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Role of plasma edge modeling
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• Design of divertors and power exhaust scenarios 

for next generation machines still an open question

o Limit power load to PFCs to acceptable levels

o Manage particle exhaust

o Ensure compatibility with burning plasma conditions in the 

core

• Numerical codes (e.g. SOLPS-ITER) essential to 

consistently model the complex plasma edge

o (Multi-)fluid plasma – kinetic neutral models

o Highly nonlinear, anisotropic, strongly coupled PDEs 

o Coupling with PWI models, MHD equilibrium,…

o Coupled Finite Volume / Monte Carlo codes

 ITER

[A.S. Kukushkin et al., Fusion Eng. 
Des. 96 (2011) 2865.]



Plasma edge codes as analysis tools
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Plasma edge codes as optimization tools
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Divertor Shape 
optimization

Magnetic divertor
optimization

[W. Dekeyser et al., Nucl. Fusion 54 (2014) 073022, and M. Blommaert et al., Nucl. Fusion 55 (2015) 013001.]

Applications of optimization tools

Using adjoint techniques, entire 

optimization problem solved at a cost of 

only a few forward simulations!



Model calibration through optimization

• Cost function: match to “experimental data”

transport coefficients and plasma edge model constants

(the control variables)

state variables: plasma density, temperature,…

plasma edge model: set of PDEs and boundary conditions

• Efficient solution through adjoint sensitivity analysis

• Challenges: accounting for multiple diagnostics? Prior information 

about uncertainties (Bayesian setting)? …
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[M. Baelmans et al., PPCF 56 (2014) 114009.]

Exp. data

Simulation



Potential of sensitivity analysis for edge plasma model 

validation
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• Efficient solution of UQ problems through optimization

• Identification of dominant uncertainties, guide for parameter space reduction

• Efficient parametrization of input and output PDFs, efficient propagation of 

uncertainty though the codes

• Construction of surrogate models

…but: several challenges to be addressed to enable application to realistic 

problems!



Outline
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• Motivation

• Sensitivities in the presence of MC noise

• Partially adjoint techniques for simulation chains

• Practical implementation in big codes

• Summary and outlook



Optimization for fluid-kinetic models
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• Sources from kinetic neutrals, but ‘only flying left and right’
 Can be solved with Monte Carlo or finite volume method

• Some essential features of SOL models are present

o Fluid-kinetic coupling, Monte Carlo noise, nonlinear source terms, …
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• Optimization of “divertor fluxes”:



Finite Difference (FD) sensitivities
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• Reduced cost function/state solver as ‘black box’

• Sensitivity

o Cost scales with number of design variables

o Correlated random numbers to reduce variance

o Some decorrelation hard/impossible to avoid in practice 



• Constrained optimization problem

• Reduced cost functional

• Chain rule for sensitivity computation

The adjoint approach to sensitivity calculation
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Optimality conditions
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• Lagrangian

• First order optimality conditions:

State equations

Adjoint equations

Design equations

 Again a coupled FV-MC system!

 How can we achieve low variance on the sensitivities?



Adjoint simulation
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The discrete adjoint approach
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(Relative) standard deviation on sensitivity
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[W. Dekeyser et al., Contrib. Plasma Phys. 58 (2018) 718.]



Performance of the optimization algorithm
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Propagating sensitivities through simulation chains
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Propagating sensitivities through simulation chains
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Sensitivities w.r.t. edge plasma model parameters
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[M. Blommaert et al., NME 12 (2017) 1049.]
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Implementation in full edge codes
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• Challenges

o Dealing with “legacy code”

o Developer and user friendliness

o Maintainability

• Current research tracks for SOLPS-ITER

o Use of AD tools (“Automatic/Algorithmic Differentiation”): TAPENADE (INRIA)

• Link to discrete adjoint approach, very robust w.r.t. statistical noise

o Practical combination of adjoint and finite differences

(in-parts adjoint technique)



Proof-of-principle: forward AD in B2.5
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• Case setup

o D only, fluid neutrals

o Input power PSOL = 31 MW, split equally between ions and 

electrons

o Low recycling conditions, ce, ci = 6.0 m2 s-1

• Quantities of interest (@ targets):

o Max. electron temperature Te,max

o Max. heat load 𝑞𝑚𝑎𝑥
′′

• Varied model parameters:

o Input power (Pe, Pi)

o Radial heat diffusion coefficients (ce, ci)



Verification of AD sensitivities
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Relative error AD-central FD

Te,max 𝑞𝑚𝑎𝑥
′′

Pe ~10-8 ~10-7

Pi ~10-7 ~10-7

ce ~10-9 ~10-6

ci ~10-9 ~10-6



Sensitivity of target profiles
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• Pe strongly linked to Te, ions need collisions

• q’’ mainly driven by e- contribution

• c spreading of plasma power

Normalized sensitivities

e.g.    𝑆 = ቚ
𝜕𝑇𝑒,𝑚𝑎𝑥

𝜕𝑃𝑒 𝑂𝑃
∙

𝑃𝑒

𝑇𝑒,𝑚𝑎𝑥

[S. Carli et al., NME 18 (2019) 6.]
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Summary and outlook
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• Several challenges to compute accurate sensitivities of plasma edge code have 

been addressed:

o Handling of statistical noise

o Complex simulation chains

o Dealing with big codes

• Sensitivities may be essential to enable UQ studies for plasma edge models

o Solving UQ problems through optimization

o Identifying dominant uncertainties over a parameter range (parameter space reduction)

o Efficient parametrization of input and output PDFs

o Construction of surrogate models

o …



Thank you for your attention!


