Sequence-Based Data Mining

Jaroslaw Pillardy

Computational Biology Service Unit Cornell University

Sequence analysis: what for?

- Finding coding regions (gene finding)
- Finding regulatory regions
- Analyzing mutation rates
- Determine properties of a sequence (repeats, low complexity regions)
- Functionally annotate genes
- Associate ESTs with genes
- Make cross-species comparison
- Build a model for a protein in order to understand its function, mutations etc
- And many more ...

Sequence analysis: an example of a problem

Quiz:

A human geneticist identified a new gene that would significantly increase the risk of colon cancer when mutated. By using BLASTP, she found that this protein exists in a few vertebrate and invertebrate species with very low homology, but she was not able to find any good BLAST hits in *Drosophila melanogaster*.

Before making the conclusion that this gene does not exist in fly, what other approaches would you take?

Sequence analysis: how?

e

Searching for similar proteins in a Database

Simple sequence search

- Sequence similarity search looks like *syntactic* problem: comparing strings using alphabets
- Sequence homology is based of common ancestor and is *semantic* in nature
 - orthologs similar genes in different species, usually with same function
 - paralogs similar genes created by duplication, may be in same species, may not have the same function
- High sequence similarity does not imply homology, it is only a base for further investigation
- Physics can be reintroduced to sequence similarity search via scoring matrices

Scoring alignments

Scoring Matrices

- Relative entropy: $H = \sum q_{ij}c_{ij}$
- Shows information content per pair
- Matrices with larger entropy values are more sensitive to less divergent sequences
- Matrices with smaller entropy values are more sensitive to distantly related sequences

	a ₁	a ₂	a ₃	a ₄
a ₁	C ₁₁	C ₂₁	С ₃₁	C ₄₁
a_2	C ₁₂	C ₂₂	C ₃₂	C ₄₂
a_3	C ₁₃	C ₂₃	C ₃₃	C ₄₃
a_4	C ₁₄	C ₂₄	C ₃₄	C ₄₄

- Relative entropy can be used to compare matrices
- Scores can be related to biology: negative=dissimilarity, zero=indifference, positive=similar

Scoring DNA alignments

Identity Matrix

AATTGGCTAGCTAA

... AAAAATGCAAAATGCGGGGTAGCTTATTCTAGAAGATT...

	Α	Т	С	G
Α	1	0	0	0
Т	0	1	0	0
С	0	0	1	0
G	0	0	0	1

Relative entropy: 1.0

Matches: 10 Mismatches: 4 Score: 10 x 1 + 4 x 0 = 10 Max score: 14 Expected score: 3.5 Minimum score: 0 Score: 71%

Scoring DNA alignments

BLAST Matrix

AATTGGCTAGCTAA

	A	Т	С	G
А	5	-4	-4	-4
Т	-4	5	-4	-4
С	-4	-4	5	-4
G	-4	-4	-4	5

Relative entropy: -1.0

Matches: 10 Mismatches: 4 Score: 10 x 5 + 4 x (-4) = 36 Max score: 70 Expected score: -24.5 Minimum score: -56 Score: 73%

Scoring DNA alignments

Transition-Transversion Matrix

	A	Т	С	G
Α	1	-5	-5	-1
Т	-5	1	-1	-5
С	-5	-1	1	-5
G	-1	-5	-5	1

Matches: 10 (1) Mismatches: 3 Score: 10 x 1 + 3 x (-5) + 1 x (-1) = -6 Max score: 14 Expected score: -35 Minimum score: -70 Score: 42%

Relative entropy: -4.5

Scoring protein alignments

- 20 letter sequences, more possibilities
- Scoring may be based on physical properties of amino acids (polarity, size, hydrophobicity etc)
- Scoring may based on genetic code: minimum number of nucleotides substitutions necessary to convert
- Hard to put the above into a consistent scoring table
- Most popular matrices (PAM, BLOSUM) are based on observed substitution rates

ADCFDGGFAA | | | | | | AECFCGGEAA

Score =
$$4 + 2 + 9 + 6 - 3 + 6 + 6 - 3 + 4 + 4 = 35$$

Scoring protein alignments : PAM Deriving Point Accepted Mutation matrix

- Dataset of families of very closely related proteins (identity >= 85%)
- Phylogenetic tree was constructed for each family
- Substitution frequency F_{ij} was computed
- Relative mutability m_i was computed for each amino acid (ratio of occurring mutation to all possible ones)
- Mutation probability $M_{ij} = m_j F_{ij} / \Sigma_l F_{ij}$
- $c_{ij} = log(M_{ij}/f_i) log odds matrix, f_j is frequency of occurrence$

Scoring protein alignments : PAM Using Point Accepted Mutation matrix

- Matrix normalization to PAM-1 unit: 1 substitution over 100 residues
 "what is the probability of substitution of a residue during the time when 1% of residues mutated"
- Multiplication of PAM-1 unit produces substitution rates for multiple units
- PAM-1 is good for very closely related sequences, PAM-250 for intermediate and PAM-1000 for very distant

Scoring protein alignments : BLOSUM BLOck SUbstitution Matrix

- Based on comparisons of Blocks of sequences derived from the Blocks database (derived from Prosite)
- The Blocks database contains multiply aligned ungapped segments corresponding to the most highly conserved regions of proteins
- BLOSUM matrices are categorized by sequence identity above which blocks were clustered (i.e. BLOSUM62 is derived from blocks clustered at 62% sequence identity)
- Focused on highly conserved regions

Scoring protein alignments : BLOSUM vs. PAM

Matrix	Entropy	Expected score
BLOSUM30	0.1424	-0.1074
BLOSUM35	0.2111	-0.1550
BLOSUM40	0.2851	-0.2090
BLOSUM45	0.3795	-0.2789
BLOSUM50	0.4808	-0.3573
BLOSUM55	0.5637	-0.4179
BLOSUM60	0.6603	-0.4917
BLOSUM62	0.6979	-0.5209
BLOSUM65	0.7576	-0.5675
BLOSUM70	0.8391	-0.6313
BLOSUM75	0.9077	-0.6845
BLOSUM80	0.9868	-0.7442
BLOSUM85	1.0805	-0.8153
BLOSUM90	1.1806	-0.8887

Matrix	Entropy	Expected score
PAM-10	3.430	-8.270
PAM-20	2.950	-6.180
PAM-30	2.570	-5.060
PAM-40	2.260	-4.270
PAM-50	2.000	-3.700
PAM-60	1.790	-3.210
PAM-70	1.600	-2.770
PAM-80	1.440	-2.550
PAM-90	1.300	-2.260
PAM-100	1.180	-1.990
PAM-120	0.979	-1.640
PAM-140	0.820	-1.350
PAM-160	0.694	-1.140
PAM-180	0.591	-1.510
PAM-200	0.507	-1.230
PAM-250	0.354	-0.844
PAM-300	0.254	-0.835
PAM-350	0.186	-0.701

Scoring protein alignments : BLOSUM vs. PAM

Equivalent PAM and BLOSUM matrices based on relative entropy

PAM100 <==> Blosum90 PAM120 <==> Blosum80 PAM160 <==> Blosum60 PAM200 <==> Blosum52 PAM250 <==> Blosum45

• PAM matrices have lower expected scores for the BLOSUM matrices with the same entropy

•BLOSUM matrices "generally perform better" than PAM matrices

Simple sequence search : scoring gaps

AATCTATA	AATCTATA	AATCTATA
AAG-AT-A	AA-G-ATA	AAGATA

- Gap should correspond to insertion/deletion (indel) even in evolution
- Multiple (block) nucleotide indels are common as single nucleotide indels
- It is then more probable that fewer indel events occurred, i.e. gaps should be grouped
- Gaps are scored negatively (penalty)
- Two scores for gaps: origination and continuation
- Origination score > continuation score

A C D E F G H-> 4 0 -2 -1 -2 0 -2 9 -3 -4 -2 -3 -3 6 2 -3 -1 -1 5 -3 **Substitution Matrix and Gap Cost** -3 -3 6 BLOSUM 62 **Query Length** Substitution Gap cost **Matrix PAM-30** (9,1)<35 (10, 1)35-50 **PAM-70 BLOSUM-80** (10, 1)50-85 BLOSUM-62 (11, 1)>85

- Direct enumeration impossible: 100 vs. 95 with 5 gaps = ~55 million choices
- Optimal solution comes from Dynamic Programming: extending solution to *n* based on all optimal solutions for *n-1* problems (*Needleman-Wunsh*)
- Solution is a path in the Dynamic Programming score table

		А	С	Т	С	G
	0	-1	-2	-3	-4	-5
А	-1					
С	-2					
А	-3					
G	-4					
Т	-5					
А	-6					
G	-7					

- Initiate table with gap penalties (1,1)
- Fill table top-left to low-right
- Fill element with maximum value of
 - = take left cell add gap penalty
 - = take upper cell add gap penalty
 - = take diagonal cell add score

- This alignment uses identity scoring table with (1,1) gaps
- Aligns full sequences: global alignment

ACAGTAG

AC--TCG

		А	С	Т	С	G
	0	-1	-2	-3	-4	-5
А	-1					
С	-2					
А	-3					
G	-4					
Т	-5					
А	-6					
G	-7					

		А	С	Т	С	G
	0	-1	-2	-3	-4	-5
А	-1	1	0	-1	-2	-3
С	-2	0	2	1	0	-1
А	-3	-1	1	2	1	0
G	-4	-2	0	1	2	2
Т	-5	-3	-1	1	1	2
А	-6	-4	-2	0	1	1
G	-7	-5	-3	-1	0	2

		А	С	Т	С	G
	0	-1	-2	-3	-4	-5
А	-1	1	0	-1	-2	-3
С	-2	0	2	1	0	-1
А	-3	-1	1	2	1	0
G	-4	-2	0	1	2	2
Т	-5	-3	-1	1	1	2
А	-6	-4	-2	0	1	1
G	-7	-5	-3	-1	0	2

- Global alignment is not useful when searching databases
- Semiglobal alignment: terminal gaps allowed
- Achieved by initializing gaps to zero in the first step and allowing no gap penalties in the last row/column

		А	С	G	Т	С	AACACGGTGTCT			А	С	G	Т	С
	0	-1	-2	-3	-4	-5	-A-C-G-TC		0	0	0	0	0	0
А	-1	1	0	-1	-2	-3		А	0	1	0	-1	-1	0
А	-2	0	0	-1	-2	-3		А	0	1	0	-1	-2	0
С	-3	-1	1	0	-1	-1	AACACGGTGTCT	С	0	0	2	1	0	0
А	-4	-2	0	0	-1	-2	ACG-TC	А	0	1	1	1	0	0
С	-5	-3	-1	-1	-1	0		С	0	0	2	1	0	1
G	-6	-4	-2	0	-1	-1		G	0	-1	1	3	2	1
G	-7	-5	-3	-1	-1	-2		G	0	-1	0	2	2	1
Т	-8	-6	-4	-2	0	-1		Т	0	-1	-1	1	3	2
G	-9	-7	-5	-3	-1	-1		G	0	-1	-2	0	2	2
Т	-10	-8	-6	-4	-2	-2		Т	0	-1	-2	-1	1	2
С	-11	-9	-7	-5	-3	-1		С	0	-1	0	-1	0	2
Т	-12	-10	-8	-6	-4	-2		Т	0	0	0	0	0	2

- Local alignment: best subsequence matching
- Dynamic programming algorithm for local alignment: Smith-Waterman
- Starts like semiglobal alignment with fourth option for filling table:
 - = place 0 in the cell when maximum possible value is negative
- Start with the cell with maximum score

		G	С	G	А	Т	А	Т	А
	0	0	0	0	0	0	0	0	0
А	0	-1	-1	-1	1	0	1	0	1
А	0	-1	-2	-2	0	0	1	0	1
С	0	-1	0	-1	-1	-1	0	0	1
С	0	-1	0	-1	-2	-2	-1	-1	1
Т	0	-1	-1	-1	-2	-1	-2	0	1
А	0	-1	-2	-2	0	-1	0	-1	1
Т	0	-1	-2	-3	-1	1	0	1	1
А	0	-1	-2	-3	-2	0	2	1	2
G	0	1	0	-1	-2	-1	1	1	2
С	0	0	2	1	0	-1	0	0	2
Т	0	0	1	1	1	1	1	1	2

AAC-CTATAGCT -GCGATATA---

AACC**TATA**GCT GCGA**TATA**

			_					_	
		G	С	G	А	Т	А	Т	А
	0	0	0	0	0	0	0	0	0
А	0	0	0	0	1	0	1	0	1
Α	0	0	0	0	1	0	1	0	1
С	0	0	1	0	0	0	0	0	1
С	0	0	1	0	0	0	0	0	1
Т	0	0	0	0	0	1	0	1	1
А	0	0	0	0	1	0	2	1	2
Т	0	0	0	0	0	2	1	3	2
А	0	0	0	0	1	1	3	2	4
G	0	1	0	1	0	0	2	2	4
С	0	0	2	1	0	0	1	1	4
Т	0	0	1	1	1	1	1	2	4

FASTA search algorithm

- Breaks up query sequence into words (like BLAST)
- Using lookup tables with words finds areas of identity
- Areas of identity are joint to form larger pieces
- Full Smith-Waterman algorithm is used to align these pieces
- FASTA is slower than BLAST, but produces optimal alignment for pieces

Bit Score and E-value

Bit Score: S' = $(\lambda S - \ln K)/\ln 2$

Expect Value: E=mn 2^{-S'}

E=0.01 -> 1% chance that the match is due to a random match E value depends on database size E value: expected number of HSPs with score S or higher

P value: probability of finding zero HSPs with score S or higher P = 1 - exp(-E)

nucleotide sequence: blastn
 Query: nucleotide sequence
 Database: nucleotide sequence database

e.g. nt htg est

2. protein sequence: blastpQuery: protein sequenceDatabase: protein sequence database

e.g. nr

3. translated blast search: blastx nucleotide sequence -> protein database tblastn protein sequence -> nucleotide database tblastx nucleotide sequence->nucleotide

Protein sequence alignment is more sensitive than nucleotide sequence alignment !

Filtering the low complexity and repetitive sequences

1. Low complexity: DUST and SEG programs

2. Repetitive sequences: RepeatMasker

(DNA sequences: "NNNNNNN")
(Protein sequences: "XXXXXXXX")

BLAST Servers

1. NCBI http://www.ncbi.nlm.nih.gov/BLAST/

2. Batch Blast <u>http://cbsuapps.tc.cornell.edu/cbsu/blast_s.aspx</u>

Input files: Fasta format sequence files Output files:

- 1. <u>standard</u>
- 2. <u>-m 8 format</u>
- **3. CBSU parsed format**
- 4. CBSU parsed format 2

Sequence analysis: how?

Scoring system of BLAST

Query:	ACC	GGEFFGZ	ACD
Target:			
Score:	493	6646 <mark>2</mark> 64	1 31

Sequence alignment of domain X

ACHGGEFFGAC ACCGGCFCGAG ACACCEFFCAC ACACTCFFGAC ACLGPEFFGAC

	А	С	G	Н	S
1	1.0	0.0	0.0	0.0	0.0
2	0.0	1.0	0.0	0.0	0.0
3	0.4	0.2	0.0	0.2	0.0
4	0.0	0.4	0.4	0.0	0.0

	А	С	G	Н	S
1	100	-100	-100	-100	-100
2	-100	100	-100	-100	-100
3	50	10	-50	10	-50
4	-60	60	60	-60	-60

What is Hidden Markov Model?

P(ACACATC)=0.8×1.0×0.8×1.0 ... ×0.8=4.7×10⁻²

What is Hidden Markov Model?

Log-odds(ACACATC)=1.16+0+1.16+0 ... +1.16=6.64

What is Hidden Markov Model?

- ACA---ATG TCAACTATC ACAC--AGC
- AGA---ATC
- ACCG--ATC

	Sequence	P %	Log odds
Consensus	ACACATC	4.7	6.7
	ACAATG	3.7	4.9
	TCAACTATC	0.0075	3.0
	ACACAGC	1.2	5.3
	AGAATC	3.3	4.9
	ACCGATC	0.59	4.6
Bad sequence	TGCTAGG	0.0023	-0.97

40ptsH 41ptsH 42rhaS 43rot

TTTTGTGGCCTGCTTCAAACTT TTTTATGATTTGGTTCAATTCT AATTGTGAACATCATCACGTTC TTTTGTGATCTGTTTAAATGTT

Alignment

Model

GTGTGATCAGAGTGATTGTGTGTCAGTGTGTAGCGCTCTGTT TCGTGTGTTTGTGTTCATTTATTGTGTTGT GGCTTCTCATT GCCCCTTTGGTTCTGTTCTTAAACCTTCATCTTCGCTTAGT AAAGTTAGATTCCACCGA TCCGTTTCTGTTA AAGAAAAAG TGATCAACAAACTTCAAGAAAATCTAAATGTGCAGTAATTT GAAATTTATGCTTATTGTGT

Search for matches

HMM model table

HMMER2.0 [2.3.2] NAME AA kinase ACC PF00696.17 DESC Amino acid kinase family LENG 318 ALPH Amino RF no CS no MAP ves hmmbuild -F HMM 1s.ann SEED.ann COM hmmcalibrate --seed 0 HMM ls.ann COM NSEQ 108 DATE Tue Feb 21 02:42:42 2006 CKSUM 7209 GA -40.0 -40.0 -39.2 -39.2 TC NC -40.5 -40.5 XТ -8455 -4 -1000 -1000 -8455 -4 -8455 -4 NULT -4 -8455 NULE 595 -1558 85 338 -294 453 -1158 197 249 902 -1085 -142 -21 -313 45 531 201 384 -1998 -644 EVD -134.910873 0.147785 HMM A С D E F G н т Κ М N Ρ 0 R S т 37 W v T. $m \rightarrow m$ $m \rightarrow i$ m->d $i \rightarrow m$ i->i $d \rightarrow m$ d->d b->m $m \rightarrow e$ -6337 -18* -442 -4997 -726 -30 -5318 -606 -3157 -2580 2335 -2272 2946 -718 -4591 898 966 -637 -2003 -4619 -5180 -5421 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -1 -11485 -12527-894 -1115-701-1378-18 * 2 -3924-3758-6216-2272 84 -2772-4334150 958 254 2151 -5094 -246 -4823 2414 -4548 1095 -766 1517 -14972 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249 -1 - 11609-12651-894 -1115 -701-1378* * 2750 -5522 -675 -19921889 -8 -3869 -1251-80 -6262 -2333 -382 -5472-800 -2121 29 -310-5115 -1594-4 3 3 -381 -720 -149-500 233 43 399 106 -626 210 -466 275 394 96 359 117 -369-294 -24945 -1115-701-1378-1 - 11609-12651-894 * - 7 4 -2336 -5399 -8620 -8305 -5890 -8502 -8549 1204 -8290 133 -519 -8157-8176 -8175 -8444 -7901-59133484 -7736 -7303 4 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249-1 -11609 -12651 -894 -1115 -701 -1378 * * -2325 -602 -6272 -5636 441 -5474 328 2498 -5231 835 606 -5120 -5524 1214 -5031 -2377 -3867 1824 -4211 -1401 5 5 -466 -149 -500 233 43 -381 399 106 -626 210 -720 275 394 45 96 359 117 -369 -294 -249 -1 - 11609-12651 -894 -1115 -701-1378* 858 -5563 -1423-5664 -7743 -5588 -5944 -7511 3703 -7583 -760 -5461 -6266 -5679 -5766 -1043 -2248 -6499 -7688 -73496 6 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 -369 -294 -249 117 -701 -1378 -1 - 11609-12651-894 -1115* - 7 7 -6142229 -8586 -8089 2523 -8180 -6968 1713 -7853 1859 -3664 -7805 -7776 -7152-7599-7422 -6068 1024 -6130 1322 7 -149-500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369-294-249-1 - 11609-12651 -894 -1115 -701-1378 * - * -5620 -6116 -8303 -8671 -8641 3699 -7887 -8683 -8615 -8808 -7964 -7205 -7115 -8115 -8210549 -6093 -7417-8370 -8783 8 8 -149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249-1 -11609 -12651 -894 -1115 -701 -1378 * * q -4637 -5247 -7901 -8257 -7980 3590 -7294 -7815 -7975 -8072 -7095 -6356 -6342 -7394 -7582 543 132 -6473 -8186 -8186 9 -149-500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -294 -249-1 - 11609-12651-894 -1115-701-1378* 746 -5180 -3527 790 -5520 -2312301 -52.69-2960 -5219-4298 -4788 -1285 2074 1689 -1565-5391-4708 10 10 1891 -3470-149 -500 43 -381 399 106 -626 210 -466 -720 275 359 -369 -294 -249 233 394 45 96 117 1600 265 1378 70.

PSI-BLAST

Position-Specific Iterative BLAST

BLAST search Align the sequences of the blast targets Construct profile from the blast targets Modify substitution matrix to fit profile Search the database with the new scoring

PSI-BLAST uses position-dependent substitution matrix instead of probabilities (HMM)

More sequence motifs that fit this model

Programs:Databases:HMMERPFAM http://pfam.wustl.edu/SAMSMART http://smart.embl-heidelberg.de/PSI-BLASTCOG http://www.ncbi.nlm.nih.gov/COG/Superfamily
http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/

Web based programs:

PFAM: <u>http://pfam.wustl.edu/hmmsearch</u> An HMM library based on the Swissprot 48.9 and SP-TrEMBL 31.9 protein sequence databases. 8296 protein families in current version.

<u>SMART</u>: <u>http://smart.embl-heidelberg.de/</u> More than 500 extensively annotated domain families

InterProScan: <u>http://www.ebi.ac.uk/interpro/scan.html</u> Combines many HMM and other methods

The input and output:

MLYQLSKATTRIRLKRQKAVPQHRWLWSLAFLAAFTLKVSERANKNMAKTHNSGDVRCADLAI SIPNNPGLDDGASYRLDYSPPFGYPEPNTTIASREIGDEIQFSRALPGTKYNFWLYYTNFTHHD WLTWTVTITTAPDPPSNLSVQVRSGKNAIILWSPPTQGSYTAFKIKVLGLSEASSSYNRTFQVN DNTFQHSVKELTPGATYQVQAYTIYDGKESVAYTSRNFTTKPNTPGKFIVWFRNETTLLVLWQ PPYPAGIYTHYKVSIEPPDANDSVLYVEKEGEPPGPAQAAFKGLVPGRAYNISVQTMSEDEISL PTTAQYRTVPLRPLNVTFDRDFITSNSFRVLWEAPKGISEFDKYQVSVATTRRQSTVPRSNEPV AFFDFRDIAEPGKTFNVIVKTVSGKVTSWPATGDVTLRPLPVRNLRSINDDKTNTMIITWEADPA STQDEYRIVYHELETFNGDTSTLTTDRTRFTLESLLPGRNYSL

Model	Seq-from	Seq-to	HMM-from	HMM-to	Score	E-value	Alignment
!! <u>fn3</u>	139	221	1	84	58.1	1.2e-14	glocal I
!! <u>fn3</u>	233	317	1	84	59.4	5.1e-15	glocal I
!! <u>fn3</u>	328	410	1	84	36.3	4.4e-08	glocal I
!! <u>fn3</u>	421	501	1	84	58.4	9.8e-15	glocal I
!! <u>fn3</u>	512	591	1	84	27.0	3e-05	glocal I
!! <u>fn3</u>	599	677	1	84	78.9	6.9e-21	glocal I
!! <u>fn3</u>	689	778	1	84	40.8	2e-09	glocal I
!! <u>fn3</u>	789	869	1	84	14.8	0.0063	glocal I
!! <u>fn3</u>	880	955	1	84	67.6	1.7e-1 7	glocal I
!! <u>fn3</u>	974	1060	1	84	58.4	1e-14	glocal I
!! Y_phosphatase	1312	1542	1	274	393.6	1.3e-115	glocal I

Description

glocal Fibronectin type III domain glocal Fibronectin type III domain

Evaluating the significance of a hit:

1. E-value: <= 0.1 (10% chance that you would've seen a hit this good in a search of random sequences)

2. Raw score >= GA (the scores used as cutoffs in constructing Pfam, you may consider TC and NC as well)

3. Raw score > log₂(number of sequences in the database) (20 for the nr)