret. Lastly, it might
be noted that it simply lacks aesthetic appeal; watching the turret turn all the way
back around every time it reaches the end of its range is undesirable.

A possible option to improve the above method would be to augment the rotation
of the turret with rotation of the tank base. That is, when the tank is stationary, the
base handles lateral tracking, and the 360 degree pan servo is used only when
moving. This combination could eliminate the majority of the potentially
problematic situations, such as that described above. The case in which the tank
is being circled by its target is solved if the tank base rotates in place. The case in
which the tank is circling its target is also solved because as it circles, the base
turns anyway, and therefore the turret will never reach its “blind spot”. The only
remaining case is if the tank were fleeing from or chasing a foe that is moving
while circling. This, and similar erratic behaviors, will still be a problem for this
configuration, but they are not within the scope of this project.

An alternate choice is to use a servo with 720 degrees of rotation, and enough
wire to be able to wrap around the axle of the base servo one full wrap in either
direction. In this case the added freedom, along with software designed to keep
the servo from turning too far and breaking the wires, can increase the
effectiveness without introducing problems. The software also returns the servo
to centered or a range near centered periodically to keep it in its most useful

51

position. Despite how fun the other options sound, this option is the one that will
be explored and pursued for implementation. It meets the requirements, is
inexpensive, and has the fewest complications.

4.4.2 The Gun

When deciding on what to use for the tank's gun there are three options: Use the
gun it comes with, if it comes with a gun, choose a new gun to buy, or use a
already in possession. The problem with using the gun the tank comes with is
that it is probably not very high quality. At best, it is unpredictable and therefore
not an attractive option. Researching and finding a gun that is well-reviewed and
fits the needs of this project is a more attractive option, but this option costs both
time and money. The third choice is to use a gun that a team member already
owns, and that is the option that is going to be explored as a first choice. The
other options have been noted because if the first choice fails at the time of
testing, the others will be explored with specific goals in mind, such as less
weight or lower current draw.

The gun to be used as first choice for this project is a UHC Steyr mini electric
airsoft gun. This decision is favorable because its functionality and quality are
immediately observable and testable. Of course it is also a reasonable choice
since it was something that we already had, and no money will be spent on it.
Pictured below is the gun itself, in fully functional condition despite being
approximately seven years old.

 Figure 4.4.2.1: The Steyr airsoft gun Figure 4.4.2.2: The red dashes

 indicate where the gun can be

 cut to reduce size and weight

It is also worth noting that there are more advantages than simply being easy to
decide on and costing nothing on our budget for this project. This gun is electric
powered which means it needs only a six volt potential applied across its input
and it will fire; there is no need for CO2 or physical pump mechanisms. It will
shoot rapid fire as long as the motor is switched on and it has ammunition in the

52

hopper, which in this case is modeled to look like a scope. It shoots
approximately two BB's per second, so the number of rounds fired can be easily
controlled. It is also simple and easy to take apart, modify and put back together.

The gun will be mounted directly to the servo's pan/tilt attachment. It will be
mounted with two screws through the side of the base of the gun connecting it
straight to the top of the tilt servo. The camera will be mounted in a similar
fashion beside the gun, on top of the tilt servo. The mass of the gun is 222g,
which is used in calculations in section 4.4.3 of the maximum torque the turret
assembly will exert on the servo. In the diagram below the photo on the left
indicates the approximate center of mass of the gun and the distance to where
the gun will be mounted. This distance of 7 centimeters is rounded up to 9
centimeters to be on the safe side and used in the aforementioned calculations.

Figure 4.4.2.3: The inside after the cuts Figure 4.4.2.4: The

 reassembled piece

After reassembling the modified gun it was tested to confirm that it was still able
to function as desired and it passed the test by shooting just as before. In it's
present state it is small enough that it is not too bulky for the robot to carry
around. Also, with its muzzle velocity of 150 FPS and hop-up system, it is
powerful enough to shoot targets accurately, within at least a forty foot range.
Hop-up is an effect achieved by a small, built in rubber nub on the ceiling of the
inside of the barrel. This system gives the BB backspin, alloying it to fly further
before dropping. See figure below:

53

Figure 4.4.2.5: Illustration from the gun manual showing the contrast between hop-up

and normal shots. Reprinted with permission from www.airsplat.com

This is a very important detail for our design because a concern early on was that
target distance would be a problem. It was noticed that the robot will not be able
to tell whether an object is small and close or large and far away, and if the object
was far away, the BB's would travel toward the object when shot, but fall to the
ground before reaching it. Because this gun utilizes hop-up, that problem is less
of a problem. It will only come into effect at ranges of approximately sixty feet to
seventy feet and beyond. If at the time of testing it is more of a problem than
anticipated or it seriously hinders the effectiveness of the tank, solutions will be
pursued. Possible solutions are upgrading the existing gun, equipping a more
powerful gun, or aiming the turret up to arc the trajectory.

4.4.3 - Servo Selection Process

To mount the turret and allow it the full range of motion, two servos are needed.
These servos give it two degrees of freedom. The first is the pan servo, it can
point the camera and airsoft weapon at anything on the same plane as the tank.
The second is the tilt servo, it can point the camera and airsoft weapon at things
level with the tank or above it.

The servos can be attached by a specialized attachment device. These
attachments are built to connect two standard sized servos to form one pan and
tilt unit. One of the two choices below will be used.

54

Figure 4.4.3.1(left): Attachment from servocity

Figure 4.4.3.2(right): Attachment from Endurance-Robotics

Reprinted with permission from www.servocity.com and www.endurance-robotics.com,

respectively.

Also available are mounts that have both pan and tilt built in. These are
manufactured primarily for security cameras and satellite dishes. It is worth
noting that these options are available, however, they are prohibitively expensive
with the majority being at least one hundred dollars and going up into the tens of
thousands of dollars.

Since many standard servos have a range of 60 to 90 degrees in each direction,
a special kinda of servo is needed for the pan function. It would not be nearly as
useful if the turret could only move slightly to the left or right of the direction the
tank is facing. Therefore, the desired servo, often referred to as a continuous
rotation servo, was selected from a compiled table of available servos of this
type. See table below:

Figure 4.4.3.1: Initial list of eligible pan servos to choose from

Even though the required value for degrees of rotation is 720°, a servo with
infinite rotation will be used because typically servos are either below 360° or
unlimited. The HSR-422 by Hitec is the chosen servo because it is produced by a
reputable brand and there is support. As noted in the table, this servo will require
a modification before it can rotate indefinitely, but this modification is said to be
easy and instructions are available. This servo also provides sufficient speed and
torque. The price of this servo is also the lowest, which makes it perfect for
keeping costs down.

Pan Servo Speed (rpm) Torque (Kg*cm) Cost Type Size (inches) Degrees

EXI B1227 46 11 $11.70 Analog 2.29x1.10x2.05 2880

HS-422 62 4.1 $10.00 Analog 1.56x0.8x1.64 ∞ after mod

SpringRC S4303 70 4.8 $13.00 Analog 1.57x0.78x1.35 ∞

HSR-1425CR 52 3.1 $17.00 Digital 1.59x0.77x1.44 ∞

HS-635HB 67 6 $28.00 Analog 1.6x0.8x1.5 ∞ after mod

55

When searching for a good pan servo, the choice between digital and analog
servos came up. Because this choice must be considered, a brief discussion on
the difference between digital and analog servos is in order. Digital and analog
servos are the essentially the same with a few exceptional capabilities of digital
servos. First, given the same input, both an analog and digital servo will behave
the same. In this way, the two are interchangeable. However, a digital servo
holds two heightened abilities over its analog counterpart: it updates at 300Hz as
opposed to the 30Hz of an analog servo, meaning it will respond more quickly
and have more torque. Also, its direction of rotation, speed, and center can be
programmed. The digital servo usually costs more and has higher starting
current.

For this project the servos are required to simply rotate as commanded, a simple
task not requiring a programmable servo. A digital servo will work, but is typically
more expensive and therefore if an analog servo will suffice, it will be the more
appealing of the two. The deciding factor for this project is the issue of torque the
servo is capable of handling. The torque on the tilt servo comes from the turret
mounted on it. The following calculation estimates this torque.

Torque calculation – This is an estimation of the maximum torque the tilt servo
will encounter.

The approximate values that will be used in these calculations are:

 Figure 4.4.3.2: Estimated values Figure 4.4.3.3: Calculated results

For the end result the desired unit is kgf*cm because this unit is given in servo
specifications. The values chosen for this estimation are on the high end so that
if a servo meets the requirement of 4.5 kgf*cm torque or higher, even if the
estimations are slightly wrong, the servo will still be adequate. In other words,
there is room for some error.

There is an almost unlimited number of servos available through online stores,
and a table taking a sample of available servos was constructed by finding a
sufficient amount of relevant candidates, and listing their attributes. This was the
initial table:

Variable Value

Distance 0.09m

Mass 0.5kg

Acceleration 9.81 m/s²

Equation used Resultant

F=ma 4.905 N

T=Fd 0.44145 N*m

1N*m=10.2kgf*cm 4.5 kgf*cm

56

Figure 4.4.3.4: Initial list of possible tilt servos

After the above table was assembled it became apparent that analog servos are
more common, the size requirement for standard sized servos need not be listed,
and the number of degrees can be assumed to be 180°. Also, because the first
servo has been chosen and it is Hitec brand, it is appealing to choose the second
servo to be from the same brand. Given this new information, the table is remade
for a more concise, easy to read view.

Figure 4.4.3.5: The complete list of standard-sized analog

Hitec servos available from servocity.

It can now be seen plainly that the best choice that meets the torque requirement
and has the lowest price is the HS-485HB. This, along with the HS-422 and the
endurance robotics attachment will cost $57.00. The entire assembly will be
mounted to the tank using screws. The gun and camera will be affixed to the top
of the servo attachment and thus will comprise the complete turret.

4.5 Video Processing

This section details the process of retrieving an MJPEG video stream with C#
code from the wireless security camera’s server. This is the basis for the rest of
the design sections that use and edit the video stream. This section will be using
the open source libraries of AForge.Video as well as follow many of the libraries,
and guidelines set forth by the open source video project iSpy. The following is
an overview of the functions and their specific roles in acquiring the video feed:

Tilt Servo Speed (rpm) Torque (Kg*cm) Cost Type Size (inches) Degrees

HS-635HB 67 6 $28.00 Analog 1.6x0.8x1.5 180

HS-425BB 62 4.1 $13.00 Analog 1.6x0.8x1.6 180

Vigor 39g 53 3.2 $3.80 Analog 1.6x0.8x1.7 180

Futaba S3003 53 4.1 $11.00 Analog 1.6x0.8x1.4 180

Futaba S3010 62 6.5 $25.00 Analog 1.6x0.8x1.5 180

EXI D123F 50 8.5 $9.70 Digital 1.6x0.8x1.6 180

Tilt Servo Speed (rpm) Torque (Kg*cm) Cost

HS-311 66.7 3.7 $8.00

HS-322HD 66.7 3.7 $10.00

HS-325HB 66.7 3.7 $13.00

HS-422 62.5 4.1 $10.00

HS-425BB 62.5 4.1 $13.00

HS-485HB 55.56 6 $17.00

HS-625MG 66.7 6.8 $31.50

HS-635HB 66.7 6 $28.00

HS-645MG 50 9.6 $31.50

HS-985MG 76.9 12.4 $70.00

57

Figure 4.5.1: Acquiring the video feed

TestURL() - This function will make sure the program is properly connected to the
server that the MJPEG video feed is on. This will accomplish this task by using
the existing AForge.Video function, getMJPEG(). If there isn’t a video running or
there isn’t a proper connection established, then the program will display a
message such as “Connection could not be established” within the video screen
display on the GUI. There is another function within the AForge.Video library,
called IsRunning(), which tests whether any data is located on the server.
TestURL() will use the isRunning() function to make absolutely sure there is a
connection established. If there is no data on the specified server, or if the
username or password is incorrect, the software will stop attempting to get data,
and will not try again until the user specifies it to retry.

The server location for the security camera in use for the project is
http://192.168.1.178/videostream.cgi?rate=0, the username is “admin”, the
password is “123456” and the SSID the camera connects to is named,
“RADSAT”.

GetMJPEG() - This function will take place after a successful run of the testURL()
function. The function will assume a successful connection is already in place
(since testURL() should have confirmed this) then run from there. GetMJPEG()
will use the existing AForge.Video class called “MJPEGStream”. This function is
used exclusively for returning an MJPEG stream as a bitmap image. It has to
read in the MJPEG Stream, convert that to a JPEG then convert the JPEG into a
Bitmap image. It is important that the JPEG be converted to a Bitmap image,
because the Bitmap image breaks the JPEG up into individual pixels, which then
allows for manipulation of all the pixels.

Within the GetMJPEG() function, the boundaries for the video feed need to be
specified. When specified, the function will create an array of bytes which will be
equivalent to the boundary size of the MJPEG stream, which then will be passed
to the DisplayMJPEG() function. Once everything is in order, and the stream is

58

confirmed to exist, the program will continue in a while loop until the user
specifies it to stop by using a button on the GUI, and the following function.

StopStream() - This function simply uses the SignalToStop() function within the
MJPEGStream class. This will signal the threads to stop, and will disconnect
from the server. The other purpose of this function is to break the program out of
getMJPEG’s while loop.

DisplayMJPEG() - This function takes in the bitmap image obtained through the
getMJPEG() function. It is responsible for sending the obtained image to every
other function which requires an image to edit. The functions include: all
functions from section 4.9 Targeting System, as well as the functions from section
4.8 Color Recognition. Once the completed picture is ready, the function will
send it to the GUI.

This function will also take advantage of C#’s existing System.Drawing libraries.
The System.Drawing libraries have several methods for easily displaying images
to a computer screen.

4.6 Autonomous Design

4.6.1 Supporting Sensors

RADSAT is designed to be able to operate autonomously using only three
different types of sensors: the MaxSonic MB1210 ultrasonic sensor, the Sony
GP2Y0A02YK infrared sensor, and the Honeywell HMC6352 Compass module.
The actual configuration will consist of a total of two GP2Y0A02YK sensors
mounted on the sides of RADSAT's body, one MB1210 sensor mounted on the
front, and one HMC6352 mounted anywhere, away from magnetic fields. The
ultrasonic sensor on the front is used to ensure that RADSAT does not collide
with any potential obstructions located near its vicinity. The two infrared sensors
will be mounted on each side of the tank and is used to ensure that RADSAT
would be able to make informed decisions regarding the direction it should turn.
This would effectively prevent it from turning and facing an obstruction. It would
not be necessary to mount sensors to detect obstructions behind RADSAT
because reversing implies that it has already navigated to its current position
successfully.

Calibrating the GP2Y0A02YK is a very necessary step as discussed before
because of its nonlinear output in relation to obstruction distance (figure 4.6.1).
Calibration is done by placing the sensor at some distance from an obstruction.
The distance to the obstruction must be measured at discreet steps of 1 inch.

59

Figure 4.6.1.1: Calibrating the distance versus output voltage of the Sony GP2Y0A02YK

(measuring at an invalid distance).

Figure 4.6.1.2: Diagram of HMC6352 compass module connection to Arduino board,

reprinted under license from bilder.org.

Onboard sensor processing vs. processing on the control software - At this point
it is necessary to discuss whether the sensor processing will be handled on
board, via the micro-controller, or by the computer. This depends on a wide range
of factors. These include, cost, difficulty, speed, capabilities, bandwidth, number
of sensors. According to the project requirements the speed at which the robot
can respond to the sensors is of high importance. Even more important is the
accuracy and reliability; in a word, effectiveness. These factors are primary, and
factors such as cost, ease of execution and aesthetics are secondary. A decision
will be made based on what information can be gathered before the prototype is
built.

60

The parallel for this decision is the human brain. In humans the cerebral cortex
processes deep thoughts and can handle complicated situations requiring
reasoning, decisions, judgments and planning. The medulla oblongata, on the
other hand, is a more basic part of the brain and handles unconscious
movements, reflexes, and reactions such as making the heart beat, controlling
the muscles used to sneeze, and blinking when something gets near to the eye.

In many ways, RADSAT should process the sensor input like the medulla,
automatically producing one preset action for a given stimulus. This is a starting
point for this discussion. After reviewing the facts, the decision will be made
whether to modify this hypothesis.

The four sensors together provide the following information: The compass will
provide directional orientation which will be useful for determining where the tank
has been and is going to be. The two infrared sensors are useful for sensing if
the side of the tank is approaching or close to a wall or obstruction. Finally, the
ultrasonic sensor provides information as to what is in front of the vehicle. These
give the tank spatial relation to its immediate surroundings.

For a given sensor to relay information to the computer or to the microcontroller it
takes such a short time it is almost instant, and therefore, both about the same.
Thus, reaction time is not an issue. The difficulty of programming the
microcontroller to give a response to a sensor input is not high. If, for example,
the data from the sensors was to be recorded and used to construct a virtual map
for memorization of obstacle location, then it would need to be relayed to the
computer. Because that is not within the scope of this project, handling sensor
feedback will be done on the microcontroller. It is the best, easiest and most
reasonable way. This is discussed further in 4.6.3 Microcontroller Design.

4.6.2 Autonomous Design – C# Control
Functions

The Aruino Diamondback (the microcontroller which is being used for the
RADSAT) is capable of receiving ASCII characters. With this knowledge it was
decided to give each individual control function of the RC tank a different
command protocol. Each command protocol is listed within table 4.6.2.1 located
below.

To be able to communicate with the Arduino Diamondback with C#, a dedicated
static IP needs to be assigned to the board. The default IP address the Arduino
connects to is 192.168.3.177, and since only the laptop, the security camera, and
the Arduino board will be connected to this network, there is no reason to change
it. Now the C# code will be connected to the same address and send the
necessary data to the Arduino, which will be constantly checking for new data via

61

a while loop. The following bulleted list shows the different functions within C#
that will control each individual motion of the RC tank. The function names
should be self-explanatory for which motion it will control. The command protocol
in table 4.6.2.1 will be used when each function sends data to the robot.

 LeftForward()

 LeftBackward()

 RightForward()

 RightBackward()

 BothForward()

 BothBackward()

 TurretRight()

 TurretLeft()

 TurretUp()

 TurretDown()

 ShootTurret()

Motion Command Protocol

Stand-By 01

Left Forward 02

Left Backward 03

Right Forward 04

Right Backward 05

Both Forward 06

Both Backward 07

Turret Turn Right 08

Turret Turn Left 09

Turret Go Up 10

Turret Go Down 11

Shoot the Turret 12

Table 4.6.2.1: Protocol Information

62

4.6.3 Microcontroller Code

This section details the code which will be embedded on the RADSAT’s
microcontroller. Initially, this code is written for the Arduino Diamondback,
however, the code will be altered at a later stage to accommodate the XBEE and
PCB layout. This code explains the overview of how the Arduino Diamondback
will communicate with C# code, as well as how it will communicate with the
RADSAT’s servos and chassis.

All Microcontroller Code will be written within the Arduino 1.0 IDE. This IDE is
specifically built to cater to all Arduino boards. This allows for easy integration
between the laptop and board, as the Arduino 1.0 IDE is able to quickly and
efficiently load data onto the board. It also color codes .INO files, which not too
many IDE’s are compatible with, and makes the code much easier to read.
Although Eclipse can become compatible with a plug-in, without extensive
knowledge about Ardiuno, and for programming an Arduino board, going with the
IDE specifically dedicated to Arduino seemed like the best bet.

The connection the microcontroller will be using will be a similar set-up as the
WiFi Security camera. It will be using the same Netgear WGR614 Router, with
the same SSID of “RADSAT”. The IP address of the WiShield (Diamondback
WiFi module) /XBEE will be 192.168.3.177, the router’s IP is 192.168.1.1, and
the subnet mask is the default 255.255.255.0. The Netgear WGR614 Router will
not have a connection password. The reason no connection password was
chosen is because the board would take at least thirty seconds to create a
connection with a password protected router. However, an unprotected router
can obtain a connection almost instantaneously.

The following is what the code used to connect to the router and its own IP
address will look like.

unsigned char local_ip[] = {
 192,168,3,177}; // IP address of WiShield
unsigned char gateway_ip[] = {
 192,168,1,1}; // router or gateway IP address
unsigned char subnet_mask[] = {
255,255,255,0}; // subnet mask for the local network

const prog_char ssid[] PROGMEM = {
 "RADSAT"};
unsigned char security_type = 0; // 0 - open; 1 - WEP; 2 - WPA; 3 - WPA2

The code is done in the C programming language. And the three variables listed
above (local_ip, gateway_ip, subnet_mask, ssid, security_type) are used within
the library “WiServer.h”, which is catered to the RADSAT project’s specific
information. The functions within WiServer.h will know what to do with this
information and connect the RADSAT accordingly.

63

After all the above code is entered along with the rest of the code within the
server.INO program, the board will be constantly checking to see whether there’s
any information it needs to read that is located on the server. all code within the
void loop() function needs to run endlessly on the WiShield, otherwise there will
be no connection between the RADSAT and the laptop. The code will be
constantly connecting to the server, and will search the file motion.txt, for any
updates on movement commands. The protocol for the movement commands
can be seen in Table 4.6.2.1 within the 4.6.2 Autonomous Design – C# Control
Functions section.

void loop() {
 //The following line will grab any new commands for the robot

GETrequest getControl(ip, 5000, "localhost", "/motion.txt");
//Following the GETrequest there will be several IF, SWITCH
statements which will try to //determine which command was
issued, and then it will start the appropriate //functions
WiServer.server_task();}

Within the IF and SWITCH statements, following the “GETrequest”, depending on
what is written on motion.txt, the code will tell the different digital I/O pins to send
a signal to the tank. All pins will use the following code, so that they will be
considered ouput pins, pinMode(pinumber, OUTPUT);, where pinumber
represents pins 1-14. The command to send the signal will be,
digitalWrite(pinumber,HIGH);, where this time pinumber represents whichever pin
was selected to interact with the RADSAT chassis.

For the I/O pins which are connected to servos, the command will be different.
The servo code will be using the SoftwareServo library. Since the servos operate
with pulses instead of voltages, the code will need to reflect that. The first thing
that needs to be accomplished is establishing the pulse rate for the servo.
Following that, certain commands are used in order attach and detach a pin from
driving a servo. SoftwareServe variable, serves as a new servo within the
SoftwareServo library. The servo code will be written as follows:

SoftwareServo servo1;

void setup() {
servo1.attach(pinnumber); //makes a pin become a pin dedicated to

servos
servo1.setMaximumPulse(2200);} //sets the max pulse to 2200

microseconds

void loop() {
//various IF, SWITCH statements
digitalWrite(pinumber, HIGH);} //sets the attached pin to “on”

64

The analog input pins (pins 4 and 5) on the Diamondback will be reserved for a
compass sensor. The compass sensor will enable the RADSAT to acknowledge
where it is at all times. This will be useful when it is autonomously trying to find
its location. The compass will enable the RADSAT to rotate certain degrees,
which will allow for easy navigation. The compass sensor will be using the
Wire.h header and will return a float value telling the degrees the RADSAT is
facing. The following is an example of what the code will look like:

void loop() {
 Wire.beginTransmission(HMC6352SlaveAddress);

Wire.send(HMC6352ReadAddress); // This command gets the
data
Wire.endTransmission();
byte MSB = Wire.receive(); //received in binary format
byte LSB = Wire.receive()
float headingSum = (MSB << 8) + LSB; //converts to float
float headingInt = headingSum / 10; }

There’s one more part which needs to be accounted for within the microcontroller
code; the analog inputs for the sensors. This is necessary, so the RADSAT will
not run into any objects or walls, thus creating a smarter robot. The whole code
segment within the function, void loop(), from all the above code, will be
surrounded by an ELSE statement. The IF statement to go with the ELSE
statement will check to see if any of the sensors have noticed anything. If they
have, then their reading will override any commands that were given on the
server, from the laptop. The statement will check to see whether any of the
analog pins are receiving an input voltage, and if they are, it will know there is an
obstacle in its way. Each sensor will take a different action within the code when
it goes off. This is because the sensors are located at different locations on the
RADSAT, and will require different motions accordingly. The code will use the
function analogRead(pinumber) to check the sensors, and it returns an integer
which ranges from 0 to 1023 (0V to 5V). When inside each IF statement, the
program will issue commands to move the RADSAT using timer commands. For
example, if the sensor on the right side goes off, the RADSAT might be
commanded to move left-backward and right-forward for 2 seconds, then be
asked to move forward until disrupted again. The following is an example of what
the code will look like:

void loop() {
if(analogRead(sensor1) > 500 || analogRead(sensor2) > 500 ||
analogRead(sensor3) > 500){
 if(analogRead(sensor1) > 500){
 //commands to move the RADSAT according to sensor1

}
 if(analogRead(sensor2) > 500){

65

 //commands to move the RADSAT according to sensor2
}

 if(analogRead(sensor3) > 500){
 //commands to move the RADSAT according to sensor3
 }}
else{
 //all previous code
 }}

This is the general layout of the code which the microcontroller will have loaded
onto it, and the 500s represents the voltages sent back from the sensors. Of
course however, the many of the commented sections will have actual working
code within them. The code will also have fluid variables, which will make for a
much easier interpretation of exactly what is going on within the code.

4.7 Power Allocation

The requirements for the power supply are that it is rechargeable or renewable,
can sufficiently supply the power needs of all the electronics on board the tank,
and last at least thirty minutes before being drained. In general, the simplest
solution is a rechargeable battery pack such as those used in radio controlled
cars, thus this option is more appealing than solar power or other less
conventional sources. Solar power would also hinder indoor operation and
complicate power distribution as well as being a weaker source.

The battery needs to supply power to the PCB, the motors that move the tank,
the servos that aim the turret, the gun, the camera, and the sensors. The tank
motors, servos, and gun each require 6 volts. The PCB needs 3.4 volts, the
camera needs 5 volts and the sensors each need 5 volts. This means that the
battery has to have a high capacity and be able to hold up to the high amount of
current that will be drawn from it. It also means that regulators will be necessary
to ensure voltages and currents through the various components stay within
recommended operating range.

Another option is multiple power supplies. At most, two should be used. One
would be to power the servos, motors and gun; and the other to power the PCB,
sensors and camera. There are two advantages that this presents. First, if one
battery dies everything will not shut down but some systems will remain
functional and take measures to avoid problems. Second, having two separate
systems means each system will be less complicated. The reason having two
batteries is not as appealing is that it is simply easier for the used to only have
one battery to charge.

66

4.7.1 Power Routing

To regulate the voltage to each component and avoid inefficiency, a switched
voltage regulator is needed. For this project the LM576 was chosen. The main
reason for choosing it is that there is some familiarity with it due to the EEL 4309
lab. It is the right switched voltage regulator for this project because its output
voltage can be adjusted, it requires simple wiring, and it can be switched on and
off by supplying a voltage to the ON/OFF pin. When the voltage is less than 1.6
volts it is ON and when the voltage is greater than 3.3 volts it is OFF. These
signals will be sent from the outputs of the microcontroller. It will be necessary to
have this function apply to the motors to control when the tank starts, stops and
turns. It will also be necessary to control when the gun fires. The figure below
shows the wiring diagram for the switched voltage regulators with the power
supply on the right and the load on the left.

Figure 4.7.1.1: The wiring diagram for the LM2576.

The output is grounded and ON by default and can be turned OFF by applying a
voltage greater than 3.3 volts to pin five. This will be done by the microcontroller
sending a 5 volt output to that pin. The resistors R1 and R2 can be selected to
produce the desired output voltage. The equation R2 = R1(Vout/Vref – 1) can be
used with Vref = 1.23V and R1 = 1kΩ to find R2 for each desired Vout as seen in
the table below:

Figure 4.7.1.2: The resistor values for each voltage

One LM2576 will be used for each motor and the gun and turned off and on as
needed. Another one will be used for the camera, another for the PCB input and
one more for the servos and sensors. Those components that share a voltage
and are always on will be wired in parallel and share a regulator. To run the
motors backwards a double pole double throw relay was used. When it is given a
signal from the microcontroller it switches the positive and negative inputs to the

R1 R2 Vout

1000 Ω 1764 Ω 3.4 V
1000 Ω 3065 Ω 5 V

1000 Ω 3878 Ω 6 V

67

motor. An outline of the wiring diagram as a whole is shown below, after it is the
diagram of the relay:

Figure 4.7.1.3: Wiring diagram for all components

In the next figure one of the relays from the above figure is shown in detail. The
line labeled +V is the voltage for the motor. The line labeled signal will be the line
from the microcontroller. It will have no voltage across it when the tank's motors
need to move it forward and a 5 volt voltage across it for backwards movement.
The diagram shows a dotted line for the 8 pin relay with the pin locations as seen
from above. When the two switches in the middle flip to the inner nodes, the
polarity of the voltage across the motor is reversed.

68

Figure 4.7.1.4: Wiring diagram for relay

4.7.2 Power Source

As alluded to above, the power source will not be a solar panel or anything
special; it will be a battery. According to the specifications for this project the
battery needs to be at least 6 volts, have a 2,000 mAh capacity, and supply
power for 30 minutes. There are many choices for the type of battery, but
because a rechargeable battery is desired, the most interesting options are LiPO,
Ni-Cd, and Ni-MH.

Lithium-poly R/C car batteries seem to have the best reputation for serious
applications. Some of the reasons are that they have high capacities, are
lightweight, and have a high discharge rate. However, after further investigation it
was found that they are more delicate when it comes to charging and
discharging. They can be damaged by over-discharging, over-charging and being
dropped or taking a blow. The main problems arising from these kinds of damage
are shortened battery life and fire.

Nickel-Cadmium rechargeable batteries are more resilient and will last for more
charge cycles than LiPO batteries. They can also be fully discharged without the
adverse effect of acquiring a memory. Ni-Cds have a relatively high energy
density and discharge rate compared to lead-acid batteries. These batteries are
the oldest technology of the three discussed here. New types of batteries have
been developed that are less expensive.

Nickel-metal hydride batteries are notable for their high capacity, ease of use and
low price. These batteries require a smart charger, but this is a good thing as it
will prevent over-charging. These batteries are common and available in a wide
range of voltages and capacities, from numerous sources. Because they are
easy to find, easy to use and inexpensive these batteries will be used for this
project.

The battery that the tank comes with is a 7.2 volts 1700 mAh Ni-Cd, but it is lower
capacity, and according to the tank's spec page it runs for 20 minutes. A power
source must be bought rather than using the battery that comes with the tank, but

69

that battery can be used as a backup. Two new 7.2 volt 3800 mAh NiMH
batteries and a charger will be purchased. Despite costing approximately $60.00
this will provide redundancy so that any crisis that may arise from a battery being
lost, damaged or discharged may be averted.

4.8 Color Recognition

One of RADSAT’s distinguishing features is the ability to recognize different
colors which appear in its surroundings. This feature will be used to discover the
targets that the RADSAT will shoot at. Using several functions which manipulate
the MJPEG stream, the RADSAT will be able to distinguish objects by color. The
following are the functions within the Color class:

ColorRecognition() – This function takes in a Bitmap image, as well as a string
which represents the target color and looks at all the pixels within the image in a
systematic way. This function will use multiple threads which will check different
sections of the image at the same time. The first thread will be checking every
pixel in the upper-right quadrant, the second thread will be checking every pixel
in the upper-left quadrant, the third thread will be checking every pixel in the
bottom left quadrant, and the fourth thread will be checking every pixel in the
bottom right quadrant. With all of these threads working together, the program
should work far more efficiently, and since the ColorRecognition() function will
surely take the most processing power and would involuntarily be laggy, this
technique will greatly reduce lag-time.

While the function is cycling through every pixel, it will use a fairly simple
equation to check whether the pixel is the appropriate color. First of all, there will
be three IF statements, all checking whether the user specified the input to be
red, blue, or green. As an example, if the user selected green, there will be an
equation which will check the color as follows. D = sqrt((R - 0)^2 + (G - 255)^2 +
(B - 0)^2), where R represents red within the RGB color scheme, G represents
green, and B represents blue. The result D will be compared against a variable.
That variable determines how far from pure green the software will allow to still
be considered green. The value which will be used will most likely be 70, and the
variable will be called “threshold”. The camera which will be used for the
RADSAT doesn’t have perfect color imaging. Therefore, a fairly large threshold
value will be used. Having a threshold of 70 will allow a broader range of colors
which will be viewed as the specified color. For example, if a pixel has RGB
values of R=5, G=250, and B=5, the D value will be 8.66 which easily clears the
threshold. Another example, where R=21, G=234, and B=21, then the D value
will be 36.37 which also clears the threshold. However, an RGB value of R=41,
G=214, and B=41 will break the threshold with a D value of 71.01.

The ColorRecognition() function will keep track of all pixels that meet the color
specified. It will do this by keeping an array which lists all of the qualified pixel’s
coordinates. This array will later be used in the ColorArea() function which will be

70

explained later in this section. Also if a certain pixel does not meet the color
specification then that pixel will be sent to the RobotVision() function, also to be
explained later in this section, as long as the checkbox for Robot Vision is
checked.

Figure 4.8.1: Robot Vision

RobotVisionMode() - Figure 4.8.1 depicts an example view of the GUI when the
“Robot Vision” checkbox is filled, and the color “Red” has been input for the
RADSAT to target. This feature allows the user to see what the RADSAT is
viewing, giving them a good idea of what targets are available. The
RobotVision() function will be called from the ColorRecognition() function, and will
turn any non-specified-color pixel gray. The equation to convert a color pixel into
a gray pixel is actually very simple. The equation is N = (R + G + B) / 3, which
again is based on the RGB color scale. The value obtained “N” will be the new
value for R, G, and B. Since ColorRecognition() will send only pixels which do not
meet the specified color requirements every pixel which enters this function will
be safe to convert. This function will directly alter the Bitmap image which
ColorRecognition() is checking.

ColorArea() – This function will act as the link between the Color class and the
Target class. It finds the center of any clump of pixels which are the same color.
This will first find the border for the area, reconfigure the area so it becomes a
rectangle, then return the exact center of the rectangled area. This will be easy

71

to accomplish, as the height and width of the rectangle will be recorded and the
center will simply be located at H/2, W/2.

4.9 Targeting System

The targeting system for the RADSAT will be implemented as so the RADSAT will
shoot in the dead center of the target. This will be done after extensive testing to
see the trajectory of the air-soft rifle. Once the trajectory of the air-soft rifle has
been discovered, this class will serve to aim, and reposition the RADSAT in order
to achieve a perfect shot.

Figure 4.9.1: Crosshair

CreateCrosshairs() – This function takes in the center of a target’s area obtained
from ColorArea(), from 4.8 Color Recognition. What it does is change a number
of pixel’s color, shaped as a crosshair, around the center of the target’s area and
colors them black, which displays to the user, a crosshair in the center of the
possible target. This will allow the user to know exactly what the program is
doing. The crosshairs will always update, and will be within the center of the
target, no matter how much the RADSAT might move.

72

LockTarget() – The program will sit idly by until a command to either lock the
target or continue searching has been issued. Once the target has been
commanded to lock, either by voice command, or by a GUI command, this
function will tell the program to progress and the current target (the one with a
crosshair) will be set to be the followed target.

FollowTarget() – This function will reposition the RADSAT so the current target’s
crosshair appears in the desired location, so the air-soft rifle can target it. This
function will try to move the center pixel to the desired location. What it will do is
draw two invisible lines, one through the vertical axis of the desired location, and
one through the horizontal axis of the desired location. It will then adjust the
RADSAT using the commands from 4.6.2 Autonomous Design - C# Control
Functions, so the center pixel meets with the vertical axis of the desired location.
It will achieve this with horizontal motion from the turret, or from rotating the base
of the RADSAT. Following that, the function will adjust so that the center pixel
meets with the horizontal axis of the desired location, while vertical axis still stays
at the desired location. Once these steps have been achieved, the RADSAT will
be in prime position for shooting the target.

Fire() – This function is pretty self explanatory. It will be the “executioner” so to
speak for the target. Since the FollowTarget() function should have the air-soft
gun in the correct position so that it can be hit, all this function has to do is initiate
the attack. It will use the ShootTurret() function from 4.6.2 Autonomous Design –
C# Control Functions, for the initiation, and of course it will not shoot until a
command has been given from either voice command or from the GUI.

4.10 Vocal Command Design

As specified in the requirements and specifications RADSAT is able to accept a
set of at least 10 spoken words and phrases in order to successfully carry out its
mission. These words are outlined in table 4.11.

Stop
RADSAT is given a stop command. All movement and tracking
must stop.

Find
RADSAT is given a go command. Movement and tracking is
restarted.

Red Finds a red target.

Green Finds a green target.

Blue Finds a blue target.

Yellow Finds a yellow target.

Black Finds a black target.

Forward
Moves RADSAT forward, only if there are no obstructions
present.

73

Fire Fires at a target, once it has been acquired.

Left Rotates RADSAT 90 degrees counterclockwise.

Right Rotates RADSAT 90 degrees clockwise.

Table 4.11: Minimum list of words and phrases RADSAT will be able to recognize.

RADSAT's voice module is designed to be written in the C program language
using the Port Audio library. The library helps with sampling and device
interfacing, but contains no code for any voice or word recognition functionality.
To implement such functionality, as discussed previously in this document, there
is a need to create a dictionary and to fill it with prerecorded verified commands
that incoming streams of sound will be compared with. These functions are listed
below. The most important aspect of

AppendDictionary(string s) - This function's primary goal is to create the
dictionary as described above. It accepts a single string parameter, s, and will
create a file whose name is the value of s. This file's format will be a series of
floating point values.

GetStream() - This function will open Port Audio and record an incoming stream.
It will sample and store the incoming audio stream in a struct whose values
include and array containing its length and an a sample of the floating point
values returned by PortAudio.

GetCommand(struct s) - The GetCommand function will accept the struct
produced by GetStream(). It will then compare the values in the struct's array to
the dictionary it produced using AppendDictionary(s). It also outputs the
command to stdout so that its value can be read by its master process.

4.11 Wireless Communication Design

During the research stage it was decided upon by the team that an Arduino
Diamondback prototyping board with an ATmega328P microcontroller would be
used in the initial design of the RADSAT, and a self-developed PCB will be
implemented in the final design. The Diamondback has the capability of
establishing a connection with a laptop through a WiFi Shield implemented on
the board. The WiFi capabilities of the Diamondback communicating with any
WiFi enabled laptop was the main reason this prototyping board was chosen, as
well as the additional design opportunities that it will allow the team when it
comes to designing RADSAT. Using this prototyping board and WiFi Shield, it
will be necessary to look at how the PCB will be able to wirelessly connect to the
RADSAT in the final design.

Set-up for the Diamondback is rather simple. First, the “arduino.exe” program
will be installed and a server will be set up with the IP address, default gateway,

74

and subnet mask of our WiFi Shield. Once this is done, it will be downloaded to
the microcontroller via a USB connection. After this has been accomplished, the
connection of the microcontroller and the laptop can be tested to ensure that a
connection has been properly established. This set-up process can be done on
any computer that would be used to control RADSAT’s movement and firing
capabilities.

Once the connection is established, software developed by the team will be used
to send packets of information from the laptop to the microcontroller on the
Diamondback through our GUI. These packets will follow TCP/IP protocol for
delivery. Free software is provided for the Arduino board with functions that
communicate with the WiFi Shield. These functions can be research and utilized
by the team in order to write the program that will ultimately control all of
RADSAT’s functions.

Commands that will be sent over the WiFi connection include the following:

 Tank: Forward, backward, left, right – The RADSAT will move in the
specified direction

 Turret: Up, down, left, right – The turret and camera will pan in the
specified direction

 Search – the RADSAT will autonomously search out a target

 Fire – the RADSAT will fire at the specified target

 Connect – Establishes a connection

 Exit – breaks the connection

These commands will each have their own unique packet sequence that will be
recognized by the microcontroller. Immediately upon receiving the command, the
RADSAT will carry out the specified function.

In the final design of RADSAT, the wireless commands that the laptop will send to
the R/C tank will be handled by a server created by the laptop for this purpose.
The server that is to be setup will be programmed in the C# language at a
specified IP address. Commands that the user decides to issue to RADSAT will
be taken by C# program and written to a text file. This text file will be located on
the server.

The IP address of the server that is created will also be downloaded to the Wifi
Shield on the PCB. In this fashion, the WiFi Shield will be able to connect to the
server and read the text file that the C# program wrote. The WiFi Shield will then
issue a command to the tank based on what was read in the text file. At this
point, the WiFi Shield will be in a “standby” mode where it is reading any new
commands. Once RADSAT has fully carried out the command that was

75

requested of it, it will go back into “listening” mode to read in a new command. If
there are no commands to be completed at the time, the R/C tank will remain in
an idle state. The process of how this communication will take place is shown in
Figure 4.11.1 below.

Figure 4.11.1: Wireless communication

The commands issued to RADSAT through the server will be bytes of information
that will need to be decoded by the microcontroller. The commands will be read
by the WiFi Shield in the same order that they are written to the text file on the
server by the laptop. This will ensure that the commands are dispatched in the
order that they were given.

The video stream that is to be sent from RADSAT’s camera back to the laptop
well be done by the camera itself over a separate server. The reason the WiFi
Shield is not used for this purpose is due to the fact that it would not be powerful
enough to handle the video processing. For further explanation of how
communication between the camera and laptop will take place, please refer to
the sections on video processing.

4.12 Control Using the Microcontroller

In order to achieve full control over the tank using the laptop connection that will
be established, the main circuit board that is used to control all of the circuitry on
the R/C tank will be hardwired to the ATmega328P microcontroller through the
PCB that was designed specifically for RADSAT. With this connection in place,
the commands that are sent by the laptop will be received by the WiFi shield,
forwarded on to the microcontroller, and dispatched as commands to the tank
through the circuit board. The instruction flow that is to be followed by RADSAT
for each command can be seen in figure 4.12.1below.

76

Figure 4.12.1: Instruction flow

The packets that will be sent over the physical layer to be decoded by the
microcontroller will be in binary. Each packet will be sent as a byte, with a
separate binary value being used to control different features of the tank. Once
the instruction is decoded, the microcontroller will output the command to the
tank through the specified digital I/O pin. Table 4.12.1 below lists the commands
and the binary message that will be associated with them. As the tank will only
respond to a limited number of commands, most of the bits transmitted will be
redundant and ignored by the microcontroller. These redundant bits, which can
be either 0 or 1, are represented by an “x” in the table.

Command Binary Transmission

Tank: Forward 0000 xxxx

Tank: Backward 0001 xxxx

Tank: Left 0010 xxxx

Tank: Right 0011 xxxx

Turret: Up 0100 xxxx

Turret: Down 0101 xxxx

Turret: Left 0110 xxxx

Turret: Right 0111 xxxx

Fire 1000 xxxx

Search 1001 xxxx

Connect 1010 xxxx

Exit 1011 xxxx

Table 4.12.1: Binary Commands

The commands “Connect” and “Exit” will be two commands that are not sent on
to the R/C tank through the microcontroller. Instead, they will be processed by
the WiFi Shield to setup and break down the connection between the laptop and
microcontroller. The “Search” command will also be different from the other
commands in the fact that it will send multiple signals to the R/C tank from the
microcontroller based on the search algorithm.

Control of the R/C tank will also come from signals sent by the sensors that are
attached to the analog input pins on the PCB. When the tank is being controlled
by a human user, these pins will send signals to override a command that would
result in a crash. While RADSAT is in “Search” mode, these signals will be used
by the search algorithm to avoid obstacles.

77

As there will be many hard connections made between the PCB and the R/C
tank’s circuit board, they will need to be set up relatively close to one another in
the final design. In this way, there will not be random wires stretching far across
the tank. The wires that are used will be left slightly longer than is required to
ensure that all of the connections can be made. Once this is confirmed, the
wires will be shortened to their required lengths and zip ties will be used to bunch
them up so that they are not all loose and scattered recklessly about.

4.13 Microcontroller Layout

Figure 4.13.1: Microcontroller Layout

2-pin JST Connector - This is the connector that will power the board when
power is not being supplied by the USB. The connector is able to power the
board from the range of 7 volts to 12 volts. The board will be powered by a
parsed part of the single battery source which will power every component on the
robot. Because this is only a 2-pin connector it will be very easy to implement
power onto the board, as we will only need to connect the two leads of the JST
connector to the power-bread-board.

78

Digital I/O Pins - These are the pins that will control all of the different
components on the robot, hopefully in a perfect harmony. Each pin on the
diagram is labeled with D (for digital) and a number representing its placement on
the board. They are responsible for sending a signal to each separate moving
part on the robot, similar to how the tank would move via radio signals.

Pin
Location

Description

D1 will be connected to the part of the RC tanks circuit which
controls the forward motion for the left tread

D2 will be connected to the part of the circuit which controls the
backward motion for the left tread

D3 the forward motion for the right tread

D4 the backward motion for the right tread

D5 will be attached to the servo which will control the rotation for
the turret, will also send out varying pulses to change the

direction of the servo

D6 will be reserved for a servo in case we might need another
one

D7 will be used to control the firing mechanism for the air-soft
gun.

D8 – D14 for now will be extra I/O ports, there may be some use for
them during the building process

Table 4.13.2: Digital I/O Pins

Analog Input Pins – A1 – A4, these are the pins that are responsible for receiving
the signals from the sensors, which are used for collision detection. When the
sensors detect, or run into an object they will send back a voltage. When the
voltage is sent back, signals will be sent to the digital I/O pins to autocorrect the
path of the robot. The signals coming from the sensors will override any
directions that are coming from the laptop. A5-A6 will be responsible for the
directional compass which will send the degree that the RADSAT is facing
relative to North, South, East, and West.

Pin
Location

Description

A1 will be used for the infrared sensor on the right-side of the
robot

A2 will be used for the infrared sensor on the left of the robot

A3 will be empty

A4 will be used for the sonar sensor on the front of the robot

A5 – A6 will be used for the compass sensor

Table 4.13.3: Analog Input Pins

79

Rest of the Components - USB – the USB port on this board is the means by
which the board is programmed. Also, the board is capable of switching power
sources automatically between the USB and 2-pin JST connector.
Microprocessor – uses a Atmel ATMega328P processor which is plenty fast for
the simple operations that the board will be carrying out, but wasn’t fast enough
to transmit a video feed. RAM – has 32KB of flash RAM, 2KB SRAM, and 1KB
EEPROM. LED – this LED has a function slightly greater than most LEDs you
find on a microcontroller. This LED will light up whenever WiFi connectivity is
achieved. WiFi Shield – the component which enables our robot to communicate
with the laptop and has connectivity speeds between 1MB and 2MB.

80

5.0 Design Summary

RADSAT (Reconnaissance and Demolition Super Attack Tank), as its name
implies, is a tank whose main mission is to locate a possibly obstructed target,
take proper aim at it, and fire upon command. On its surface, this task sounds
simple enough for newly enlisted military recruits to do, but behind the scenes,
the realization of its objective implies that a set of many subproblems must also
be solved. Overall, the design of RADSAT solves all of these challenges by
combining knowledge from years of formal and self learning, and months of
research and design. The following block diagram (Figure 5.0.1) summarizes
RADSAT's basic functionality and design.

Figure 5.0.1: Full System Block Diagram.

81

Blocks color coded purple are blocks that are physically mounted on RADSAT's
body. Blocks color coded blue are software blocks present on a computer.

5.0.1 Software Design Summary

The word recognition algorithm, written in C, uses the Port Audio library to
interface with a computer's microphone to accept audio input. That input is
available to the algorithm as an array of floating point values. The algorithm's
dictionary is prerecorded and contains information on all required commands.
Each command's values are compared to the values of the incoming stream.

The GUI is written in C# and is the most direct way to control RADSAT.
Commands can be both directional and non-directional (e.g. up and fire,
respectfully). It also presents a live video stream from the wifi camera mounted
on RADSAT.

The video processing functions are written in C#. They use the AForge.Video
libraries. It will take in a MJPEG stream from a server, and read each individual
pixel, checking for a specific color and saving that color to an array. After the
array is created, all pixels not in the array will be turned to grayscale.

The microcontroller code is written in C. It makes use of several existing
libraries, including a library for servo control, server connectivity, as well as wire
functions. This code will move RADSAT according to the will of the user, or the
will of the sensors and programming.

5.0.2 Hardware Summary

The following section summarizes the options that were discussed and decisions
that were made by the group for the final design of RADSAT. As the previous
pages serve as a more detailed look into each aspect of RADSAT, the following
pages will only be a brief discussion of what was decided upon.

Tank Body – Knowing that the tank body we would be using would be pre-
manufactured and purchased by the group, the pros and cons of buying an off-
the-shelf R/C tank or a hobbyist’s tank that could be expanded upon were
compared. In the end, after comparing prices, functionality, sizes, consumer
reports, available space, and mobility, it was decided to use a pre-manufactured
R/C tank. Specifically, the SnowLeopard M26 was chosen to be used in the final
design of RADSAT. This tank will cost the team about $95, but will be well worth
it for the high quality reviews that it has received from other consumers and the
fact that it should be easy to use when it comes to mounting equipment to its
body. The body of the SnowLeopard M26 is again shown in figure 5.0.2.1 found
below.

82

Figure 5.0.2.1: The Snow Leopard M26

With permission from www.bananahobby.com

Turret – With the body in place, the group then looked at options of how the turret
might be implemented to allow full range in motion while it tracked the specified
target. A 360 degree motion turret was considered, but it was decided that this
option would not be ideal due to the twisting of the wires and the design issue
this would present. Wireless connectivity between the turret and base was
considered but dismissed due to various reasonings Limiting the turret’s rotation
to a 360 degree pan was also thrown out, as the idea of the camera having to
make a full rotation if the target passed a certain trajectory point relative to the
tank was unappealing. In the end, a turret with 720 degrees of rotation was
chosen to be implemented in the final design of RADSAT. This will allow the
turret to follow the target fully around the tank without causing issues with the
wiring associated with the turret.

Gun – The gun that would be mounted on the servos and used by RADSAT to
fire at a specified target was then decided upon. Though the option of using the
cannon on the SnowLeopard M26 was a possibility, it was decided that this would
not be as accurate or reliable as an airsoft gun that could be mounted to the base
of the tank. Having made the decision to use an airsoft gun, the team then had
the option of buying a new one or using a 7-year old one that was already owned
by one of the team members. In the end, a UHC Steyr mini electric airsoft gun
which was already owned by one of the team members was decided to be
efficient enough to use in the final design and avoid having to include an extra
cost for RADSAT by buying a new gun. This airsoft gun will be modified in order
to reduce its size and weight and will be mounted directly on top of the servo in
the design of the turret. The gun is again shown in Figure 5.0.2.2 below.

83

Figure 5.0.2.2: The gun

Servos – In order to perform the targeting of the airsoft gun by RADSAT, two
servos were required to act as the base of the turret. A pan servo would be used
to offer the turret full range of motion around the body of the tank, while a tilt
servo would be used to target the turret at objects that are above the horizontal
plane of the tank. And two-in-one pan and tilt servo could have been considered,
but was thrown out to the high price that would have been associated with it.
After comparing several pan servos, the HS-422 by Hitec was chosen to be
implemented in the final design of RADSAT. The tilt servo took a little more
deliberation with the added torque calculations that needed to be considered. In
the end, the HS-485HB, also by Hitec, was chosen. These two servos would
serve as the base of the turret and would screw directly into the body of the tank,
while the airsoft gun and camera could both be mounted on top of the tilt servo,
completing the turret.

Sensors - A requisite for effective autonomous behavior is the ability to accept
some kind of sensory input on which to base decisions. RADSAT is designed to
use two Sony GP2Y0A02YK infrared sensors, one MaxBotix MB1210 ultrasonic
sensor, and one Honeywell HMC6352 compass module. To mitigate the problem
with the infrared GP2Y0A02YK's narrow beam width, these sensors will only be
used to sense for obstructions located to the sides of RADSAT. For forward
obstruction detection, the MB1210 will be used because of its relatively wide
beam pattern, compact size, and its ability to detect small obstructions. The
HMC6352 is required to keep track of the direction RADSAT is facing at any
given time.

Microcontroller – The microcontroller that is onboard the Arduino Diamondback
prototyping board that the group will be using for testing and the final design is
the Atmel ATMega328P. Assuming that all goes well using the Diamondback for
testing, this microcontroller will again be used in the final design of RADSAT on
the PCB. The microcontroller will then be mounted on the body of the R/C tank
and hooked up to all of the other hardware components. Digital I/O pins on the
microcontroller will be hooked up to the SnowLeopard M26’s circuit board to
control the movement of the treads, the servos for rotation of the turret, and the

84

airsoft gun for firing. The Analog input pins will be hooked up to the various
sensors on the side of RADSAT. This microcontroller will be the brain of
RADSAT, and will be the unit that carries out all of the specified functions
according to the software that is develop for RADSAT.

Wifi Shield – Also included on the Diamondback is a WiFi Shield that has
802.11b wireless connectivity capabilities. During prototyping, this WiFi Shield
will be used to communicate signals from the laptop computer to the
microcontroller. These signals will be used for the commands that RADSAT will
carry out according to the software. The laptop and WiFi Shield will
communicate using a server that is to be setup by the laptop. Assuming all goes
well during prototyping, the WiFi shield will again be implemented on the PCB in
the final design.

Laptop – The human commands that RADSAT will respond to will be delivered by
a laptop computer. As stated above, communication will take place between the
laptop and the WiFi Shield on the PCB. Given that all of the programs that will
be used to implement RADSAT can be downloaded on any computer, the group
will be able to use any laptop in the final design of RADSAT.

PCB – The PCB was designed to incorporate all of the necessary components
that were used on the Arduino Diamondback prototyping board while excluding
all of the unnecessary components. The microcontroller that will be used, as
listed above, will be the Atmel Mega 328P. There will also be a WiFi Shield on
the PCB for wireless connectivity. The PCB will include fourteen I/O digital pins
and six analog input pins. A RAM with has 32KB of flash RAM, 2KB SRAM, and
1KB EEPROM will be used on the board. There will also be an LED that will light
up whenever there is a successful connection for the WiFi Shield. Finally, there
will be a 2-pin JST connector to power the PCB and a USB connection to
download the programs to the board.

5.1 Video Processing Class Diagram

The following class table below in Figure 5.1.1 can be used to summarize the
design that will be implemented by the team in regards to how RADSAT searches
for and locks on to a target. As can be seen in the diagram, the software that is
written for each class will be implemented by the other classes to accomplish the
functionality set out for RADSAT.

85

Figure 5.1.1: Class table

In order to accomplish the task of searching out a target, the video processing
class utilizes the color recognition class in order to search out a specified color
as the target. The color recognition class utilizes the targeting class for this goal
of locking on to the target. The targeting class utilizes the robot class as it moves
through the steps of its search algorithm to find a target. Finally, the robot motion
class controls all of the motions of RADSAT through the movement commands
for both the tank and turret, as well as the firing command for the airsoft gun.
These sections are all expanded upon in the summary below.

Video Processing – The video processing class deals with the handling of the
MJPEG video stream from the webcam’s server using AForce Video’s and iSpy’s
open source libraries. The TestURL() function ensures that a connection is
established between the program and the server. Once a connection is
established and it is confirmed that there is data on the server, the function
GetMJPEG() retrieves the MJPEG video stream images, converts them into
JPEG’s, and then into Bitmaps so the pixels can be manipulated individually. In
this function, the dimensions attribute is also specified as the boundaries of the
MJPEG stream. Upon pressing the “Exit” button the GUI, the StopStream()
function is used to break from the GetMJPEG() loop and breaks the connection
with the server. The DisplayMJPEG() is the final function that will call upon the
other classes for video editing as needed. When the image is deemed ready, it is

86

this function that will ultimately display the image captured by the webcam on the
computer.

Color Recognition – The color recognition class is what determines what objects
to target on by using functions to manipulate the pixels in the MJPEG stream in
order to recognize colors. The ColorRecognition() function utilizes threading as it
searches the bitmap image for the specified color by separating the image into
four separate quadrants and searching each quadrant at the same time. The
function looks at every pixel individually and uses the equation D = sqrt((R - X)^2
+ (G - X)^2 + (B - X)^2) to process the value of each pixel. In the equation, R
represents red, G represents green, and B represents blue. The X value will be
set to 255 within the parentheses of the color it is searching for and 0 inside the
other two sets of parentheses. This D value will be compared to a threshold
value of 70 to see if it is the color that RADSAT is searching for. Finally, this
function will keep an array of the coordinates of each individual pixel that is found
to be the color RADSAT is searching for. When active by the Robotvision
boolean, the RobotVisionMode() function will take in all of the pixels that are not
the color RADSAT is searching for and turn them gray using the equation N = (R
+ G + B) / 3, using N to replace the value for R, G, and B. This produces an
image to display that will show the user what the robot is seeing in its search for
the target. Finally, the ColorArea() function will determine the center of a
rectangular area of pixels of the specified color and send this information to the
targeting class so that RADSAT will be able to determine where to aim the turret
so that it hits the target.

Targeting – The targeting class is used to aim the turret to the center of the
specified target. The CreateCrosshairs() function creates black crosshairs
located in the middle of the ColorArea() determined by the color recognition class
and displays these crosshairs on the image for the user. The LockTarget()
function is used to lock RADSAT on to the specified target, aiming the turret
towards the center of the target no matter how much it or RADSAT moves. The
FollowingTarget() function is used to move RADSAT in order to center the target
in front of RADSAT. This is done using movement functions from the Robot
Motion class. RADSAT first positions itself vertically in front of the target by
moving the R/C tank’s body or by rotating the camera. RADSAT then rotates the
turret up or down until the turret is horizontally aligned with the center of the
target. Finally, the Fire() function will of course fire off the airsoft gun once it is
locked on to a specified target and a human user issues the command to fire
through the GUI or voice command.

Robot Motion – The final class in the class diagram above, the robot motion class
controls the movements of RADSAT while it is set to autonomously search out
the target. The LeftForward() function moves the left cannon tread forward. The
LeftBackward() function moves the left cannon tread backward. The
RightForward() function moves the right cannon tread forward. The
RightBackward() function moves the right cannon tread backward. The

87

BothForward() function moves both of the cannon treads forward. The
BothBackward() function moves both of the cannon treads backward. The
TurretRight() function rotates the turret and camera to the right. The TurretLeft()
function rotates the turret and camera to the left. The TurretUp() function rotates
the turret and camera up. The TurretDown() function rotates the turret and
camera down. Finall, the ShootTurret() function fires off a round from the airsoft
gun at the locked on target. This function, again, only is called when a human
user decides to fire.

88

6.0 PCB Design

6.0.1 PCB Overview

The PCB has the responsibility of processing wireless transmitted information
and turning it into signals that the can be read by the various components that
need to be controlled. It has a wireless XBee transceiver to send and receive
information from the control software on the laptop. The wireless chip will
interface with the microprocessor, an Atmel ATMega328P which will in turn
handle all control signals on board the tank. Overall, the board must have two
outputs for servo signals, two outputs for motor signals, four input lines for sensor
signals, and one output for gun activation. It must have power input as well.

The circuit will also have an LED for the wireless signal to indicate that data or
power is or is not being transmitted. This is to help with setup and debugging of
the device. It is designed by looking at the schematic for the ATMega328P, the
schematic for the Xbee and the schematic of the Arduino board. It will be
modeled after the Arduino, removing parts that are unneeded for this project, and
designing a concise version.

Eagle will be the software used because it has good support and good tutorials.
There are libraries available and places to order from that accept .brd format. The
decision still remains as to whether the board will be ordered with the parts
populating it, or separate such that the parts must be soldered. Since there is not
an available source of expertise in board soldering, having it assembled is more
attractive. However, The price is much higher, in the range of two hundred
dollars.

Because this project has no outside funding, keeping a low budget is a high
priority. Therefore, the PCB will be ordered, and the parts that go on it will be
ordered, and proper soldering tools will be ordered, and the parts will be hand
soldered by a team member. Soldering is an important skill for an engineer to
have so it will save money and build experience. Despite the fact that it is likely to
be more difficult than expected and take a long time and perhaps even be painful
or impossible, it is the first choice plan.

The PCB will be ordered from http://www.dorkbotpdx.org. It is a website for robot
enthusiasts and similar types. According to the order form from this website a
PCB will cost $5 per square inch and take about two weeks to process. This
website is less professional-looking and more hobbyist-looking than most, but
that is probably why is it also cheap and more personal. Due to the long
fabrication process and unfamiliarity with PCB assembly, this will be the first
design prototyped and worked on in the latter half of senior design.

89

6.0.2 PBC Circuit Layout

The main components on the PCB are the power-routing systems, the control
systems, the microcontroller and the wireless chip. The power source is located
off the PCB and plugs in at the upper left in the schematic on the next page.
Each of the six IC's are voltage regulators wired in parallel. They provide the
regulated voltages to the microcontroller, the wireless module and to headers
where components from off the board will be plugged in. The microcontrollers
signals go to the voltage regulators of the motors and gun, turning them off and
on. Those are the top three components on the PCB. The motors also have
signals to a relay that will invert the voltage across them. Six more signal lines go
to the servos and sensors which are at the bottom of the diagram, in parallel with
each other. There are output plugs here as well. Lastly, the Xbee wireless module
in the upper right is interfaced with the microcontroller and is wired in parallel with
it to receive its power.

Figure 6.2.2.1: The schematic of the PCB

90

7.0 Project Prototype Testing

7.1 Hardware Test Environment

The hardware testing process should be conducted indoors in a controlled and
well lit environment, preferably in an empty on campus class room or office. The
room should be as quiet as possible and free from outside noise that could cause
interference with any intended verbal commands. The size of the room is
generally irrelevant, down to reasonable minimum and up to a reasonable
maximum, but the shape should be relatively rectangular. An average room the
size of HEC 118 would be ideal, although rooms slightly smaller will take less
time to search. Obstructions may be placed anywhere in the room and should
collectively be limited to occupying less than 10-15% of the floor's total surface
area. The target should be reasonably sized (square, 12x12in or above) and of
the correct color.

7.2 Hardware Specific testing

Each of the parameters outlined in the requirements list of section 2.3.2 will be
tested for desired functionality. To track if a part works and how well it works the
following table will be filled in. At the time of testing a check mark in the first
column will indicate that a part passes the test. If it passes, a number in the
second column will indicate the extent to which it passes.

Figure 7.2.1: Part qualification table

To test the gun's shot distance and fire rate a 6 volt voltage will be applied
directly to it and it will be fired with the barrel level and approximately two feet
from the ground. The distance will be recorded, then it will be angled up
approximately 15 degrees, fired and the new distance recorded. This will help
calibrate the aiming algorithm if it is found to help the tank's accuracy.

For testing the drive speed and all-terrain capabilities, the tank will be kept stock.
It will be left unmodified out of the box and using the radio control it comes with, it
will be driven on a variety of surfaces. After these tests, it will be taken apart and

Does it pass? How well?

Shot distance

Fire rate

Drive speed

All-terrain op.

Battery life

Battery voltage

Chassis size

Turret movement

91

modified. After it is fully outfitted with the custom features required for this project,
and if there is reason to believe its performance has hanged, it will be subjected
to the same tests again. To meet the requirement of all-terrain travel, eight
different types of ground have been chosen to test. The following table will
document the environments in which the tank passes this simple mobility test.

Figure 7.1.2: All-terrain verification

Battery life will be measured during prototype testing, after RADSAT is
assembled and can run. It will simply be timed with a stopwatch. Similarly, to test
the battery voltage it will be as simple as touching a multimeter to the leads. Also
a simple test, the chassis size will be measured with a ruler to make sure it fits
the requirements. The real test for the chassis size will be making sure the PCB,
battery and other electrical components fit inside it. Also, it is important that it is
large enough that the turret does not make it top-heavy and prone to tipping over.
This is not an anticipated problem, but it will be tested to be sure it is indeed not
a problem.

The final batch of test procedures will apply to the turret. After the turret assembly
is built the servos will be tested to make sure they can handle the weight. The
results will be apparent in the form of stripped gears, burnt motors, or non-
movement in the case of failure. In the case of success, properly moving turret
parts will be observed. The pan servo will also be tested for 720 degree rotation.
These tests will be done by applying 5 volt square impulses of 600 to 2400 µs to
the tilt servo and impulses of 1500 to 1900 µs to the pan servo. For the test to be
considered passed, the servos should be observed moving freely and smoothly
within their ranges.

7.3 Software Test Environment

Although many of RADSAT's components are cross platform compatible, all tests
should be conducted using Windows 7 on a device with either an integrated
microphone or capable of using an external microphone. The device must also
have the latest Microsoft .NET runtime libraries installed to ensure proper
functionality.

Surface Ability to traverse

wood floor

carpet

concrete

short grass

long grass

sand

small rocks

large rocks

92

7.4 Software Specific Testing

7.4.1 Introduction

Testing to verify the proper functionality with RADSAT recognizing vocal
commands will happen in two phases. The first phase consists of performing unit
testing on every function. The second is to test against a set of test cases. After
completion of the entire set of set cases, and if every test is successful, the vocal
command module would be considered fully functional. Table 7.4.1 summarizes
the full set of test cases.

Test Case #1 Must be able to translate basic colors in an environment
with minimal noise.

Test Case #2 Must be able to translate basic commands in an
environment with minimal noise.

Test Case #3 Must be able to distinguish between the full range of all
vocal commands

Table 7.4.1: Vocal command test cases.

The test cases are used to determine whether or not the most basic of
functionalities expected from the vocal command algorithm exists. As specified in
the requirements section, RADSAT must be able to accept spoken commands
from its controller (the user). Depending on the sensitivity and other various
factors, the user should be relatively close (within normal operating distance) to a
microphone and a computer. The tester is then required to speak into the
microphone in a clear voice with proper pronunciation. The test should first read
the colors supported and check to see if the module gives the correct value in its
stdout. The tester then can test commands that are not related to color, namely
left, right, stop, and find. After successful completion of the above cases, the
tester should then test all commands, in random order and check the output.
Upon successful completion of the three test cases, the testing of the algorithm
can be considered successful.

7.4.2 Vocal Command Testing

Testing to verify the proper functionality with RADSAT recognizing vocal
commands will happen in two phases. The first phase consists of performing unit
testing on every function. The second is to test against a set of test cases. After
completion of the entire set of set cases, and if every test is successful, the vocal
command module would be considered fully functional. Table x summarizes the
full set of test cases.

93

Test Case #1 Must be able to translate basic colors in an environment
with minimal noise.

Test Case #2 Must be able to translate basic commands in an
environment with minimal noise.

Table 7.4.1: Vocal command test cases.

The first and second test cases are used to determine whether or not the most
basic of functionalities expected from the vocal command algorithm exists. As
specified in the requirements section, RADSAT must be able to accept spoken
commands from its controller (the user). Depending on the sensitivity and other
various settings, the user should be relatively close (within comfortable using
distance) to a microphone and a computer. The user is then

7.5 Autonomous Design – C# Control
Functions Testing

In order to test this section the RADSAT must be connected to a server. The C#
code doesn’t have to control the RADSAT for initial testing; it just has to be able
to post the commands on the motion.txt file on the same server the RADSAT is
connected to, so that the RADSAT’s microcontroller can read it when it’s ready
to. While testing the C# control functions, it will be assumed that the
microcontroller will be able to decipher everything as long as the motion.txt file is
updated correctly.

So, the C# code will need to be able to see, and update the motion.txt file on the
server. Once an update command is given, physically opening and viewing the
motion.txt file to see whether it has updated will occur. Later, once it is able to do
this, the microcontroller will be asked to print the command that it is supposedly
reading. If the command that was printed coincides with the C# code, then this
part will have been programmed correctly. This part will be repeated for every
function within the C# Control Functions section.

Once it is understood that the microcontroller is actually receiving the commands
correctly, it is time to make sure the movement is also moving correctly. Every
function will be tested to make sure its described movement is what actually
occurs with the RADSAT. An example of this is: if the command for “stand-by” is
the current command on the motion.txt file, then the RADSAT should not be
moving. Another example is: if the current command is “move forward”, the
RADSAT should be moving forward. Similar testing will occur for every
movement. The RADSAT should also continuously move until a new command
is given, and should really only stop when the command is to be in “stand-by”
mode.

94

Once all this testing is completed, one of the most crucial parts of the RADSAT
project will be completed. Without this section of testing being complete, the
RADSAT would just be a motionless lump without any real purpose. Therefore,
this testing is very important to make the RADSAT a fluid, intelligent, robot.

7.6 Color Recognition Testing

To test the color recognition section of code, first, each function must be tested
separately. Most of the functions will be tested using a simple GUI which is
capable of displaying a JPEG as well as a Bitmap image. Using this simple GUI
will make the testing process more fluid, because the project’s main GUI will be
created only after all of the functions are already working and it is known exactly
what it will be needed to do. The following are the steps which will be required to
test each function:

ColorRecognition() – In order for this function to be working properly all four
threads working simultaneously must be coordinated and produce usable data.
This function will be receiving a Bitmap image as well as a string indicating which
color will be noticed. The test Bitmap image which will be used for testing will
contain all different shades of red, blue, and green which the RADSAT should be
able to recognize. All the shades of the colors will be repeated in each quadrant
of the picture; doing this will allow a test for each separate thread, to make sure
they are all working in cooperation; this is depicted in Figure 7.6.1. Each pixel
which passes the color test will remain its designated color. However, each pixel
which does not pass the color test will be passed to the “test only” function
ReColorTest(). The ReColorTest() function will turn the non-color-passed pixel
white, which by the RGB color scale will look like R=255, G=255, and B=255.
Once the new Bitmap image is completed, the image will be displayed on the
simple GUI. If all the pixels not in the color range are colored white, and all the
pixels within the color range are unchanged, the test will be considered a
success.

95

Figure 7.6.1 Test Image

After the test image is successful, the next test will consist of actual screen shots
from the MJPEG stream. This test will be very close to what the actual final
product will be testing. The final code will essentially just be taking in screenshot
images, but just at a must faster rate. So, if the screenshot works, then it will be
known that the function will work for the final product.

Also the ColorRecognition() function is supposed to create an array which keeps
track of the pixels that are the appropriate color. Testing for this will be similar to
testing for the color range described earlier. Only this time, a function to create a
Bitmap image will be used. The function, called BitmapCreateTest() will take an
array and color all the pixels specified in the array black (R=0, G=0, B=0) on a
Bitmap image with a white background. If the shape of the black blob, which
represents the specified color, is identical to the shape of the image described in
the above paragraph, then the test will be deemed successful.

RobotVisionMode() – This function will not be very hard to test. For this function,
first, a checkbox will have to be added to the Simple GUI, which will be the
indicator for whether or not robot vision mode should be active or not. This
function will just take in pixel coordinates, and if the checkbox is checked, then
the image should return the pixel coordinates of the image as gray, otherwise, if
the checkbox is not checked, it should not affect the image at all.

ColorArea() – This function will be easiest to test after the ColorRecognition()
function is working perfectly. If the ColorRecognition() function isn’t working
perfectly, then an array of pixels containing an area of an image, would have to
be recreated by hand. Recreating the array by hand would simply take too much

96

time, and only give one example to test with. The ColorArea() function, once
working properly, is supposed to create an invisible rectangle of four points in an
array. However, in the testing phase the ColorArea() function will actually
physically draw the rectangle, connecting all the points. This will allow an easier
means to view what the function is doing. By seeing the actual rectangle being
drawn, the area that the function is seeing, can be seen much easier by the
programmer. To test whether the function is properly able to detect the center
pixel, the function will color the pixel, as well as some surrounding pixels, white.
The programmer will then be able to see if the white dot is where it’s supposed to
be. If the white dot appears in the center of the color area, then the function will
be in working order.

7.7 Microcontroller Code Testing

The microcontroller code testing will ensure that the RADSAT is able to move
according the will of the program. This is some of the most important testing for
the entire RADSAT project. Almost everything within the project will be affected
by being able to move the RADSAT according to a certain set of instructions.
Once this testing is completed, the RADSAT will be able to sense obstructions,
move accordingly, and be able to move according to the directions coming from
the laptop. To test the microcontroller code, the C# code does not have to be in
working order. Any orders potentially sent by the C# code can simply be
recreated within the microcontroller code.

The first test will make sure that the RADSAT can act according to a C#
command, even if the C# code is not in working order. Before the microcontroller
is even connected to the server, the testing will begin by creating a simulated
string. Since the commands will be issued in string form, the program will be
able to respond according to a simulated string, even within its own code. For
example, when given the string “02” the program should be in “left-forward” mode
and should act accordingly. For testing purposes, a 5V LED will be hooked up to
the appropriate output pin, and should light-up when that command is given.
Simultaneously, the microcontroller will output a message on the IDE’s terminal,
stating where it is. For example, it might say, “Within boundary for string ‘02’.”
when the “02” command is given. This will be repeated for every different
command that the RADSAT has. The program should always enter the
appropriate SWITCH statement, and if it doesn’t appropriate measures will be
taken.

Once the IF and SWITCH statements are properly tested, the program will be
tested in a more “real life” scenario. The RADSAT will be tested to make sure it
can read the string from a simulated command from C# code, which means
reading from the motion.txt file. After the server is set up, the RADSAT will
attempt to access the motion.txt file that is located on it. There will be a simple
print command that will print whatever the RADSAT is reading from the motion.txt
file. Once it is verified that the RADSAT is reading the correct information, the

97

correct information will be the compared in the IF and SWITCH statements.
Then the motion.txt file will be open on the laptop, and the programmer will
continue to change the command then resave the motion.txt file, and see if the
RADSAT comes up with the appropriate response (i.e. the correct LED lighting
up, and the correct print statement being printed). Once this testing is
completed, the RADSAT will be ready to receive commands from the laptop, and
give commands to the RC tank.

Following knowing the RADSAT can give and receive commands properly, it’s
time to fine tune some of the outputs it gives. Besides testing the voltages
required for the RC tank move properly without being damaged (testing for the
hardware rather than the software), the proper pulse rate to control the servos
needs to be discovered. Of course testing will begin using a very slow pulse
rate, then moving the pulse faster, and faster until the desired speed is achieved.
The pulse will be altered by altering the “maxspeed” value within the code.

Now, the sensor code will have to be checked to ensure all the microcontroller
code is working properly. Since all code is separated by an IF statement, the
sensor code should override all other code when a sensor voltage is received.
First, the analog inputs will be attached to a DC volt generator, doing this will test
to see if the code is receiving voltages correctly. For example, if some voltage is
sent into analog pin one, then the pin should have some voltage when the
analogread() function is implemented. Once it is confirmed that the microcontroller
code is reading a voltage from a pin, the actual sensors will be attached.

Since the sensors work by sending back a voltage when there’s an obstruction in
their path, there will be tests that will print out the voltage to the Arduino terminal
whenever it receives a voltage from the sensor. Once that part is working
correctly, and the voltages are what they are supposed to be, then the actual
avoidance movement functions will be tested. First the timers will be tested,
since this is what the movement will be based off of, also the output pins at this
point will have already been proven to work. The timers will control a while loop
that will continuously send movement commands to the tank, until the timer runs
out. So, to test this statement a message will be printed at the beginning of the
while loop stating “Begin”, then once the while loop is exited, another statement
will be printed as “End”. The time in-between the “Begin” and “End” statements
will be timed externally with a stopwatch, to ensure correct time.

Once this section’s testing is completed, the basic movements of the RADSAT,
as well as most communication will be functional. This will allow for the
progression of the more complex sections of the RADSAT to be implemented,
such as all C# functions.

98

7.8 Targeting System Testing

Once the targeting system testing is completed, the RADSAT should be able to
successfully target and shoot at objects with a good degree of accuracy. The
various functions within this class, will mostly be able to be tested independently
from the rest of the classes, and only FollowTarget() will be reliant on other parts
of the RADSAT to be working. Most functions within this section will be tested
using a Simple GUI which will display Bitmap images. The following explains
how testing will go within each function:

CreateCrosshairs() – This function will be fairly easy to test. Since most of the
work will be done in another function, and all CreateCrosshairs() does is read in
a single location of a pixel. The CreateCrosshairs() function draws a crosshair
based on the location of the pixel it receives. Therefore, in order to test if it is
working correctly, all that has to be done is pass it a pixel location, and see if that
location has a crosshair drawn around it. The image it is working with, will be
colored completely white, as there’s no real need for any complex or realistic
image.

LockTarget() – There is not much to test for the LockTarget() function. This is
because; the main testing for this function will take place in the voice recognition
portion of testing. The voice recognition section will be responsible for receiving
the command to lock, and all this function does is activate other functions which
will carry out the locking. However, a mock button on a GUI will serve to test the
LockTarget() function, to make sure the target can at least be activated via the
GUI.

FollowTarget() – This function will be much more difficult to test. First of all, all
the functions from 4.6.2 Autonomous Design – C# Control Functions, must be
working, as well as everything from 4.6.3 Microcontroller Code. These other
sections need to be working, because the majority of what FollowTarget() will be
doing is using the C# Control Functions to adjust the RADSAT into an
appropriate firing position. The Video Processing section will have to also be
working properly, otherwise, a fake MJPEG stream would have to be created that
would be used solely for testing, which would take a considerable amount of
time.

99

Figure 7.8.1: Crosshair and Line Intersection

The first thing that would need to be accomplished for testing the FollowTarget()
function, would be to calculate the trajectory of the bullet fired by the air soft rifle
relative to the MJPEG stream. This will allow the function to know exactly how to
reposition the crosshairs in order to obtain the optimal shot. Through trial and
error, eventually the exact position on the MJPEG stream will be obtained, and
then further testing can progress. This position will be the focal point of where
the invisible horizontal and vertical lines will go, because at their intersection is
the optimal place to shoot the target. However, for testing purposes, the invisible
lines will be colored to black, making the invisible rectangle visible, thus making it
easier to see what the function is doing. Once that is in place, making sure the
program repositions the target to the center of the lines will be tested. The
program will first have to stop on the vertical axis. If it doesn’t stop, or stops too
far left or right, then some readjusting will have to take place. Following the
vertical axis will be the horizontal axis, where a very similar testing process will
take place.

Fire() – This function should be in working order as long as the voice recognition
and ShootTurret() functions are working. All this function’s job is to receive a
signal to fire, received from either voice recognition or from the a GUI button,
which it then passes to the ShootTurret() function. The main purpose of this
function is to allow any readers of the code to easily know what is going on.

100

Once this section is up and running, the majority of the tank will be fully
operational. This section relies on many of the more difficult sections to be in
working order, even before this section can begin its testing phase.

7.9 Video Processing Testing

This testing ensures the video feed from the WiFi security camera is properly
connected to the laptop, as well as the C# code. This is among some of the first
testing that will take place. Most of the robot’s functions are reliant on this
section of code being in working order. Therefore this is some of the most
important testing for further development for the RADSAT.

The very first part of this testing, will be to test to make sure the WiFi security
camera is properly connected to the server it is supposed to be connected to.
This will be done by just following the instructions that came with the security
camera, to connect to its designated server. This requires using the Firefox
internet browser, in combination with the software that came with the WansView
WiFi security camera. Within the WansView server, is the location of the actual
MJPEG video stream. Once this location is discovered, it’s time to test to make
sure this location is the correct one. This can be accomplished by using a
separate program which is designed to read in and display MJPEG streams. The
program which will be used for this is “iSpy”. Then if the MJPEG stream properly
appears within the iSpy program, then it will be determined that the URL obtained
from the WansView server is the correct one.

The next part of testing involves connecting to the MJPEG’s URL using C# code.
For this part, the C# code will connect to a camera source which has already
been proven to work. There are several security cams which are free for use to
the public, and one of those will be chosen for testing. Once this security camera
stream can be properly viewed with C#, then since it will be known that the code
has been implemented correctly, and so it’ll be time to move on to the RADSAT’s
video stream. Once again, the new stream will be known to be working once this
stream can be viewed with the C# code. Another way to tell if it is working is if it
can at least return some bytes that will be tested using the function TestURL().

GetMJPEG() – to test this function, a GUI needs to be created that can display a
JPEG as well as a Bitmap image. The JPEG and Bitmap image will be loaded
side-by-side to test to see whether the conversion was successful. First, the GUI
will be tested with stationary images to make sure it is working. Following that, it
will be tested using the actual MJPEG stream. If the Bitmap side is clearly
shown, then this function will be deemed successful.

StopStream() – this function is very easy to test. Basically when this function is
called, its job is to stop the connection between the C# code and the MJPEG

101

stream. If no bytes are being received after this function is called, then it will be
deemed successful.

7.10 GUI Testing

Testing for the GUI will be the simple process of trying to execute each command
on the screen and seeing if the tank responds according to its description.
Testing will be done in this fashion:

 Connect – First, the connect button will be used to see if a connection
between the tank and laptop is properly formed.

 Tank: Forward, backward, left, right arrows – Each of the tank’s movement
arrows will then be tested to be sure that the tank moves in the proper
direction based on the button pushed.

 Turret: Up, down, left, right arrows – Each of the turret’s movement arrows
will then be tested to be sure that the turret and camera pan in the proper
direction based on the button pushed.

 Fire – When this button is pressed, it will be confirmed that the tank does
in fact fire at its current target.

 Search – Once this button is pressed, the tank will be examined to ensure
that it properly seeks out a target. This will be one of the harder aspects
to test, as a problem could occur in either the GUI or the actual auto-
search algorithm.

 Exit – Finally, this button will be pushed to ensure that the connection
between the tank and laptop is dropped.

The last aspect of the GUI that will need to be examined is the video feedback.
This will be tested by examining the picture produced on the laptop and
comparing it to what the tank should be looking at. The tank will also be moved
around using the directional arrows at this point to ensure that the video
feedback is in real time.

Server errors may exist outside of the GUI’s code that might cause an error to
occur during the testing of the GUI. First, it is possible that the code written to
send each command to the R/C tank might send an improper data sequence.
Also, there may exist an issue with the connection between the laptop and WiFi
Shield on the PCB. If commands are not being proper read and/or written to the
server, then the GUI would not be at fault. Finally, there could exist an issue in
the actual wiring of RADSAT where a wire may not be completely intact, or a
misconnection might have been made between the microcontroller and the R/C
tank’s circuitry board. All of these issues will need to be looked at in the event

102

that RADSAT failed to perform the specified command issued by the user
through the GUI.

7.11 Wireless Communication Testing

As discussed earlier, an Arduino Diamondback prototyping board will be used in
the initial design of RADSAT, while a PCB developed by the team will be used in
the final design. Once the PCB that was designed for RADSAT is properly
connected and the software that was developed by the team is properly installed,
the PCB will undergo testing to ensure that the wireless chip embedded into the
PCB properly connects to the laptop that will control RADSAT. This testing will
commence as follows.

The first indication of whether or not a connection was properly established will
be a little LED light on the PCB that turns on when the connection is made. This
LED should turn on as soon as the team presses the “Connect” button on the
GUI of the RADSAT. If this LED were to light up, it would be a promising
indication for the team that a connection was in fact established before any
testing even begins.

Once it is verified that the LED indicator light has actually lit up when the
“Connection” button is pressed, the team will then begin to test out other
commands from the GUI. First, all of the movement arrows will be pressed to
ensure that the RADSAT moves in the correct direction. If this were the case, the
team would continue with testing by pressing the “Search” button and monitoring
the RADSAT to ensure that it properly searches out a target with accordance to
its search algorithm. Once a target has been locked onto by the RADSAT, the
team will test the “Fire” button to ensure the robot fires off a shot at the target.

Once all of the commands have been thoroughly tested, the team will test out the
“Exit” button to ensure that it properly breaks the connection between RADSAT
and the laptop. Once this button has been pushed, the connection light on the
PCB should turn off. It will be verified that the connection has actually been
broken by again pressing the movement arrows, “Search” button, and “Fire”
button. At this point, it is expected that the RADSAT will not react at all to any of
the commands.

With all of the tests that will be done to test the wireless connection, it will need to
be ensured that the software programs written by the team are able to carry out
their specified functions. If a command button on the GUI was to be pressed but
R/C tank fails to response, it will need to be looked into whether this is a problem
with the WiFi connection or with the code that was used to issue the command.
Furthermore, it will need to be ensured that all connections made by wires from
the microcontroller to the R/C tank are intact so that the signal can actually be
transmitted.

103

Furthermore, as the commands will be written to a text file located on a server by
the laptop and read off of the text file on the server by the Wifi Shield on the
PCB, special attention will need to be paid towards which system has a failure. If
a command was not to be received by the R/C tank during testing, it may be
because the laptop failed to write the command to the text file on the server.
Another problem could have occurred when the WiFi Shield attempted to read
the command off of the text file on the server. It is also possible that a
combination of these two errors may arise. Whatever the case may be, all
aspects of the wireless connection will need to be looked at while the connection
is being tested.

The wireless connection between RADSAT and the laptop should be maintained
at all times until it is broken by the user. During this connection, the main loop of
the C# code that is used to control the WiFi Shield will continuously run while it
listens for a command to be issued by the user and written to the server. If it is
discovered that the connection is not always established during the testing
phase, it will need to be investigated in order to see what can be done to
maintain the connection.

104

8.0 Administrative Content

8.1 Milestone Discussion

In order to finish this project in a timely fashion during the two semesters allowed
for Senior Design I and Senior Design II, the team discussed the milestones they
hoped to accomplish for the project, and when they hoped to accomplish them.
These milestones included an initial design and goals for the RADSAT, the
completion of all necessary research, a final design of the RADSAT, the
completion of all required paperwork and documentation, the acquisition of all
necessary parts, the development of a prototype, the testing phase, and the final
product. A discussion of the goals and reasoning for their deadlines can be
found below.

February 29, 2012 – The milestone that the team hoped to accomplish by the
end of February was to have an initial outline of all the goals and objectives of
the robot that was to be designed. Having just come together as a team with
only the slightest of ideas of what shape the robot would actually take, this first
step was an important part of what would become the final outcome. Possible
goals and objectives were discussed, and after a long deliberation were decided
upon unanimously by the team. A name for the robot was developed,
Reconnaissance and Demolition Super Attack Tank (RADSAT), and an initial
design of what the robot would look like was created. With this milestone
complete, by the end of February the project began to take on what would be the
basis for the rest of the semester.

Milestone met? – Yes

March 31, 2012 – As the semester progressed, it was the goal of the team to
make sure that all necessary research for the goals and objectives of the
RADSAT was completed. Knowing what the team hoped to accomplish meant
nothing if they were not able to thoroughly understand all of the aspects and work
that would go into the RADSAT. Many topics that required research included, but
is not limited to, tank design, turret design, video processing, autonomous
design, power allocation, color recognition, targeting, sensors, voice control, WiFi
control, microcontrollers, etc. With all of this research, the team knew that it
would have to spend countless hours searching for related topics online and how
these technologies have been implemented before. Upon completion of this
research, the team had a much broader idea of what they were actually doing
and how the RADSAT was going to be developed.

Milestone met? – Yes

March 31, 2012 – With all of the research that had to be completed, the team
knew that the design of the RADSAT would ultimately have to be changed. With

105

all of the knowledge that the team learned, the goals and objectives of the
RADSAT would be reexamined to ensure that the final product would be what the
team envisioned. Every aspect of the RADSAT was relooked at, and a final
design was decided upon unanimously by the team. This design was what the
team would continue to research so that it could be developed as a final product
by the team.

Milestone met? – Yes

April 23, 2012 – With the research completed and the final design agreed upon,
it was now up to the team to ensure that all of the paperwork and documentation
for the RADSAT was properly completed. To be turned in on this date was a
120+ page document that outlined all of the research and design that the team
had accomplished, as well as instructions on how the RADSAT would be
developed and tested during Senior Design II. Each member of the team was
expected to contribute at least 30 pages to the document that would be turned in
at the end of the semester. As a requirement for the completion of Senior Design
I, this milestone was taken very seriously by the team, and each member began
producing pages for the document as soon as possible.

Milestone met? – No

May 14, 2012 – With the completion of Senior Design I, it was the team’s hopes
that they would have all necessary parts for the development of the RADSAT
acquired as soon as Senior Design II began. These parts, which would be
determined during the course of research in Senior Design I, would be a
necessary aspect for the rest of the semester. It was decided that acquiring the
parts earlier would be better, and the team could begin to focus on the
development of the RADSAT during the rest of the semester.

Milestone met? – Yes

May 31, 2012 – With all of the parts acquired, the team decided upon developing
an initial prototype of the RADSAT as soon as possible. This would be done
within the first two weeks of acquiring all of the necessary parts. Once and initial
prototype was developed, the team would be able to carry on the rest of the
semester with testing and developing what would be the final product for the
committee board to review.

Milestone met? – Yes

June 30, 2012 – With a prototype developed, it was understood by the team that
a large window would be required for the testing phase. During this stage, all
goals and objectives that was hoped to be accomplished in the development of
the RADSAT would be tested. Each command and function that the RADSAT
was to carry out would be examined by the team. Ideally, the prototype would be

106

able to carry out most, if not all, of its specified functions. The team was aware,
however, that errors would most likely arise during the RADSAT’s development,
and some of the technologies might need to be reexamined. All of these errors
would be inspected and recorded thoroughly by the team so that they could be
corrected.

Milestone met? – Yes

July 14, 2012 – After the testing phase has been completed, it will be required
for the team to reconstruct the RADSAT as a final product will all of the hardware
and software issues debugged. This goal was set for mid July so that the team
might have an ample amount of time to finish the project before the final few
weeks of classes. As this final product will be what the team is graded on for
Senior Design II, it is the most important milestone for the team to meet in a
timely fashion.

Milestone met? – Yes

July 28, 2012 – After completing the final product, the team will need to have
completed all of the final paperwork required for Senior Design II. Furthermore,
the team will need to develop a presentation of the project so that they can
present to the review board that will examine their project. The two weeks
allotted for this documentation and paperwork should be ample time for the team
to meet this milestone.

Milestone met? – Yes

Date TBD – As the final milestone for the team, the RADSAT will need to be
presented to a review board. This review board will examine the RADSAT to see
that the team was in fact successful in accomplishing all of the goals that were
outlined for the RADSAT. This milestone is dependent on the successful
completion of every other milestone by the team, and will be what determines the
final grade of the project. Being successful during this presentation will mean
that the team passes Senior Design II and is capable of graduating. Failure,
however, will require the team to retake Senior Design II during the next
semester, stalling graduation.

Milestone met? – Yes

With all of the milestones and objectives discussed and agreed upon by the
team, it is now each individual’s responsibility to ensure that these milestones are
in fact met. The completion of each and every goal is necessary for the
successful completion of both Senior Design I and Senior Design II. Failure to
meet these goals may result in a delay of the project, which might ultimately
result in the failure of one or both of these classes. To ensure that each team
member is on track to complete their necessary work for the RADSAT, they will

107

be held accountable by all other team members. In this way, the team will work
together to make sure that every goal is met and the RADSAT successfully
progresses as scheduled.

Table 8.1.1 below summarizes all of the milestones that have been discussed
above, as well as when they are to be completed and whether or not they were in
fact completed on time:

Date Milestone Met?

2/29/2012
Initial design completed

Yes

3/31/2012
Completion of all necessary research

Yes

4/23/2012
Completion of all necessary paperwork and
documentation

No

5/14/2012
Acquisition of all necessary parts

Yes

5/31/2012
Prototype developed

Yes

6/30/2012
All necessary testing and debugging completed

Yes

7/14/2012
Final product developed

Yes

7/28/2012
All necessary paperwork, documentation, and
presentation completed

Yes

TBD
Presentation before review board completed

Yes

Table 8.1.1: Milestones

108

8.2 Budget and Finance Discussion

8.2.1 Bill of Materials

The bill of materials lists the part name, part number (if available), the supplier,
the quantity necessary, the unit price and the total price. The total price may not
include shipping and handling (Figure 8.2.1).

Part Name Part # Supplier Quantity Unit Price Total Price

Hitec Servo
Motor 1

HS-422 Servocity.com 1 10.00 10.00

Hitec Servo
Motor 2

HS-485HB Servocity.com 1 17.00 17.00

Arduino
DiamondBack
Testboard

610074725596 Cutedigi.com 1 73.00 73.00

Netgear
WGR614v9

 Already Owned 1 0.00 0.00

WansView WiFi
Security Camera

B003LNZ1L6 Amazon.com 1 56.10 56.10

Maxbotix XL-
Maxsonar EZ1

MB1210 Sparkfun
Electronics

1 49.95 49.95

Sharp IR Distance
Sensor

GP2Y0A02YK Trossen
Robotics

3 15.00 45.00

Sharp IR Sensor
to Servo Cable

GP2D12 Trossen
Robotics

3 1.95 5.85

Airsoft gun Already Owned 1 0.00 0.00

Snow Leopard
R/C tank

 Yourrcstore.com 1 75.44 91.19

Pan and tilt
attachment

PT-2 Endurance-
robotics.com

1 30.00 30.00

7.2V 3800mAh
NiMH
batteries+charger

battery-
superstore.com

1 58.00 66.00

PCB fabrication dorkbotpdx.org 3 ~14.00 42.00

Switched Voltage
Regulator

LM2574 Ti.com 6 0.00 0.00

Resistors,
capacitors,
inductors

 lab -- 0.00 0.00

DPDT 6V 2A PCB
Relay

HFD2-06 futurlec.com 2.00 0.80 1.60

WiFi Bee 1.00 89.49

Arduino Uno
Board

 1.00 19.95

Compass Sensor Sparkfun
Electronics

1.00 53.59

Breadboard +
relays

 -- 21.30

109

Miscellaneous 35.00

Total Price 707.02

Figure 8.2.1: Bill of Materials.

8.2.2 Financing Issues

Without a major source of outside financing, deliberating on the best possible
method on both keeping costs down and paying for RADSAT became a rather
long and contentious discussion. Initially, the RADSAT team discussed the
possibility of outlining a general budget, dividing that budget equally among all
group members, and simply pooling the money into one large mass of liquidity.
The most blatant disadvantage using a pool of funds is that it requires a very high
level of trust and responsibility among group members. It also required another
level of bureaucracy in the form of either a joint bank account, or if a single group
member were entrusted with the funds, some kind of a decision process and a
way to deliver balance statements would have to be established.

The team's solution to the above problems was to allocate the responsibility of
buying all necessary parts for each subsection to the group member currently
working on that subsection. After the final bill of materials was calculated, the
total cost was divided by 4, and each group member either contributed more or
was reimbursed for overpaying.

110

9.0 Post Implementation

9.1 High Level Software Design

RADSAT uses both high level and low level code in conjunction. This section
details all of the high level code which was used. The programming language
was C# and covered all server communication as well as color and shape
recognition. The design of the high level code changed a great deal from the
planning stage to the implementation stage. This section details how the final
code changed from the planned code, and many problems, as well as the
solution to these problems. The class diagram can be viewed in Figure 9.1.1.

Figure 9.1.1 Class Diagram

9.1.1 Color Recognition

Color recognition works by checking every single pixel in a bitmap image and
testing if the selected pixel fits within the boundaries for the desired pixel. The
function “ChangePixels” does exactly this. However, it has to accomplish this
task in a non-intuitive way in order to maintain acceptable speeds. For instance,
using C#’s “SetPixel” and “GetPixel” functions will result in extremely slow,
unacceptable speeds.

In order to obtain acceptable speeds the program copies the pixels from the
bitmap and saves all the RGB values into a byte array. The program is able to
very quickly cycle through the array because of the architecture an array innately
has. The format of the array is for pixel one: array[0] = Red, array[1] = Green,
and array[2] = Blue. This format repeats itself for every single pixel within the
bitmap. The values for red, green, and blue is a number from 0 to 255.

111

Each pixel would be inserted into a formula to check whether its values were
close to the desired color, and whether or not it can be considered for the target.
The exact formula is as follows:

 D = Math.Sqrt((R-red)*(R-red) + (G-green)*(G-green) + (B-blue)*(B-blue));

D represents the threshold for how close the pixel is to the desired color.
Generally the most appropriate threshold is around 30. This number filters out
almost all of the junk-colors that the camera might be seeing that is unrelated to
the target. Also, the number 30 is large enough to allow for slight lighting
differences which can occur on the target. Through all of the testing it would
identify something which was not the target only 1 out of 30 times. Each pixel
which matches remains its color, and every pixel that does not match is colored
black. The case where the background is colored black can be seen on the right
side of Figure 9.1.2.

Figure 9.1.2 Regular Vision (left) vs Robot Vision (right)

In some situations, where the lighting is particularly bad, the above formula is not
good enough. So, there’s an option which can be turned on and off within the
GUI which will enable the program to also check the pixels HSV values to the
desired color’s HSV values. A situation where it might be imperative to use this
option is when the lighting is very bad in the location of the target. The HSV
values will still recognize the color as being the same even with poor lighting, as
it determines matches differently from RGB. However, this option greatly slows
the program. The program will go from 12-16 FPS down to 4-6 FPS, which will
impair the targeting program greatly. If the program is running in a very fast
environment where there is no noticeable difference between the speeds when
HSV is checked, then it is recommended to use the HSV values.

112

9.1.2 FPS

The FPS class does exactly what would be expected of it. It simply logs the FPS
the video stream is currently running at. The process to accomplish this is very
simple. Every time a new frame event is created a counter increases by one.
Then a timer which goes off every second reads in the value of the counter then
prints that value to the FPS section of the GUI. After printing the FPS value, the
counter is then set to zero. This process is repeated perpetually.

9.1.3 GUI

The GUI is the gateway which allows the user to view, and control everything
about RADSAT. It can display errors, switch targets, control the turret and tank,
display the MJPEG stream, and several other things. It was configured to be as
easy to read and understand as possible. The GUI can be seen in Figure 9.1.3.

Figure 9.1.3. GUI

113

9.1.4 Main

“MainRadsat” is the class which encompasses all other classes, except the GUI.
The reasoning for this is because almost every other function or class within the
program edit the bitmap image of the video stream, and add to the same GUI
object. Having one class with shared values makes it easy for the various
threads running within the program to access the GUI and bitmap. This class is
also responsible to activating said threads. This is a very important process
which allows the program to continue running, even if one section of it fails. The
different threads include: GUI, Phone Server, WiFi Bee Client, FPS, and the
frame event handler.

9.1.5 Phone Server

The Phone Server class creates a server which the android phone
communicates with. The server is TCP based and will only receive data from the
phone, and never send data back. The server will continue to wait, until it
receives a connection from the phone. Once a connection is made, the program
will enter a continuous loop, and try to receive commands. If the connection
between the Phone Server and phone is somehow interrupted, the only way to
reconnect to the phone is to hit the “Phone Server Reset” button located on the
GUI. Once this button is pressed the program will once again wait until a
connection is made with the phone.

9.1.6 Robot Motion

Robot Motion is responsible for sending all the commands to either the tank or
the camera. Both the tank and camera communicate with the user via a TCP
connection established within WiFi Bee Client. Targeting, as well as many
functions from the GUI, uses this class to move the camera or the tank. The
commands as well as their protocols can be seen in Figure 9.1.4. The function is
the function name in the program, the protocol is what is sent to the tank or
camera, and the command is what is printed to the GUI as being sent.

114

Function Protocol Command Description

MoveForward() 7 up Tank moves forward

MoveBackward() 8 down Tank moves backward

MoveLeft() 9 left Tank moves left

MoveRight() A right Tank moves right

TurretUp() 0 tup Turret moves up

TurretDown() 1 tdown Turret moves down

TurretLeft() 2 tleft Turret moves left

TurretRight() 3 tright Turret moves right

Fire() 4 fire Turns on the laser pointer

Stop() 5 stop Stops all activity from the tank and
camera

Auto() 6 auto Activates autonomous mode for
the tank and camera

Figure 9.1.4 Robot Motion commands

9.1.7 Shape Recognition

Shape Recognition helps to narrow down the possible target from the several
different clusters of pixels which are comprised of matching pixels. The filtering
process begins with the AForge.net blob library. The AForge.net blob library
needs a bitmap image which has images contrasting on a black background.
This image is obtained from the “ChangePixels” class.

The library works by isolating different cluster of pixels which are unbroken by the
black background. Within Robot Vision, the user can clearly see the different
regions obtained through shape recognition. Looking at Figure 9.1.2 it is clear
the regions because they are seen as pink rectangles surrounding different
objects. After those rectangles are obtained, the next step is to filter out any
rectangles that are not the target. There are three different conditions that the
rectangle must meet in order for the program to determine that it is in fact the
target.

1. The rectangle’s length and width must be within 10 pixels of each other.
Because the target is a square, this step will eliminate any target which is
a different shape.

2. The percentage of matching pixels must be over 65%. This ensures the
rectangle is comprised almost entirely of matching pixels. The value 65%
is enough to allow for light differences, but will also disallow most non-
targets.

3. The length of the rectangle must be over 50 pixels. This will eliminate any
tiny shapes which might meet the other conditions solely because of their
tiny size.

115

9.1.8 Targeting

The targeting class takes care of moving the camera servo’s into alignment with
the target. The targeting process begins with drawing crosshairs onto the
screen. There are two crosshairs, the static crosshair, and the dynamic
crosshair. The static crosshair represents the place the laser pointer shines
when fired. It can be seen as the red crosshair in Figure 9.1.2. The dynamic
crosshair represents the center of the target. It can be seen as the green
crosshair in Figure 9.1.2. The goal is to align the static and dynamic crosshairs.

Targeting is activated whenever autonomous mode is selected in the GUI. The
camera servos pan back and forth and try to find a match with the selected
targets. Once the target is found the dynamic cross hair appears and the
program calculates the horizontal and vertical distance between the dynamic and
static crosshair. If the horizontal distance is above 15 pixels then the program
will move the turret in the correct direction. The time between the move and stop
command is a formula based which takes the number of pixels between the two,
multiplies it by two, then a stop command is sent after (difference of pixels)*2
milliseconds. Once the horizontal is aligned, the vertical goes through the same
process to become aligned. Once both are aligned the message “Target Aligned”
will be printed in the Robot Feedback section of the GUI. The user now has to
option to either send a “Fire” command or to search for a different target.

9.1.9 Video Processing

This section uses the AForge.net MJPEGStream library in order to retrieve the
MJPEG stream from the WiFi security camera. The MJPEGStream library finds
the stream at the location
“http://192.168.1.178/videostream.cgi?user=RADSATeye&pwd=radical” and
parses the MJPEG stream to individual JPEGs which is then converted to a
Bitmap. Once the Bitmap is obtained the program is able to call all the functions
which edit and operate according to, the bitmap image.

9.1.10 WiFi Bee Client

The WiFi Bee Client is what establishes the connection between the computer
and the tank/camera. It connects to the TCP server which is created on the WiFi
bee located on the tank/camera. The TCP connection allows for minimal lag time
for communication between the components. If the server is disconnected or
interrupted, the connection will become automatically reestablished as soon as
available. This class sends the commands according to Figure 9.1.4.

http://192.168.1.178/videostream.cgi?user=RADSATeye&pwd=radical

116

9.2 Sensor and Microcontroller Overview

9.2.1 Dual Controller Architecture

RADSAT uses two ATmega 328P microcontroller units. One 328P is embedded
on the WiFi Bee wireless module (which also includes a Microchip IEEE 802.11
Wi-Fi transceiver module). Through testing and trial and error, it was found that
supporting wireless functionality while interfacing with multiple motors, servos,
and sensors was too strenuous of a task for a single MCU to handle, so another
328P was added to the design of RADSAT to handle the extra load. RADSAT
originally used the WiFi Bee to listen for HTTP GET requests from the main
server to handle requests and commands. Although it was much simpler to
implement, it turned out to be much more inefficient, slower, and more
demanding than using TCP sockets, and it was decided that the switch to
sockets was warranted. The improved approach allows for relatively low latency
of less than 50ms versus potentially hundreds of milliseconds using HTTP
requests. As shown in figure 9.2.1, the WiFi Bee's job is to receive incoming
requests and forward them to the "main" MCU's digital I/O pins (pins 16-19).

Figure 9.2.1: Arduino to ATmega 328P pin mapping diagram. Also displayed are

RADSAT's use for each pin.

The main MCU is responsible for all of RADSAT's movement and anything not
related to its communications. When a commanded is forwarded to it (all valid
commands are listed in table 9.1.4), it is generally supposed to break out of any
loop and handle the command. The first four commands manually control the
motion of the servos and increments or decrements them in their respective

117

directions, continuously until a stop command is received. For safety reasons,
RADSAT is restricted from being able to autonomously fire and is only able to fire
when the proper command is received. The stop command stops any movement
RADSAT is engaged in, including servo rotation. RADSAT is able to run in both
autonomous mode and in manual mode. In order to enter autonomous mode, the
autonomous mode command is sent (hex 7 or binary 0111). In autonomous
mode, RADSAT is able to make its own decisions regarding directions to turn
while scanning the area for its target. The final four commands deal with the
manual movement of RADSAT.

9.2.2 Sensor Overview

As previously stated in this document, RADSAT uses a total of three different
proximity sensors. The forward sensor is the MB1210 ultrasonic sensor while the
side sensors are GP2Y0A02YK infrared sensors. The ultrasonic sensor is
mounted on the front of the tank and is able to successfully inform RADSAT of
whether or not an obstruction that would generally be undetectable to infrared
sensors is present. RADSAT is designed to move in a single direction until an
obstruction is found in front of it. At that point, a comparison is done between the
value returned by the left infrared sensor and the right and RADSAT turns such
that it approaches the side with the furthest obstruction. With the help of an
HMC6352 compass module, RADSAT will attempt to rotate 90 degree angles
unless an obstruction is still detected by the ultrasonic sensor, at which point
RADSAT will continue to rotate. Once the rotation is complete, RADSAT will
attempt to move forward for approximately three seconds, and move in a
direction that is opposite its original direction.

118

9.3 Circuit Design Changes

Overall the basic design of the circuit in the actual implementation did not change
much from the original design covered earlier in this paper. The only real
changes were the addition of a microcontroller, the change from the xbee WiFi to
the WiFi bee, the removal of some unnecessary parts and a few transistors used
as switches. Also, in the final demo of the project, the camera and tank had to
be separated due to certain circumstances.

During the first semester research and development phase of the project it was
decided that a tank with a turret-mounted airsoft gun would be built. It would be a
single stand-alone unit with capabilities of moving and locating any targeted item.
It would look like the following picture:

Figure 9.3.1: Early model of a RADSAT implementation (without camera)

Early on, this idea was changed with the removal of the airsoft gun. The gun was
scrapped in favor of a laser pointer as its symbolic analog. The initial reason for
the change was that upon mounting the airsoft gun it was found that mounting it
distorted the shape of the body of the gun and caused the gears inside it not to
mesh correctly. Finding another method to mount it would have solved this
problem, but there was another reason to change it: a laser pointer would suffice
to show that the target could be hit, whereas firing airsoft BB's during a
presentation was not an option in the setting of the RADSAT presentation.

119

The next change came much later in the construction of the final product. It was
the decision that the tank should be independent from the turret and camera.
Thus there would be two distinct assemblies as shown in the following concept
sketches:

Figure 9.3.2: Tank with target Figure 9.3.3 Turret with camera and laser

The primary reason for this change was that the tank chassis did not have
enough room inside for the wires connecting to the servo assembly and sensors.
It was problematic because putting all the wires into a compact space led to more
probability of a sensor wire or servo wire being unplugged. Another reason for
the change was that the power to the camera needs to be reliable and with the
turret and tank parts together it occasionally had problems. The final reason is
that as the tank moved it vibrated and caused the servo to move unpredictably,
causing instability.

All together there are two atmega328p microcontrollers controlling the circuit.
One of them is located on the WiFi bee, and the other was mounted on the
board. A few components needed to be added on the board to allow the bare
microcontroller to work. These include a 16 MHz clock attached to pins 9 and 10
of the microcontroller as well as two 22 pF capacitors, one going from pin 9 to
ground and the other going from pin 10 to ground, and a 10k resistor going from
the reset pin to VCC+. The idea here was to keep a constant voltage on the pin,
and avoid fluctuations which caused the chip to reset unnecessarily.

The parts that were removed from the original design were removed either
because other changes to the circuit warranted their removal, or the function they
were initially intended for was no longer relevant due to changes in the design.
The DPDT relays with the purpose of driving the motors backwards were on the
final circuit, but left unused because within the bounds of the autonomous
navigation system there was never a need for using reverse. The tank could
make small enough U-turns to be able to change direction when needed, and the
supersonic sensor mounted on the front prevented the tank from running into a

120

wall or impassable object. The other circuit components that became obsolete
were the power supplies to the servos, the control signal outputs to the servos,
and the transistor that sent power to the laser to turn the laser on.

I

Appendix: Permissions and Licenses

II

III

License

IV

Many of the images in this document are licensed by and are clearly captioned with CC
BY-NC-SA 3.0. The license, in its entirety is printed below.

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL

SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT

RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS.

CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED,

AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE

COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT

AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED

UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE

BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED

TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN

CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing

works, such as a translation, adaptation, derivative work, arrangement of music or other

alterations of a literary or artistic work, or phonogram or performance and includes

cinematographic adaptations or any other form in which the Work may be recast, transformed, or

adapted including in any form recognizably derived from the original, except that a work that

constitutes a Collection will not be considered an Adaptation for the purpose of this License. For

the avoidance of doubt, where the Work is a musical work, performance or phonogram, the

synchronization of the Work in timed-relation with a moving image ("synching") will be considered

an Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and

anthologies, or performances, phonograms or broadcasts, or other works or subject matter other

than works listed in Section 1(g) below, which, by reason of the selection and arrangement of

their contents, constitute intellectual creations, in which the Work is included in its entirety in

unmodified form along with one or more other contributions, each constituting separate and

independent works in themselves, which together are assembled into a collective whole. A work

that constitutes a Collection will not be considered an Adaptation (as defined above) for the

purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work or

Adaptation, as appropriate, through sale or other transfer of ownership.

d. "License Elements" means the following high-level license attributes as selected by Licensor

and indicated in the title of this License: Attribution, Noncommercial, ShareAlike.

e. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the

terms of this License.

f. "Original Author" means, in the case of a literary or artistic work, the individual, individuals,

entity or entities who created the Work or if no individual or entity can be identified, the publisher;

and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other

V

persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic

works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or

legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of

broadcasts, the organization that transmits the broadcast.

g. "Work" means the literary and/or artistic work offered under the terms of this License including

without limitation any production in the literary, scientific and artistic domain, whatever may be the

mode or form of its expression including digital form, such as a book, pamphlet and other writing;

a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical

work; a choreographic work or entertainment in dumb show; a musical composition with or

without words; a cinematographic work to which are assimilated works expressed by a process

analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or

lithography; a photographic work to which are assimilated works expressed by a process

analogous to photography; a work of applied art; an illustration, map, plan, sketch or three-

dimensional work relative to geography, topography, architecture or science; a performance; a

broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable

work; or a work performed by a variety or circus performer to the extent it is not otherwise

considered a literary or artistic work.

h. "You" means an individual or entity exercising rights under this License who has not previously

violated the terms of this License with respect to the Work, or who has received express

permission from the Licensor to exercise rights under this License despite a previous violation.

i. "Publicly Perform" means to perform public recitations of the Work and to communicate to the

public those public recitations, by any means or process, including by wire or wireless means or

public digital performances; to make available to the public Works in such a way that members of

the public may access these Works from a place and at a place individually chosen by them; to

perform the Work to the public by any means or process and the communication to the public of

the performances of the Work, including by public digital performance; to broadcast and

rebroadcast the Work by any means including signs, sounds or images.

j. "Reproduce" means to make copies of the Work by any means including without limitation by

sound or visual recordings and the right of fixation and reproducing fixations of the Work,

including storage of a protected performance or phonogram in digital form or other electronic

medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from

copyright or rights arising from limitations or exceptions that are provided for in connection with the

copyright protection under copyright law or other applicable laws.
3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a

worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to

exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce

the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including any

translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise

identify that changes were made to the original Work. For example, a translation could be marked

"The original work was translated from English to Spanish," or a modification could indicate "The

original work has been modified.";

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

VI

The above rights may be exercised in all media and formats whether now known or hereafter devised.

The above rights include the right to make such modifications as are technically necessary to exercise the

rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are

hereby reserved, including but not limited to the rights described in Section 4(e).
4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the

following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must

include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the

Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that

restrict the terms of this License or the ability of the recipient of the Work to exercise the rights

granted to that recipient under the terms of the License. You may not sublicense the Work. You

must keep intact all notices that refer to this License and to the disclaimer of warranties with

every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly

Perform the Work, You may not impose any effective technological measures on the Work that

restrict the ability of a recipient of the Work from You to exercise the rights granted to that

recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated in

a Collection, but this does not require the Collection apart from the Work itself to be made subject

to the terms of this License. If You create a Collection, upon notice from any Licensor You must,

to the extent practicable, remove from the Collection any credit as required by Section 4(d), as

requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent

practicable, remove from the Adaptation any credit as required by Section 4(d), as requested.

b. You may Distribute or Publicly Perform an Adaptation only under: (i) the terms of this License; (ii)

a later version of this License with the same License Elements as this License; (iii) a Creative

Commons jurisdiction license (either this or a later license version) that contains the same

License Elements as this License (e.g., Attribution-NonCommercial-ShareAlike 3.0 US)

("Applicable License"). You must include a copy of, or the URI, for Applicable License with every

copy of each Adaptation You Distribute or Publicly Perform. You may not offer or impose any

terms on the Adaptation that restrict the terms of the Applicable License or the ability of the

recipient of the Adaptation to exercise the rights granted to that recipient under the terms of the

Applicable License. You must keep intact all notices that refer to the Applicable License and to

the disclaimer of warranties with every copy of the Work as included in the Adaptation You

Distribute or Publicly Perform. When You Distribute or Publicly Perform the Adaptation, You may

not impose any effective technological measures on the Adaptation that restrict the ability of a

recipient of the Adaptation from You to exercise the rights granted to that recipient under the

terms of the Applicable License. This Section 4(b) applies to the Adaptation as incorporated in a

Collection, but this does not require the Collection apart from the Adaptation itself to be made

subject to the terms of the Applicable License.

c. You may not exercise any of the rights granted to You in Section 3 above in any manner that is

primarily intended for or directed toward commercial advantage or private monetary

compensation. The exchange of the Work for other copyrighted works by means of digital file-

sharing or otherwise shall not be considered to be intended for or directed toward commercial

advantage or private monetary compensation, provided there is no payment of any monetary

compensation in con-nection with the exchange of copyrighted works.

d. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must,

unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the

Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the

Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or

Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for

attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other

VII

reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to

the extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with

the Work, unless such URI does not refer to the copyright notice or licensing information for the

Work; and, (iv) consistent with Section 3(b), in the case of an Adaptation, a credit identifying the

use of the Work in the Adaptation (e.g., "French translation of the Work by Original Author," or

"Screenplay based on original Work by Original Author"). The credit required by this Section 4(d)

may be implemented in any reasonable manner; provided, however, that in the case of a

Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing

authors of the Adaptation or Collection appears, then as part of these credits and in a manner at

least as prominent as the credits for the other contributing authors. For the avoidance of doubt,

You may only use the credit required by this Section for the purpose of attribution in the manner

set out above and, by exercising Your rights under this License, You may not implicitly or

explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author,

Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the

separate, express prior written permission of the Original Author, Licensor and/or Attribution

Parties.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right

to collect royalties through any statutory or compulsory licensing scheme cannot be

waived, the Licensor reserves the exclusive right to collect such royalties for any exercise

by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to

collect royalties through any statutory or compulsory licensing scheme can be waived,

the Licensor reserves the exclusive right to collect such royalties for any exercise by You

of the rights granted under this License if Your exercise of such rights is for a purpose or

use which is otherwise than noncommercial as permitted under Section 4(c) and

otherwise waives the right to collect royalties through any statutory or compulsory

licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties,

whether individually or, in the event that the Licensor is a member of a collecting society

that administers voluntary licensing schemes, via that society, from any exercise by You

of the rights granted under this License that is for a purpose or use which is otherwise

than noncommercial as permitted under Section 4(c).

f. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by

applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as

part of any Adaptations or Collections, You must not distort, mutilate, modify or take other

derogatory action in relation to the Work which would be prejudicial to the Original Author's honor

or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the

right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to

be a distortion, mutilation, modification or other derogatory action prejudicial to the Original

Author's honor and reputation, the Licensor will waive or not assert, as appropriate, this Section,

to the fullest extent permitted by the applicable national law, to enable You to reasonably exercise

Your right under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING AND TO THE

FULLEST EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR OFFERS THE WORK AS-IS AND

MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK,

EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,

VIII

WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE

PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME

JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THIS

EXCLUSION MAY NOT APPLY TO YOU.
6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO

EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,

INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS

LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.
7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by

You of the terms of this License. Individuals or entities who have received Adaptations or

Collections from You under this License, however, will not have their licenses terminated

provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2,

5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration

of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to

release the Work under different license terms or to stop distributing the Work at any time;

provided, however that any such election will not serve to withdraw this License (or any other

license that has been, or is required to be, granted under the terms of this License), and this

License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the

recipient a license to the Work on the same terms and conditions as the license granted to You

under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a

license to the original Work on the same terms and conditions as the license granted to You

under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect

the validity or enforceability of the remainder of the terms of this License, and without further

action by the parties to this agreement, such provision shall be reformed to the minimum extent

necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless

such waiver or consent shall be in writing and signed by the party to be charged with such waiver

or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work

licensed here. There are no understandings, agreements or representations with respect to the

Work not specified here. Licensor shall not be bound by any additional provisions that may

appear in any communication from You. This License may not be modified without the mutual

written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing

the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as

amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of

1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright

Convention (as revised on July 24, 1971). These rights and subject matter take effect in the

relevant jurisdiction in which the License terms are sought to be enforced according to the

IX

corresponding provisions of the implementation of those treaty provisions in the applicable

national law. If the standard suite of rights granted under applicable copyright law includes

additional rights not granted under this License, such additional rights are deemed to be included

in the License; this License is not intended to restrict the license of any rights under applicable

law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with

the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages

whatsoever, including without limitation any general, special, incidental or consequential damages arising

in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has

expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.
Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,

Creative Commons does not authorize the use by either party of the trademark "Creative Commons" or

any related trademark or logo of Creative Commons without the prior written consent of Creative

Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark

usage guidelines, as may be published on its website or otherwise made available upon request from

time to time. For the avoidance of doubt, this trademark restriction does not form part of this License.

	Cover page
	ToC
	RADSAT_final
	appendix_permissions_and_licenses

