COSC 348: Computing for Bioinformatics Lecture 7: Sequence Motif Discovery Lubica Benuskova http://www.cs.otago.ac.nz/cosc348/	 Sequence motif: definitions In Bioinformatics, a <i>sequence motif</i> is a nucleotide or amino-acid <i>sequence pattern</i> that is widespread and has been proven or assumed to have a biological significance. Once we know the sequence pattern of the motif, then we can use the search methods to find it in the sequences (i.e. Boyer-Moore algorithm, Rabin-Karp, suffix trees, etc.) The problem is to <i>discover</i> the motifs, i.e. what is the order of letters the particular motif is comprised of. 				
 Examples of motifs in DNA The TATA promoter sequence is an example of a highly conserved DNA sequence motif found in eukaryotes. Another example of motifs: binding sites for transcription factors (IF) near promoter regions of genes, etc. 	 Sequence motif: notations An example of a motif in a protein: N, followed by anything but P, followed by either S or T, followed by anything but P One convention is to write N{P} [ST] {P} where {X} means any amino acid except X; and [XYZ] means either X or Y or Z. Another notation: each '.' signifies any single AA, and each '*' indicates one member of a closely-related AA family: WDIND*.*P*D.F.*W***.**.IYS**A.*H*S*WAMRN In the 1st assignment we have motifs like A??CG, where the wildcard ? Stands for any of A,U,C,G. 				
 Sequence motif discovery from conservation Sequence motifs are <i>conserved sequences</i> of similar or identical <i>patterns</i> that may occur within nucleic acids (DNA, RNA) or proteins either within different molecules produced by the same organism or within molecules from multiple species of organisms In the case of cross-species conservation, conserved motif indicates that a particular sequence pattern may have been conserved during evolution to perform certain function, thus Motif conservation is the basis of motif discovery by studying similar genes (or proteins) in different species; A motif discovery program that considers phylogenetic conservation is named PhyloGibbs. 	Motif discovery based on alignment • profile analysis is another word for this. This is usually done by – first constructing a local alignment of multiple sequences, – after which the highly conserved regions are isolated, based on their high alignment scoring HEM13 CCCATTGTTCTC HEM13 TTTCTGGTTCTC HEM13 TCAATTGTTTAG ANB1 CTCATTGTTGTC ANB1 CCCATTGTTCTC ANB1 CCTATTGTTCTC ANB1 CCCATTGTTCTC ANB1 CCCATTGTTCTC				

Scoring *l*-mers with a profile (cont'd)

<u>Given</u> a profile: $\mathbf{P} =$

А	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Prob(**aaacct**|**P**) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

19

21

P-most probable *l*-mer (cont'd)

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

```
First try: ctataa accttacatc
Second try: ctataaaccttacatc
Third try: ctataaaccttacatc
```

Slide the window to evaluate every possible 6-mer – brute force approach

P-most probable *l*-mer (cont'd)

P-most probable 6-mer in the sequence is **aaacct**:

Window, Highlighted Red	Calculations	Pr(a P)
ctataa accttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
c <u>tataaa</u> ccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ct <u>ataaac</u> cttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctat <u>aaacc</u> ttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctat <u>aaacct</u> tacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctata <u>aacctt</u> acat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataa <u>acctta</u> cat	1/2 x 0 x 1/2 x 0 1/4 x 0	0
ctataaa <u>ccttac</u> at	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaac <u>cttaca</u> t	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaacc <u>ttacat</u>	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004
	•	

Motif – the P-most probable *l*-mer

- Define the **P**-most probable *l*-mer from a sequence as an *l*-mer in that sequence which has the highest probability of being created from the profile **P**.
- Task: given a sequence **ctataaaccttacatc** and the known profile **P**, find the P-most probable 6-mer:

	Α	1/2	7/8	3/8	0	1/8	0
	С	1/8	0	1/2	5/8	3/8	0
P =	Т	1/8	1/8	0	0	1/4	7/8
	G	1/4	0	1/8	3/8	1/4	1/8

20

P-most probable *l*-mer (cont'd)

Compute *Pr*(**a**|**P**) for every possible 6-mer:

Calculations	Pr(a P)
1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
1/2 x 0 x 1/2 x 0 1/4 x 0	0
1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004
	Calculations 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 1/2 x 7/8 x 0 x 0 x 1/8 x 0 1/2 x 7/8 x 3/8 x 0 x 1/8 x 0 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 1/2 x 7/8 x 3/8 x 0 x 1/8 x 0 1/2 x 7/8 x 3/8 x 0 x 3/8 x 0 1/2 x 7/8 x 1/2 x 5/8 x 1/8 x 7/8 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 1/2 x 0 x 1/2 x 0 1/4 x 0 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8

22

Dealing with zeroes and small probabilties

- In our toy example *Pr*(**a**|**P**) = 0 in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is likely to be small but still we must ensure zeroes are taken care of.
- There exist several techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero.
 - The simplest one is to replace 0 with a small number, e.g. 1 / 10n.
- Another problem is that the product of small probabilities is a very small number. Thus, we replace the product with the sum of logarithms:

$$\Pr(\mathbf{a} \mid \mathbf{P}) = \prod_{k=1}^{l} P_{a_{i},k} \Longrightarrow \log \Pr(\mathbf{a} \mid \mathbf{P}) = \sum_{k=1}^{l} \log(P_{a_{i},k})$$
24

P-most probable *l*-mers are motifs

ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtataccttacatc

tgcattcaatagctta

tatcctttccactcac

ctccaaatcctttaca

ggtcatcctttatcct

- Task: Find the **P**-most probable *l*-mer in each of the sequences given profile **P**.
- The **P**-most probable *l*-mer is our motif.
- How do we find **P**?

Finding the profile **P** iteratively

1	а	а	а	с	g	t
2	а	t	а	g	с	g
3	а	а	с	с	с	t
4	g	а	а	с	с	t
5	а	t	а	g	с	t
6	g	а	С	с	t	g
7	а	t	с	с	t	t
8	t	а	с	с	t	t
A	5/8	5/8	4/8	0	0	0
С	0	0	4/8	6/8	4/8	0
Т	1/8	3/8	0	0	3/8	6/8
G	2/8	0	0	2/8	1/8	2/8

Use this initial profile to find the **P**-most probable *l*-mer in each sequence, and set the new starting positions according to the beginnings of **P**-most probable *l*-mer in each sequence.

27

25

Algorithm for greedy profile motif search

Use **P**-most probable *l*-mers to adjust new start positions until we reach the "best" profile; this will be pronounced as the motif.

Select random starting positions, then:

- 1. Create a profile **P** from the *l*-mers at these starting positions.
- 2. Find the **P**-most probable *l*-mer **a** in each sequence and change the starting positions to the starting positions of **a**'s.

3. Go to step 1 and re-iterate until we cannot increase the score anymore.

29

Finding the profile **P** iteratively

_ clacadog clacado							
	t	g	с	а	а	а	1
atagcgattcgactg	g	с	g	а	t	а	2
aaggagagaaggat	t	с	с	с	а	а	3
caycecagaaceee	t	с	с	а	а	g	4
cggtgaaccttacatc	t	с	g	а	t	а	5
	g	t	с	с	а	g	6
tgcattca <mark>atagct</mark> ta	t	t	с	с	t	а	7
	t	t	с	с	а	t	8
tgctctgtccactcac	0	0	0	4/8	5/8	5/8	Α
	0	4/8	6/8	4/8	0	0	С
	6/8	3/8	0	0	3/8	1/8	Т
ggtctacctttatcct	2/8	1/8	2/8	0	0	2/8	G

• Let l = 6. Start at random positions (underlined) and calculate the initial profile **P**.

26

Comparing new and old profiles

• **P**-most probable *l*-mers form *a new profile* by recalculating probabilities at all the positions

А	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

• According to this new profile **P**, find the most probable *l*-mers in each sequence, set new positions and re-iterate.

28

Summary of greedy motif discovery

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance.
- The algorithm may be improved by heuristic knowledge, where approximately we should start or by more sophisticated statistical techniques, like *Gibbs sampling* that estimates the most probable start positions for motifs, where we ought to start our iterative process of motif discovery.

30