Separation of Toluene and Hexane by Distillation and Gas Chromatography

Part 1, p. 133 : Simple distillation.(4 ${ }^{\text {th }}$ Ed. p. 129)
Part 2, p. 133: Fractional distillation (use same procedure as simple).
Part 3, p. 206: Separation by gas chromatography ($4^{\text {th }}$ Ed. p. 202)

Important Concepts

- Theory of Distillation
- Distillation Setup/Equipment
- Dalton’s Law \& Vapor Pressure
- Raoult's Law
- Theoretical Plates
- Fractional vs. Simple Distillation
- Technique of Gas Chromatography

History of Distillation

Jabir ibn Hayyan [aka Geber] (721-815) Born in Persia (Iranian). chemist, alchemist, astronomer, philosopher, physician.

Distillation Theory

Vapor Pressure: a measure of the ease with which a molecule escapes from the liquid phase into the gas phase.

High vapor pressure \longrightarrow more molecules in the gas phase \longrightarrow Volatile compound (Low boiling point)
Note: Vapor pressure increases with temperature!
Dalton's Law: the total pressure is equal to the partial pressures of each component in the gas phase $\left[\mathrm{P}_{\text {tot }}=\mathrm{P}_{\mathrm{x}}+\mathrm{P}_{\mathrm{y}}+\ldots\right]$.
Raoult's Law: the vapor pressure $\left(P_{x}\right)$ depends on the mole fraction $\left(N_{x}\right)$ of each component [$P_{x}=P_{x}^{o} N$], where P_{x}^{o} is the vapor pressure of pure X at a given temperature.

Vapor line describes the composition of the gas phase.

Liquid line describes the composition of the liquid and the b.p.

Mole \% Toluene Mole \% Benzene
Temperature composition diagram For a mixture of benzene and toluene

At $89^{\circ} \mathrm{C}$ the liquid in the stillpot is $\sim 50: 50$ benzene: toluene, whereas the vapor phase is $\sim 80: 20$ benzene: toluene. Thus, the vapor phase is enriched in the lower b.p. component.

$$
N_{x}=\frac{n X}{n X+n Y+n Z+\cdots}
$$

Procedural Details

- Follow procedure on p. 133 (4 $4^{\text {th }}$ ed. p. 129) for both fractional and simple distillation, just use different apparatus. Work in pairs, one student does simple and the other does fractional.
- Use hexane instead of cyclohexane.
- Do not use a packed Hempel column for fractional distillation, instead use the apparatus described here.
- Collect three fractions for each distillation .

Fraction 1: collect hexane until temperature drops; note that the temp may not be accurate for the simple distillation.
Fraction 2: collect until temperature rapidly increases to $\sim 100{ }^{\circ} \mathrm{C}$; note that the temp may never reach that for the simple distillation.
Fraction 3: collect after $100^{\circ} \mathrm{C}$ until the still pot is nearly empty. Do not distill to dryness.

- Record b.p. range for each fraction.
- Perform GC on original mixture and all three fractions; get copies of your partners data for the worksheet.

Simple Distillation Apparatus

Fractional Distillation Apparatus

Why is fractional distillation more efficient?

The vigreux column provides more surface area for condensation to occur. At each condensation event the vapor is enriched in the low b.p. component and the liquid is enriched in the high b.p. component. We call these surfaces where condensation occurs theoretical plates, so the more theoretical plates, the more efficient your separation.

benzene + toluene

In order to get a good separation (i.e. high efficiency) we must distill at a moderate rate. Therefore we cannot add too much energy (i.e. heat).

> Imagine if 100 people were in a 2 kilometer race. If everyone were to get into a car and drive, then they would all arrive very close to each other. However, if they all ran instead, then their would be a good distribution of runners over the course of the race, and the fastest ones would arrive well ahead of the slower runners (i.e. they would be separated).

A simple distillation has fewer theoretical plates, so the temperature gradient is not as dispersed and the separation is poorer.

Only use the simple distillation for compounds that have a large difference in b.p. (e.g. purifying sea water).

Why is fractional distillation more efficient?

[^0]
Gas Chromatography

The column is packed with tiny beads that are coated with a viscous liquid. The vaporized compound travels down the column and adsorbs onto the column packing. Normally the carrier gas (or eluant) is helium.

GC chromatogram
Which peak is due to toluene?

Safety Issues

- hexane and toluene are highly flammable.
- Never heat a closed distillation system. Always make sure there is a vacuum or air outlet.
- the glassware will get very hot.
- do NOT distill to dryness as this may leave solid residues, which could explode if there were peroxides present.
- the GC needles are very sharp and delicate. Inject carefully so as not to bend the needle

[^0]: benzene + toluene

