Sequential Circuit Design

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

* The Design Procedure
* Moore Sequence Detector
* Mealy Sequence Detector
* Tracing State Diagrams and Verifying Correctness
* Sequential Comparator
* Binary Counter
* Up/Down Counter with Enable

The Design Procedure

Given a Description (or Specification) of the Problem

1. Obtain a state diagram for the sequential circuit
2. Assign binary codes to the states and fill the state table
3. Select the type of Flip-Flops and derive the FF input equations
4. Derive the output equations
5. Draw the circuit diagram
6. Verify the correctness of the final design (verification)

The State Diagram

* A state is an abstraction of memory
* A state remembers a history of inputs applied to the circuit
* Examples:
\triangleleft State S0 represents the fact that the last input is a 0
\triangleleft State S1 represents the fact that the last input is a 1
\triangleleft State S2 represents the fact that the last two-input sequence is "11"
* Obtaining the state diagram is the most important step
* Requires experience and good understanding of the problem

Example: Sequence Detector

* A sequence detector is a sequential circuit
* Detects a specific sequence of bits in the input
* The input is a serial bit stream:

One input bit \boldsymbol{x} is fed to the sequence detector each cycle

* The output is also a bit stream: One output bit z each cycle

Indicates whether a given sequence is detected or not

State Diagram for a Sequence Detector

* Example: Design a circuit that detects the input sequence "111"
* Begin in an initial state: call it \mathbf{S}_{0}
S_{0} indicates that a 1 is NOT detected yet
As long as the input x is 0 , remain in the initial state $\mathbf{S}_{\mathbf{0}}$
* Add a state (call it $\mathbf{S}_{\mathbf{1}}$) that detects the first 1 in the input
* Add a state (call it $\mathbf{S}_{\mathbf{2}}$) that detects the input sequence "11"
* Add a state (call it $\mathbf{S}_{\mathbf{3}}$) that detects the input sequence "111"

Complete the State Diagram

Moore Design: Assign Output to States
The output in $\mathbf{S}_{0}, \mathrm{~S}_{1}$, and S_{2} should be 0
The output in S_{3} should be 1

Now complete the state diagram:
Add transitions from $\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{\mathbf{3}}$ back to \mathbf{S}_{0} if the input is 0

Add transition from \mathbf{S}_{3} to itself if the input is 1 to detect sequences longer than three 1's

State Assignment

* Each state must be assigned a unique binary code
* If there are m states then

The minimum number of state bits: $n=\left\lceil\log _{2} m\right\rceil$
$\lceil x\rceil$ is the smallest integer $\geq x$ (ceiling function)

* In our example, there are four states: $\mathbf{S}_{0}, \mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$, and \mathbf{S}_{3}

Therefore, the minimum number of state bits (Flip-Flops) $=2$
$*$ State assignment: $S_{0}=00, S_{1}=01, S_{2}=10$ and $S_{3}=11$

* If n bits are used, the number of unused states $=2^{n}-m$
* In our example, there are NO unused states

From State Diagram to State Table

Present	Next State		Output
State	$x=0$	$x=1$	z
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	0
$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	1
Present	Next		State
State	$x=0$	$x=1$	Output
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

Structure of a Moore Sequence Detector

* In our design examples, only D-type Flip-Flops will be used
* They are the simplest to analyze and implement
* Next, we need minimal expressions for

1. Next State Logic
2. Output Logic

Derive Next State an Output Equations

Present	Next State		Output
State	$x=0$	$x=1$	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

	D_{1}	
$Q_{1} Q_{0}$	0	1
00	0	0
01	0	1
11	0	1
10	0	1

	${ }^{D_{0}}$	
$Q_{1} Q_{0}$		
00	0	1
01	0	0
11	0	1
10	0	1

$Q_{1} x+Q_{0} x$
$Q_{1} x+Q_{0}^{\prime} x$

Two D-type Flips-Flops
Present State $=$ Flip-Flop Outputs Q_{1} and Q_{0}
Next State $=$ Flip-Flop Inputs D_{1} and D_{0}
Next State equations: $D_{1}=Q_{1} x+Q_{0} x$ and $D_{0}=Q_{1} x+Q_{0}^{\prime} x$
Output equation: $z=Q_{1} Q_{0}$ (from the state diagram)

Draw the Moore Sequence Detector Circuit

$$
D_{1}=Q_{1} x+Q_{0} x, D_{0}=Q_{1} x+Q_{0}^{\prime} x \quad z=Q_{1} Q_{0}
$$

Mealy Type Sequence Detector

* Let us redesign a Mealy type "111" sequence detector
* The initial state S_{0} indicates that a 1 is NOT detected yet

As long as the input \boldsymbol{x} is $\mathbf{0}$, remain in the initial state $\mathbf{S}_{\mathbf{0}}$
Notice that input / output is written on the arc (Mealy type)

* Add a state (call it $\mathbf{S}_{\mathbf{1}}$) that detects the first 1 in the input
* Add a state (call it \mathbf{S}_{2}) that detects the input sequence "11"

Complete the Mealy State Diagram

* State S_{2} is reached after detecting the input sequence "11"
* At \mathbf{S}_{2}, if the next input is 1 then the output should be $\mathbf{1}$

Make a transition from $\mathrm{S}_{\mathbf{2}}$ back to itself labeled 1 / 1
No need for state \mathbf{S}_{3}, because output is on the arc

* Now complete the state diagram

Add transitions from $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ back to $\mathbf{S}_{\mathbf{0}}$ when input is $\mathbf{0}$

> Mealy Machines
> typically use
> less states than
> Moore Machines

State Assignment and State Table

Three States \rightarrow Minimum number of state bits (Flip-Flops) $=2$ Assign: $S_{0}=00, S_{1}=01$, and $S_{2}=10$ (State 11 is Unused)

Present State	Next State		Output z		Present State	Next State		Output z	
	$x=0$	$x=1$	$x=0$	$x=1$		$x=0$	$x=1$	$x=0$	$x=1$
S_{0}	S_{0}	S_{1}	0	0	00	00	01	0	0
S_{1}	S_{0}	S_{2}	0	0	01	00	10	0	0
S_{2}	S_{0}	S_{2}	0	1	10	00	10	0	1

Derive Next State and Output Equations

Present State	Next State				$\left.\begin{array}{r} Q_{1} Q_{0} \\ 00 \end{array}\right)^{x}$	D_{1}		D_{0}			z		
			Output z			0			0	,	$Q_{1} Q_{0}$	0	1
	$x=0$	$x=1$	$x=0$	$x=1$		0	0	00	0	1	00	0	0
00	00	01	0	0	01	0	1	01	0	0	01	0	0
01	00	10	0	0	11	X	X	11	X	X	11	X	x
10	00	10	0	1	10	0	1	10	0	0	10	0	1
11	X X	X X	X	X									

Present State $=$ Flip-Flop Outputs Q_{1} and Q_{0} (state 11 is unused)
Next State $=$ Flip-Flop Inputs D_{1} and D_{0}
Flip-Flop Input equations: $D_{1}=Q_{1} x+Q_{0} x$ and $D_{0}=Q_{1}^{\prime} Q_{0}^{\prime} x$
Output equation: $z=Q_{1} x$

Draw the Mealy Sequence Detector Circuit

$$
D_{1}=Q_{1} x+Q_{0} x \quad D_{0}=Q_{1}^{\prime} Q_{0}^{\prime} x \quad z=Q_{1} x
$$

Output Logic

Mealy versus Moore Sequence Detector

Mealy Sequence Detector

In general, Moore state diagrams have more states than corresponding Mealy.

The drawback of Mealy is that glitches can appear in the output if the input is not synchronized with the clock.

Moore

Sequence

Verification

* Sequential circuits should be verified by showing that the circuit produces the original state diagram
* Verification can be done manually, or with the help of a simulation program
* All possible input combinations are applied at each state and the state variables and outputs are observed
* A reset input is used to reset the circuit to its initial state
* Apply a sequence of inputs to test all the state-input combinations, i.e., all transitions in the state diagram
* Observe the output and the next state that appears after each clock edge in the timing diagram

Input Test Sequence

* Required to verify the correct operation of a sequential circuit
* It should test each state transition of the state diagram
* Test sequences can be produced from the state diagram
* Consider the Mealy sequence detector, starting at \mathbf{S}_{0} (reset), we can use an input test sequence to verify all state transitions: Input test sequence: reset then $x=0,1,0,1,1,0,1,1,1,1$

Reset input
forces initial
state to be \mathbf{S}_{0}

Verifying the Mealy Sequence Detector

Input test sequence: reset then $x=0,1,0,1,1,0,1,1,1,1$

Sequential Comparator

Problem Description:

* Design a sequential circuit that compares two numbers A and B
* Two Inputs: A and B

A consists of n bits
B consists of n bits
Bit streaming starting at bit 0

Clock Reset

Compare A_{0} with B_{0}, A_{1} with B_{1}, etc. (Bit 0 is least significant bit)

* A reset signal resets the comparator to its initial state

Reset is required before starting a new comparison

* Two outputs: GT (Greater Than) and LT (Less Than)

Designing the State Diagram

* Reset: start initially in state EQ

EQ indicates Equality (output is 00) Stay in EQ as long as $A_{i} B_{i}=00$ or 11
$\%$ Go to LT if $A_{i}<B_{i}\left(A_{i} B_{i}=01\right)$
LT indicates Less Than (output is 01)
$*$ Go to GT if $A_{i}>B_{i}\left(A_{i} B_{i}=10\right)$
GT is Greater Than (output is 10)

* Complete the state diagram

LT \rightarrow GT and GT \rightarrow LT
LT \rightarrow LT and GT \rightarrow GT

Moore State Diagram

State Assignment and State Table

Three States \rightarrow Two Flip-Flops
D-type Flip-Flops will be used
State Assignment: EQ = 00, LT = 01, GT = 10
Output $=$ Present State $\left(\mathbf{Q}_{1}\right.$ and $\left.\mathbf{Q}_{\mathbf{0}}\right)$

Present State $\mathrm{Q}_{1} \mathrm{Q}_{0}$	Next State ($\mathrm{D}_{1} \mathrm{D}_{0}$)			
	AB 00	A B 01	$\begin{gathered} \text { A B } \\ 10 \end{gathered}$	AB 11
00	00	01	10	00
01	01	01	10	01
10	10	01	10	10
1	X X		X	

Deriving the Next State Equations

Present Next State ($D_{1} D_{0}$)

State	A	A	B	$A B$	A	B			
Q_{1}	Q_{0}	0	0	0	1	1	0	1	1
0	0	0	0	0	1	1	0	0	0
0	1	0	1	0	1	1	0	0	1
1	0	1	0	0	1	1	0	1	0
1	1	X							

${ }^{A B}$	D_{1}			
$Q_{1}{ }^{A B}$	00	01	11	10
00	0	0	0	1
01	0	0	0	1
11	X	X	X	X
10	1	0	1	1

$Q_{1} Q_{0}^{A B}$	D_{0}			
	00	01	11	10
00	0	1	0	0
01	1	1	1	0
11	X	X	X	X
10	0	1	0	0

$$
\begin{aligned}
& D_{1}=Q_{1} A+Q_{1} B^{\prime}+A B^{\prime} \\
& D_{1}=Q_{1}\left(A+B^{\prime}\right)+A B^{\prime} \\
& D_{0}=Q_{0} A^{\prime}+Q_{0} B+A^{\prime} B \\
& D_{0}=Q_{0}\left(A^{\prime}+B\right)+A^{\prime} B
\end{aligned}
$$

Sequential Comparator Circuit Diagram

$$
D_{1}=Q_{1}\left(A+B^{\prime}\right)+A B^{\prime} \quad D_{0}=Q_{0}\left(A^{\prime}+B\right)+A^{\prime} B
$$

Designing with Unused States

* A circuit with n flip-flops has 2^{n} binary states
* However, the state diagram may have m states
* Therefore, the number of unused states $=2^{n}-m$
* Unused states do not appear in the state diagram
\diamond Sometimes treated as don't cares when simplifying expressions in K-maps
* However, it is possible to enter an unused state!
\triangleleft Caused by outside interference or a circuit malfunction
* Must specify the output and next state values for unused states
* A special (invalid) output can be used to indicate an unused state
* A return to a valid state must be possible without reset
\triangleleft Next state for unused states should be specified (NOT don't cares!)

Design of a Binary Counter

Problem Specification:

* Design a circuit that counts up from 0 to 7 then back to 0 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$

When reaching 7, the counter goes back to 0 then goes up again

* There is no input to the circuit
* The counter is incremented each cycle
* The output of the circuit is the present state (count value)
* The circuit should be designed using D-type Flip-Flops

Designing the State Diagram

*ight states are needed to store the count values 0 to 7

* No input, state transition happens at the edge of each cycle

Three Flip-Flops are required for the eight states

Each state is assigned a unique binary count value

State Table

Only two columns: Present State and Next State

State changes each cycle

$$
\begin{array}{c|c}
\text { Present State } & \text { Next State } \\
Q_{2} Q_{1} Q_{0} & D_{2} D_{1} D_{0}
\end{array}
$$

0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1		1	0
1	0				
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1		0	0

Deriving the Next State Equations

Present State Next State $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0} \quad \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$

000
001
001
010
010
011
011
100

$$
D_{2}=Q_{2} Q_{1}^{\prime}+Q_{2} Q_{0}^{\prime}+Q_{2}^{\prime} Q_{1} Q_{0}
$$

100
101

$$
D_{2}=Q_{2}\left(Q_{1}^{\prime}+Q_{0}^{\prime}\right)+Q_{2}^{\prime} Q_{1} Q_{0}
$$

101
110

$$
D_{2}=Q_{2}\left(Q_{1} Q_{0}\right)^{\prime}+Q_{2}^{\prime}\left(Q_{1} Q_{0}\right)=Q_{2} \oplus\left(Q_{1} Q_{0}\right)
$$

110
111
111
000

$$
D_{1}=Q_{1} Q_{0}^{\prime}+Q_{1}^{\prime} Q_{0}=Q_{1} \oplus Q_{0}
$$

$$
D_{0}=Q_{0}^{\prime}
$$

3-Bit Counter Circuit Diagram

Up/Down Counter with Enable

Problem Specification:

* Design a 2-bit Up / Down counter
* Two inputs: E (Enable) and U (Up)

If $E=0$ then counter remains in the same state (regardless of U)
If $E U=11$ then count up from 0 to 3 , then back to 0
If $E U=10$ then count down from 3 down to 0 , then back to 3

* The output of the counter is the present state (count value)
* The circuit should be designed using T Flip-Flops
* A reset signal resets the counter to its initial state

Designing the State Diagram

* Four states are required to store the count 0 to 3
* Count up if EU = 11
* Count down if EU = 10
* Disable counter if E = 0 Transition to same state if $\mathrm{EU}=00$ or 01
* Asynchronous reset to start initially at state S0

State Assignment and State Table

\star Four States \rightarrow Two State variables (2 Flip-Flops)
ψ State Assignment: $\mathrm{SO}=00, \mathrm{~S} 1=01, \mathrm{~S} 2=10$, and $\mathrm{S} 3=11$

Present State $\mathrm{Q}_{1} \mathrm{Q}_{0}$	Next State			
	$\begin{aligned} & \text { E U } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { E U } \\ & 01 \end{aligned}$	$\begin{aligned} & \text { E U } \\ & 10 \end{aligned}$	E U
00	00	00	11	01
01	01	01	00	10
10	10	10	01	1
	11		10	00

Excitation Table for Flip-Flops

* Excitation Table:

Lists the required input for next state transition

* For D Flip-Flop: Input $D=$ Next State $Q(t+1)$
* For T Flip-Flop: Input $T=Q(t) \oplus Q(t+1)$
* Excitation tables are used to find the Flip-Flop input equations

Excitation Tables for the D and T Flip-Flops

$\boldsymbol{Q}(\boldsymbol{t})$	$\boldsymbol{Q}(\boldsymbol{t}+\mathbf{1})$	\boldsymbol{D}	$\boldsymbol{Q}(\boldsymbol{t})$	$\boldsymbol{Q}(\boldsymbol{t}+\mathbf{1})$	\boldsymbol{T}
0	0	0	0	0	0
0	1	1	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0

Deriving the T-Flip-Flop Input Equations

Present State $\mathrm{Q}_{1} \mathrm{Q}_{0}$	Next State at ($\boldsymbol{t + 1)}$			
	EU	E U	E U	E U
	00	01	10	11
00	00	00	11	01
01	01	01	00	10
10	10	10	01	11
11	11	11	10	00

Present Flip-Flop Inputs $\mathrm{T}_{1} \mathrm{~T}_{0}$ State EU EU EU EU $\mathrm{Q}_{1} \mathrm{Q}_{0} \quad 00 \quad 01 \quad 10 \quad 11$ $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$ $\begin{array}{llllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$ 10000000311001 $\begin{array}{llllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$

	T_{1}			
	00	01	11	10
00	0	0	0	1
01	0	0	1	0
11	0	0	1	0
10	0	0	0	1

EU	T_{0}			
Q_{1}	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	0	1	1
10	0	0	1	1

$T_{1}=Q_{0} E U+Q_{0}^{\prime} E U^{\prime}$
$T_{1}=E\left(Q_{0} \oplus U\right)^{\prime}$
$T_{0}=E$

2-bit Up/Down Counter Circuit Diagram

