Sequence-Based Data Mining

Jaroslaw Pillardy

Computational Biology Service Unit
Cornell University

Sequence analysis: what for?

- Finding coding regions (gene finding)
- Finding regulatory regions
- Analyzing mutation rates
- Determine properties of a sequence (repeats, low complexity regions)
- Functionally annotate genes
- Associate ESTs with genes
- Make cross-species comparison
- Build a model for a protein in order to understand its function, mutations etc
- And many more ...

Sequence analysis: an example of a problem

Quiz:
A human geneticist identified a new gene that would significantly increase the risk of colon cancer when mutated. By using BLASTP, she found that this protein exists in a few vertebrate and invertebrate species with very low homology, but she was not able to find any good BLAST hits in Drosophila melanogaster.

Before making the conclusion that this gene does not exist in fly, what other approaches would you take?

Sequence analysis: how?

Searching for similar proteins in a Database

Simple sequence search
Profile-sequence search
Structure-sequence search

Sensitivity: Least sensitive \qquad Most sensitive

Speed: Seconds \longrightarrow Minutes \longrightarrow Hours

DB size: $4 \times 10^{6} \longrightarrow 4 \times 10^{6} \longrightarrow 4 \times 10^{4}(\mathrm{PDB})$

Simple sequence search

- Sequence similarity search looks like syntactic problem: comparing strings using alphabets
- Sequence homology is based of common ancestor and is semantic in nature
- orthologs similar genes in different species, usually with same function
- paralogs similar genes created by duplication, may be in same species, may not have the same function
- High sequence similarity does not imply homology, it is only a base for further investigation
- Physics can be reintroduced to sequence similarity search via scoring matrices

Scoring alignments

Scoring Matrices

- Relative entropy: $\mathrm{H}=\Sigma \mathrm{q}_{\mathrm{ij}} \mathrm{c}_{\mathrm{ij}}$
- Shows information content per pair
- Matrices with larger entropy values are more sensitive to less divergent sequences
- Matrices with smaller entropy values are more sensitive to distantly related sequences

	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	c_{11}	c_{21}	c_{31}	c_{41}
a_{2}	c_{12}	c_{22}	c_{32}	c_{42}
a_{3}	c_{13}	c_{23}	c_{33}	c_{43}
a_{4}	c_{14}	c_{24}	c_{34}	c_{44}

- Relative entropy can be used to compare matrices
- Scores can be related to biology: negative=dissimilarity, zero=indifference, positive=similar

Scoring DNA alignments

Identity Matrix
AATTGGCTAGCTAA
\| \| \|ll\|\|
. . . AAAAATGCAAAATGCGGGTAGCTTATTCTAGAAGATT . . .

	A	T	C	G
A	1	0	0	0
T	0	1	0	0
C	0	0	1	0
G	0	0	0	1

Relative entropy: 1.0
Matches: 10
Mismatches: 4
Score: $10 \times 1+4 \times 0=10$
Max score: 14
Expected score: 3.5
Minimum score: 0
Score: 71\%

Scoring DNA alignments

BLAST Matrix
AATTGGCTAGCTAA

. . . AAAAATGCAAAATGCGGGTAGCTTATTCTAGAAGATT . . .

	A	T	C	G
A	5	-4	-4	-4
T	-4	5	-4	-4
C	-4	-4	5	-4
G	-4	-4	-4	5

Relative entropy: -1.0
Matches: 10
Mismatches: 4
Score: $10 \times 5+4 \times(-4)=36$
Max score: 70
Expected score: -24.5
Minimum score: -56
Score: 73\%

Scoring DNA alignments

Transition-Transversion Matrix
AATTGGCTAGCTAA
| :|| ||||||
. . . AAAAATGCAAAATGCGGGTAGCTTATTCTAGAAGATT . . .

	A	T	C	G
A	1	-5	-5	-1
T	-5	1	-1	-5
C	-5	-1	1	-5
G	-1	-5	-5	1

Matches: 10 (1)
Mismatches: 3
Score: $10 \times 1+3 \times(-5)$

$$
+1 \times(-1)
$$

$$
=-6
$$

Max score: 14
Expected score: -35
Minimum score: -70
Score: 42\%
Relative entropy: -4.5

Scoring protein alignments ADCFDGGFAA

- 20 letter sequences, more possibilities
- Scoring may be based on physical properties of amino acids (polarity, size, hydrophobicity etc)
- Scoring may based on genetic code: minimum number of nucleotides substitutions necessary to convert
- Hard to put the above into a consistent scoring table
- Most popular matrices (PAM, BLOSUM) are based on observed substitution rates

| || || ||
 AECFCGGEAA

$$
\begin{aligned}
\text { Score }= & 4+2+9+6-3+ \\
& 6+6-3+4+4 \\
= & 35
\end{aligned}
$$

	$\begin{array}{lllllll}\text { A } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } & H\end{array}$
A	$\begin{array}{lllllll}4 & 0 & -2 & -1 & -2 & 0 & -2\end{array}$
C	$\begin{array}{lllllll}0 & 9 & -3 & -4 & -2 & -3 & -3\end{array}$
D	$\begin{array}{llllllll}-2 & -3 & 6 & 2 & -3 & -1 & -1\end{array}$
E	$\begin{array}{llllllll}-1 & -4 & 2 & 5 & -3 & -2 & 0\end{array}$
F	$\begin{array}{lllllll}-2 & -2 & -3 & -3 & 6 & -3 & -1\end{array}$
G	
H	-2 $-3-1-0$
\downarrow	BLOSUM 62

Scoring protein alignments : PAM

Deriving Point Accepted Mutation matrix

- Dataset of families of very closely related proteins (identity >= 85\%)
- Phylogenetic tree was constructed for each family
- Substitution frequency $F_{i j}$ was computed
- Relative mutability m_{i} was computed for each amino acid (ratio of occurring mutation to all possible ones)
- Mutation probability $\mathrm{M}_{\mathrm{ij}}=\mathrm{m}_{\mathrm{j}} \mathrm{F}_{\mathrm{ij}} / \Sigma_{\mathrm{l}} \mathrm{F}_{\mathrm{ij}}$
- $\mathrm{c}_{\mathrm{ij}}=\log \left(\mathrm{M}_{\mathrm{ij}} / \mathrm{f}_{\mathrm{i}}\right)-\log$ odds matrix, f_{j} is frequency of occurrence

Scoring protein alignments : PAM

 Using Point Accepted Mutation matrix- Matrix normalization to PAM-1 unit: 1 substitution over 100 residues
"what is the probability of substitution of a residue during the time when 1% of residues mutated"
- Multiplication of PAM-1 unit produces substitution rates for multiple units
- PAM-1 is good for very closely related sequences, PAM-250 for intermediate and PAM-1000 for very distant

Scoring protein alignments : BLOSUM BLOck SUbstitution Matrix

- Based on comparisons of Blocks of sequences derived from the Blocks database (derived from Prosite)
- The Blocks database contains multiply aligned ungapped segments corresponding to the most highly conserved regions of proteins
- BLOSUM matrices are categorized by sequence identity above which blocks were clustered (i.e. BLOSUM62 is derived from blocks clustered at 62\% sequence identity)
- Focused on highly conserved regions

AABCD---3BCDA
DABCD-A-BBCBB
BBBCDBA-BCCAA
AAACDC-DCBCDB
CCBADB-DBBDCC
AAACA-- BBCCC

Scoring protein alignments : BLOSUM vs. PAM

Matrix	Entropy	Expected score
BLOSUM30	0.1424	-0.1074
BLOSUM35	0.2111	-0.1550
BLOSUM40	0.2851	-0.2090
BLOSUM45	0.3795	-0.2789
BLOSUM50	0.4808	-0.3573
BLOSUM55	0.5637	-0.4179
BLOSUM60	0.6603	-0.4917
BLOSUM62	0.6979	-0.5209
BLOSUM65	0.7576	-0.5675
BLOSUM70	0.8391	-0.6313
BLOSUM75	0.9077	-0.6845
BLOSUM80	0.9868	-0.7442
BLOSUM85	1.0805	-0.8153
BLOSUM90	1.1806	-0.8887

Matrix	Entropy	Expected score
PAM-10	3.430	-8.270
PAM-20	2.950	-6.180
PAM-30	2.570	-5.060
PAM-40	2.260	-4.270
PAM-50	2.000	-3.700
PAM-60	1.790	-3.210
PAM-70	1.600	-2.770
PAM-80	1.440	-2.550
PAM-90	1.300	-2.260
PAM-100	1.180	-1.990
PAM-120	0.979	-1.640
PAM-140	0.820	-1.350
PAM-160	0.694	-1.140
PAM-180	0.591	-1.510
PAM-200	0.507	-1.230
PAM-250	0.354	-0.844
PAM-300	0.254	-0.835
PAM-350	0.186	-0.701

Scoring protein alignments : BLOSUM vs. PAM

Equivalent PAM and BLOSUM matrices based on relative entropy

> PAM100 <==> Blosum90
> PAM120 <==> Blosum80
> PAM160 <==> Blosum60
> PAM200 <==> Blosum52
> PAM250 <==> Blosum45
-PAM matrices have lower expected scores for the BLOSUM matrices with the same entropy
-BLOSUM matrices "generally perform better" than PAM matrices

Simple sequence search : scoring gaps

AATCTATA
AAG-AT-A

AATCTATA
AA-G-ATA

AATCTATA
AA--GATA

- Gap should correspond to insertion/deletion (indel) even in evolution
- Multiple (block) nucleotide indels are common as single nucleotide indels
- It is then more probable that fewer indel events occurred, i.e. gaps should be grouped
- Gaps are scored negatively (penalty)
- Two scores for gaps: origination and continuation
- Origination score > continuation score

Substitution Matrix and Gap Cost

Query Length Substitution Matrix
<35
35-50
50-85
>85
PAM-30
PAM-70
BLOSUM-80
BLOSUM-62
$(9,1)$
$(10,1)$
$(10,1)$
$(11,1)$

Simple sequence search - alignment

- Direct enumeration impossible: 100 vs. 95 with 5 gaps $=\sim 55$ million choices
- Optimal solution comes from Dynamic Programming: extending solution to n based on all optimal solutions for $n-1$ problems (Needleman-Wunsh)
- Solution is a path in the Dynamic Programming score table

		A	C	T	C	G
	0	-1	-2	-3	-4	-5
A	-1					
C	-2					
A	-3					
G	-4					
T	-5					
A	-6					
G	-7					

- Initiate table with gap penalties $(1,1)$
- Fill table top-left to low-right
- Fill element with maximum value of
= take left cell add gap penalty
= take upper cell add gap penalty
= take diagonal cell add score

Simple sequence search - alignment

- This alignment uses identity scoring table with $(1,1)$ gaps
- Aligns full sequences: global alignment

ACAGTAG
AC--TCG

		A	C	T	C	G
	0	-1	-2	-3	-4	-5
A	-1					
C	-2					
A	-3					
G	-4					
T	-5					
A	-6					
G	-7					

		A	C	T	C	G
	0	-1	-2	-3	-4	-5
A	-1	1	0	-1	-2	-3
C	-2	0	2	1	0	-1
A	-3	-1	1	2	1	0
G	-4	-2	0	1	2	2
T	-5	-3	-1	1	1	2
A	-6	-4	-2	0	1	1
G	-7	-5	-3	-1	0	2

		A	C	T	C	G
	0	-1	-2	-3	-4	-5
A	-1	1	0	-1	-2	-3
C	-2	0	2	1	0	-1
A	-3	-1	1	2	1	0
G	-4	-2	0	1	2	2
T	-5	-3	-1	1	1	2
A	-6	-4	-2	0	1	1
G	-7	-5	-3	-1	0	2

Simple sequence search - alignment

- Global alignment is not useful when searching databases
- Semiglobal alignment: terminal gaps allowed
- Achieved by initializing gaps to zero in the first step and allowing no gap penalties in the last row/column

		A	C	G	T	C
	0	-1	-2	-3	-4	-5
A	-1	1	0	-1	-2	-3
A	-2	0	0	-1	-2	-3
C	-3	-1	1	0	-1	-1
A	-4	-2	0	0	-1	-2
C	-5	-3	-1	-1	-1	0
G	-6	-4	-2	0	-1	-1
G	-7	-5	-3	-1	-1	-2
T	-8	-6	-4	-2	0	-1
G	-9	-7	-5	-3	-1	-1
T	-10	-8	-6	-4	-2	-2
C	-11	-9	-7	-5	-3	-1
T	-12	-10	-8	-6	-4	-2

AACACGGTGTCT -A-C-G-TC--

AACACGGTGTCT ---ACG-TC---

		A	C	G	T	C
	0	0	0	0	0	0
A	0	1	0	-1	-1	0
A	0	1	0	-1	-2	0
C	0	0	2	1	0	0
A	0	1	1	1	0	0
C	0	0	2	1	0	1
G	0	-1	1	3	2	1
G	0	-1	0	2	2	1
T	0	-1	-1	1	3	2
G	0	-1	-2	0	2	2
T	0	-1	-2	-1	1	2
C	0	-1	0	-1	0	2
T	0	0	0	0	0	2

Simple sequence search - alignment

- Local alignment: best subsequence matching
- Dynamic programming algorithm for local alignment: Smith-Waterman
- Starts like semiglobal alignment with fourth option for filling table:
$=$ place 0 in the cell when maximum possible value is negative
- Start with the cell with maximum score

		G	C	G	A	T	A	T	A
	0	0	0	0	0	0	0	0	0
A	0	-1	-1	-1	1	0	1	0	1
A	0	-1	-2	-2	0	0	1	0	1
C	0	-1	0	-1	-1	-1	0	0	1
C	0	-1	0	-1	-2	-2	-1	-1	1
T	0	-1	-1	-1	-2	-1	-2	0	1
A	0	-1	-2	-2	0	-1	0	-1	1
T	0	-1	-2	-3	-1	1	0	1	1
A	0	-1	-2	-3	-2	0	2	1	2
G	0	1	0	-1	-2	-1	1	1	2
C	0	0	2	1	0	-1	0	0	2
T	0	0	1	1	1	1	1	1	2

AAC-CTATAGCT -GCGATATA---

AACCTATAGCT GCGATATA

		G	C	G	A	T	A	T	A
	0	0	0	0	0	0	0	0	0
A	0	0	0	0	1	0	1	0	1
A	0	0	0	0	1	0	1	0	1
C	0	0	1	0	0	0	0	0	1
C	0	0	1	0	0	0	0	0	1
T	0	0	0	0	0	1	0	1	1
A	0	0	0	0	1	0	2	1	2
T	0	0	0	0	0	2	1	3	2
A	0	0	0	0	1	1	3	2	4
G	0	1	0	1	0	0	2	2	4
C	0	0	2	1	0	0	1	1	4
T	0	0	1	1	1	1	1	2	4

The BLAST Search Algorithm

query word $(W=3)$

Query: GSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDL

FASTA search algorithm

- Breaks up query sequence into words (like BLAST)
- Using lookup tables with words finds areas of identity
- Areas of identity are joint to form larger pieces
- Full Smith-Waterman algorithm is used to align these pieces
- FASTA is slower than BLAST, but produces optimal alignment for pieces

Bit Score and E-value

Bit Score: $\mathbf{S}^{\prime}=(\lambda S-\ln \mathrm{K}) / \ln 2$

Expect Value: E=mn 2-s'

$\mathrm{E}=0.01$-> 1\% chance that the match is due to a random match E value depends on database size
E value: expected number of HSPs with score S or higher
P value: probability of finding zero HSPs with score S or higher

$$
P=1-\exp (-E)
$$

Programs and Database selection

1. nucleotide sequence: blastn

Query: nucleotide sequence
Database: nucleotide sequence database
e.g. nt htg est

Programs and Database selection

2. protein sequence: blastp

Query: protein sequence
Database: protein sequence database
e.g. nr

Programs and Database selection

3. translated blast search: blastx
nucleotide sequence -> protein database tblastn
protein sequence -> nucleotide database tblastx
nucleotide sequence->nucleotide

Programs and Database selection

Protein sequence alignment is more sensitive than nucleotide sequence alignment !

Filtering the low complexity and repetitive sequences

1. Low complexity: DUST and SEG programs
2. Repetitive sequences: RepeatMasker
(DNA sequences: "NNNNNNNN") (Protein sequences: "XXXXXXXXX")

BLAST Servers

1. NCBI http://www.ncbi.nlm.nih.gov/BLAST/
2. Batch Blast http://cbsuapps.tc.cornell.edu/cbsu/blast s.aspx

Input files: Fasta format sequence files
Output files:

1. standard
2. -m 8 format
3. CBSU parsed format
4. CBSU parsed format 2
results Simple sequence search (BLAST)

Scoring system of BLAST

Query: ACCGGEFFGACD
Target: ACGGGCFCGAGG Score: 493664626431

Sequence alignment of domain X

> ACHGGEFFGAC ACCGGCFCGAG ACACCEFFCAC ACACTCFFGAC ACLGPEFFGAC

	A	C	G	H	S
1	1.0	0.0	0.0	0.0	0.0
2	0.0	1.0	0.0	0.0	0.0
3	0.4	0.2	0.0	0.2	0.0
4	0.0	0.4	0.4	0.0	0.0
..

	A	C	G	H	S
1	100	-100	-100	-100	-100
2	-100	100	-100	-100	-100
3	50	10	-50	10	-50
4	-60	60	60	-60	-60
..

What is Hidden Markov Model?

$$
P(A C A C A T C)=0.8 \times 1.0 \times 0.8 \times 1.0 \ldots \times 0.8=4.7 \times 10^{-2}
$$

What is Hidden Markov Model?

Log-odds(ACACATC) $=1.16+0+1.16+0 \ldots+1.16=6.64$

What is Hidden Markov Model?

```
ACA-- - ATG
TCAACTATC
ACAC--AGC
AGA---ATC
ACCG--ATC
```

	Sequence	P \%	Log odds
Consensus	ACAC--ATC	4.7	6.7
	ACA--ATG	3.7	4.9
	TCAACTATC	0.0075	3.0
	ACAC--AGC	1.2	5.3
	AGA--ATC	3.3	4.9
	ACCG--ATC	0.59	4.6
Bad sequence	TGCT--AGG	0.0023	-0.97

$40 p t s H$	TTTTGTGGCCTGCTTCAAACTT
41 ptsH	TTTTATGATTTGGTTCAATTCT
$42 r h a S$	AATTGTGAACATCATCACGTTC
43 rot	TTTTGTGATCTGTTTAAATGTT

Alignment

Model

GTGTGATCAGAGTGATTGTGTCAGTGTGTAGCGCTCTGTT TCGTGTGTTTGTGTTCATTTATTGTGTTGT GGCTTCTCATT GCCCCTTTGGTTCTGTTCTTAAACCTTCATCTTCGCTTAGT AAAGTTAGATTCCACCGA TCCGTTTCTGTTA AAGAAAAAG TGATCAACAAACTTCAAGAAAATCTAAATGTGCAGTAATTT GAAATTTATGCTTATTGTGT

Search for matches

HMM model table

HMMER2	.0 [2.3	3.2]																			
Name	AA kinas																				
ACC	PF00696.	. 17																			
DESC	amino ac	acid kin	nase fami																		
LENG	318																				
ALPH	Amino																				
RF	no																				
CS	no																				
Map	yes																				
COM	hrmbuild	d -F HM	M ls.ann	SEED.																	
COM	hrmealib	ibrate -	--seed 0	HMM_1s.	ann																
NSEQ	108																				
DATE	Tue Feb	21 02:	:42:42 20																		
CKSUM	7209																				
GA	-40.0-40	40.0																			
TC	-39.2-3	-39.2																			
NC	-40.5-40	40.5																			
XT	-8455	-4	-1000	-1000	-8455	-4	-8455	-4													
NULT	-4	-8455																			
NULE	595	-1558	85	338	-294	453	-1158	197	249	902	-1085	-142	-21	-313	45	531	201	384	-1998	-644	
EVD	-134.910	10873	0.147785																		
HMM	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	s	T	v	W	Y	
	m->m	m->i	i m->d	i->m	i->i	d->m	d->d	$\mathrm{b}->\mathrm{m}$	m->e												
	-18	*	* -6337																		
1	$1-442$	-4997	-726	-30	-5318	-606	-3157	-2580	2335	-2272	2946	-718	-4591	898	966	-637	-2003	-4619	-5180	-542	1
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11485	-12527	-894	-1115	-701	-1378	-18	*												
2	$2-3924$	-3758	-6216	-2272	84	-2772	-4334	150	958	254	2151	-5094	-246	-4823	2414	-4548	1095	-766	1517	-1497	2
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
3	$3-1251$	-80	-6262	-2333	-382	-5472	-800	2750	-2121	29	-310	-5115	-5522	-1594	-675	-1992	-4	1889	-8	-3869	3
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
4	$4-2336$	-5399	-8620	-8305	-5890	-8502	-8549	1204	-8290	133	-519	-8157	-8176	-8175	-8444	-7901	-5913	3484	-7736	-7303	4
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
	$5-2325$	-602	-6272	-5636	441	-5474	328	2498	-5231	835	606	-5120	-5524	1214	-5031	-2377	-3867	1824	-4211	-1401	5
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
	6858	-5563	-1423	-5664	-7743	-5588	-5944	-7511	3703	-7583	-760	-5461	-6266	-5679	-5766	-1043	-2248	-6499	-7688	-7349	6
-	-149	-500	233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
7	$7-6142$	229	-8586	-8089	2523	-8180	-6968	1713	-7853	1859	-3664	-7805	-7776	-7152	-7599	-7422	-6068	1024	-6130	1322	7
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
8	$8-5620$	-6116	-8303	-8671	-8641	3699	-7887	-8683	-8615	-8808	-7964	-7205	-7115	-8115	-8210	549	-6093	-7417	-8370	-8783	8
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
9	- -4637	-5247	-7901	-8257	-7980	3590	-7294	-7815	-7975	-8072	-7095	-6356	-6342	-7394	-7582	543	132	-6473	-8186	-8186	9
-	-149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	
-	-1	-11609	-12651	-894	-1115	-701	-1378	*	*												
10	- 746	-5180	-3527	790	-5520	-2312	301	-5269	-2960	-5219	-4298	1891	-4788	-1285	-3470	2074	1689	-1565	-5391	-4708	10
-	- -149	-500	- 233	43	-381	399	106	-626	210	-466	-720	275	394	45	96	359	117	-369	-294	-249	

PSI-BLAST

Position-Specific Iterative BLAST

BLAST search

\longrightarrow Align the sequences of the blast targets
Construct profile from the blast targets
Modify substitution matrix to fit profile
Search the database with the new scoring

PSI-BLAST uses position-dependent substitution matrix instead of probabilities (HMM)

More sequence motifs that fit this model

Programs: Databases:

HMMER
SAM

PSI-BLAST

PFAM http:/lpfam.wustl.edul
SMART http:I/smart.embl-heidelberg.del
COG http://www.ncbi.nIm.nih.gov/COG/

Superfamily

http:I/supfam.mrc-Imb.cam.ac.uk/SUPERFAMILY/

Web based programs:

PFAM: http://pfam.wustl.edu/hmmsearch
An HMM library based on the Swissprot 48.9 and SP-TrEMBL 31.9 protein sequence databases. 8296 protein families in current version.

SMART: http://smart.embl-heidelberg.de/
More than 500 extensively annotated domain families
InterProScan: http://www.ebi.ac.uk/interpro/scan.html
Combines many HMM and other methods

The input and output:

MLYQLSKATTRIRLKRQKAVPQHRWLWSLAFLAAFTLKVSERANKNMAKTHNSGDVRCADLAI SIPNNPGLDDGASYRLDYSPPFGYPEPNTTIASREIGDEIQFSRALPGTKYNFWLYYTNFTHHD WLTWTVTITTAPDPPSNLSVQVRSGKNAIILWSPPTQGSYTAFKIKVLGLSEASSSYNRTFQVN DNTFQHSVKELTPGATYQVQAYTIYDGKESVAYTSRNFTTKPNTPGKFIVWFRNETTLLVLWQ PPYPAGIYTHYKVSIEPPDANDSVLYVEKEGEPPGPAQAAFKGLVPGRAYNISVQTMSEDEISL PTTAQYRTVPLRPLNVTFDRDFITSNSFRVLWEAPKGISEFDKYQVSVATTRRQSTVPRSNEPV AFFDFRDIAEPGKTFNVIVKTVSGKVTSWPATGDVTLRPLPVRNLRSINDDKTNTMIITWEADPA STQDEYRIVYHELETFNGDTSTLTTDRTRFTLESLLPGRNYSL

Model Seq-from Seq-to HMM-from HMM-to Score E-value Alignment Description

! ! fn	139	221	1	84	58.1	1.2e-14	glocal Fibronectin type III domain
$!!$ fn	233	317	1	84	59.4	5.1e-15	glocal Fibronectin type III domain
$!!$ fn	328	410	1	84	36.3	4.4e-08	glocal Fibronectin type III domain
$!!$ fn ${ }^{\text {f }}$	421	501	1	84	58.4	9.8e-15	glocal Fibronectin type III domain
! ! fn	512	591	1	84	27.0	3e-05	glocal Fibronectin type III domain
$!!$ fn 3	599	677	1	84	78.9	6.9e-21	glocal Fibronectin type III domain
$!!$ fn 3	689	778	1	84	40.8	2e-09	glocal Fibronectin type III domain
$!!$ fn	789	869	1	84	14.8	0.0063	glocal Fibronectin type III domain
$!!$ fn 3	880	955	1	84	67.6	1.7e-17	glocal Fibronectin type III domain
$!!$ fl 3	974	1060	1	84	58.4	1e-14	glocal Fibronectin type III domain
!! Y phosphatase	1312	1542	1	274	393.6	1.3e-115	glocal Protein-tyrosine phosphatase

Evaluating the significance of a hit:

1. E-value: <= 0.1
(10% chance that you would've seen a hit this good in a search of random sequences)
2. Raw score >= GA (the scores used as cutofis in constructing Pfam, you may consider TC and NC as well)
3. Raw score $>\log _{2}$ (number of sequences in the database) (20 for the $n r$)
