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Widespread application of promising DNA-based transcription factor protein (TF) biosensors is limited by
our ability to control their binding properties. Because the binding properties of this class of biosensors
are affected by how well the biosensor switches between binding and non-binding conformations, we
investigated the effects of varying conformational stability on the ability of biosensors to detect the
oncologically-relevant Myc/Max TF dimer complex. To do this, we employed a custom algorithm that
designed and evaluated possible biosensors based on the Myc/Max TF recognition sequence, choosing
algorithmic parameters that selected for biosensors with varied conformational stability due to changes
in stem length. Biosensors with recognition stem lengths of 8 base pairs (bp), 12 bp, or 21 bp were
selected and synthesized. Biosensor binding affinity changes and kinetic association rates were found
to be significantly affected by changes in conformational stability (with binding affinity increasing with
stem length, from 80 ± 20 nM to 440 ± 80 nM, and kinetic switching rate being tenfold impacted in the
longer biosensors). These results show that increased stability can have significant inverse effects on
overall biosensor performance, providing important implications for effective biosensor designs. We
applied these design insights to generate a biosensor that tested and confirmed a predicted in vivo inter-
action between two TFs (ATF3 and Max), illustrating the potential for rationally-designed, TF-detecting
biosensors as a routine analytical tool.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Improved methods for real-time monitoring of the binding of
transcription factor proteins (TFs) to their cognate DNA sites are
expected to help elucidate cellular mechanisms [1] and aid in
developing novel medical diagnostic tools. To detect interactions
between TFs and their cognate DNA sites, DNA-based biosensors
have been developed that utilize the ability of DNA to fold in a
programmable manner (such as TF beacons [2,3] and DNA micro-
electrodes [4]). However, adapting these biosensors to different
detection ranges or targets remains challenging [5]. As demon-
strated by the recent use of DNA aptamer sensors for real-time
drug monitoring in living animals [6], such flexibility could open
up a new range of point-of-care medical diagnostic possibilities.
Recent studies with other DNA-targeting biosensors suggest that
improvements in sensitivity and dynamic range can be readily
achieved through design optimization [7]. To that end, we
investigated here how the conformational stability of TF beacon
biosensors affects the DNA-binding affinity and detection range
of Myc/Max, a heterodimeric TF complex widely implicated in
oncogenesis [8].

Our TF beacon biosensors operate on a population shift
mechanism [9] where a single oligonucleotide strand can adopt
one of two specific conformations. These conformations affect
the biosensor’s ability to bind Myc/Max (Fig. 1a). One conformation
is a ‘‘non-binding’’ state that occludes the TF recognition site (the
consensus ‘‘E-box’’ sequence [10]), inhibiting TF binding. In this
conformation, a covalently-bound fluorophore and quencher are
in close proximity, allowing for only minimal sample fluorescence.
The addition of the target TF can shift the population to a ‘‘binding-
capable’’ conformation where the TF recognition site is intact and
accessible, allowing TF binding. In this conformation, the fluoro-
phore and quencher are spatially separated, which significantly
increases sample fluorescence and results in fluorescent signal that
is directly proportional to TF concentration [2].
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The major contributor to stability in the binding-capable state
of this class of TF beacon biosensors is likely to stem from an
extended, double-stranded DNA (dsDNA) region centered on the
recognition site, but it has not been previously investigated how
modifying this region affects observed biosensor binding sensitiv-
ity. To that end, we designed and created three different TF beacon
biosensors directed against the TF complex that vary in the length
of dsDNA that flanks the recognition site (Fig. 1b). These designs
were determined using a custom scoring computer algorithm that
predicts how well a given biosensor will function using UNAFold
structure prediction routines [11].

2. Materials and methods

2.1. Reagents and materials

Triton X-100, glycerol, IPTG, AEBSF, Tris base, lysozyme, bovine
serum albumin fraction V, HIS-select nickel affinity gel, sodium
phosphate, potassium phosphate, sodium chloride, potassium
chloride, and magnesium chloride were purchased from Sigma
Aldrich (St Louis, MO). DNaseI and BL-21 DE3 competent cells were
purchased from New England Biolabs (Ipswich, MA). Biosensors
were synthesized by Biosearch Technologies (Novato, CA).

2.2. DNA biosensors

DNA biosensors consist of a single strand of synthetically
generated DNA, with 50 fluorescein amidite (FAM) and an internal
blackhole quencher 1 (BHQ1) linked to the C5 position of an inter-
nal thymine. Biosensors were synthesized and purified via reverse
HPLC. Biosensor sequences for 12 base pair (bp)- and 21 bp-long
(‘‘medium’’ and ‘‘long’’) recognition stem biosensors were chosen
based on a custom algorithmic design process (see Section 2.4.
Algorithm development), whereas 8 bp-long (’’short’’) recognition
stem biosensor and ATF3 biosensor were designed manually. The
biosensor sequences used in this study are as follows: 8 bp-long
biosensor: 50-FAM-TAA ATT AAC CAC GTG GTT TAT TTT(BHQ1)
ATG ATG ACC ACG TGT TCA TCA T-30; 12 bp-long biosensor:
50-FAM-CCC GAC CAC GTG GTC GGG T(BHQ1)CC AGA CCA CGT
GGT CTG G-30; 21 bp-long biosensor: 50-FAM-CCC CCA AGA
CCA CGT GGT CTT GGG GGT(BHQ1) CCC CTA GAC CAC GTG GTC
TAG GGG-30; and ATF3 biosensor: 50-FAM-AGG CGC TGA CGT
CAG CGC CT(BHQ1)G AGC TGA CGT CAG CTC AA-30.
Fig. 1. TF beacon biosensor design and principle of operation. (a) The non-binding,
non-fluorescent conformation of the biosensor (left, green fluorophore and black
quencher in close proximity) is shifted towards the binding-capable, fluorescent
conformation (right, fluorophore and quencher separated) due to binding of the
Myc/Max TF complex (blue and green helices) to its DNA recognition site (shown in
red). (b) The regions flanking this site (shown in blue) were shortened or
lengthened to determine the effects of conformational stability on the binding
behavior of the TF complex with the biosensor. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
2.3. Protein expression and purification

Recombinant forms of human Myc, Max, ATF3, and TBP were
expressed, purified, and characterized as described previously
[2,12,13]. Briefly, plasmids were transformed into BL21 strain
Escherichia coli cells, protein expression was induced via introduc-
tion of 0.5 mM IPTG, and cell pellets were collected via centrifuga-
tion. Cells were suspended in lysis buffer (50 mM Tris, pH 8.0, 10%
glycerol, 0.1% Triton X-100, 100 lg/ml lysozyme, 1 mM AEBSF pro-
tease inhibitor, 10 units DNaseI) and ruptured via sonication. Lysate
was cleared via filtration through a 0.45 lm filter, and proteins
were purified via chromatography with HIS-Select nickel affinity
gel. Purity was confirmed via SDS–PAGE and UV–Vis analysis.

2.4. Fluorimetric trials

All fluorescence experiments were conducted at 25 �C in 1� PBS
(10 mM sodium phosphate, pH 7.4, 1.8 mM potassium phosphate,
137 mM NaCl, 2.7 mM potassium chloride) with 5 mM MgCl2.
Equilibrium and kinetic fluorescence measurements were obtained
on a Perkin Elmer LS50B luminescence spectrometer with
excitation at 480 (±5) nm and acquisition at 517 (±5) nm unless
otherwise specified. Binding curves were obtained using 5 nM
biosensor and fit to Langmuir isotherms. Biosensor and buffer were
allowed to reach equilibrium in a 16.40F-Q-10 microcuvette from
Starna Cells (Atascadero, CA), followed by sequential addition of
protein. Solutions were then allowed to reach equilibrium before
data was collected. All data was collected in replicate from three
to six trials. For kinetics experiments, the same parameters
were used but continuous data collection began immediately after
addition of protein.

2.5. Algorithm development

We developed a set of Python-based software tools, called
Fealden (after the Old English for folding, ‘‘fealdan’’), that uses an
algorithm to search for possible biosensor sequences. The Fealden
algorithm uses a depth-first search of a tree of vertexes [14], where
each vertex is a candidate biosensor sequence (Fig. 2b). To score
each vertex, Fealden takes the candidate sequence and uses
UNAFold [11] to perform a theoretical folding calculation. This
returns possible conformations of the candidate sequence, includ-
ing a list of binding pairs and the predicted free energy value for
each conformation. Using the binding pair data, Fealden classifies
each conformation as either capable of binding the target (i.e., pre-
senting the correct dsDNA region needed for efficient TF binding)
or incapable of target binding. Using this classification, along with
the predicted free energy values, the algorithm calculates the
proportion of each conformation population at equilibrium.

Fealden uses the following properties to classify each conforma-
tion’s binding and emission properties (Fig. 2a): a binding-capable
conformation must have a single stem, a hairpin loop joining that
stem, between 0 and 2 unpaired nucleic acid tails, 100% of the
recognition sequence in the dsDNA stem, and a fluorophore and
quencher that are at least 4 bases apart; a non-binding conforma-
tion must have two stems, hairpin loops joining the ends of each
stem, an unpaired bridge joining the two stems, between 0 and 2
tails, less than 50% of the recognition sequence in either stem (to
minimize partial binding), and a fluorophore and quencher that
are less than 1 nm apart (to maximize quenching of signal). The
output from UNAFold does not directly annotate these structural
details, so Fealden analyzes this information from the list of
binding pairs provided by UNAFold, heuristically ‘‘walking’’ these
lists and building them into predicted, two-dimensional folded
structures. Using this information, Fealden can classify a given con-
formation by counting its stems, loops, and tails, using a separate



Fig. 2. Fealden search tree structure. (a) The Fealden algorithm uses strong assumptions about TF beacon biosensor conformation, including the formation of a two-hairpin
non-binding, non-emissive state (with generated stems 1, red, and 2, blue) and a one-hairpin binding-capable, emissive state (with a stem composed of the recognition
element, black). (b) Using this model, our algorithm traverses a tree of candidate biosensor sequences by using the recognition element (black) and then traversing a tree of
vertexes with every possible biosensor sequence. To do this, it traverses vertexes, adding bases sequentially and comparing the expected binding energy of the sum of the
non-cognate elements (red and blue) to that of the consensus recognition element (black). (Dotted arrows indicate vertexes not shown.) When a vertex whose expected
binding free energy in the non-binding, non-emissive conformation exceeds the free energy of the recognition to its complement is found, all descendants of that vertex are
not traversed. Candidate sequences identified by this search are then analyzed via UNAFold and characterized further by our algorithm to test for successful biosensor
characteristics. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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heuristic method to determine rough distances between the
fluorophore and quencher, and determining what percentage of
recognition sequence is present in each stem.

Since our algorithm relies on strong assumptions about final
biosensor structure, we were able to optimize search tree traversal,
obtaining multiple order-of-magnitude improvements per total
search time. At the root of the search tree is the template for a valid
biosensor sequence, which contains three stems: the recognition
stem, as well as two additional stems, labeled stem 1 and stem 2
(Fig. 2a). The search tree starts with a cognate recognition element
(based on user input or extracted from databases such as JASPAR
[15]) and the reverse complement of this element (Fig. 2b, black),
which together form the biosensor’s recognition stem. When the
tree traversal reaches the first level of vertexes, it begins to popu-
late a stem (‘‘stem 1’’) by randomly placing an A, C, T or G on an end
of the recognition element (Fig. 2b). (A reverse complement of this
stem is also generated.) Then, on the second level of vertexes, the
algorithm generates another new stem (‘‘stem 2’’) and its comple-
ment by adding an A, C, T, or G base to the opposite end of the
inherited candidate sequence’s recognition element (and reverse
complement). As the tree is traversed new bases are added to
either stem 1 or stem 2 alternating by level (Fig. 2b). To determine
the maximum depth that may still contain effective biosensor
sequences, the algorithm calculates the bonding strength of the
recognition element to its complement. For our biosensors, optimal
performance is obtained when the free energy of the non-binding
state (the sum of the free energies of stem 1 and stem 2) have a
similar free energy to that of the binding-capable state (which con-
tains a stem composed of the recognition element and its comple-
ment) (Fig. 2a) [2]. Our algorithm calculates what the lowest free
energy of a given sequence length (e.g., composed of entirely A–T
base pairs [bp]) would be that would exceed the recognition
sequence’s free energy, and then sets that free energy as the
maximum search depth (because A–T bp are lower in energy than
C–G bp, the longest stem with the lowest energy would be
composed entirely of A–T bp). By traversing the tree of vertexes
in a depth-first mode but ending a branch when the energy of stem
1 and stem 2 exceeds this threshold, the algorithm has two advan-
tages: it is substantially more likely to generate an effective
sequence because it alternates between stem 1 and stem 2, and
it dramatically reduces the total search space due to populating
new stems and their complements simultaneously.

Fealden traverses vertexes in the search tree until a candidate
sequence is scored within a user-specified error range as a func-
tional biosensor. That is, until it finds a sequence satisfying all
the requirements for binding-capable and non-binding conforma-
tions and free energies of folding. This promising result is then
returned to the user, along with useful information, including
two-dimensional representations of the highest free energy
predicted folds, predicted sensor performance curves, putative
equilibrium constant, and the sensor sequence (for example input
and output screens, see Supporting information).
3. Results

3.1. Algorithmic sensor design yields functional biosensors

The Fealden algorithm was run on an Ubuntu 12.04 server using
the Myc/Max consensus recognition sequence CACGTG [10] with
different desired values for overall free energy to optimize towards
biosensors with different length stems. Fealden returned the
sequences used to generate the biosensors that we refer to as
the ‘‘medium’’ (12 bp) and ‘‘long’’ (21 bp) Myc/Max biosensors
(the ‘‘short’’ [8 bp] biosensor was a pre-existing construct from
prior work [2]) (Fig. 1b). These biosensors were selected from the
top sensor results generated by Fealden, without manual curation,
and successfully function as TF beacon biosensors comparably to
manually designed sensors (Fig. 3a).
3.2. Flanking sequence length affects biosensor affinity

The designed biosensors function robustly when binding to
their target, the Myc/Max TF complex. Biosensor apparent affinity
was found to vary inversely proportionally to the overall biosensor
stability. Specifically, apparent dissociation constants for the TF
recognition site were 80 ± 20 nM, 300 ± 70 nM, and 440 ± 80 nM,
for the short, medium, and long biosensors, respectively (n = 5)
(Fig. 3a). These affinities are in line with prior attempts at
TF-directed biosensors of this type [2], and reflect the binding-dri-



Fig. 3. Myc/Max detection and specificity. (a) Detection sensitivity depends on biosensor stability. Stability of the short (8 bp, black), medium (12 bp, blue), and long (21 bp,
red) biosensors increased with length (DG of �40.9, �71.2, and �117.7 kJ/mol), while sensitivity decreased with length (80 ± 20 nM, 300 ± 70 nM, and 440 ± 80 nM). (b)
Homodimeric and non-specific TF interactions show impacted binding. Myc (blue) or Max (red) in isolation displayed significantly reduced binding across all biosensors
(short biosensor response shown in black), consistent with the observed lack of biological activity [16] and poor binding affinities [17] of the homodimeric TFs on the
recognition site. The unrelated TF TATA Binding Protein (TBP, gray) and ATF3 (gray circles), as well as bovine serum albumin (BSA, gray half-circles) all displayed negligible
binding. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ven population shift between dark and emissive conformations of
DNA.

3.3. Biosensors exhibit robust specificity

Our biosensor platform can also analyze relative apparent bio-
sensor binding affinities to different TF complexes, which could
be useful for identifying the presence of specific TF combinations.
Myc/Max primarily functions as a heterodimer in vivo, but studies
have suggested that Myc and Max may form homodimers with
functional importance in living cells [18]. The affinity of these
homodimers for duplex DNA containing their recognition site is
not well established, with reported values ranging from negligible
[16,17] to greater than the Myc/Max heterodimer [18]. The affini-
ties we observe with our biosensors do not match even these mea-
sured affinities to duplex DNA due to the different conformations
present in our biosensors, which change the overall energetics of
binding. However, we found that when added separately
(Fig. 3b), both Myc or Max homodimers exhibit low, but measur-
able, binding to the biosensors, presumably through homodimer
formation [10,18]. This low biosensor binding affinity decreased
further with increasing conformational stability. Myc homodimer
binding to the short, medium, and long biosensor constructs dis-
played apparent affinities of 380 ± 120 nM, 440 ± 100 nM, and
1400 ± 300 nM, respectively. Similarly, Max homodimer binding
had apparent affinities of 310 ± 80 nM, 380 ± 100 nM, and
540 ± 60 nM for the short, medium, and long biosensors, respec-
tively. As an ideal biosensor should be target-specific and have
negligible cross-reactivity with unrelated TFs, we also challenged
the biosensors with the nonspecific TFs TATA Binding Protein
(TBP) and ATF3, and bovine serum albumin (BSA) (Fig. 3b, gray
data). As expected, TBP and ATF3 do not appreciably bind to the
biosensor except at concentrations far beyond those relevant for
normal detection, and BSA shows no appreciable interaction. These
results highlight the specificity of our biosensors for the Myc/Max
heterodimer compared to different, but closely related, TF com-
plexes, and suggest that for this, and other systems with varied
TF complexes, proper interpretation of signal levels at high protein
concentration may be difficult. In future studies, the use of multi-
ple biosensors incorporating unique fluorescent wavelengths tied
to differing specificities, recently demonstrated as a means to tune
the dynamic range of the sensors [7], could be used as a means of
calibration for identifying the signal contribution from multiple,
varied TF complexes at high concentrations.
3.4. Biosensor signal kinetics exhibit strong sequence dependence

The dsDNA regions of the binding-capable states that form
the short, medium, and long biosensor designs are centered on
the recognition site (Fig. 1b). The additional hydrogen bonding
in the medium and long biosensors gives greater stability to both
the non-binding and binding-capable conformations. The binding-
capable states of the short, medium, and long biosensors have
predicted DG of �40.9 kJ/mol, �71.2 kJ/mol, and �117.7 kJ/mol,
respectively. Since the two conformations for each biosensor are
iso-energetic (DDG � 0) and all possess the same recognition
sequence, any differences in sensitivity are likely due to kinetic
barriers limiting the hydrogen bond breaking involved in one con-
formation shifting to the other state, where new hydrogen bonds
must be made. This kinetic barrier on folding has been studied in
other systems, such as simple stem-loop hairpins [19] and larger
ribozyme folding patterns [20]. However, kinetic barriers in TF
beacon biosensors have not been previously investigated, and this
approach differs markedly from studies where only the stability
between non-binding versus binding-capable states was
analyzed [21].

To investigate the effects of these kinetic barriers, which may
limit the efficacy of biosensors, we performed a series of real-time
fluorescence experiments (Fig. 4). In these experiments, relatively
high concentrations of Myc/Max (either 200 nM or 400 nM) were
introduced to 5 nM of either the short or long biosensor and fluo-
rescent signal was continuously measured over time. We found
that the kinetic data obtained best fit a sum of two association pro-
cesses, a protein-dependent rate (constrained to the known value
of 2.1 � 105 M�1 for Myc/Max association [22]) and a concentra-
tion-independent conformational switching rate. Apparent confor-
mational switching rate constants are 170 ± 10 s�1 for the short
biosensor and 14 ± 1 s�1 for the long biosensor. These results are
limited in that they report only fluorescent gain and do not directly
address the separate folding (which includes both hydrogen bond
breaking and new hydrogen bond formation) and binding pro-
cesses present in the biosensors, requiring the use of a previously
described association rate as a constraint [22]. However, the differ-
ing conformational switching rate constants support our view that
the impacted switching kinetics of the longer sensor (relative to
the shorter sensor) may reflect a limitation on the ability of the
longer sensor to undergo conformational change upon target addi-
tion, resulting in a diminished sensor response at a given concen-
tration of target. This suggests that the longer sensor’s effective



Fig. 4. Short and long sensor designs show significantly impacted kinetics. 200 nM
Myc/Max was introduced to either the short (black, 8 bp) or long (red, 21 bp)
biosensor, giving a time-dependent increase in fluorescent signal that illustrates the
impacted kinetics of the long sensor. Signal was fit to a sum of two association
processes, a protein-concentration dependent rate (constrained as 2.1 � 105 M�1

from prior measurement [22]) and a concentration-independent conformational
switching rate, giving apparent conformational switching rate constants of
170 ± 10 s�1 for the short sensor and 14 ± 1 s�1 for the long sensor. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. ATF3 enhances Max binding as predicted. ATF3 in isolation (blue) does not
appreciably bind to the biosensor recognition sequence, but enhances the apparent
affinity of Max for the short biosensor (black) compared to Max homodimers (red).
This supports the existence of previously uncharacterized protein-protein interac-
tions predicted by the ENCODE project [24]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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equilibrium between its conformations has been changed,
resulting in the observed different relative apparent affinities for
Myc/Max.

These apparent affinities and kinetics data demonstrate that
while all biosensors tested responded robustly to Myc/Max, a rel-
atively lower kinetic barrier and higher sensitivity can be achieved
using the short biosensor, indicating that shorter flanking
sequences are more practical for achieving greater sensitivities.
In comparison, the impacted performance of overly stabilized,
longer biosensors may be due to interrelated factors including
kinetic barriers and differences in the equilibrium across the pop-
ulation of conformations. As part of our design process, all of our
biosensors were carefully selected to remove extraneous factors
that could interfere with the responses observed. Because the
regions flanking the 50 and 30 ends of the recognition site can
greatly modulate Myc/Max binding affinity, the medium and long
biosensors were designed with known high-affinity flanks [10].
Since dehybridization of dsDNA is less favorable with terminal
G–C pairs compared to A–T pairs [23], we also designed our bio-
sensors to have invariant G–C rich-regions on the terminal ends
of the binding-capable state to minimize differences in apparent
affinity. To confirm that the behavior of the sensor alone did not
differ substantially from our design, we performed thermal dena-
turation studies, which strongly suggest that our predicted folding
patterns are accurate (see Supporting information). Overall, the
significant sequence similarities between the different biosensor
designs leave total conformational stability as the primary factor
that differs among them. It is worth noting, however, that these
factors remain important ones to vary when designing biosensors
against other TFs.

3.5. Application of biosensors to confirm predicted binding behavior

Having demonstrated that our biosensors can be designed
with robust sensitivity and specificity, we used them to confirm
predicted intracellular binding. High-throughput chromatin
immune-precipitation (ChIP) studies published as part of the
Encyclopedia of DNA Elements (ENCODE) project [24] identified
novel protein:protein interaction between Max and ATF3 TFs. To
test the validity of this proposed interaction, we tested biosensor
binding for Max, Max with added ATF3 protein, and ATF3 (Fig. 5).
ATF3 in isolation does not appreciably bind to the biosensors, but
improves the binding of Max, with the apparent KD improving from
310 ± 80 nM to 220 ± 40 nM. This finding validates the ENCODE
observation that Max and ATF3 TFs can interact to bind cognate
DNA together.

4. Discussion

Changes in the conformational stability of the DNA-based bio-
sensor, based on total dsDNA hydrogen bonding, profoundly affect
the sensitivity of the biosensor for its TF target, providing practical
size considerations for biosensor designs. This finding presents
additional guidance for biosensor optimization and incorporation
of biosensors into tools and techniques, such as real-time analyte
monitoring in patient blood [6]. Foremost among those observa-
tions is that the additional stability offered by longer biosensor
designs may in fact significantly limit biosensor performance,
favoring smaller biosensor designs. As major challenges remain
in the widespread application of biosensors [5], this additional
guidance will prove valuable. This study illustrates sensitive affin-
ity measurement of Myc, Max, and the Myc/Max complexes to our
biosensors, as well as the validation of a predicted interaction
between Max and ATF3 TFs [24], illustrating the diagnostic poten-
tial of TF beacon biosensors for conditions such as the upregulation
of Myc in a variety of cancers [12]. Finally, given recent advance-
ments using DNA biosensors for in vivo monitoring [6], the rational
design of TF beacons based on increased understanding of how
conformational stability and other key factors influence biosensor
performance provides a path forward for successful diagnostic
development, such as through future studies establishing the
guidelines for the practical limitations on biosensor size due to
the observed effects seen with our biosensor designs.
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