Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim MIT

Background: Seq2seq with Neural Networks

• **Goal**: model the distribution over output sequence **y** given input sequence **x**

$$p_{\theta}(y \,|\, x) = \prod_{t=1}^{T} p_{\theta}(y_t \,|\, x, y_{< t})$$

• Sequence-to-sequence Learning with Neural Networks [Cho et al. '14, Sutskever et al. '14]: autoregressive factorization.

Background: Seq2seq with Neural Networks

- Any distribution over the output can be factorized left-to-right via the chain rule ⇒ given large enough data and model, this should work well.
- But this flexibility comes at a cost:
 - weak inductive biases for capturing hierarchical structure
 ⇒ over-reliance on surface-form correlations
 - sample inefficiency
 - opaque generation process

• Model $p_{\theta}(y \mid x)$ with a (quasi) synchronous **grammar** (vs. a "flat" autoregressive model)

- Model $p_{\theta}(y \mid x)$ with a (quasi) synchronous grammar (vs. a "flat" autoregressive model)
- Use **neural features** for efficient parameterizations over combinatorial input space of derivation rules.

- Model $p_{\theta}(y \mid x)$ with a (quasi) synchronous grammar (vs. a "flat" autoregressive model)
- Use neural features for efficient parameterizations over combinatorial input space of derivation rules.
- Both source and target trees are as fully **latent** and induced during training.

Quasi-Synchronous Context-Free Grammars

- QCFG [Smith and Eisner '06]: A monolingual grammar over the target side conditioned on a source tree, where the target-side rules dynamically depend on source tree nodes.
- Hierarchical generative process where each node in the target is tranduced by a node in the source tree ⇒ provides provenance for how each output part is generated!
- Unlike classic synchronous context-free grammars, does not require source and target trees to be isomorphic.

$G[\mathbf{s}] = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R}[\mathbf{s}], \theta)$

Grammar defines a CFG over target side given source tree **s**

 \boldsymbol{s}

$G[\boldsymbol{s}] = (\boldsymbol{S}, \mathcal{N}, \mathcal{P}, \boldsymbol{\Sigma}, \mathcal{R}[\boldsymbol{s}], \theta)$

Start symbol Nonterminals / Preterminals Target terminals

Model parameters

$G[\mathbf{s}] = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R}[\mathbf{s}], \theta)$

Context-free rules where each target derivation is aligned to a source tree node

$$G[s] = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R}[s], \theta)$$

Start rule Binary rules Unary rules $S \to A[\alpha_i], \qquad A \in \mathcal{N},$ $A[\alpha_i] \to B[\alpha_j]C[\alpha_k], \quad A \in \mathcal{N}, \quad B, C \in \mathcal{N} \cup \mathcal{P},$ $D[\alpha_i] \to w, \qquad D \in \mathcal{P}, w \in \Sigma$

$$G[s] = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R}[s], \theta)$$

Start rule Binary rules Unary rules $S \to A[\alpha_i], \qquad A \in \mathcal{N}, \\ A[\alpha_i] \to B[\alpha_j]C[\alpha_k], \quad A \in \mathcal{N}, \quad B, C \in \mathcal{N} \cup \mathcal{P}, \\ D[\alpha_i] \to w, \qquad D \in \mathcal{P}, w \in \Sigma$

$$\alpha_i, \alpha_j, \alpha_k \in \boldsymbol{s}$$

Each nonterminal is decorated with a node in the source tree.

 y_2

 y_3

Parameterization

$$G[s] = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R}[s], \theta)$$

- Prior work: handcrafted features over source tree nodes.
- This work: neural parameterization of derivation rules.

$$\mathbf{e}_{A[\alpha_i]} = \mathbf{u}_A + \mathbf{h}_{\alpha_i}$$

Parameterization

$$G[s] = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R}[s], \theta)$$

- Prior work: handcrafted features over source tree nodes.
- This work: neural parameterization of derivation rules.

$$\mathbf{e}_{A[\alpha_i]} = \mathbf{u}_A + \mathbf{h}_{\alpha_i}$$

Nonterminal symbol Source tree node
embedding embedding (from
TreeLSTM)

Parameterization

$$G[s] = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R}[s], \theta)$$

- Prior work: handcrafted features over source tree nodes.
- This work: neural parameterization of derivation rules.

$$\mathbf{e}_{A[\alpha_i]} = \mathbf{u}_A + \mathbf{h}_{\alpha_i}$$

• Rule probabilities given by neural network over embeddings. $p_{\theta}(A[\alpha_i] \to B[\alpha_j]C[\alpha_k])$ $\propto \exp\left(f_1(\mathbf{e}_{A[\alpha_i]})^{\top}(f_2(\mathbf{e}_{B[\alpha_j]}) + f_3(\mathbf{e}_{C[\alpha_k]}))\right)$

Learning

• QCFG defines a distribution over target trees (and strings) given a source tree.

$$\sum_{\boldsymbol{t}\in\mathcal{T}(\boldsymbol{y})}p_{\theta}(\boldsymbol{t}\,|\,\boldsymbol{s}) = p_{\theta}(\boldsymbol{y}\,|\,\boldsymbol{s})$$

($\mathcal{O}(|\mathcal{N}|(|\mathcal{N}|+|\mathcal{P}|)^2S^3T^3)$) with the usual inside algorithm)

- Past work: source tree given by a pipelined parser.
- This work: learn source parser $p_{\phi}(s \mid x)$ alongside the QCFG. Source parser is a neural PCFG from [Kim et al. '19].

Learning

$$p_{\phi}(oldsymbol{s} \,|\, oldsymbol{x})$$

Source PCFG

Learning

• Log marginal likelihood given by:

$$\log p_{\theta,\phi}(\boldsymbol{y} \,|\, \boldsymbol{x}) = \log \left(\sum_{\boldsymbol{s} \in \mathcal{T}(\boldsymbol{x})} \sum_{\boldsymbol{t} \in \mathcal{T}(\boldsymbol{y})} p_{\theta}(\boldsymbol{t} \,|\, \boldsymbol{s}) p_{\phi}(\boldsymbol{s} \,|\, \boldsymbol{x}) \right)$$

Target QCFG Source PCFG

• Exact marginalization intractable \Rightarrow optimize a lower bound:

$$\log p_{\theta,\phi}(\boldsymbol{y} \,|\, \boldsymbol{x}) \geq \mathbb{E}_{\boldsymbol{s} \sim p_{\phi}(\boldsymbol{s} \,|\, \boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{y} \,|\, \boldsymbol{s})\right]$$

(Score function estimator with self-critical control variate)

Inference

• Given the source MAP tree from the PCFG,

$$\widehat{\boldsymbol{s}} = \operatorname{argmax}_{\boldsymbol{s}} p_{\phi}(\boldsymbol{s} \,|\, \boldsymbol{x})$$

finding the MAP QCFG tree is intractable

 $\operatorname{argmax}_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \,|\, \widehat{\boldsymbol{s}})$

- Approximate decoding strategy:
 - \circ Sample target trees $oldsymbol{t}^{(1)},\ldotsoldsymbol{t}^{(K)}$ from $G[\widehat{oldsymbol{s}}]$
 - Rescore and return the yield with lowest perplexity.

Experimental Setup

- Experiments on three seq2seq tasks:
 - SCAN [Lake and Baroni '18]: synthetic language navigation task to test for compositional generalization.
 - StylePTB [Lyu et al. '21]: style transfer on the Penn Treebank.
 - Small-scale machine translation [Lake and Baroni '18]

• SCAN: simple language navigation task

"jump twice after walk" \Rightarrow *WALK JUMP JUMP*

• Seq2seq models have a hard time generalizing compositionally

Model	Simple Split	Add Primitive	Add Template	Length
RNN	≈ 100%	1.7%	2.5%	13.8%
CNN	≈ 100%	69.2%	56.7%	0.0%
Transformer	≈ 100%	1.0%	53.3%	0.0%

Model	Add Primitive	Add Template	Length
RNN	1.7%	2.5%	13.8%
CNN	69.2%	56.7%	0.0%
Transformer	1.0%	53.3%	0.0%
Neural QCFG	96.8%	98.7%	95.7%

(Many other methods that also solve this dataset)

Frequently-occurring rules obtained MAP QCFG trees from the training set. $P_0[run] \rightarrow RUN$ $P_0[\mathsf{look}] \to \mathsf{LOOK}$ P_0 [walk] \rightarrow WALK $P_0[\mathsf{jump}] \to \mathsf{JUMP}$ $P_0[right] \rightarrow TURN-RIGHT$ $P_0[left] \rightarrow TURN-LEFT$ $N_4[\text{look left}] \rightarrow P_0[\text{left}] P_0[\text{look}]$ N_4 [look right] $\rightarrow P_0$ [right] P_0 [look] N_4 [walk left] $\rightarrow P_0$ [left] P_0 [walk] N_4 [walk right] $\rightarrow P_0$ [right] P_0 [walk] N_1 [look right twice] $\rightarrow N_4$ [look right] N_4 [look right] N_1 [walk left twice] $\rightarrow N_4$ [walk left] N_4 [walk left] N_1 [look thrice] $\rightarrow N_8$ [look thrice] P_0 [look] N_1 [look right thrice] $\rightarrow N_8$ [look right thrice] N_4 [look right] N_8 [look right thrice] $\rightarrow N_4$ [look right] N_4 [look right] N_1 [walk left thrice] $\rightarrow N_8$ [walk left thrice] N_4 [walk left] N_8 [walk left thrice] $\rightarrow N_4$ [walk left] N_4 [walk left]

Results: StylePTB

- Experiments on three "hard" style transfer tasks identified by [Lyu et al. '21]: *active-to-passive*, *adjective emphasis*, *verb emphasis*. (500-3000 examples)
- Incorporate a phrase-level copy mechanism via a special-purpose nonterminal:

$$p_{\theta}(A_{\text{COPY}}[\alpha_i] \to v) \stackrel{\text{def}}{=} \mathbb{1}\{v = \text{yield}(\alpha_i)\}$$

 $v \in \Sigma^+$

Results: StylePTB

Transfer Type	Approach	BLEU-1	BLEU-2	BLEU-3	BLEU-4	
Active to Passive	GPT2-finetune Seq2Seq Retrieve-Edit Human	0.476 0.373 0.681 0.931	0.329 0.220 0.598 0.881	0.238 0.141 0.503 0.835	0.189 0.103 0.427 0.795	[Lyu et al. '21
	Seq2Seq Neural QCFG Seq2Seq + copy Neural QCFG + copy	0.505 0.431 0.838 0.836	0.349 0.637 0.735 0.771	0.253 0.548 0.673 0.713	0.190 0.472 0.598 0.662	[This work]

Results: StylePTB

(Linguistically incorrect tree)

- Small-scale English-French machine translation (6000 sentences).
- Compositional generalization [Lake and Baroni '18]:
 - Add 1000 instances of "*i* am daxy \Rightarrow *j*e suis daxiste"
 - Must generalize to unseen combinations, e.g. he is daxy i am not daxy i am very daxy

Model	BLEU on regular test set	Accuracy on <i>daxy</i> examples
LSTM	25.1	12.5%
Neural QCFG	23.5	100%
+ BiLSTM Encoder	26.8	75.0%

Model	BLEU on regular test set	Accuracy on <i>daxy</i> examples
LSTM	25.1	12.5%
Neural QCFG	23.5	100%
+ BiLSTM Encoder	26.8	75.0%
Transformer	30.4	100%

(Mostly negative results on MT)

Limitations

- Much (much) more expensive than regular seq2seq due to the $\mathcal{O}(|\mathcal{N}|(|\mathcal{N}|+|\mathcal{P}|)^2S^3T^3)$ dynamic program.
- Model is brittle: very sensitive to hyperparameters / random initialization.
- Thoroughly outperformed by a well-tuned Transformer on more real-world seq2seq tasks.

Discussion & Conclusion

- What is the role of grammars / neuro-symbolic approaches in the era of large pretrained language models?
- Future work
 - Condition on (embedding representations of) images / video / audio for grounded grammar induction.
 - Richer grammatical formalisms (e.g. synchronous tree-adjoning grammars).
 - Combining induced structures with flexible neural models.