Sequences and Summations

Section 2.4

Introduction

- Sequences are ordered lists of elements.
- $1,2,3,5,8$
- $1,3,9,27,81, \ldots \ldots$.
- Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Sequences

Definition: A sequence is a function from a subset of the integers (usually either the set $\{0,1,2,3,4, \ldots .$.$\} or$ $\{1,2,3,4, \ldots$.$\}) to a set S$.

- The notation a_{n} is used to denote the image of the integer n. We can think of a_{n} as the equivalent of $f(n)$ where f is a function from $\{0,1,2, \ldots$.$\} to S$. We call a_{n} a term of the sequence.

Sequences

Example: Consider the sequence $\left\{a_{n}\right\}$ where

$$
\begin{gathered}
a_{n}=\frac{1}{n} \quad\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \\
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots
\end{gathered}
$$

Geometric Progression

Definition: A geometric progression is a sequence of the form:

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

where the initial term a and the common ratio r are real numbers.

Examples:

1. Let $a=1$ and $r=-1$. Then:

$$
\left\{b_{n}\right\}=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}=\{1,-1,1,-1,1, \ldots\}
$$

2. Let $a=2$ and $r=5$. Then:

$$
\left\{c_{n}\right\}=\left\{c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, \ldots\right\}=\{2,10,50,250,1250, \ldots\}
$$

3. Let $a=6$ and $r=1 / 3$. Then:

$$
\left\{d_{n}\right\}=\left\{d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, \ldots\right\}=\left\{6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots\right\}
$$

Summation of Geometric Sequence

- Given a sequence
$a, a r, a r^{2}, \ldots, a r^{n}, \ldots$
- Term $a_{n}=a r^{n-1}, a_{1}=a$.
- Let $S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n-1}+a_{n}$
- Then what is a closed formula for S_{n} ?
- Tricks:
- $\mathrm{S}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots+\mathrm{a}_{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}}=\mathrm{a}+\mathrm{ar}+\mathrm{ra}^{2}+\mathrm{ar}^{3} \ldots . .+a \mathrm{r}^{\mathrm{n}-1}$
- $S_{n+1}=a_{1}+a_{2}+a_{3}+\ldots+a_{n-1}+a_{n}+a_{n+1}=a+a r+a r^{2}+a r^{3} \ldots . .+a r^{n-1}+a r^{n}$
- $S_{n+1}=S_{n}+a_{n+1}=S_{n}+a r^{n}$
- $S_{n+1}=a+a r+a r^{2}+a r^{3} \ldots \ldots+a r^{n-1}+a r^{n}=a+r\left(a+a r+a r^{2} \ldots . .+a r^{n-2}+a r^{n-1}\right)=a+r S_{n}$
- So, we have $S_{n}+a r^{n}=a+r S_{n}$
- Thus, $S_{n}=\left(a-a r^{n}\right) /(1-r)$ when r is not 1

Arithmetic Progression

Definition: A arithmetic progression is a sequence of the form: $\quad a, a+d, a+2 d, \ldots, a+n d, \ldots$
where the initial term a and the common difference d are real numbers.

Examples:

1. Let $a=-1$ and $d=4$:

$$
\left\{s_{n}\right\}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}=\{-1,3,7,11,15, \ldots\}
$$

2. Let $a=7$ and $d=-3$:

$$
\left\{t_{n}\right\}=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \ldots\right\}=\{7,4,1,-2,-5, \ldots\}
$$

3. Let $a=1$ and $\mathrm{d}=2$:

$$
\left\{u_{n}\right\}=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, \ldots\right\}=\{1,3,5,7,9, \ldots\}
$$

Strings

Definition: A string is a finite sequence of characters from a finite set (an alphabet).

- Sequences of characters or bits are important in computer science.
- The empty string is represented by λ.
- The string abcde has length 5.

Recurrence Relations

Definition: A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0^{\prime}} a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer.

- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Questions about Recurrence Relations

Example 1: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}+3$ for $n=1,2,3,4, \ldots$ and suppose that $a_{0}=2$. What are a_{1}, a_{2} and a_{3} ?
[Here $a_{0}=2$ is the initial condition.]

Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{1}=a_{0}+3=2+3=5 \\
& a_{2}=5+3=8 \\
& a_{3}=8+3=11
\end{aligned}
$$

Questions about Recurrence Relations

Example 2: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}-a_{n-2}$ for $n=2,3,4, \ldots$ and suppose that $a_{0}=3$ and $a_{1}=5$. What are a_{2} and a_{3} ?
[Here the initial conditions are $a_{0}=3$ and $a_{1}=5$.]

Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{2}=a_{1}-a_{0}=5-3=2 \\
& a_{3}=a_{2}-a_{1}=2-5=-3
\end{aligned}
$$

Fibonacci Sequence

Definition: Define the Fibonacci sequence, $f_{0}, f_{1}, f_{2}, \ldots$, by:

- Initial Conditions: $f_{0}=0, f_{1}=1$
- Recurrence Relation: $f_{n}=f_{n-1}+f_{n-2}$

Example: Find $f_{2}, f_{3}, f_{4}, f_{5}$ and f_{6}.
Answer:

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+0=1, \\
& f_{3}=f_{2}+f_{1}=1+1=2, \\
& f_{4}=f_{3}+f_{2}=2+1=3, \\
& f_{5}=f_{4}+f_{3}=3+2=5, \\
& f_{6}=f_{5}+f_{4}=5+3=8 .
\end{aligned}
$$

Solving Recurrence Relations

- Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation.
- Such a formula is called a closed formula.
- Various methods for solving recurrence relations will be covered in Chapter 8 where recurrence relations will be studied in greater depth.
- Here we illustrate by example the method of iteration in which we need to guess the formula. The guess can be proved correct by the method of induction (Chapter 5).

Iterative Solution Example

Method 1: Working upward, forward substitution
Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation

$$
a_{n}=a_{n-1}+3 \text { for } \mathrm{n}=2,3,4, \ldots . \text { and suppose that } a_{1}=2 .
$$

$$
\begin{aligned}
& a_{2}=2+3 \\
& a_{3}=(2+3)+3=2+3 \cdot 2 \\
& a_{4}=(2+2 \cdot 3)+3=2+3 \cdot 3
\end{aligned}
$$

$$
a_{\mathrm{n}}=a_{n-1}+3=(2+3 \cdot(n-2))+3=2+3(n-1)
$$

Iterative Solution Example

Method 2: Working downward, backward substitution Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation

$$
a_{n}=a_{n-1}+3 \text { for } n=2,3,4, \ldots . \text { and suppose that } a_{1}=2 \text {. }
$$

$$
\begin{aligned}
a_{\mathrm{n}}= & a_{\mathrm{n}-1}+3 \\
& =\left(a_{\mathrm{n}-2}+3\right)+3=a_{\mathrm{n}-2}+3 \cdot 2 \\
& =\left(a_{\mathrm{n}-3}+3\right)+3 \cdot 2=a_{\mathrm{n}-3}+3 \cdot 3
\end{aligned}
$$

$$
=a_{2}+3(\mathrm{n}-2)=\left(a_{1}+3\right)+3(\mathrm{n}-2)=2+3(\mathrm{n}-1)
$$

Financial Application

Example: Suppose that a person deposits $\$ 10,000.00$ in a savings account at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years?
Let P_{n} denote the amount in the account after 30 years. P_{n} satisfies the following recurrence relation:

$$
P_{n}=P_{n-1}+0.11 P_{n-1}=(1.11) P_{n-1}
$$

with the initial condition $P_{0}=10,000$

Continued on next slide \rightarrow

Financial Application

$$
P_{n}=P_{n-1}+0.11 P_{n-1}=(1.11) P_{n-1}
$$

$$
\text { with the initial condition } P_{0}=10,000
$$

Solution: Forward Substitution

$$
\begin{aligned}
& P_{1}=(1.11) P_{0} \\
& P_{2}=(1.11) P_{1}=(1.11)^{2} P_{0} \\
& P_{3}=(1.11) P_{2}=(1.11)^{3} P_{0} \\
& \quad: \\
& P_{n}=(1.11) P_{n-1}=(1.11)^{n} P_{0}=(1.11)^{n} 10,000 \\
& P_{n}=(1.11)^{n} 10,000(\text { Can prove by induction, covered in Chapter } 5) \\
& P_{30}=(1.11)^{30} 10,000=\$ 228,992.97
\end{aligned}
$$

Useful Sequences

TABLE 1 Some Useful Sequences.

$\boldsymbol{n t h}$ Term	First 10 Terms
n^{2}	$1,4,9,16,25,36,49,64,81,100, \ldots$
n^{3}	$1,8,27,64,125,216,343,512,729,1000, \ldots$
n^{4}	$1,16,81,256,625,1296,2401,4096,6561,10000, \ldots$
2^{n}	$2,4,8,16,32,64,128,256,512,1024, \ldots$
3^{n}	$3,9,27,81,243,729,2187,6561,19683,59049, \ldots$
$n!$	$1,2,6,24,120,720,5040,40320,362880,3628800, \ldots$
f_{n}	$1,1,2,3,5,8,13,21,34,55,89, \ldots$

Summations

- Sum of the terms $a_{m}, a_{m+1}, \ldots, a_{n}$ from the sequence $\left\{a_{n}\right\}$
- The notation:

$$
\sum_{j=m}^{n} a_{j} \quad \sum_{j=m}^{n} a_{j} \quad \sum_{m \leq j \leq n} a_{j}
$$

represents

$$
a_{m}+a_{m+1}+\cdots+a_{n}
$$

- The variable j is called the index of summation. It runs through all the integers starting with its lower limit m and ending with its upper limit n.

Summations

- More generally for a set S :

$$
\sum_{j \in S} a_{j}
$$

- Examples:

$$
\begin{gathered}
r^{0}+r^{1}+r^{2}+r^{3}+\cdots+r^{n}=\sum_{0}^{n} r^{j} \\
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\sum_{1}^{\infty} \frac{1}{i}
\end{gathered}
$$

If $S=\{2,5,7,10\}$ then $\sum_{j \in S} a_{j}=a_{2}+a_{5}+a_{7}+a_{10}$

Product Notation (optional)

- Product of the terms $a_{m}, a_{m+1}, \ldots, a_{n}$
from the sequence $\left\{a_{n}\right\}$
- The notation:

$$
\prod_{j=m}^{n} a_{j}
$$

$$
\prod_{j=m}^{n} a_{j} \quad \prod_{m \leq j \leq n} a_{j}
$$

represents

$$
a_{m} \times a_{m+1} \times \cdots \times a_{n}
$$

Geometric Series

Sums of terms of geometric progressions

$$
\sum_{j=0}^{n} a r^{j}= \begin{cases}\frac{a r^{n+1}-a}{r-1} & r \neq 1 \\ (n+1) a & r=1\end{cases}
$$

Proof: Let $\quad S_{n}=\sum_{j=0}^{n} a r^{j}$
To compute S_{n}, first multiply both sides of the equality by r and then manipulate the resulting sum as follows:

$$
\begin{aligned}
r S_{n} & =r \sum_{j=0}^{n} a r^{j} \\
& =\sum_{j=0}^{n} a r^{j+1} \quad \text { Continued on next slide } \rightarrow
\end{aligned}
$$

Geometric Series

$$
=\sum_{j=0}^{n} a r^{j+1} \quad \text { From previous slide }
$$

$$
=\sum_{k=1}^{n+1} a r^{k} \quad \text { Shifting the index of summation with } k=j+1 .
$$

$$
=\left(\sum_{k=0}^{n} a r^{k}\right)+\left(a r^{n+1}-a\right) \begin{aligned}
& \text { Removing } k=n+1 \text { term and } \\
& \text { adding } k=0 \text { term. }
\end{aligned}
$$

$$
=S_{n}+\left(a r^{n+1}-a\right) \text { Substituting } S \text { for summation formula }
$$

\therefore

$$
\begin{aligned}
& r S_{n}=S_{n}+\left(a r^{n+1}-a\right) \\
& \quad S_{n}=\frac{a r^{n+1}-a}{r-1} \quad \text { if } \mathrm{r} \neq 1 \\
& S_{n}=\sum_{j=0}^{n} a r^{j}=\sum_{j=0}^{n} a=(n+1) a \quad \text { if } \mathrm{r}=1
\end{aligned}
$$

Some Useful Summation Formulae

