COSC 348: Computing for Bioinformatics

Lecture 7:

Sequence Motif Discovery

Lubica Benuskova
http://www.cs.otago.ac.nz/ $\operatorname{cosc} 348 /$

Examples of motifs in DNA

- The TATA promoter sequence is an example of a highly conserved DNA sequence motif found in eukaryotes.
- Another example of motifs: binding sites for transcription factors (TF) near promoter regions of genes, etc.

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5

Sequence motif: definitions

- In Bioinformatics, a sequence motif is a nucleotide or amino-acid sequence pattern that is widespread and has been proven or assumed to have a biological significance.
- Once we know the sequence pattern of the motif, then we can use the search methods to find it in the sequences (i.e. Boyer-Moore algorithm, Rabin-Karp, suffix trees, etc.)
- The problem is to discover the motifs, i.e. what is the order of letters the particular motif is comprised of.

Sequence motif: notations

- An example of a motif in a protein: N , followed by anything but P , followed by either S or T , followed by anything but P
- One convention is to write $\mathbf{N}\{\mathrm{P}\}[\mathrm{ST}]\{\mathrm{P}\}$ where $\{\mathrm{X}\}$ means any amino acid except \mathbf{X}; and [$\mathbf{X Y Z}$] means either \mathbf{X} or \mathbf{Y} or \mathbf{Z}.
- Another notation: each '.' signifies any single AA, and each '*' indicates one member of a closely-related AA family:
- WDIND*.*P. .*. ..D.F.*W***.**.IYS**. . .A.*H*S*WAMRN
- In the $1^{\text {st }}$ assignment we have motifs like \mathbf{A} ? ? CG, where the wildcard ? Stands for any of $\mathbf{A}, \mathbf{U}, \mathbf{C}, \mathbf{G}$.

Motif discovery based on alignment

- profile analysis is another word for this. This is usually done by - first constructing a local alignment of multiple sequences,
- after which the highly conserved regions are isolated, based on their high alignment scoring
Protein \(\left\{\begin{array}{ll}HEM13 \& CCCATTGTTCTC

HEM13 \& TTTCTGGTTCTC

HEM13 \& TCAATTGTTTAG

ANB1 \& CTCATTGTTGTC

ANB1 \& TCCATTGTTCTC

ANB1 \& CCTATTGTTCTC

ANB1 \& TCCATTGTTCGT

ROX1 \& CCAATTGTTTTG\end{array}\right\}\)| Conserved |
| :--- |
| region |

Motif discovery based on alignment

- After the highly conserved regions are isolated, they are used to construct profile matrices for each conserved region.
- The profile matrix for a given motif contains frequency counts for each letter at each position of the isolated conserved region.

$$
\begin{array}{ll}
\text { A } & 002700000010 \\
\text { C } & 464100000505 \\
\text { G } & 000001800112 \\
\text { T } 422087088261
\end{array}
$$

Sequence logo and information theory

- Sequence logo is often displayed using the information theory, i.e.

$$
H=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)
$$

Sequence logo and consensus sequence

- We can extract the so-called consensus sequence, i.e. the string of most frequent letters:

YCHATTGTTCTC

- A graphical representation of the consensus sequence is called a sequence logo:

- The height of different letters at the same position is proportional to their frequency in motifs: the better the base conservation is at that position, the higher the letters will be. ${ }^{8}$

Shannon's information

- Shannon's information (in bits) is a measure of the information content $I\left(x_{i}\right)$ associated with the particular outcome x_{i} of a random variable X, which can have n values/outcomes, i.e. $x_{1}, x_{2}, \ldots x_{n}$
- $I\left(x_{i}\right)=-\log _{2} P\left(x_{i}\right)=\log _{2}\left(1 / P\left(x_{i}\right)\right)$
- When choosing from 4 nucleotides, the probability $P\left(x_{i}\right)=1 / 4$. When particular nucleotide occurred, the amount of information is
$-I($ 'nucleotide' $)=\log _{2}(1 /(1 / 4))=\log _{2}(4)=2$ bits.
- If the possible values x_{i} of variable X have probabilities $P\left(x_{i}\right)$ then Shannon's expected information (entropy) is:

$$
H=-\sum_{i=1}^{n} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)
$$

Scoring motifs

- Given $\boldsymbol{s}=\left(s_{l}, \ldots s_{t}\right)$, we align t motifs of length l from all sequences
- Construct profile matrix

Motif finding problem

- The problem is to find the starting positions $s=\left(s_{l}, \ldots s_{t}\right)$ to maximize the Score(s) of the resulting profile matrix.
- Several kinds of profile matrices are used:
- A position frequency matrix (PFM) records the positiondependent frequency f of each letter, i.e. how many times a letter occurs at a given position in N sequences.
- A position probability matrix (PPM). When normalized to 1 this frequency turns into a probability, i.e. $P=f / N$.
- A position weight matrix (PWM):

$$
\sum_{\beta \in\{A, C, G, T\}} f_{\beta k} \log \frac{f_{\beta k}}{q_{\beta}}
$$

Let's start again

- Given a list of t sequences each of length n, find the "best" pattern of length l that appears in each of the t sequences.
- Let $\mathbf{s}=\left(s_{1}, \ldots, s_{\mathrm{t}}\right)$ be the set of starting positions for l-mers in our t sequences.
- The strings corresponding to these starting positions will form: - $4 \times l$ profile matrix* \mathbf{P} for DNA
- and $20 \times l$ profile matrix* \mathbf{P} for proteins
* The profile matrix will be defined in terms of the probability of letters, and not as the count of letters.

Probability of l-mers

- $\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})$ is defined as the probability that an l-mer \mathbf{a} was created by the Profile \mathbf{P}.
- If \mathbf{a} is very similar to the consensus string (i.e. motif) then $\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})$ will be high.
- If $P_{a i, k}$ is the probability of letter a_{i} at position k, then the probablity of an l-mer \mathbf{a} is equal to the product of individual probabilities $P_{a i, k}$, i.e.:

$$
\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})=\prod_{k=1}^{l} P_{a_{i}, k}
$$

Scoring l-mers with a profile (cont'd)

Given a profile $\mathbf{P}=$

A	$\mathbf{1} / \mathbf{2}$	$\mathbf{7 / 8}$	$\mathbf{3 / 8}$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$\mathbf{5} / \mathbf{8}$	$\mathbf{3 / 8}$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$\mathbf{7 / 8}$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

$\operatorname{Pr}($ aaacct $\mid \mathbf{P})=1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8=.033646$

Scoring l-mers with a profile (cont'd)

Given a profile: $\mathbf{P}=$

A	$\mathbf{1 / 2}$	$\mathbf{7 / 8}$	$\mathbf{3 / 8}$	0	$\mathbf{1} / \mathbf{8}$	0
C	$1 / 8$	0	$1 / 2$	$\mathbf{5} / \mathbf{8}$	$3 / 8$	0
T	$1 / 8$	$\mathbf{1 / 8}$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$\mathbf{1 / 8}$

$\operatorname{Prob}($ aaacct $\mid \mathbf{P})=1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8=.033646$
$\operatorname{Prob}(\boldsymbol{a t a c a g} \mid \mathbf{P})=1 / 2 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 1 / 8=.001602$

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

Second try: ctataa a c cttacatc
Third try: ctataacctactatc
Slide the window to evaluate every possible 6-mer

- brute force approach

Motif - the P-most probable l-mer

- Define the \mathbf{P}-most probable l-mer from a sequence as an l-mer in that sequence which has the highest probability of being created from the profile \mathbf{P}.
- Task: given a sequence ctataaccttacatc and the known profile \mathbf{P}, find the P -most probable 6-mer:

$\mathbf{P}=$| A | $1 / 2$ | $7 / 8$ | $3 / 8$ | 0 | $1 / 8$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $1 / 8$ | 0 | $1 / 2$ | $5 / 8$ | $3 / 8$ | 0 |
| T | $1 / 8$ | $1 / 8$ | 0 | 0 | $1 / 4$ | $7 / 8$ |
| G | $1 / 4$ | 0 | $1 / 8$ | $3 / 8$ | $1 / 4$ | $1 / 8$ |

P-most probable l-mer (cont'd)

Compute $\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})$ for every possible 6-mer:

Window, Highlighted Red	Calculations	$\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})$
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 7 / 8 \times 3 / 8 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8$.0336
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 1 / 2 \times 5 / 8 \times 1 / 4 \times 7 / 8$.0299
ctataaaccttacat	$1 / 2 \times 0 \times 1 / 2 \times 01 / 4 \times 0$	0
ctataaaccttacat	$1 / 8 \times 0 \times 0 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 0 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 7 / 8$.0004

P-most probable l-mer (cont'd)

P-most probable 6-mer in the sequence is aacct:

Window, Highlighted Red	Calculations	$\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})$
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaacttacat	$1 / 8 \times 7 / 8 \times 3 / 8 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8$.0336
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 1 / 2 \times 5 / 8 \times 1 / 4 \times 7 / 8$.0299
ctataaaccttacat	$1 / 2 \times 0 \times 1 / 2 \times 01 / 4 \times 0$	0
ctataaaccttacat	$1 / 8 \times 0 \times 0 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 0 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 7 / 8$.0004

Dealing with zeroes and small probabilties

- In our toy example $\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})=0$ in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is likely to be small but still we must ensure zeroes are taken care of.
- There exist several techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero.
- The simplest one is to replace 0 with a small number, e.g. 1 / $10 n$.
- Another problem is that the product of small probabilities is a very small number. Thus, we replace the product with the sum of logarithms:

$$
\operatorname{Pr}(\mathbf{a} \mid \mathbf{P})=\prod_{k=1}^{l} P_{a_{i}, k} \Rightarrow \log \operatorname{Pr}(\mathbf{a} \mid \mathbf{P})=\sum_{k=1}^{l} \log \left(P_{a_{i}, k}\right)
$$

P-most probable l-mers are motifs

- Task: Find the \mathbf{P}-most probable l-mer in each of the sequences given profile \mathbf{P}.
- The \mathbf{P}-most probable l mer is our motif.
- How do we find \mathbf{P} ?
ctataaacgttacatc
atagcgattcgactg cagcccagaaccct cggtataccttacatc tgcattcaatagctta tatcctttccactcac ctccaaatcctttaca ggtcatcctttatcct

Finding the profile \mathbf{P} iteratively

1	a	a	a	c	g	t
2	a	t	a	g	c	g
3	a	a	c	c	c	t
4	g	a	a	c	c	t
5	a	t	a	g	c	t
6	g	a	c	c	t	g
7	a	t	c	c	t	t
8	t	a	c	c	t	t
A	$5 / 8$	$5 / 8$	$4 / 8$	0	0	0
C	0	0	$4 / 8$	$6 / 8$	$4 / 8$	0
T	$1 / 8$	$3 / 8$	0	0	$3 / 8$	$6 / 8$
G	$2 / 8$	0	0	$2 / 8$	$1 / 8$	$2 / 8$

ctataaacgttacatc
atagcgattcgactg
cagcccagaaccet
cggtgaaccttacatc
tgcattcaatagctta
tgctctgtccactcac ctccaaatcctttaca
ggtctacctttatcct

- Let $l=6$. Start at random positions (underlined) and calculate the initial profile \mathbf{P}.

Finding the profile \mathbf{P} iteratively

1	a	a	a	c	g	t
2	a	t	a	g	c	g
3	a	a	c	c	c	t
4	g	a	a	c	c	t
5	a	t	a	g	c	t
6	g	a	c	c	t	g
7	a	t	c	c	t	t
8	t	a	c	c	t	t
A	$5 / 8$	$5 / 8$	$4 / 8$	0	0	0
C	0	0	$4 / 8$	$6 / 8$	$4 / 8$	0
T	$1 / 8$	$3 / 8$	0	0	$3 / 8$	$6 / 8$
G	$2 / 8$	0	0	$2 / 8$	$1 / 8$	$2 / 8$

Use this initial profile to find the \mathbf{P}-most probable l-mer in each sequence, and set the new starting positions according to the beginnings of \mathbf{P}-most probable l-mer in each sequence.

Comparing new and old profiles

- P-most probable l-mers form a new profile by recalculating probabilities at all the positions

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

- According to this new profile \mathbf{P}, find the most probable l-mers in each sequence, set new positions and re-iterate.

Algorithm for greedy profile motif search

Use \mathbf{P}-most probable l-mers to adjust new start positions until we reach the "best" profile; this will be pronounced as the motif.

Select random starting positions, then:

1. Create a profile \mathbf{P} from the l-mers at these starting positions.
2. Find the \mathbf{P}-most probable l-mer \mathbf{a} in each sequence and change the starting positions to the starting positions of \mathbf{a} 's.
3. Go to step 1 and re-iterate until we cannot increase the score anymore.

Summary of greedy motif discovery

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance.
- The algorithm may be improved by heuristic knowledge, where approximately we should start or by more sophisticated statistical techniques, like Gibbs sampling that estimates the most probable start positions for motifs, where we ought to start our iterative process of motif discovery.

