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Abstract: This paper introduces a set of sensitivity metrics to be used along likelihood-based modal identification methods. In maximum
likelihood (ML) estimation theory, the precision of ML point estimates can be measured by the curvature of the likelihood function. This paper
presents closed-form partial derivatives, observed information, and variance expressions for discrete-time stochastic state-space model parameters
as well as state matrix features that influence modal estimates. The results are derived for the observation matrix and the state matrix as well as
eigenvalues and eigenvectors of the state matrix; these model entities correspond to natural vibration properties of a structural system. Confidence
intervals are constructed for natural frequencies, damping ratios, and mode shapes using the derived asymptotic covariance matrices and the
asymptotic normality property of ML estimators. The results are a supplement to the ML-based structural identification using expectation maxi-
mization (STRIDE) modal identification algorithm and are applicable to modal identification techniques formulated in the time-domain stochastic
state-space model for linear time invariant systems. An application to structural modal identification is included to compare closed-form asymp-
totic parameter uncertainties toMonte Carlo bootstrap estimates.DOI: 10.1061/AJRUA6.0000832.© 2015 American Society of Civil Engineers.
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Introduction

The true behavior of a structural system is influenced by the inter-
action of many epistemic and aleatory random variables in the
physical world. These random variables introduce uncertainty into
otherwise deterministic systems, consequently reducing confidence
in structural assessments. Through techniques such as stochastic
modeling or Monte Carlo simulations, engineers can better discern
and predict the true performance of a structural system by quanti-
fying the effects of such random variables.

In structural health monitoring (SHM), it is necessary to include
field measurements, which contain deterministic and stochastic
attributes, within a model that represents the dynamic behavior
of a structural system. In general, collected data are analyzed to
explain structural behavior (Abdel-Ghaffar and Scanlan 1985;
Kwasniewski et al. 2006; Shahidi et al. 2015) or infer properties
of existing structures (Juang and Phan 2001; Pakzad and Fenves
2009; Peeters and De Roeck 1999; Pi and Mickleborough 1989).
Linear stochastic models can be composed of two subsystems: a
deterministic part, which represents an exact mathematical formu-
lation, and a stochastic part, which defines the influence and behav-
ior of random variables (Chang and Pakzad 2013).

This paper is focused on structural modal identification, more
specifically, the theoretical precision of maximum likelihood
estimators (MLEs), a common class of statistical estimators for mo-
dal properties (Andersen; Guillaume et al. 1998; Matarazzo and

Pakzad 2015a). The quantification of uncertainty as a result of
parameter estimation for a broad class of statistical estimators
would prove to be a useful metric for evaluation or selection of
identification techniques. The adequacy of an estimator is espe-
cially a concern in the rapidly evolving field of SHM; as col-
lected data reach larger sizes and new formats, such as BIGDATA
(Matarazzo et al. 2015) or mobile sensing (Matarazzo and Pakzad
2015b), trusted estimation techniques with measureable precision
become increasingly valuable.

This work is towards the goal of better understanding how esti-
mated modal parameters may differ from their true values. In a
broad sense, it is essential that the variation resulting from the
estimation technique is lower than the expected variation of the
structural property itself. Without any measure of precision of an
estimation approach, this question is left unanswered, leaving prac-
tice as the only method to verify the efficiency of such an estimator.

Maximum likelihood (ML) theory provides a popular frame-
work for parameter estimation and model identification of statisti-
cal models. With an intuitive goal and measureable performance,
ML methods offer an efficient approach. MLEs are a family of
statistical estimators with many desirable features provided some
regularity conditions. While a long list of these conditions may
be solicited for complicated observations [as mentioned by King
(1989)], only few are necessary to derive the asymptotic properties
of MLE required in this work. More specifically, the proof for con-
sistency, asymptotic normality, and efficiency for the ML estimator
assumes the first two derivatives of the likelihood function exist
(Stuart et al. 1999). In this paper, such derivatives are computed
analytically for model features that influence modal properties.

The following key properties of ML estimates can be derived
(Long 1997; Reinert 2009):
• MLEs are consistent;
• MLEs are asymptotically unbiased, but are not necessarily un-

biased for finite samples;
• MLEs are asymptotically efficient; they have the smallest

asymptotic variance out of all asymptotically unbiased estima-
tors, approximately equal to the Cramér-Rao lower bound; and

• MLEs are asymptotically normally distributed.
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Finally, ML estimates that do not satisfy any of the preceding
regularity conditions remain useful because they are, by definition,
the most likely parameters to have generated the data under the
model; such ML estimates may or may not have the asymptotic
properties listed previously (King 1989).

In ML estimation theory, the likelihood function contains im-
portant information regarding how model parameters represent
data. Closed-form likelihood functions and derivatives are valuable
because they facilitate enhanced model analyses including preci-
sion of point estimates. As King (1989) states, “a measure of the
likelihood function’s curvature is also a measure of the precision of
the ML estimate.” As documented in the literature (King 1989;
Klein and Neudecker 2000; Rubin et al. 1977; Shumway and
Stoffer 2011), the standard errors of the ML point estimators
are determined by evaluating the Hessian matrix at the critical like-
lihood point. It is desirable to determine an analytical solution for
information and covariance matrices because they are required by
subsequent processes, e.g., likelihood ratio test, Wald test
statistic, score test, and interval estimation, especially because
the asymptotic variance of the MLE is equal to the Cramér-Rao
lower bound.

Amajority of studies considering precision ofML estimates have
focused on frequency-domain models. The approach in Verboven
et al. (2004) used a numerical Jacobian, computed at the final
iteration of the Gauss-Newton algorithm, to estimate uncertainty
of modal properties. Mahata et al. (2006) analyzed nonparametric
noise statistics and derived conditions for consistent estimates.
Pintelon et al. (2007) implemented the delta method (Oehlert 1992)
to produce asymptotic variance estimates for transfer function model
parameters based on a first-order Taylor series likelihood approxi-
mation. This method assumed that parameter covariance for system
matrices were available along the MLE through the estimation
technique, which is rarely the case in state-space ML methods.

In some ML algorithms such as Newton-Raphson or expectation
maximization (EM) (Rubin et al. 1977; Shumway and Stoffer
2011), numerical Hessian matrices can be produced at the final iter-
ation. The supplemented EM (SEM) algorithm (Meng and Rubin
1991) provides an approach to computing analytical variance-
covariance matrices; however, its applicability to a multivariate
state-space model is not covered. It is preferable to have analytical
expressions for the sensitivity of the likelihood function with re-
spect to specific state-space model parameters.

Charalambous and Logothetis (2000) developed nonlinear fil-
ters to carry out the EM algorithm for continuous-time nonlinear
stochastic systems in explicit form; computations for closed-form
gradients and Fisher information follow directly from the deriva-
tions. There is a volume of work on the uncertainty of identified
modal parameters using the Bayesian framework in frequency do-
main (Au 2014a, b). While frequentist and Bayesian approaches are
fundamentally different in theory, they share concepts for measur-
ing the uncertainty of an estimator. For example, the Bayesian fast
Fourier transform (FFT) identification method that determines the
most probable value (MPV) (Au and Zhang 2012; Au 2011) is
analogous to the frequentist, time-domain structural identification
using expectation maximization (STRIDE) method that determines
maximum likelihood estimates (MLEs) (Matarazzo and Pakzad
2015a) and is considered in this paper. The true relationship be-
tween these two perspectives is highly nontrivial and is problem-
dependent (Au 2012). This paper provides a deeper insight into the
relationship between Bayesian and frequentist parameter uncer-
tainty in system identification, established in Au (2012), by provid-
ing additional tools for frequentist approaches.

This paper derives closed-form expected information and
covariance matrices for four stochastic state-space model entities:

observation matrix, state matrix, eigenvalues of state matrix, and
right eigenvectors of state matrix. The importance of the selected
model features is that they directly influence modal property esti-
mates of the structural system. Sensitivity metrics on these quan-
tities help engineers better understand the true precision of an
estimated modal parameter. Additionally, using the asymptotic
covariance matrices and the asymptotic normality property of ML
estimators, confidence intervals are constructed for natural frequen-
cies, damping ratios, and mode shapes. The metrics presented in
this paper are applicable to modal identification methods within
this model class, e.g., auto-regressive (AR) (He and De Roeck
1997), numerical algorithm for subspace state-space system iden-
tification (N4SID) (Van Overschee and De Moor 1992), eigenvalue
realization algorithm-observer Kalman filter identification of out-
put-only systems (ERA-OKID-OO) (Chang and Pakzad 2013),
structural identification using expectation maximization (STRIDE)
(Matarazzo and Pakzad 2015a), stochastic subspace identification
(SSI) (Peeters and De Roeck 1999), and others.

Conditional Expectation of Log-Likelihood Function

In this section, the stochastic state-space model is briefly reviewed
and the corresponding model likelihood is constructed from alea-
tory model entities. Recall the stochastic state-space model, given
in Eqs. (1)–(5), which defines the behavior of a linear discrete time
invariant system with time steps k ¼ 1; 2; : : : ;K. The size of the
observation vector yk is O and the size of the state vector xk is S;
Appendix II gives further model details:

xk ¼ Axk−1 þ ηk ð1Þ

yk ¼ Cxk þ υk ð2Þ

x1 ∼ Nðμ̄; V̄Þ ð3Þ

ηk ∼ Nð0;QÞ ð4Þ

υk ∼ Nð0;RÞ ð5Þ

The complete-data likelihood function for this model is a
product of three independent Gaussian densities [see Hinton and
Ghahramani (1996), Matarazzo and Pakzad (2015a), or Shumway
and Stoffer (2006) for details]. The log-likelihood function, pro-
vided in Eq. (6), represents the same Gaussian mixture as a sum,
which is mathematically more convenient than the product. This
function is the foundation for determining which set of model
parameters best explains the observed data. To ease repeated refer-
ences, call the collection of all six model parameters the super-
parameter Ψ¼ð μ̄; V̄; A; Q; C; RÞ and let the observed data
be defined by Y ¼ y1; : : : ; yK and let the states be X ¼ x1; : : : ;xK:

ln½LX;YðΨÞ� ¼ − S
2
lnð2πÞ − 1

2
ln jV̄j − 1

2
ðx1 − μ̄ÞTV̄−1ðx1 − μ̄Þ

− KO
2

lnð2πÞ − 1

2
ln jRj

− 1

2

XK
k¼1

ðyk −CxkÞTR−1ðyk −CxkÞ

− ðK − 1ÞS
2

lnð2πÞ − 1

2
ln jQj

− 1

2

XK
k¼2

ðxk −Axk−1ÞTQ−1ðxk −Axk−1Þ ð6Þ
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Eq. (6) implies complete data, i.e., it assumes state variables are
available for this likelihood calculation, which is not the case in
state-space. Subsequent sensitivity metrics in this paper assume
the state-space model has been identified by an ML method,
i.e., Ψ ¼ Ψ̂, so that MLEs of the model parameters are available.
After identification, the state variable can be computed using the
data and ML parameters. For example, with the MLEmodel param-
eters, expected state variables and sufficient state statistics can be
estimated through Kalman filter (Kalman 1960; Shumway and
Stoffer 1981) and Rauch-Tung-Striebel (RTS) smoother recursions
(Rauch et al. 1965). As a result, subsequent gradients refer to the
conditional expectation of the log-likelihood function at the critical
point, given by Eq. (7):

GðΨÞΨ¼Ψ̂ ¼ Efln½LX;YðΨ̂Þ�g ð7Þ

In summary, the difference between GðΨÞ and ln½LX;YðΨÞ� lies
in the conditional expectation of the state variable and its variances,
given the data and ML parameters. If the estimation of the state
variable and its variances is exact, the two log-likelihood functions
are identical at the critical point.

Information Metrics

This section discusses the relationship between the information
contained within a model parameter and the likelihood function,
which is determined by the curvature of the likelihood function.
The observed information matrix is the negative expectation of the
Hessian [denoted by HðÞ] of the likelihood function at the critical
point, G ¼ GðΨÞΨ¼Ψ̂, with respect to a parameter. Eq. (8) illus-
trates the observed information for an MLE element, ψ ∈ Ψ ¼ Ψ̂.
The Hessian is the second partial derivative of G:

IðψÞ≡−E½HðψÞ� ¼ −E
�∂2G
∂ψ2

�
ð8Þ

The following subsections focus on the preceding relationship
to determine closed-form expected information matrices, then
parameter covariances, for four model features: observation matrix,
state matrix, eigenvalues of state matrix, and right eigenvectors
of state matrix. Derivations begin with appropriate first partial
derivatives of the expected likelihood function. Because the like-
lihood function is a scalar value, the resulting first partial deriva-
tives terms will have the same matrix dimensions as the dependent
variable, e.g., C and ∂G=∂C have identical dimensions just as λd
and ∂G=∂λd are both scalars. Second partial derivative terms re-
quire the derivative of a matrix with respect to another matrix; these
matrices will have dimensions larger than the dependent variable
(see Appendix V for details). To present this result in closed-form,
numerous linear algebra concepts and indexing techniques are
utilized, e.g., Kronecker product, single-entry matrix, matrix vec-
torization, or the matrix trace. For best comprehension of the math-
ematics within this paper, see Pedersen et al. (2012). Additional
details for selected derivations are provided in Appendix I.

Observed Information of Observation Matrix

Following the definition in Eq. (8), the information for the obser-
vation matrix C is straightforward:

IðCÞ≡−E½HðCÞ� ¼ −E
� ∂2G
∂C∂CT

�
ð9Þ

The derivation of the observation matrix information begins
with the first partial derivative of the expected likelihood function

G. Using the symmetry of R and R−1, the resulting partial deriva-
tive ∂G=∂C is a first-order sensitivity matrix with size O × S:

∂G
∂C ¼ − 1

2

XK
k¼1

∂
∂C fE½ðyk −CxkÞTR−1ðyk −CxkÞ�g

¼ − 1

2

XK
k¼1

−2R−1ðE½ykxT
k � − CE½xkxT

k �Þ

¼
XK
k¼1

R−1ðE½ykxT
k � −CE½xkxT

k �Þ

¼ R−1 XK
k¼1

E½ykxT
k � −R−1C

XK
k¼1

E½xkxT
k � ð10Þ

The first line of Eq. (10) comes from the expected value of the
sixth term in Eq. (6); the second line follows directly from Eq. (88)
in Pedersen et al. (2012). For the Hessian with respect to the ob-
servation matrix, the derivative of ∂G=∂Cmust be determined with
respect to each element of the observation matrix:

∂2G
∂C∂Cij

¼ ∂
∂Cij

�
R−1 XK

k¼1

E½ykxT
k � −R−1C

XK
k¼1

E½xkxT
k �
�

¼ −R−1 ∂C
∂Cij

XK
k¼1

E½xkxT
k �

¼ −R−1δO×S
ij

XK
k¼1

E½xkxT
k � ð11Þ

where δO×S
ij is an O × S single-entry matrix [a matrix with zeros

everywhere except unity at entry ij (Pedersen et al. 2012)] repre-
senting the derivative of the observation matrix with respect to one
of its entries. The following Hessian is constructed by calculating
Eq. (11) for every element of the observation matrix, producing
Eq. (12):

∂2G
∂C∂Cij

≡

2
666666666664

∂2G
∂C11∂Cij

∂2G
∂C12∂Cij

· · ·
∂2G

∂C1S∂Cij

∂2G
∂C21∂Cij

∂2G
∂C22∂Cij

..

.

..

. . .
.

∂2G
∂CO1∂Cij

· · ·
∂2G

∂COS∂Cij

3
777777777775

ð12Þ

Next, the preceding element-wise derivative matrices are vector-
ized and become the columns of the OS ×OS full Hessian (block)
matrix (where OS is the product of O and S), ∂2G=ð∂C∂CTÞ,
in Eq. (13). When vectorized, each ij row-column coordinate is
mapped to a row-wise linear index (Eddins and Shure 2001),
i.e., vec½∂2G=ð∂C∂CLÞ� for L ¼ 1; 2; : : : ;OS:

∂2G
∂C∂CT ≡

�
vec

� ∂2G
∂C∂C1

�
vec

� ∂2G
∂C∂C2

�
· · · vec

� ∂2G
∂C∂COS

��

ð13Þ

Alternatively, because both the state and the observation error
covariance are real, this Hessian can be expressed simply using the
Kronecker product:
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∂2G
∂C∂CT ¼

XK
k¼1

E½xkxT
k � ⊗ ð−R−1ÞT ð14Þ

Finally, the observed information of the observation matrix is
obtained:

IðCÞ ¼ −E
� ∂2G
∂C∂CT

�
ð15Þ

Observed Information of State Matrix

The state matrix information follows from the definition in Eq. (8):

IðAÞ≡−E½HðAÞ� ¼ −E
� ∂2G
∂A∂AT

�
ð16Þ

The first partial derivative of the likelihood function with respect
to the state matrix is given in the following, utilizing symmetry of
input covariance, Q and Q−1. Then, the second partial derivative is
computed, obtaining the likelihood Hessian with respect to the state
matrix:

∂G
∂A ¼ − 1

2

XK
k¼2

∂
∂A fE½ðxk −Axk−1ÞTQ−1ðxk −Axk−1Þ�g

¼ − 1

2

XK
k¼2

−2Q−1ðE½xkxT
k−1� −AE½xk−1xT

k−1�Þ

¼
XK
k¼2

Q−1ðE½xkxT
k−1� −AE½xk−1xT

k−1�Þ

¼ Q−1 XK
k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1� ð17Þ

The previous derivative is similar in form to Eq. (10): the first
line of Eq. (17) uses the expected value of the last line in Eq. (6); the
second line in Eq. (17) can be computed using Eq. (88) in Pedersen
et al. (2012):

∂2G
∂A∂Aij

¼ ∂
∂Aij

�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

¼ −Q−1 ∂A
∂Aij

XK
k¼2

E½xk−1xT
k−1�

¼ −Q−1δS×Sij

XK
k¼2

E½xk−1xT
k−1� ð18Þ

where δS×Sij is an S × S single-entry matrix. The matrix provided in
Eq. (18) is calculated for each element of the state matrix Aij and
constitutes a block matrix element of the full Hessian:

∂2G
∂A∂Aij

≡

2
666666666664

∂2G
∂A11∂Aij

∂2G
∂A12∂Aij

· · ·
∂2G

∂A1S∂Aij

∂2G
∂A21∂Aij

∂2G
∂A22∂Aij

..

.

..

. . .
.

∂2G
∂AS1∂Aij

· · ·
∂2G

∂ASS∂Aij

3
777777777775

ð19Þ

The preceding element-wise derivative matrices are vectorized,
reindexed, and arranged as columns to form the S2 × S2 full

Hessian matrix in Eq. (20). When vectorized, row-wise linear in-
dexes replace row-column coordinates, i.e., vec½∂2G=ð∂A∂ALÞ� ¼
vec½∂2G=ð∂A∂AijÞ� for L ¼ 1; 2; : : : ; S2:

∂2G
∂A∂AT ≡

�
vec

� ∂2G
∂A∂A1

�
vec

� ∂2G
∂A∂A2

�
· · · vec

� ∂2G
∂A∂AS2

��

ð20Þ

This Hessian can further be expressed in a simpler form via use
of the Kronecker product because the states and state input covari-
ance are both real:

∂2G
∂A∂AT ¼

XK
k¼2

E½xk−1xT
k−1� ⊗ ð−Q−1ÞT ð21Þ

Finally, the observed information of the state matrix is available:

IðAÞ ¼ −E
� ∂2G
∂A∂AT

�
ð22Þ

Observed Information of State Matrix Eigenvalues

The final two subsections focus on eigenfeatures of the state matrix.
Consider the eigendecomposition of the state matrix A ¼ ΓΛΘ,
where Γ is the matrix of right eigenvectors, Λ is the diagonal eigen-
value matrix, and Θ is the matrix of left eigenvectors (Θ ¼ Γ−1).
As previously, the information of the eigenvalues ofA follows from
the definition in Eq. (8):

IðΛÞ≡−E½HðΛÞ� ¼ −E
� ∂2G
∂Λ∂ΛT

�
ð23Þ

The likelihood score with respect to a state matrix eigenvalue is
a diagonal matrix because the eigenvalue matrix is diagonal:

∂G
∂Λ≡

2
666666666664

∂G
∂λ1 0 0 0

0
∂G
∂λ2

0 0

0 0 . .
.

0

0 0 0
∂G
∂λS

3
777777777775

ð24Þ

In the preceding equation, the eigenvalues λd, for d ¼
1,2; : : : ; S, are the diagonal elements of the eigenvalue matrix Λ.
In Eq. (25), the chain rule is implemented to formulate the likeli-
hood score with respect to an individual state matrix eigenvalue
becauseA ¼ fðΛÞ. The value of ∂G=∂λd is a scalar, while ∂G=∂A
and ∂A=∂λd are both N × N matrices. In matrix differentiation, the
chain rule can be expressed in many forms (Pedersen et al. 2012).
For example, the chain rule for the likelihood score ∂G=∂λd can be
shown as an element-wise summation of products [Eq. (25)]. Al-
ternatively, the inner product of vectorized partial derivatives or the
trace of the product of partial derivatives may be used to establish
the likelihood score with respect to a state matrix eigenvalue
[Eq. (26)]. Throughout this paper, the vectorized representation
is implemented:

∂G
∂λd ¼

XS
i¼1

XS
j¼1

∂G
∂Aij

∂Aij

∂λd ð25Þ
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∂G
∂λd ¼ vec

�∂G
∂A

�
· vec

�∂A
∂λd

�
¼ tr

��∂G
∂A

�
T ∂A
∂λd

�
ð26Þ

The ∂G=∂A term in Eq. (26), i.e., the partial derivative of like-
lihood with respect to the state matrix, has been determined in the
previous section. The partial derivative of the state matrix with re-
spect to one of its eigenvalues, the second term in the preceding
equation, is computed using the product rule:

∂A
∂λd ¼

∂
∂λd ðΓΛΘÞ ¼ Γ

∂Λ
∂λd

Θ ¼ ΓδS×Sd Θ ð27Þ

where ∂Λ=∂λd ≡ δS×Sd is an S × S single-entry matrix (a matrix
with zeros everywhere except unity at the dth diagonal). The diago-
nal nature of Λ means single-entry matrices for nondiagonal terms
are equal to S × S matrices of zeros, i.e., δS×SL≠d ¼ 0S×S, verifying
that ∂G=∂Λ is diagonal as presented in Eq. (24). The term
∂A=∂Λ is an S2 × S2 block diagonal matrix containing S × S ma-
trix elements as shown in Eq. (28):

∂A
∂Λ ≡

2
666666666664

�∂A
∂λ1

�
0S×S 0S×S 0S×S

0S×S
�∂A
∂λ2

�
0S×S 0S×S

0S×S 0S×S . .
.

0S×S

0S×S 0S×S 0S×S
�∂A
∂λS

�

3
777777777775

ð28Þ

For the diagonal elements of ∂G=∂Λ, the terms of Eq. (25) are
obtained through Eqs. (17) and (27):

∂G
∂λd

¼ vec

�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

· vecðΓδS×Sd ΘÞ ð29Þ

Appendix I has a discussion on the role of Eq. (29) in the M-step
of the EM algorithm for state-space models (Matarazzo and Pakzad
2015a; Shumway and Stoffer 1982). The Hessian of G with respect
to the diagonals ofΛ is an S × Smatrix that describes the likelihood
function curvature with respect to a state matrix eigenvalue:

∂2G
∂Λ∂ΛT ≡

2
666666666664

∂2G
∂λ1∂λ1

∂2G
∂λ1∂λ2 · · ·

∂2G
∂λ1∂λS

∂2G
∂λ2∂λ1

∂2G
∂λ2∂λ2

..

.

..

. . .
.

∂2G
∂λS∂λ1

· · ·
∂2G

∂λS∂λS

3
777777777775

ð30Þ

The Hessian entries are in terms of two diagonal elements of Λ,
∂2G=ð∂λd∂λhÞ, with d; h ¼ 1,2; : : : ; S. The chain rule is applied
to compute ∂2G=ð∂λd∂λhÞ, a scalar value:

∂2G
∂λd∂λh ¼

∂
∂λh

�∂G
∂λd

�
ð31Þ

Implementing the product rule and temporarily omitting the
vecðÞ operator to simplify notation used within the definition of

∂G=∂λd in Eq. (29), appropriate matrices will be vectorized after
simplification:

∂2G
∂λd∂λh ¼

∂
∂λh

�∂G
∂A

� ∂A
∂λd þ

∂G
∂A

∂2A
∂λd∂λh ð32Þ

The term ∂2A=ð∂λd∂λhÞ ¼ 0S×S, so that only the first term of
Eq. (32) remains. The likelihood curvature with respect to state
matrix eigenvalues can be calculated via Eq. (33), thus constructing
the elements of the full Hessian in Eq. (30):

∂2G
∂λd∂λh ¼

∂
∂λh

�∂G
∂A

� ∂A
∂λd

¼ ∂
∂λh

�
Q−1 XK

k¼2

E½xkxT
k−1�

−Q−1A
XK
k¼2

E½xk−1xT
k−1�

�
ΓδS×Sd Θ

¼
�
−Q−1ΓδS×Sh Θ

XK
k¼2

E½xk−1xT
k−1�

�
ΓδS×Sd Θ−1

¼ vec

�
−Q−1ΓδS×Sh Θ

XK
k¼2

E½xk−1xT
k−1�

�
· vecðΓδS×Sd ΘÞ

ð33Þ

Finally, the information matrix for the state matrix eigenvalues
is obtained:

IðΛÞ ¼ −E
� ∂2G
∂Λ∂ΛT

�
ð34Þ

Observed Information of State Matrix Eigenvectors

Following the definition of parameter information, the observed
information of the right eigenvectors of the state matrix is given in
the following:

IðΓÞ≡−E½HðΓÞ� ¼ −E
� ∂2G
∂Γ∂ΓT

�
ð35Þ

Repeating the procedures of the previous sections, the first par-
tial derivative of the likelihood function with respect to the eigen-
vector matrix is computed:

∂G
∂Γ ≡

2
666666666664

∂G
∂Γ11

∂G
∂Γ12

· · ·
∂G
∂Γ1S

∂G
∂Γ21

∂G
∂Γ22

..

.

..

. . .
.

∂G
∂ΓS1

· · ·
∂G
∂ΓSS

3
777777777775

ð36Þ

Each element of Eq. (36) is the likelihood score with respect to
an element of Γ, ∂G=∂Γij with i; j ¼ 1,2; : : : ; S. Similar to the
eigenvalue scores, implementing the chain rule, the inner product
of vectorized partial derivative matrices is found as
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∂G
∂Γij

¼ vec

�∂G
∂A

�
· vec

� ∂A
∂Γij

�
ð37Þ

The product rule is then used to expand on the second term of
Eq. (37):

∂A
∂Γij

¼ ∂A
∂Γij

ðΓΛΘÞ ¼ ∂Γ
∂Γij

ΛΘþ ΓΛ
∂Θ
∂Γij

ð38Þ

where ∂Γ=∂Γij ≡ δS×Sij is an S × S single-entry matrix with zeros
everywhere except unity at entry ij. The derivative of a left eigen-
vector elementΘrc with respect to a right eigenvector element Γij is
formulated below using indexes r, c ¼ 1,2; : : : ; S:

∂Θrc

∂Γij
≡

� ∂Θ
∂Γij

�
rc

ð39Þ

The corresponding block matrix ∂Θ=∂Γ is constructed from the
following element matrices:

∂Θ
∂Γij

≡

2
666666666664

∂Θ11

∂Γij

∂Θ12

∂Γij
· · ·

∂Θ1S

∂Γij

∂Θ21

∂Γij

∂Θ22

∂Γij

..

.

..

. . .
.

∂ΘS1

∂Γij
· · ·

∂ΘSS

∂Γij

3
777777777775

¼

2
6666664

−Θ1iΘj1 −Θ1iΘj2 · · · −Θ1iΘjS

−Θ2iΘj1 −Θ2iΘj2
..
.

..

. . .
.

−ΘSiΘj1 · · · −ΘSiΘjS

3
7777775

ð40Þ

The column of the first term and the row of the second term in
the left eigenvector product are i and j, respectively; the row of the
first term and the column of the second term in the left eigenvector
product are defined by their location within the score matrix,
i.e., ∂Θrc=∂Γij ≡−ΘriΘjc. With all terms in Eq. (40) defined,
the evaluation of the likelihood score with respect to a right eigen-
vector element, a scalar value, is available:

∂A
∂Γij

¼ δS×Sij ΛΘþ ΓΛ
∂Θ
∂Γij

ð41Þ

∂G
∂Γij

¼ vec

�∂G
∂A

�
· vec

� ∂A
∂Γij

�

¼ vec

�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

· vec

�
δS×Sij ΛΘþ ΓΛ

∂Θ
∂Γij

�
ð42Þ

Next, the Hessian of G with respect to a right eigenvector
element is defined as a matrix:

∂2G
∂Γ∂Γmn

≡

2
666666666664

∂2G
∂Γ11∂Γmn

∂2G
∂Γ12∂Γmn

· · ·
∂2G

∂Γ1S∂Γmn

∂2G
∂Γ21∂Γmn

∂2G
∂Γ22∂Γmn

..

.

..

. . .
.

∂2G
∂ΓS1∂Γmn

· · ·
∂2G

∂ΓSS∂Γmn

3
777777777775

ð43Þ

In general, the preceding Hessian entries with respect to two
elements of Γ are ∂2G=ð∂Γij∂ΓmnÞ≡ ∂ð∂G=∂ΓijÞ=∂Γmn with
i; j;m; n ¼ 1,2; : : : ; S. For calculation of the Hessian entries im-
plement the chain rule and temporarily omit the vecðÞ operator
in the definition of ∂G=∂Γij to simplify notation:

∂2G
∂Γij∂Γmn

¼ ∂
∂Γmn

�∂G
∂A

∂A
∂Γij

�

¼ ∂
∂Γmn

�∂G
∂A

� ∂A
∂Γij

þ ∂G
∂A

∂
∂Γmn

� ∂A
∂Γij

�
ð44Þ

The first term of Eq. (44) is expanded:

∂
∂Γmn

�∂G
∂A

� ∂A
∂Γij

¼ ∂
∂Γmn

�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

×

�
δS×Sij ΛΘþ ΓΛ

∂Θ
∂Γij

�

¼ −Q−1 ∂
∂Γmn

ðΓΛΘÞ
XK
k¼2

E½xk−1xT
k−1�

�
δS×Sij ΛΘþ ΓΛ ∂Θ

∂Γij

�

¼ −Q−1
�
δS×Smn ΛΘþ ΓΛ

∂Θ
∂Γmn

�XK
k¼2

E½xk−1xT
k−1�

×

�
δS×Sij ΛΘþ ΓΛ

∂Θ
∂Γij

�
ð45Þ

where δS×Smn is an S × S single-entry matrix with zeros everywhere
except unity at entry mn.

The second term of Eq. (44) is expanded:

∂G
∂A

∂
∂Γmn

� ∂A
∂Γij

�

¼
�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

×
∂

∂Γmn

�
δS×Sij ΛΘþ ΓΛ

∂Θ
∂Γij

�

¼
�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

×

�
δS×Sij Λ

∂Θ
∂Γmn

þ δS×Smn Λ
∂Θ
∂Γij

þ ΓΛ
∂2Θ

∂Γij∂Γmn

�
ð46Þ
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In this equation:

∂2Θ
∂Γij∂Γmn

≡

2
666666666664

∂2Θ11

∂Γij∂Γmn

∂2Θ12

∂Γij∂Γmn
· · ·

∂2Θ1S

∂Γ11∂Γmn

∂2Θ21

∂Γij∂Γmn

∂2Θ22

∂Γij∂Γmn

..

.

..

. . .
.

∂2ΘS1

∂Γij∂Γmn
· · ·

∂2ΘSS

∂Γij∂Γmn

3
777777777775

¼ ∂
∂Γmn

2
66666664

−Θ1iΘj1 −Θ1iΘj2 · · · −Θ1iΘjS

−Θ2iΘj1 −Θ2iΘj2
..
.

..

. . .
.

−ΘSiΘj1 · · · −ΘSiΘjS

3
77777775

¼

2
66666664

Θ1mΘniΘj1 þΘ1iΘjnΘn1 Θ1mΘniΘj2 þΘ1iΘjnΘn2 · · · Θ1mΘniΘjS þΘ1iΘjnΘnS

Θ2mΘniΘj1 þΘ2iΘjnΘn1 Θ2mΘniΘj2 þΘ2iΘjnΘn2
..
.

..

. . .
.

ΘSmΘniΘj1 þΘSiΘjnΘn1 · · · ΘSmΘniΘjS þΘSiΘjnΘnS

3
77777775

ð47Þ

the elements of the Hessian of the left eigenvector matrix with re-
spect to the right eigenvector are constructed using the following
definition for i; j;m; n; r; c ¼ 1,2; : : : ; S:

∂2Θrc

∂Γij∂Γmn
≡ ∂

∂Γmn

�∂Θrc

∂Γij

�
¼ ∂

∂Γmn
ð−ΘriΘjcÞ

¼ ΘrmΘniΘjc þΘriΘjmΘnc ð48Þ

Next, in application of the chain rule to ∂2G=ð∂Γij∂ΓmnÞ, the
terms are vectorized, so the result is a scalar and Eq. (45), from the
first term of Eq. (44), becomes

∂
∂Γmn

�∂G
∂A

� ∂A
∂Γij

¼ vec

�
−Q−1

�
δS×Smn ΛΘþ ΓΛ

∂Θ
∂Γmn

�XK
k¼2

E½xk−1xT
k−1�

�

· vec

�
δS×Sij ΛΘþ ΓΛ

∂Θ
∂Γij

�
ð49Þ

Similarly, Eq. (46), from the second term of Eq. (44), becomes

∂G
∂A

∂
∂Γmn

� ∂A
∂Γij

�

¼ vec

�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

· vec

�
δS×Sij Λ

∂Θ
∂Γmn

þ δS×Smn Λ
∂Θ
∂Γij

þ ΓΛ
∂2Θ

∂Γij∂Γmn

�
ð50Þ

Finally, through combination of Eqs. (44), (49), and (50),
Eq. (51) is determined:

∂2G
∂Γij∂Γmn

¼ vec

�
−Q−1

�
δS×Smn ΛΘþΓΛ

∂Θ
∂Γmn

�XK
k¼2

E½xk−1xT
k−1�

�

· vec

�
δS×Sij ΛΘþΓΛ

∂Θ
∂Γij

�

þvec

�
Q−1XK

k¼2

E½xkxT
k−1�−Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

· vec

�
δS×Sij Λ

∂Θ
∂Γmn

þδS×Smn Λ
∂Θ
∂Γij

þΓΛ
∂2Θ

∂Γij∂Γmn

�

ð51Þ

Covariance Matrices

This section relates the information matrices derived in the previous
sections to the corresponding asymptotic covariance. From ML
estimation theory, the asymptotic parameter covariance matrix is
the inverse of the parameter information matrix (King 1989):

covðψÞ≡ ½IðψÞ�−1 ≡ f−E½HðψÞ�g−1 ¼
�
−E

�∂2G
∂ψ2

��−1
ð52Þ

Furthermore, the asymptotic parameter variances and standard
errors can be extracted from the diagonals of the covariance matrix:

varðψÞ≡ diag½covðψÞ�≡ diagf½IðψÞ�−1g ð53Þ

σðψÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag½covðψÞ�

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagf½IðψÞ�−1g

q
ð54Þ

In most practical purposes, ML estimates will differ from the
true model parameters. Thus, it is important to make the distinction
between true asymptotic parameter covariance, which would result
from a very large number of samples, and the estimated asymptotic
parameter covariance for finite sample sizes. The computations
are identical in form to the equations in this paper; true model
parameters are substituted with MLE, namely ψ ¼ ψ̂, for each
parameter.
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Parameter Variance Results

The asymptotic parameter covariance Eqs. (55)–(58) directly fol-
low from Eq. (52) when implementing the Hessian expressions
from Eqs. (14), (21), (33), and (51):

covðCÞ≡
�
−E

� ∂2G
∂C∂CT

��−1
ð55Þ

covðAÞ≡
�
−E

� ∂2G
∂A∂AT

��−1
ð56Þ

covðΛÞ≡
�
−E

� ∂2G
∂Λ∂ΛT

��−1
ð57Þ

covðΓÞ≡
�
−E

� ∂2G
∂Γ∂ΓT

��−1
ð58Þ

The mode shapes are computed using the observation matrix
and right state eigenvector matrix. Similarly, these estimated
parameters and their respective variances [Eqs. (55) and (58)]
are used to compute the mode shape variance. Because the mode
shape matrix is defined as the product of two random variables
Φ ¼ CΓ, an entry of the mode shape matrix is Φij ¼ CiΓj, com-
puted using the ith row of the observation matrix and the jth col-
umn of the right state eigenvector matrix. The variance of the mode
shapes is constructed element-wise:

varðΦijÞ≡ varðCiÞvarðΓjÞ þ varðCiÞðΓ2
jÞ þ C2

i varðΓjÞ ð59Þ

varðΦÞ≡

2
66664

varðΦ11Þ varðΦ12Þ · · · varðΦ1SÞ
varðΦ21Þ varðΦ22Þ ..

.

..

. . .
.

varðΦO1Þ · · · varðΦOSÞ

3
77775 ð60Þ

The frequency and damping ratio variances are not as simple
because they comprise nonlinear functions:

fn ¼
2π
Δt

lnðλdÞ ð61Þ

ζn ¼ − cosf∡½lnðλdÞ�g ð62Þ

Because an analytical form of these variances is desirable, the
authors initially implemented a first-order Taylor series expansion
to approximate the moments of the modal properties. However, this
approximation did not prove to be consistent with Monte Carlo
simulations; this is a result of the highly nonlinear behavior of
the logarithm function in the bounded domain of the eigenvalues
[the norm of each eigenvalue is less than 1 (Juang and Phan 2001)].
Despite this challenge, the variance of the frequencies and damping
ratios can be accurately computed after constructing their 95% con-
fidence intervals through a perturbation technique detailed in the
following section.

Asymptotic Distribution and Interval Estimation

Depending on the asymptotic distribution of the parameter, the
computed standard errors are used to construct an estimation inter-
val. Under the previously defined regularity conditions of the ML
point estimate, say a scalar estimator ψ̂, the distribution of the MLE
is Gaussian:

ψ̂ − ψ ∼ Nf 0; ½IðψÞ�−1 g ð63Þ

ψ̂ − ψ ∼ N½0; varðψÞ� ð64Þ

The distribution of the MLE is also asymptotically centered on
the true parameter because the MLE bias diminishes to zero at rate
OðK−1Þ (Quenouille 1956):

ψ̂ ∼ N½ψ; varðψÞ� ð65Þ

The application of Eq. (63) to the elements of the observation
and state matrices is a logical extension of ML theory. It is clear that
all six model parameters are governed by this theory, but does this
apply to the eigenvalues and eigenvectors of the state matrix? This
paper demonstrates that the eigenvalues are also MLEs and are
therefore asymptotically normal (see Appendix I for details). At
this point, the eigenvectors were assumed to also be asymptotically
normal and this assumption was verified through Monte Carlo sim-
ulations. Finally, with σðψÞ, the 1 − α confidence interval is con-
structed as

ψ̂� z1−α=2σðψÞ ð66Þ
The general expression Eq. (66) is extended to the multivariate

parameter case using the vec operator, the parameter covariance
matrices of the previous section, and the definition of standard
deviation [Eq. (54)]:

vecðΛ̂Þ � z1−α=2vec½σðΛ̂Þ� ð67Þ

vecðΦ̂Þ � z1−α=2vec½σðΦ̂Þ� ð68Þ

Confidence intervals for each frequency and damping ratio can
be accurately computed through perturbation of the eigenvalue
from the MLE as shown in Eqs. (69) and (70); the following
intervals have been verified to be within 1% of Monte Carlo
simulations:

½f̂LLf̂UL� ¼
2π
Δt

ln½λd � z1−α=2σðλdÞ� ð69Þ

½ζ̂LLζ̂UL� ¼ − cosð∡fln½λd � z1−α=2σðλdÞ�gÞ ð70Þ

If variances are desired for frequencies or damping, the limits
of the interval can be rearranged to solve for the standard errors
directly:

fn � z1−α=2σðfnÞ ¼ ½f̂LLf̂UL� ð71Þ

ζn � z1−α=2σðζnÞ ¼ ½ζ̂LLζ̂UL� ð72Þ

Fig. 1. Four-story shear structure, structural properties, damping, and
loading
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Application

This section implements tools developed throughout the first three
sections in a practical system identification application. The iden-
tification of a four degree-of-freedom (DOF) shear structure,
documented in Fig. 1, is considered for illustration. Closed-form
Gaussian ML (GML) parametric variances and confidence bounds
are compared with those approximated through nonparametric
Monte Carlo bootstrapping.

Monte Carlo Bootstrap

Bootstrap methods have become a popular strategy for estimating
the bias and variance of desired statistics, in this case model param-
eters, due to their broad applicability and ease of implementation.
Efron (1979) introduced the bootstrap as a generalized version of
the Quenouille-Tukey jackknife (Quenouille 1956), of which an
informative review is available from Miller (1974). Bootstrapping
methods are an effective alternative to closed-form variance estima-
tion and have vast applications in time series problems (Efron and
Tibshirani 1986; Masset 2008; Pakzad et al. 2009).

Furthermore, bootstrap results contain desirable asymptotic
properties, e.g., when the number of Monte Carlo simulations and
the number of samples become very large, the bootstrap estimator
is equivalent to the ML estimator (Bickel and Freedman 1981).

In ML estimation, bootstrapping is especially favorable for models
involving complex likelihood functions, for which closed-form
derivatives are arduous or impossible. Bickel and Freedman (1981)
provided additional properties of the bootstrap estimator.

The application in this section follows the approach for boot-
strapping the Gaussian ML estimator for the state-space model that
is presented by Stoffer and Wall (1991). A bootstrapped dataset is
generated by resampling the original data with replacement and
corresponding perturbations in the model parameters are recorded.
The procedure is repeated a large number of times, computing
equivalently many bootstrap data realizations from which the true
distribution of the MLE is estimated by the distribution of the boot-
strapped model parameters.

ML Identification of a Four-Degree-of-Freedom Shear
Structure

The four DOF shear structure shown in Fig. 1 is identified using the
output-only STRIDE algorithm. The shear structure has four natural
frequencies under 6 Hz and 1% damping ratios for all modes. A suc-
cessful identification of this structure includes accurate frequency,
damping, and mode shape estimates. The goal of this application
is to compute closed-form sensitivity metrics of ML estimates and
compare to bootstrap estimates. The structural response of the shear
structure was simulated through the theoretical state-space model
for a structural system (Juang and Phan 2001). More specifically,
the model observations were noisy story accelerations, driven by
an independent and identically distributed random input, i.e., ηk∼
Nð0;QÞ and υk ∼ Nð0;RÞ, with Q ∝ I8×8 and R ∝ I4×4.

STRIDE (Matarazzo and Pakzad 2015a) is an iterative output-
only method for modal identification which embeds the EM algo-
rithm (Rubin et al. 1977). STRIDE determines ML estimates of a
model through maximizing the conditional expectation of the like-
lihood function. The algorithm begins with initial parameter esti-
mates for model parameters that are updated at each iteration in a
manner that guarantees an increase in the conditional likelihood
function (Rubin et al. 1977; Wu 1983). A slope threshold θ is uti-
lized to determine when the conditional expectation of the likeli-
hood function has practically attained its maximum value. For a

Table 1. True Frequencies, Gaussian ML Results, Bootstrap Statistics, and Relative Deviation

True value
(Hz)

Gaussian ML: f̂n; σðf̂nÞ Bootstrap stats: f∗n ;σðf∗nÞ
Relative deviation

σðf∗nÞ=σðf̂nÞ
Estimate and

95% confidence interval
Standard
deviation

Mean and
95% confidence interval

Standard
deviation

f1 ¼ 0.9574 0.9594� 0.0021 0.0011 0.9592� 0.0055 0.0028 2.6
f2 ¼ 2.7566 2.7566� 0.0136 0.0069 2.7568� 0.0103 0.0052 0.8
f3 ¼ 4.2234 4.2239� 0.0087 0.0045 4.2240� 0.0133 0.0068 1.5
f4 ¼ 5.1808 5.1778� 0.0031 0.0016 5.1783� 0.0135 0.0069 4.4

Table 3. True Damping, Gaussian ML Results, Bootstrap Statistics, and Relative Deviation

True value
(%)

Gaussian ML: ζ̂n;σðζ̂nÞ Bootstrap statistics: ζ∗n ;σðζ∗nÞ
Relative deviation

σðζ∗nÞ=σðζ̂nÞ
Estimate and

95% confidence interval
Standard
deviation

Mean and
95% confidence interval

Standard
deviation

ζ1 ¼ 1.0000 0.6958� 0.3949 0.2015 0.8067� 0.6099 0.3112 1.5
ζ2 ¼ 1.0000 0.9256� 0.0604 0.0308 0.9673� 0.3732 0.1904 6.2
ζ3 ¼ 1.0000 1.1154� 0.1586 0.0809 1.1389� 0.3277 0.1672 2.1
ζ4 ¼ 1.0000 0.9675� 0.1337 0.0682 1.9834� 0.2804 0.1431 2.1

Table 2. Closed-Form Gaussian ML and Bootstrap Asymptotic 95%
Frequency Confidence Intervals

Mode

Gaussian
ML

Bootstrap
stats

f̂LL
(Hz)

f̂UL
(Hz)

ðf̂UL− f̂LLÞ
fn

(%) f∗LL
(Hz)

f∗UL
(Hz)

ðf∗UL−f∗LLÞ
fn

(%)

1 0.9573 0.9615 0.44 0.9538 0.9647 1.1
2 2.7431 2.7702 0.98 2.7466 2.7670 0.74
3 4.2151 4.2326 0.42 4.2106 4.2373 0.63
4 5.1747 5.1809 0.12 5.1648 5.1918 0.52

© ASCE B4015002-9 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
E

H
IG

H
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/0
4/

15
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



given data set and model order, smaller slope thresholds are con-
ducive to higher likelihood values at convergence and yield smaller
parameter variances because the corresponding critical point is
technically a superior MLE.

Theoretically, the absolute maximum in the likelihood function
ensures an unbiased, consistent, and efficient estimate (Gupta
and Mehra 1974), while the EM algorithm may not necessarily
converge to this point. The conditional likelihood in EM converges

monotonically, from below, to some maximum value of the se-
quence, so if this likelihood has several maximums and stationary
points, the choice of starting point determines the type of point to
which the EM sequence will converge. Thus, for a successful EM
implementation, it is important to choose a good starting value
as incorporated in the development of STRIDE (Matarazzo and
Pakzad 2015a).

The observed data consisted of 2,000 samples at 12 Hz.
STRIDE was implemented at minimum model order two (p ¼ 2)
with default slope threshold θ ¼ 5 × 10−4 to obtain the MLE of the
superparameter. Various equations presented in this paper were
computed at these MLEs to determine information and covariance
metrics. The results that incorporate the MLE with these equations
will be henceforth denoted as GML.

The bootstrap consisted of 1,000 Monte Carlo simulations of the
procedure presented in Stoffer and Wall (1991). In this approach,
the standardized innovation sequence is sampled K times without
replacement to produce bootstrapped observations. With these
observations and the superparameter fixed at the MLE from
STRIDE, the state-space model is complete. Finally, the likelihood
is constructed and a bootstrapped superparameter can be computed
for each Monte Carlo run; these bootstrapped superparameters

Table 4. Closed-Form Gaussian ML and Bootstrap Asymptotic 95%
Damping Confidence Intervals

Mode

Gaussian
ML

Bootstrap
stats

ζLL
(%)

ζUL
(%)

ðζUL − ζLLÞ
ζn

(%)
ζ̂LL ζ̂UL

ðζ̂UL − ζ̂LLÞ
ζn

(%)

1 0.3009 1.0895 79 0.1968 1.4166 122
2 0.8652 0.9891 12 0.5940 1.3405 75
3 0.9570 1.2740 32 0.8112 1.4666 66
4 0.8343 1.1012 27 0.7030 1.2638 56
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Fig. 2. Precision of (a) first frequency estimate; (b) second frequency estimate; (c) third frequency estimate; (d) fourth frequency estimate: bootstrap
histogram, bootstrap Gaussian fit probability density function (PDF), Gaussian ML PDF, Gaussian 95% confidence intervals, and true values; boot-
strap cumulative distribution function (CDF) and Gaussian ML CDF; quantile-quantile (QQ) plot for bootstrap
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represent a sample of the true parameter population in ML estima-
tion. It is expected that the variances and confidence intervals ob-
tained through closed-form formulas will be smaller than the
bootstrap results.

Discussion

Tables 1 and 2 provide 95% confidence intervals and compare natu-
ral frequency results. True values, MLEs, GML standard errors,
bootstrap means, and bootstrap standard errors are presented. First,
all four true frequencies are enclosed within both GML and boot-
strap confidence bounds. Second, in most cases, GML standard
errors are considerably smaller than bootstrap standard errors; this
result is most evident from the last column of Table 1. As a result,
GML confidence intervals are tighter than bootstrap confidence
intervals. The second frequency is the exception, where the GML
variance is slightly larger than that of the bootstrap.

Tables 3 and 4 are analogous to Tables 1 and 2 for damping
ratios. In general, the GML damping ratios are two orders of mag-
nitude less precise than GML frequency estimates. Nevertheless,
true damping values are included within the GML (the second
mode is on the boundary) and bootstrap confidence bounds. How-
ever, bootstrap standard errors are overall noticeably larger than
those from GML. For example, consider the second damping
ratio in row two of Table 3, in which the GML has nearly six
times the precision of the bootstrap. In short, the formulas in this
paper are superior to bootstrapping for estimating MLE damping
precision.

Figs. 2(a–d) provide detailed comparisons between GML and
bootstrap results for each frequency estimate. The top panel of each

figure superimposes the asymptotic GML probability density func-
tion (PDF) over bootstrap histograms and a bootstrap Gaussian fit.
GML confidence bounds and the true value are also indicated in
this subplot. In the four top panels, the GML PDFs generally have
lighter tails than the bootstrap PDF. The middle panel of these fig-
ures shows the GML cumulative distribution function (CDF) and
bootstrap CDF. GML and booststrap medians are nearly coincident
for all frequencies. The bottom panel displays a QQ plot for the
bootstrapped frequency estimates and demonstrates that the nor-
mality assumption is valid. Figs. 3(a–d) show QQ plots for the
bootstrapped damping estimates. The drifting tails in these plots
indicate that the normality assumption is not valid for damping,
at least for the sample size considered.

Fig. 4 shows the true mode shapes for the shear structure
with superimposed GML and bootstrap estimates and confidence
bounds. After identification, the mode shapes were scaled so that
the absolute value of the maximum ordinate was equal to 1, purely
for convenient presentation. MLE mode shapes were identical to
the true mode shapes. Bootstrap mode shape estimates were biased
and had larger confidence intervals, and therefore less precision
than MLE. To reiterate, the equations in this paper are applicable
to complex mode shapes. Although the mode shape covariance ma-
trix is complex, in this application, the computed complex values
were practically zero.

Overall, the GML results are consistent with ML theory, with
confidence bounds that enclosed the true values and lower param-
eter variances than those estimated by bootstrapping. As the sam-
ple size becomes very large, both GML and bootstrap variance
estimates approach the Cramér-Rao lower bound; for finite sam-
ples, the tools presented in this paper provide valid estimates of
precision.
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Fig. 3. QQ plots for bootstrap results for (a) first mode damping; (b) second mode damping; (c) third mode damping; (d) fourth mode damping
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Conclusion

This paper presented a set of sensitivity metrics to be used along
likelihood-based modal identification methods. The closed-form
partial derivatives of the likelihood function are directly related
to observed information and variance expressions for discrete-time
stochastic state-space model parameters. Derivatives were provided
for the observation matrix and the state matrix as well as eigenval-
ues and eigenvectors of the state matrix. Standard error formulas
and confidence intervals were constructed for natural frequencies,
damping ratios, and mode shapes by implementing asymptotic
characteristics of ML estimators. While the equations supplement
the STRIDE modal identification algorithm, they are applicable to
modal identification techniques formulated within the state-space
model.

An application to structural modal identification compared
closed-form asymptotic parameter metrics to Monte Carlo boot-
strap estimates. For frequency estimates, Gaussian ML PDFs
showed lighter tails than bootstrap histograms and Gaussian fits
indicating a lower estimation uncertainty. Closed-form 95% confi-
dence bounds for the frequency and damping ratio included modal
properties. The normality assumption for asymptotic frequency dis-
tribution was validated; however, this assumption did not hold for
damping estimates. It was demonstrated that damping ratio stan-
dard errors were better represented by the MLE formulas than
by bootstrapping. MLE mode shapes were coincident with the true
values while bootstrap means were biased.

Appendix I contains a brief proof that eigenvalues for an MLE
state matrix are also MLEs. This follows directly from the state
matrix M-step of the EM algorithm because it simultaneously equa-
tes the first derivative of the likelihood function with respect to an
eigenvalue to zero. This paper applied ML theory to establish a
better understanding of how modal parameters estimated through
ML may differ from their true values. The precision of MLE was
demonstrated to be higher than bootstrapping while still enclosing
the true values. In short, the asymptotic advantages of MLEs are

distinct and valuable, further supporting ML methods for structural
modal identification.

Appendix I. Note on the M-Step Update Formula for
EM in the State-Space Model

Recall the first derivative of the conditional likelihood with respect
to an eigenvalue of the state matrix:

∂G
∂λd ¼ vec

�
Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1�

�

· vecðΓδS×Sd ΘÞ ð73Þ

In the EM algorithm, M-step parameters are chosen to optimize
the likelihood function by equating the first partial derivative to
zero:

∂G
∂ψ ¼ 0 ð74Þ

The M-step update formula for the state matrix satisfies Eq. (75)
(Matarazzo and Pakzad 2015a):

∂G
∂A ¼ Q−1 XK

k¼2

E½xkxT
k−1� −Q−1A

XK
k¼2

E½xk−1xT
k−1� ¼ 0 ð75Þ

In consideration of the eigendecomposition of a matrix to be
solely a function of the matrix, the state matrix eigenvalues are
purely a function of the state matrix, i.e., Λ ¼ ΛðAÞ, Γ ¼ ΓðAÞ,
and Θ ¼ ΘðAÞ. Eq. (75) also satisfies ∂G=∂λd ¼ 0. Through
maximization of the likelihood in terms of the state matrix, the like-
lihood is also optimized with respect to the state matrix eigenval-
ues. In other words, the eigenvalues of an ML state matrix estimate
are also MLE, and thus these eigenvalues share the asymptotic ad-
vantages of ML estimators.
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Fig. 4. Bootstrap mode shapes with 95% confidence intervals, Gaussian MLE with 95% confidence intervals, and true values
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Appendix II. State-Space Model Parameters,
Features, and Other Terms

Matrix Size Description Element

O Scalar Observation size —
S Scalar State-space size —
G Scalar Conditional

expectation of log-
likelihood function

—

C O × S Observation matrix Cij
A S × S State matrix Aij
Γ S × S Eigenvector matrix of

state matrix
Γij

Θ S × S Inverse eigenvector
matrix (left
eigenvectors)

Θij

Λ S × S Diagonal eigenvalue
matrix; lowercase for
diagonal element

λd

Q S × S Structural loading
covariance

Qij

P
K
k¼1 E½xkxT

k−1� S × S Sum of mean square
statistics for states at
times k and k − 1

½PK
k¼1 E½xkxT

k−1��ij

P
K
k¼1 E½xk−1xT

k−1� S × S Sum of mean square
statistics for states at
times k − 1 and k − 1

½PK
k¼1 E½xk−1xT

k−1��ij

δR×Cmn R × C Single-entry matrix:
zeros everywhere,
except entry mn has
unity

½δR×Cmn �ij

Appendix III. Index, Subscript, and Dimension
Descriptions

Index Description

i Row subscript
j Column subscript
m Alternate row subscript
n Alternate column subscript
L Linear index subscript
P Alternate linear index subscript
d Diagonal subscript
h Alternate diagonal subscript
r Second alternate row subscript
c Second alternate column subscript
R Alternate row size
C Alternate column size
½ � Matrix
½ �ij Alternate notation for matrix element at row i, column j
k Time-step subscript
K Total number of time samples

Appendix IV. First Partial Derivative Matrices,
Vectors, and Elements

Matrix Size Description Element

∂G
∂C O × S

First partial (score) of G
with regard to C

∂G
∂Cij

∂G
∂A S × S First partial (score) of G

with regard to A

∂G
∂Aij

vec

�∂G
∂A

�
S2 × 1 Vectorized

∂G
∂A ∂G

∂AL

Appendix IV (Continued.)

Matrix Size Description Element

∂G
∂Γ

S × S First partial (score) of G
with regard to Γ

∂G
∂Γij

∂G
∂Θ S × S First partial (score) of G

with regard to Θ

∂G
∂Θij

∂G
∂Λ S × S First partial (score) of G

with regard to Λ; diagonal
matrix

∂G
∂λd

∂A
∂λd S × S First partial of A with

respect to eigenvalue λd

∂Aij

∂λd
vec

�∂A
∂λd

�
S2 × 1 Vectorized

∂Aij

∂λd

∂AL

∂λd
∂A
∂Γmn

S × S First partial of A with
regard to eigenvector
element Γmn

∂Aij

∂Γmn
¼

� ∂A
∂Γmn

�
ij

vec

� ∂A
∂ΓP

�
S2 × 1 Vectorized

∂A
∂Γmn

∂AL

∂ΓP

∂Γ
∂Γmn

S × S First partial of right
eigenvector matrix with
regard to Γmn

∂Γij

∂Γmn
¼

� ∂Γ
∂Γmn

�
ij

∂Θ
∂Γmn

S × S First partial of left
eigenvector matrix with
regard to Γmn

∂Θij

∂Γmn
¼

� ∂Θ
∂Γmn

�
ij

Appendix V. Second Partial Derivative Terms: Block
Matrices, Vectors, and Elements

Matrix Size Description Element

∂2G
∂C∂CT OS ×OS

Second partial (Hessian) of G
with regard to C

� ∂2G
∂C∂Cij

�

vec

� ∂2G
∂C∂CP

�
OS × 1 Vectorized

∂2G
∂C∂Cij

∂2G
∂CL∂CP

∂2G
∂A∂AT S2 × S2 Second partial (Hessian) of G

with regard to A

� ∂2G
∂A∂Aij

�

vec

� ∂2G
∂A∂AP

�
S2 × 1 Vectorized

∂2G
∂A∂Aij

∂2G
∂AL∂AP

∂2G
∂Γ∂Γmn

S × S Second partial (Hessian) of G
with regard to Γ and Γmn

∂2G
∂Γij∂Γmn

vec

� ∂2G
∂Γ∂ΓP

�
S2 × 1 Vectorized

∂2G
∂Γ∂Γmn

∂2G
∂ΓL∂ΓP

∂2G
∂Γ∂ΓT S2 × S2 Second partial (block

Hessian) of G with regard to
Γ; columns are

vec

� ∂2G
∂Γ∂ΓP

�

� ∂2G
∂Γ∂ΓP

�

∂2G
∂Λ∂λh S × S Second partial (Hessian) of G

with regard to Λ and λh;
zeros for entries with h ≠ d

∂2G
∂λd∂λh

vec

� ∂2G
∂Λ∂λh

�
S × 1 Vectorized diagonals of

∂2G
∂Λ∂λh

∂2G
∂λd∂λh

∂2G
∂Λ∂Λ S × S Second partial (block

Hessian) of G with regard to
the diagonals of Λ; columns

are vec

� ∂2G
∂Λ∂λh

�

� ∂2G
∂Λ∂λh

�

Note: Block matrix elements are encapsulated with brackets, e.g., [].

© ASCE B4015002-13 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
E

H
IG

H
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/0
4/

15
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Acknowledgments

Research funding is partially provided by the National Science
Foundation through Grant No. CMMI-1351537 by Hazard Mitiga-
tion and Structural Engineering program, and by a grant from the
Commonwealth of Pennsylvania, Department of Community and
Economic Development, through the Pennsylvania Infrastructure
Technology Alliance (PITA).

References

Abdel-Ghaffar, A., and Scanlan, R. H. (1985). “Ambient vibration studies
of Golden Gate Bridge: 1. Suspended structure.” J. Eng. Mech.,
10.1061/(ASCE)0733-9399(1985)111:4(463), 463–482.

Andersen, P. (1997). “Identification of civil engineering structures using
vector ARMA models.” Ph.D. dissertation, Aalborg Univ., Aalborg,
Denmark.

Au, S.-K. (2011). “Fast Bayesian FFT method for ambient modal identi-
fication with separated modes.” J. Eng. Mech., 10.1061/(ASCE)EM
.1943-7889.0000213, 214–226.

Au, S.-K. (2012). “Connecting Bayesian and frequentist quantification
of parameter uncertainty in system identification.” Mech. Syst. Signal
Process., 29, 328–342.

Au, S.-K. (2014a). “Uncertainty law in ambient modal identification—
Part I: Theory.” Mech. Syst. Signal Process., 48(1–2), 15–33.

Au, S.-K. (2014b). “Uncertainty law in ambient modal identification—
Part II: Implication and field verification.” Mech. Syst. Signal Process.,

48)1–2(,34–48 .
Au, S.-K., and Zhang, F. L. (2012). “Fast Bayesian ambient modal iden-

tification incorporating multiple setups.” J. Eng. Mech., 10.1061/
(ASCE)EM.1943-7889.0000385, 800–815.

Bickel, P. J., and Freedman, D. A. (1981). “Some asymptotic theory for the
bootstrap.” Ann. Stat., 9(6), 1196–1217.

Chang, M., and Pakzad, S. N. (2013). “Observer Kalman filter identi-
fication for output-only systems using interactive structural modal
identification toolsuite (SMIT).” J. Bridge Eng., 10.1061/(ASCE)BE
.1943-5592.0000530, 1–11.

Charalambous, C. D., and Logothetis, A. (2000). “Maximum likelihood
parameter estimation from incomplete data via the sensitivity equa-
tions: The continuous-time case.” IEEE Trans. Autom. Control, 45(5),
928–934.

Eddins, S., and Shure, L. (2001). “Matrix indexing in MATLAB.” Math-
works Newsletter, 〈http://www.mathworks.com/company/newsletters/
articles/matrix-indexing-in-matlab.html〉 (Sep. 13, 2014).

Efron, B. (1979). “Bootstrap methods: Another look at the jacknife.”
Ann. Stat., 7(1), 1–26.

Efron, B., and Tibshirani, R. (1986). “Bootstrap methods for standard
errors, confidence intervals, and other measures of statistical accuracy.”
Stat. Sci., 1(1), 54–75.

Guillaume, P., Verboven, P., and Vanlanduit, S. (1998). “Frequency-
domain maximum likelihood identification of modal parameters with
confidence intervals.” Proc., Int. Conf. on Noise and Vibration Engi-
neering, Vol. 1, Katholieke Universiteit Leuven, Leuven, Belgium,
359–366.

Gupta, N., and Mehra, R. (1974). “Computational aspects of maximum
likelihood estimation and reduction in sensitivity function calculations.”
IEEE Trans. Autom. Control, 19(6), 774–783.

He, X., and De Roeck, G. (1997). “System identification of mechanical
structures by a high-order multivariate autoregressive model.” Comput.
Struct., 64(1–4), 341–351.

Hinton, G. E., and Ghahramani, Z. (1996). “Parameter estimation for linear
dynamical systems.” Technical Rep. CRG-TR-96-2, Univ. of Toronto,
Toronto.

Juang, J.-N., and Phan, M. Q. (2001). Identification and control of
mechanical systems, Cambridge University Press, Cambridge, U.K.

Kalman, R. E. (1960). “A new approach to linear filtering and prediction
problems.” Trans. ASME J. Basic Eng., 82(1), 35–45.

King, G. (1989). Unifying political methodology: The likelihood theory
of statistical inference, Cambridge University Press, Cambridge,
U.K.

Klein, A., and Neudecker, H. (2000). “A direct derivation of the exact fisher
information matrix of gaussian vector state space models.” Linear
Algebra Appl., 321(1–3), 233–238.

Kwasniewski, L., Wekezer, J., Roufa, G., Li, H., Ducher, J., and
Malachowski, J. (2006). “Experimental evaluation of dynamic effects for
a selected highway bridge.” J. Perform. Constr. Facil., 20(3), 253–260.

Long, J. S. (1997). Regression models for categorical and limited depen-
dent variables, Sage, Thousand Oaks, CA.

Mahata, K., Pintelon, R., and Schoukens, J. (2006). “On parameter estima-
tion using nonparametric noise models.” IEEE Trans. Autom. Control,
51(10), 1602–1612.

Masset, P. (2008). “Analysis of financial time-series using Fourier and
wavelet methods.” 1–36.

Matarazzo, T. J., and Pakzad, S. N. (2015a). “Structural identification using
expectation maximization (STRIDE): An iterative output-only method
for modal identification.” J. Eng. Mech., 10.1061/(ASCE)EM.1943
-7889.0000951, in press.

Matarazzo, T. J., and Pakzad, S. N. (2015b). “Structural modal identifica-
tion for mobile sensing with missing data.” J. Eng. Mech., in press.

Matarazzo, T. J., Shahidi, S. G., Chang, M., and Pakzad, S. N. (2015).
“Are today’s SHM procedures suitable for tomorrow’s BIGDATA?”
Proc., Society of Experimental Mechanics IMAC XXXIII, Structural
Health Monitoring and Damage Detection, Springer, Heidelberg,
59–65.

Meng, X.-L., and Rubin, D. B. (1991). “Variance-covariance using EM to
obtain asymptotic matrices: The SEM algorithm.” J. Am. Stat. Assoc.,
86(416), 899–909.

Miller, R. G. (1974). “The jackknife—A review.” Biometrika, 61(1), 1–15.
Oehlert, G. W. (1992). “A note on the delta method.” Am. Stat., 46(1),

27–29.
Pakzad, S. N., Dryden, M., and Fenves, G. L. (2009). “Parametric bootstrap

for system identification of a scaled reinforced concrete bridge.” Struc-
tures Congress, L. Griffis, T. Helwig, M. Waggoner, and M. Hoit, eds.,
ASCE, Reston, VA, 397–405.

Pakzad, S. N., and Fenves, G. L. (2009). “Statistical analysis of vibration
modes of a suspension bridge using spatially dense wireless sensor
network.” J. Struct. Eng., 10.1061/(ASCE)ST.1943-541X.0000033,
863–872.

Pedersen, M. S., et al. (2012). “The matrix cookbook.” 〈http://matrix
cookbook.com〉 (May 12, 2014).

Peeters, B., and De Roeck, G. (1999). “Reference-based stochastic sub-
space identification for output-only modal analysis.”Mech. Syst. Signal
Process., 13(6), 855–878.

Pi, Y. L., and Mickleborough, N. C. (1989). “Modal identification of
vibrating structures using ARMA model.” J. Eng. Mech., 10.1061/
(ASCE)0733-9399(1989)115:10(2232), 2232–2250.

Pintelon, R., Guillaume, P., and Schoukens, J. (2007). “Uncertainty calcu-
lation in (operational) modal analysis.” Mech. Syst. Signal Process.,
21(6), 2359–2373.

Quenouille, M. H. (1956). “Notes on bias in estimation.” Biometrika,
43(3/4), 353–360.

Rauch, H. E., Striebel, C. T., and Tung, F. (1965). “Maximum likelihood
estimates of linear dynamic systems.” AIAA J., 3(8), 1445–1450.

Reinert, G. (2009). Statistical theory, Univ. of Oxford, Oxford, U.K.
Rubin, D. B., Dempster, A. P., and Laird, N. M. (1977). “Maximum like-

lihood from incomplete data via the EM algorithm.” J. R. Stat. Soc.,
39(1), 1–38.

Shahidi, S. G., Pakzad, S. N., Ricles, J. M., Martin, J. R., Olgun, C. G., and
Godfrey, E. A. (2015). “Behavior and damage of the Washington monu-
ment during the 2011 Mineral, Virginia, earthquake.” Geol. Soc. Am.,
509, 235–252.

Shumway, R. H., and Stoffer, D. S. (1981). An approach to time series
smoothing and forecasting using the EM algorithm, Univ. of California,
Davis, Davis, CA.

Shumway, R. H., and Stoffer, D. S. (1982). “An approach to time series
smoothing and forecasting using the EM algorithm.” J. Time Ser. Anal.,
3(4), 253–264.

© ASCE B4015002-14 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
E

H
IG

H
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/0
4/

15
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)0733-9399(1985)111:4(463)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1985)111:4(463)
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000213
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000213
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000213
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000213
http://dx.doi.org/10.1016/j.ymssp.2012.01.010
http://dx.doi.org/10.1016/j.ymssp.2012.01.010
http://dx.doi.org/10.1016/j.ymssp.2013.07.016
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1016/j.ymssp.2013.07.017
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000385
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000385
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000385
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000385
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000385
http://dx.doi.org/10.1214/aos/1176345637
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000530
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000530
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000530
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000530
http://dx.doi.org/10.1109/9.855553
http://dx.doi.org/10.1109/9.855553
http://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html
http://dx.doi.org/10.1214/ss/1177013815
http://dx.doi.org/10.1109/TAC.1974.1100714
http://dx.doi.org/10.1016/S0045-7949(96)00126-5
http://dx.doi.org/10.1016/S0045-7949(96)00126-5
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/S0024-3795(99)00177-9
http://dx.doi.org/10.1016/S0024-3795(99)00177-9
http://dx.doi.org/10.1109/TAC.2006.882936
http://dx.doi.org/10.1109/TAC.2006.882936
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000951
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000951
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000951
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000951
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000951
http://dx.doi.org/10.1080/01621459.1991.10475130
http://dx.doi.org/10.1080/01621459.1991.10475130
http://dx.doi.org/10.1080/00031305.1992.10475842
http://dx.doi.org/10.1080/00031305.1992.10475842
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000033
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000033
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000033
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000033
http://matrixcookbook.com
http://matrixcookbook.com
http://matrixcookbook.com
http://dx.doi.org/10.1006/mssp.1999.1249
http://dx.doi.org/10.1006/mssp.1999.1249
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:10(2232)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:10(2232)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:10(2232)
http://dx.doi.org/10.1016/j.ymssp.2006.11.007
http://dx.doi.org/10.1016/j.ymssp.2006.11.007
http://dx.doi.org/10.2307/2332914
http://dx.doi.org/10.2307/2332914
http://dx.doi.org/10.2514/3.3166
http://dx.doi.org/10.1130/2015.2509(13)
http://dx.doi.org/10.1130/2015.2509(13)
http://dx.doi.org/10.1111/j.1467-9892.1982.tb00349.x
http://dx.doi.org/10.1111/j.1467-9892.1982.tb00349.x


Shumway, R. H., and Stoffer, D. S. (2006). Time series analysis and its
applications—With R examples, Springer, New York.

Shumway, R. H., and Stoffer, D. S. (2011). Time series analysis and its
applications with R examples, Springer, New York.

Stoffer, D. S., and Wall, K. D. (1991). “Bootstrapping state-space models:
Gaussian and the Kalman filter maximum likelihood estimation.” J. Am.
Stat. Assoc., 86(416), 1024–1033.

Stuart, A., Ord, J. K., and Arnold, S. (1999). Kendall’s advanced theory of
statistics, classical inference and the linear model, Vol. 2A, Arnold,
London.

Van Overschee, P., and De Moor, B. (1992). “N4SID: Subspace algorithms
for the identification of combined deterministic-stochastic systems.”
Automatica, 30(1), 75–93.

Verboven, P., Guillaume, P., Cauberghe, B., Vanlanduit, S., and Parloo, E.
(2004). “Modal parameter estimation from input-output Fourier data
using frequency-domain maximum likelihood identification.” J. Sound
Vib., 276(3–5), 957–979.

Wu, C. F. J. (1983). “On the convergence properties of the EM algorithm.”
Ann. Stat., 11(1), 95–103.

© ASCE B4015002-15 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
E

H
IG

H
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/0
4/

15
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1080/01621459.1991.10475148
http://dx.doi.org/10.1080/01621459.1991.10475148
http://dx.doi.org/10.1016/0005-1098(94)90230-5
http://dx.doi.org/10.1016/j.jsv.2003.08.044
http://dx.doi.org/10.1016/j.jsv.2003.08.044
http://dx.doi.org/10.1214/aos/1176346060

