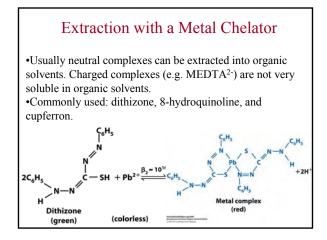
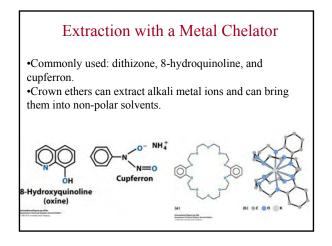

Ch. 23 Fundamentals of Analytical Separations

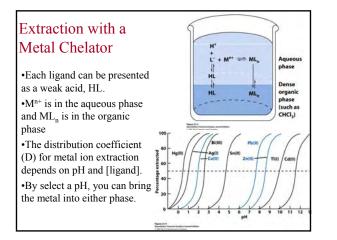
Separation

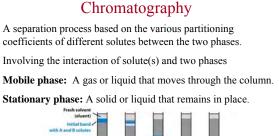
- Samples are usually complex mixtures. In order to identify and quantify the components of a mixture, we have to separate the components in the mixture.
- · Separation methods
 - Extraction
 - ChromatographyElectrophoresis

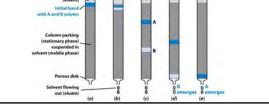
Solvent Extraction • The transfer of an analyte from one phase to a second based on the relative solubility of the analyte in two immiscible liquids. $K = \frac{[S]_2}{[S]_1} = \frac{(1-q)m/V_2}{qm/V_1}$ $q = \left(\frac{V_1}{V_1 + KV_2}\right)^n$ At equilibrium: K: the partition coefficient for distribution of S between the two phases; q: the fraction of S remaining in phase 1; n: the # of extractions. If q = 1/4, then 1/4 remains in phase 1 after one extraction

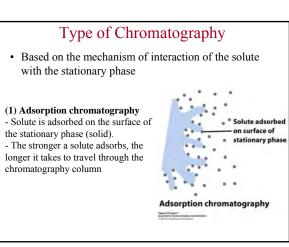


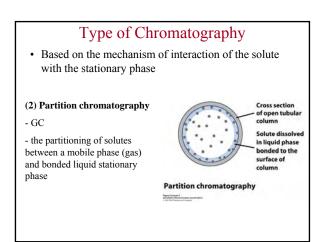


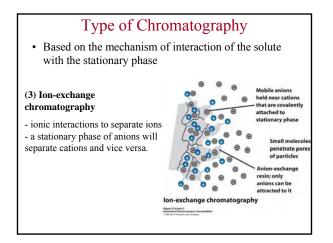

pH Effects

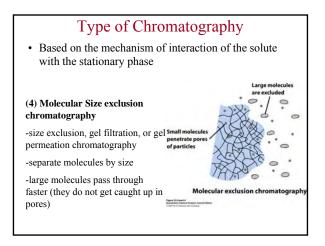

 K for an amine B is 3.0 and the Ka for BH⁺ is 1.08×10⁻⁹. If 50.00 mL of 0.010 M aqueous amine is extracted with 100 mL of solvent, calculate the % remaining the in aqueous phase in M at (1) pH 10.00; (2) pH 8.00.

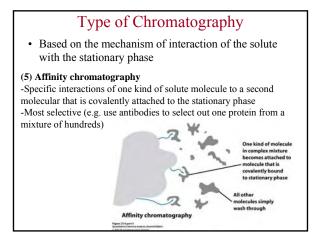

$$pH = 10.00: D = \frac{KKa}{Ka + [H^+]} = \frac{3.0 \times 1.0 \times 10^{-9}}{1.0 \times 10^{-9} + 1.0 \times 10^{-10}} = 2.73$$
$$q = \frac{V_1}{V_1 + KV_2} = \frac{50}{50 + 2.73 \times 100} = 0.15 \Rightarrow 15\%$$
$$pH = 8.00: D = \frac{KKa}{Ka + [H^+]} = \frac{3.0 \times 1.0 \times 10^{-9}}{1.0 \times 10^{-9} + 1.0 \times 10^{-8}} = 0.273$$
$$q = \frac{V_1}{V_1 + KV_2} = \frac{50}{50 + 0.273 \times 100} = 0.65 \Rightarrow 65\%$$

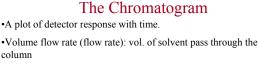


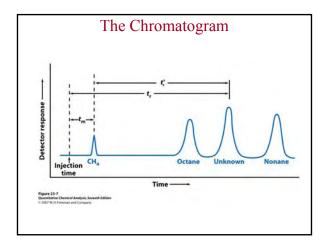











•Linear flow rate: the length of the column passed though by the solvent

•t_m: unretained mobile phase travels through the column in the minimum possible time

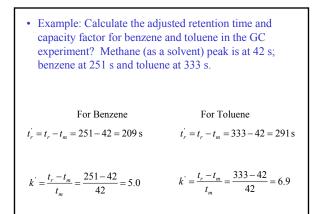
•tr: retention time, the time for each component needed after injection of the mixture onto the column until that component reaches the detector

•tr': adjusted retention time, tr'=tr-tm

•Vr: retention volume, volume of mobile phase required to elute a solute to a maximum from a column. Vr= tr*flow rate

Retention Parameters

- Adjusted retention time
- Time spent in the stationary phase (or t_s) $t_r = t_r t_m$
- Relative retention


separation

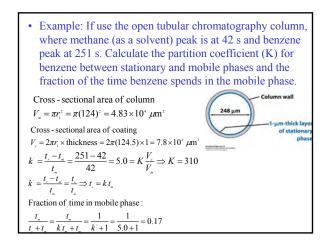
- ratio of adjusted retention times for any two components
- the greater the relative retention, the greater the

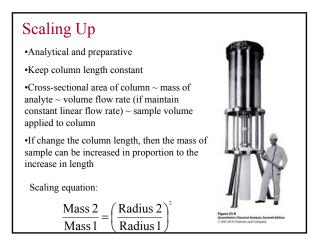
$$\alpha = \frac{t_{r2}}{t_{r1}}$$

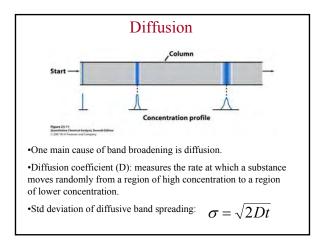
- Capacity factor (or retention factor):
- the longer a component is retained by the column, the greater is the capacity factor. t - t

$$\frac{t_m}{t_m}$$

Retention Time and Partition Coefficient

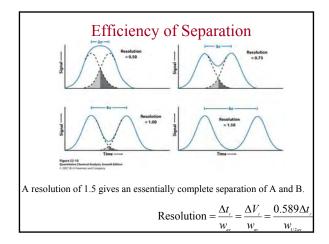

• The capacity factor is equivalent to the time the solute spends in the stationary phase over the mobile phase and can be related to the partition coefficient:

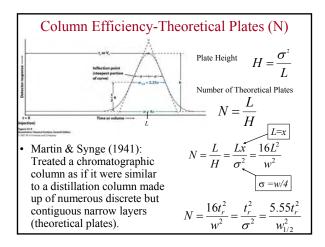

$$k' = \frac{C_s V_s}{C V} = K \frac{V_s}{V} \Leftrightarrow k' = \frac{t_r - t_m}{t} = \frac{t_r}{t} = \frac{V_r - V_m}{V}$$

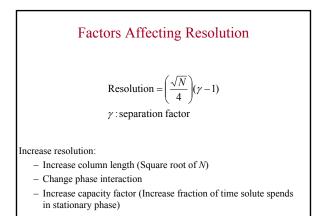

• Relative retention can be related to retention time, capacity factor, and/or partition coefficient

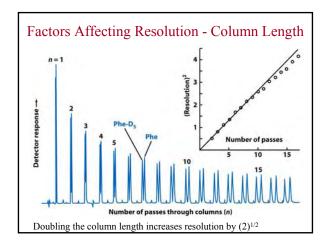
$$\alpha = \frac{t_{r2}}{t_{r1}} = \frac{k_2}{k_1} = \frac{K_2}{K_1}$$

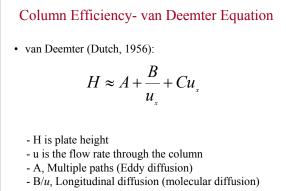

• Physical basis of chromatography: the greater the ratio of partition coefficients between mobile and stationary phases, the greater the separation between two components of a mixture



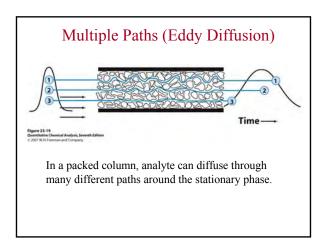


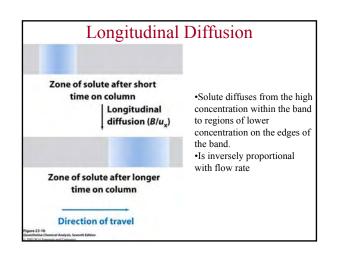

Solute (m ² /s)	Solvent	Diffusion coefficien
н,о	H,O	2.3 × 10 ⁻⁹
Sucrose	H,O	0.52×10^{-9}
Glycine	H,O	1.1 × 10 ⁻⁹
CH,OH	H,O	1.6×10^{-9}
Ribonuclease (FM 13 700)	H ₂ O (293 K)	0.12 × 10 ⁻⁹
Serum albumin (FM 65 000)	H ₂ O (293 K)	0.059 × 10 ⁻⁹
1,	Hexane	4.0×10^{-9}
CCI4	Heptane	3.2×10^{-9}
N,	CCI,	3.4×10^{-9}
CS ₂ (g)	Air (293 K)	1.0×10^{-5}
0,(g)	Air (273 K)	1.8×10^{-5}
H+	н,о	9.3 × 10 ⁻⁹
OH-	H,O	5.3 × 10 ⁻⁹
Li*	H,O	1.0×10^{-9}
Na ⁺	H ₂ O	1.3×10^{-9}
K*	H ₂ O	2.0×10^{-9}
CI-	H,O	2.0×10^{-9}
r	H,O	2.0×10^{-9}

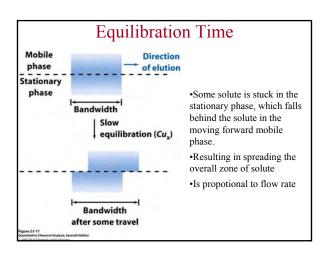


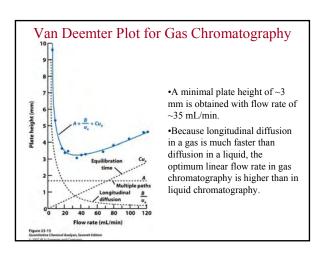


• Example: A solute with a retention time of 407
s has a base width of 13 s on a 12.2 m column.
Find the plate height and number of plates.
$$N = \frac{16t_r^2}{w^2} = \frac{(16)(407)^2}{13^2} = 1.57 \times 10^4$$
$$H = \frac{L}{N} = \frac{12.2 \text{ m}}{1.57 \times 10^4} = 0.78 \text{ mm}$$

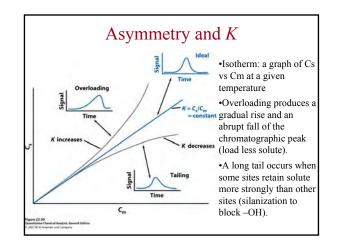





Quantity	Equation	Parameters	
Partition coefficient	$K = C_c/C_m$	C_u = concentration of solute in stationary phase C_m = concentration of solute in mobile phase	
Adjusted retention time	$x_{s}^{*}=x_{s}-x_{m}$	t_p = retention time of solute of interest t_m = retention time of unretained solute	
Resention volume	$V_4 = \tau_t \cdot u_t$	w, = volume flow rate = volume/unit time	
Capacity factor	$\begin{split} V_t &= t_t \cdot u_t \\ k^* &= t_t^* / t_m = K V_s / V_m \end{split}$	$V_0 =$ volume of antionary phase $V_m =$ volume of mobile phase	
	$k^{*} = \frac{t_{*}}{t_{m}}$		
t, = time solute spends in station	ity phase		
		tm = time solute spends in mobile phase	
Relative resention	$\alpha = \frac{t_{c1}'}{t_{c1}'} = \frac{k_2'}{k_1'} = \frac{K_2}{K_1}$	Subscripts 1 and 2 refer to two solutes	
Separation factor	$\gamma = i_2 (i_j \ (\gamma \ge 1)$	s ₂ = retention time of solute 2 s ₁ = retention time of solute 1	
	16/7 5.55/7		
Number of plates	$N = \frac{16t_1^2}{w^2} = \frac{5.55t_1^2}{w_{1/2}^2}$	w = width at base $w_{1/2} = width$ at half-height	
Plate height	$H = \frac{\sigma^2}{\kappa} = \frac{L}{N}$	$\sigma =$ standard deviation of band	
		x = distance traveled by center of band	
		L = length of column N = number of plates on column	
	Ar AV		
Resolution	Resolution $= \frac{\Delta t_i}{w_i} = \frac{\Delta V_i}{w_i}$	$\Delta t_{r} = \text{difference in retention times}$	
	74. 74.	$\Delta V_e =$ difference in retention volumes	
		w _{es} = average width measured at baseline in same units as numerator (time or volume)	
	Resolution = $\frac{1 N}{4} (\gamma - 1)$	N = number of plates	
	4 11 0	$\gamma = \text{separation factor} (\gamma > 1)$	

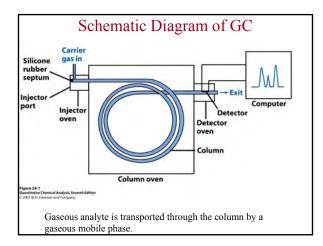


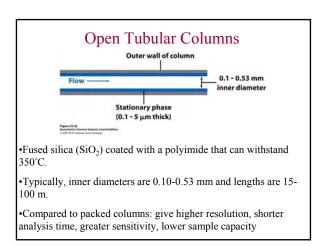
- Cu, Equilibration time (resistance to mass transfer)

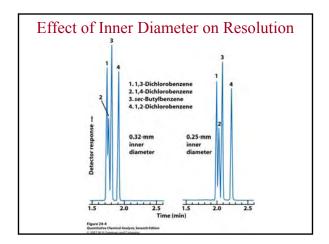


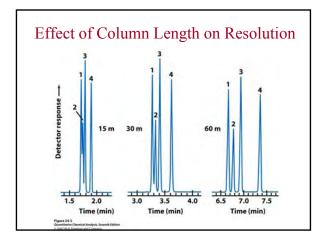


Asymmetric Bandshapes

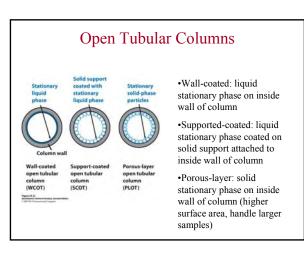

- Theoretically, the band coming off a column should be Gaussian but this is not always the case
- This usually occurs when the partition coefficient, $K(C_s/C_m)$ changes during the run
 - -K can become either bigger or smaller
 - K becomes bigger when too much solute has been put into the column (overloading)-so much solute is dissolved that the stationary phase acts like the solute
 - K becomes smaller due to **tailing**-this is when the solute binds strongly to some sites on the column

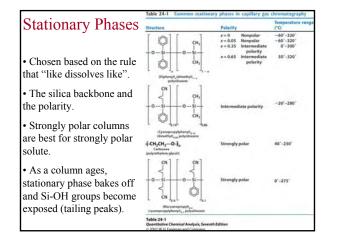


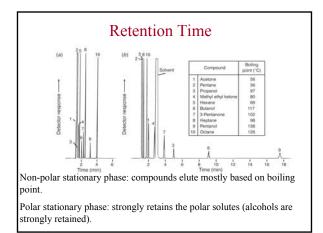


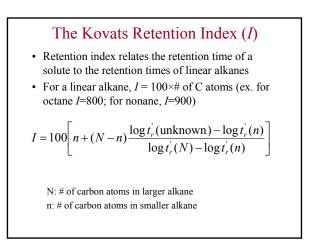

GC Process

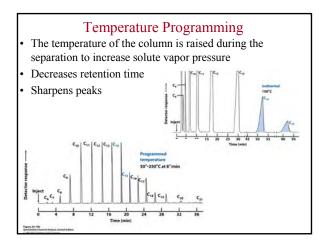
- In **gas chromatography**, vapor-phase analyte is swept through the column by a gaseous mobile phase (**carrier gas**)
 - Gas-liquid chrom (liquid stationary phase)
 - Gas-solid chrom (solid stationary phase)
 - The mobile phase is usually He, N_2 , or H_2 depending on the application
- The analyte is a volatile liquid or gas that is injected through a **septum** (rubber disk)

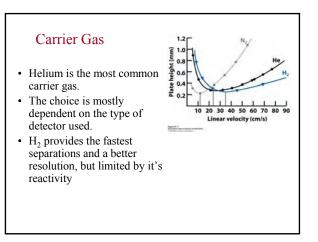


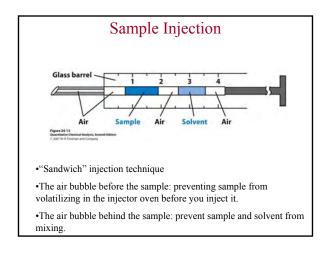


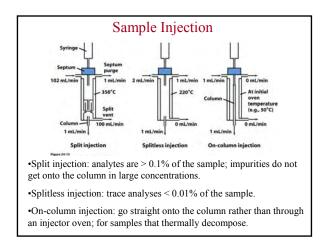




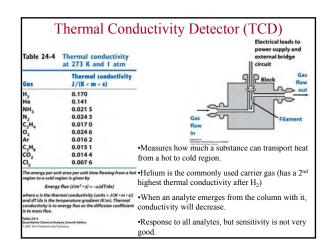

Nonpolar	Weak intermediate polarity			
Saturated hydrocarbons	Ethers			
Olefinic hydrocarbons	Ketones			
Aromatic hydrocarbons	Aldehydes			
Halocarbons	Esters			
Mercaptans	Tertiary amines			
Sulfides	Nitro compounds (without a-H atoms			
CS ₂	Nitriles (without a-atoms)			
Strong intermediate polarity	Strongly polar			
Alcohols	Polyhydroxyalcohols			
Carboxylic acids	Amino alcohols			
Phenols	Hydroxy acids			
Primary and secondary amines	Polyprotic acids			
Oximes	Polyphenols			
Nitro compounds (with α -H atoms)				
Nitriles (with α-H atoms)				
SOURCE: Adapted from H. M. McNair and E. J. Bonel Instrument Division, 1968).	li, Basic Gas Chromatography (Palo Alto, CA: Varian			

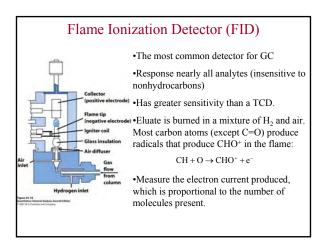





Phase	Retention index*					
	Benzene b.p. 80°C	~_он	2-Pentunone b.p. 102°C	NO ₂ 1-Nitropropane b.p. 132°C	ON Pyridine h.p. 116*0	
		Butanol b.p. 117°C				
Poly(dimethylsiloxane)	657	648	670	708	737	
(Diphenyl) _{0.05} (dimethyl) _{0.95} - polysiloxane	672	664	691	745	761	
(Diphenyl) _{0.35} (dimethyl) _{0.45} - polysiloxane	754	717	777	871	879	
(Cyanopropylphenyl) _{0.14} (dimethyl) _{0.00} polysiloxane	726	773	784	880	852	
(Diphenyl) _{0.45} (dimethyl) _{0.35} -	797	779	824	941	943	
Poly(ethylene glycol)	956	1 142	987	1 217	1 185	
(Biscyanopropyl) _{0.5} - (cyanopropylphenyl) _{0.1} - polysiloxane	1 061	1 232	1 174	1 409	1 331	
a. For reference, boiling points (b.) undecane, 196°C. Retention index heptane, 700: octane, 800: nonam	es for the straight	chain alkanes are fixed a				
SOURCE: Restek Chromatography	Products Catalog	, 1993-94, Bellefonte, PA				
Table 24-3 Quantitative Chemical Analysis, Seventh i	Edition					

• Example: If retention times for methane, octane, and nonane in a GC run are 0.5, 14.3, and 18.5 minutes respectively, what is the retention index for an unknown that elutes at 15.7 minutes? $I = 100 \left[8 + (9-8) \frac{\log 15.2 - \log 13.8}{\log 18.0 - \log 13.8} \right] = 836$





Detectors

- Most common:
 - Thermal conductivity detector (TCD)
 - Flame ionization detector (FID)
- · Other detectors:
 - Mass spectrometer (MSD)
 - Infrared spectrometer (IRD)
 - Electron capture (ECD)
 - Nitrogen-phosphorous (NPD)
 - Atomic emission (AED)

Detector Figures of Merit Detection limits and linear ranges of gas chromatography detectors Table 24-5 Approximate detection limit Linear range Detector Thermal conductivity Flame ionization 400 pg/mL (propane) >105 2 pg/s As low as 5 fg/s <1 pg/s (phospho <10 pg/s (sulfur) 100 fg/s >107 Electron capture Flame photome 104 >104 netric >103 105 Nitrogen-phosphorus 100 fg/s (sulfur) 25 pg to 50 pg (aromatics) Sulfur chemiluminesce 105 hotoionization >105 200 pg to 40 ng 25 fg to 100 pg Fourier transform infrared 104 105 Aass spectrometric oreland and G. R. Rhodes, "Detectors for Gas Chromatography," SOURCE: Most data are from D. G. Wes Pure Appl. Chem. **1989**, 61, 1147. ble 24-5