
Copyright © Cengage Learning. All rights reserved.

CHAPTER 5

SEQUENCES, 

MATHEMATICAL

INDUCTION, AND 

RECURSION

SEQUENCES, 

MATHEMATICAL

INDUCTION, AND 

RECURSION



Copyright © Cengage Learning. All rights reserved.

Sequences

SECTION 5.1



3

Sequences

Imagine that a person decides to count his ancestors. He 

has two parents, four grandparents, eight great-

grandparents, and so forth, These numbers can be written 

in a row as

2, 4, 8, 16, 32, 64, 128,…

The symbol “…” is called an ellipsis. It is shorthand for  

“and so forth.” 

To express the pattern of the numbers, suppose that each 

is labeled by an integer giving its position in the row.



4

Sequences

The number corresponding to position 1 is 2, which equals 

21. The number corresponding to position 2 is 4, which 

equals 22. 

For positions 3, 4, 5, 6, and 7, the corresponding numbers 

are 8, 16, 32, 64, and 128, which equal 23, 24, 25, 26, and 
27, respectively.

For a general value of k, let Ak be the number of ancestors 

in the kth generation back. The pattern of computed values 
strongly suggests the following for each k:



5

Sequences

We typically represent a sequence as a set of elements 

written in a row. In the sequence denoted

each individual element ak (read “a sub k”) is called a term. 



6

Sequences

The k in ak is called a subscript or index, m (which may be 

any integer) is the subscript of the initial term, and n

(which must be greater than or equal to m) is the subscript 

of the final term. The notation

denotes an infinite sequence. An explicit formula or 
general formula for a sequence is a rule that shows how 

the values of ak depend on k.

The following example shows that it is possible for two 

different formulas to give sequences with the same terms.



7

Example 1 – Finding Terms of Sequences Given by Explicit Formulas

Define sequences a1, a2, a3,… and b2, b3, b4,… by the 

following explicit formulas:

Compute the first five terms of both sequences.

Solution:



8

Example 1 – Solution

As you can see, the first terms of both sequences are 

;; in fact, it can be shown that all terms of both 
sequences are identical.

cont’d



9

Summation Notation



10

Summation Notation

Consider again the example in which Ak = 2k represents the 

number of ancestors a person has in the kth generation 

back. What is the total number of ancestors for the past six 

generations? 

The answer is

It is convenient to use a shorthand notation to write such

sums.



11

Summation Notation

In 1772 the French mathematician Joseph Louis Lagrange 

introduced the capital Greek letter sigma, ΣΣΣΣ, to denote the 

word sum (or summation), and defined the summation 

notation as follows:



12

Example 4 – Computing Summations

Let a1 = −2, a2 = −1, a3 = 0, a4 = 1, and a5 = 2. Compute the 

following:

a.                               b.                                c. 

Solution:

a.



13

Example 4 – Solution

b.

c.

cont’d



14

Oftentimes, the terms of a summation are expressed using 

an explicit formula.

For instance, it is common to see summations such as

Summation Notation



15

Example 6 – Changing from Summation Notation to Expanded Form

Write the following summation in expanded form:

Solution:



16

Example 7 – Changing from Expanded Form to Summation Notation

Express the following using summation notation:

Solution:

The general term of this summation can be expressed as           

for integers k from 0 to n.

Hence



17

Summation Notation

A more mathematically precise definition of summation, 

called a recursive definition, is the following:

If m is any integer, then

When solving problems, it is often useful to rewrite a 

summation using the recursive form of the definition, either 

by separating off the final term of a summation or by adding 

a final term to a summation.



18

Example 9 – Separating Off a Final Term and Adding On a Final Term

a. Rewrite          by separating off the final term.

b. Write                   as a single summation.

Solution:

a.

b.



19

Summation Notation

In certain sums each term is a difference of two quantities. 

When you write such sums in expanded form, you 
sometimes see that all the terms cancel except the first and 

the last. 

Successive cancellation of terms collapses the sum like a 
telescope. 



20

Example 10 – A Telescoping Sum

Some sums can be transformed into telescoping sums, 

which then can be rewritten as a simple expression. 

For instance, observe that

Use this identity to find a simple expression for



21

Example 10 – Solution



22

Product Notation



23

Product Notation

The notation for the product of a sequence of numbers is 

analogous to the notation for their sum. The Greek capital 

letter pi, , denotes a product. For example,



24

Product Notation

A recursive definition for the product notation is the 

following: If m is any integer, then



25

Example 11 – Computing Products

Compute the following products:

a.

b.

Solution:

a.

b.



26

Properties of Summations 

and Products



27

Properties of Summations and Products

The following theorem states general properties of 

summations and products. 



28

Example 12 – Using Properties of Summation and Product

Let ak = k + 1 and bk = k − 1 for all integers k. Write each of 

the following expressions as a single summation or 

product:

a.                                      b.                    

Solution:

a.



29

Example 12 – Using Properties of Summation and Product

b.



30

Change of Variable



31

Change of Variable

Observe that

and also that

Hence

This equation illustrates the fact that the symbol used to 
represent the index of a summation can be replaced by any 

other symbol as long as the replacement is made in each 
location where the symbol occurs.



32

Change of Variable

As a consequence, the index of a summation is called a 

dummy variable.

A dummy variable is a symbol that derives its entire 

meaning from its local context. Outside of that context (both 

before and after), the symbol may have another meaning
entirely.

A general procedure to transform the first summation into 

the second is illustrated in Example 13.



33

Example 13 – Transforming a Sum by a Change of Variable

Transform the following summation by making the specified 

change of variable.

summation:                  change of variable:

Solution:

First calculate the lower and upper limits of the new 

summation:

Thus the new sum goes from j = 1 to j = 7.



34

Example 13 – Solution

Next calculate the general term of the new summation. You 

will need to replace each occurrence of k by an expression 

in j :

Finally, put the steps together to obtain

cont’d



35

Change of Variable

Sometimes it is necessary to shift the limits of one summation 

in order to add it to another.

A general procedure for making such a shift when the upper 

limit is part of the summand is illustrated in the next example.



36

Example 14 – When the Upper Limit Appears in the Expression to Be Summed

a. Transform the following summation by making the

specified change of variable.

summation:                     change of variable:

b. Transform the summation obtained in part (a) by

changing all j’s to k’s.



37

Example 14 – Solution

a. When k = 1, then j = k − 1 = 1 − 1 = 0. (So the new lower

limit is 0.) 

When k = n + 1, then j = k − 1 = (n + 1) − 1 = n. (So the

new upper limit is n.)

Since j = k − 1, then k = j + 1. Also note that n is a

constant as far as the terms of the sum are concerned. 

It follows that

and so the general term of the new summation is



38

Example 14 – Solution

Therefore,

b. Changing all the j’s to k’s in the right-hand side of

equation (5.1.3) gives

Combining equations (5.1.3) and (5.1.4) results in

cont’d



39

Factorial and “n Choose r” 

Notation



40

Factorial and “n Choose r” Notation

The product of all consecutive integers up to a given 

integer occurs so often in mathematics that it is given a 

special notation—factorial notation.



41

Factorial and “n Choose r” Notation

A recursive definition for factorial is the following: Given 

any nonnegative integer n,

The next example illustrates the usefulness of the recursive 

definition for making computations.



42

Example 16 – Computing with Factorials

Simplify the following expressions:

a.  b. c.

d. e. 

Solution:

a.    

b.



43

Example 16 – Solution

c.

cont’d



44

Example 16 – Solution

d.

e.

cont’d



45

An important use for the factorial notation is in calculating 

values of quantities, called n choose r, that occur in many 

branches of mathematics, especially those connected with 

the study of counting techniques and probability.

Observe that the definition implies that      will always be an 
integer because it is a number of subsets.

Factorial and “n Choose r” Notation



46

The computational formula:

Many electronic calculators have keys for computing values 

of     . These are denoted in various ways such as nCr,

C(n, r), nCr , and Cn,r.

The letter C is used because the quantities     are also 

called combinations. Sometimes they are referred to as 

binomial coefficients because of the connection with the 
binomial theorem.

Factorial and “n Choose r” Notation



47

Example 17 – Computing     by Hand

Use the formula for computing      to evaluate the following 

expressions:

a. b. c.

Solution:

a.



48

Example 17 – Solution

b.

The fact that 0! = 1 makes this formula computable. It gives 
the correct value because a set of size 4 has exactly one 

subset of size 4, namely itself.

c.

cont’d



49

Sequences in Computer 

Programming



50

Sequences in Computer Programming

An important data type in computer programming consists 

of finite sequences. In computer programming contexts, 

these are usually referred to as one-dimensional arrays.

For example, consider a program that analyzes the wages 
paid to a sample of 50 workers. 

Such a program might compute the average wage and the 

difference between each individual wage and the average.



51

Sequences in Computer Programming

This would require that each wage be stored in memory for 

retrieval later in the calculation. 

To avoid the use of entirely separate variable names for all 

of the 50 wages, each is written as a term of a               

one-dimensional array:



52

Example 18 – Dummy Variable in a Loop

The index variable for a for-next loop is a dummy variable. 

For example, the following three algorithm segments all 

produce the same output:



53

Sequences in Computer Programming

The recursive definitions for summation, product, and 

factorial lead naturally to computational algorithms. 

For instance, here are two sets of pseudocode to find the 

sum of a[1], a[2], …, a[n]. 

The one on the left exactly mimics the recursive definition 
by initializing the sum to equal a[1]; the one on the right 

initializes the sum to equal 0.



54

Sequences in Computer Programming

In both cases the output is



55

Application: Algorithm to Convert 

from Base 10 to Base 2 Using 

Repeated Division by 2



56

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

A systematic algorithm to convert any nonnegative integer 

to binary notation uses repeated division by 2.

Suppose a is a nonnegative integer. Divide a by 2 using the 

quotient-remainder theorem to obtain a quotient q[0] and a 

remainder r [0]. If the quotient is nonzero, divide by 2 again 
to obtain a quotient q[1] and a remainder r [1]. 

Continue this process until a quotient of 0 is obtained. At 

each stage, the remainder must be less than the divisor, 
which is 2. Thus each remainder is either 0 or 1.



57

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

The process is illustrated below for a = 38. (Read the 

divisions from the bottom up.)

The results of all these divisions can be written as a 

sequence of equations:



58

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

By repeated substitution, then,



59

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

Note that each coefficient of a power of 2 on the right-hand 

side is one of the remainders obtained in the repeated 

division of 38 by 2.

This is true for the left-most 1 as well, because 

1 = 0 ���� 2 + 1. Thus



60

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

In general, if a nonnegative integer a is repeatedly divided 

by 2 until a quotient of zero is obtained and the remainders 

are found to be r [0], r [1], . . . , r [k], then by the      

quotient-remainder theorem each r [i ] equals 0 or 1, and by 

repeated substitution from the theorem,

Thus the binary representation for a can be read from 

equation (5.1.5):



61

Example 19 – Converting from Decimal to Binary Notation Using 

Repeated Division by 2

Use repeated division by 2 to write the number 2910 in 

binary notation. 

Solution:

Hence 2910 = (r[4] r[3] r[2] r[1] r[0])2 = 111012.



62

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

The procedure we have described for converting from base 

10 to base 2 is formalized in the following algorithm:

Algorithm 5.1.1 Decimal to Binary Conversion Using 

Repeated Division by 2

[In this Algorithm the input is a nonnegative integer n. The 

aim of the algorithm is to produce a sequence of binary 

digits r [0], r [1], r [2], . . . , r [k] so that the binary 

representation of a is

That is,



63

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

Input: n [a nonnegative integer]

Algorithm Body:

q := n, i := 0

[Repeatedly perform the integer division of q by 2 until q 

becomes 0. Store successive remainders in a                

one-dimensional array r [0], r [1], r [2], …. , r [k]. 

Even if the initial value of q equals 0, the loop should 

execute one time (so that r [0] is computed). 

Thus the guard condition for the while loop is i = 0 or         
q ≠ 0.]



64

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

while (i = 0 or q ≠ 0)

r [ i ] := q mod 2

q := q div 2

[r [ i ] and q can be obtained by calling the division 

algorithm.]

i := i + 1

end while



65

Application: Algorithm to Convert from Base 10 to Base 2 Using 

Repeated Division by 2

[After execution of this step, the values of                                

r [0], r [1], …, r [i − 1] are all 0’s and 1’s, and                         

a = (r [i − 1] r [i − 2] … r [2]  r [1]r [0])2.]

Output:  r [0], r [1], r [2], ..., r [i − 1]  [a sequence of 

integers]


