
Chapter 14

Sequential Logic

The output of sequential logic depends not only on its input, but also on its state
which may reflect the history of the input. We form a sequential logic circuit via
feedback - feeding state variables computed by a block of combinational logic
back to its input. General sequential logic, with asynchronous feedback, can
become complex to design and analyze due to multiple state bits changing at
different times. We simplify our design and analysis tasks in this chapter by
restricting ourselves to synchronous sequential logic, in which the state variables
are held in a register and updated on reach rising edge of a clock signal.1

The behavior of a synchronous sequential logic circuit or finite-state machine
(FSM) is completely described by two logic functions: one which computes its
next state as a function of its input and present state, and one that computes
its output - also as a function of input and present state. We describe these two
functions by means of a state table, or graphically with a state diagram. If states
are specified symbolically, a state assignment maps the symbolic states onto a
set of bit vectors - both binary and one-hot state assignments are commonly
used.

Given a state table (or state diagram) and a state assignment, the task of
implementing a finite-state machine is a simple one of synthesizing the next-
state and output logic functions. For a one-hot state encoding, the synthesis is
particularly simple as each state maps to a separate flip-flop and all edges in
the state diagram leading to a state map into a logic function on the input of
that flip-flop. For binary encodings, Karnaugh maps for each bit of the state
vector are written and reduced to logic equations.

Finite-state machines are implemented in Verilog by declaring a state register
to hold the current state, and describing the next-state and output functions
with combinational logic descriptions, such as case statements as described
in Chapter 7. State assignments should be specified with ‘define statements
to allow them to be changed without altering the machine description itself.
Special attention should be given to resetting the FSM.

1We revisit asynchronous sequential circuits in Chapter 22.
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Figure 14.1: Sequential circuits are formed when feedback paths carrying state
information are added to combinational circuits. The output of a sequential
circuit depends on both the current input and on the state, which is a function
of previous inputs.
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Figure 14.2: An RS flip-flop is a simple example of a sequential circuit: (a)
schematic (b) alternate schematic that doesn’t obey the bubble rule.

14.1 Sequential Circuits

Recall that a combinational circuit produces an output that depends only on
the current state of its input. Recall also that combinational circuits must be
acyclic. If we add feedback to a combinational circuit, creating a cycle as shown
in Figure 14.1, the circuit becomes sequential. The output of a sequential circuit
depends not only on its current input, but also on the history of previous inputs.
The cycle created by the feedback allows the circuit to store information about
its previous input. We refer to the information stored on the feedback signals
as the state of the circuit.

A sequential circuit generates an output that is a function of both its input
and its present state. It also generates its next state, also as a function of its
input and its present state.

Figure 14.2 shows a reset-set (RS) flip-flop, a very simple sequential logic
circuit that is composed of two NOR gates.2 The output q is fed back to the
input as a state variable. The circuit’s behavior is described by the equation:
q = r ∧ (s ∨ q). The state variable q appears on both sides of the equation. To
make the dynamics clearer we rewrite this as qnew = r ∧ (s ∨ qold). That is, the

2We draw the circuit as shown in Figure 14.2(a). Many people (who do not obey the
bubble rule) draw it as shown in Figure 14.2(b).
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r s qold qnew

0 0 0 0
0 0 1 1
0 1 X 1
1 X X 0

Table 14.1: State table for RS flip-flop.
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Figure 14.3: Timing diagram showing operation of the RS flip-flop. The value
of signals is shown as time advances from left to right.

equation tells us how to derive the new state of q as a function of the inputs
and the old state of q.

From the equation (and the schematic) it is easy to see that if r = 1, q = 0
and the flip-flop is reset, if s = 1 and r = 0, q = 1 and the flip-flop is set, and if
s = 0 and r = 0, the output q stays in whatever state it was in. The output q
reflects the last input to be high. If r was high last, q = 0. If s was high last,
q = 1. We summarize this behavior in the state table of Table 14.1.

Because the function of sequential circuits depends on the evolution of signals
over time, we often describe their behavior using a timing diagram. A timing
diagram illustrating operation of the RS flip-flop is shown in Figure 14.3. The
figure shows the waveforms, signal level as a function of time, for the signals r,
s, and q. Time advances from left to right. Arrows from one signal to another
show cause and effect.

Initially, q is in an unknown state, it could be either high or low, denoted
by both high and low lines. At time t1, r goes high causing q to fall - resetting
the flip-flop. Signal s goes high at t2 causing q to rise - setting the filp-flop The
flip-flop is reset again at t3. Signal s goes high at t4, but this has no effect on
the output, since r is also high. Signal s going high with r low at t5 does set the
flip-flop. It is reset again at t6 when r goes high - even though s is still high.
The flip-flop is set for a final time at t7 when r goes low.
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Figure 14.4: A synchronous sequential circuit breaks the state feedback loop
with a clocked storage element (in this case a D-type flip-flop). The flip-flop
ensures that all state variables change value at the same time - when the clock
signal rises.
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Figure 14.5: Timing diagram showing operation of a synchronous sequential
circuit. The state advances on each rising edge of the clock signal, clk.

14.2 Synchronous Sequential Circuits

While the RS flip-flop of Figure 14.2 is simple enough to understand, arbitrary
sequential circuits, with many bits of state feedback, can give complex behavior.
Part of the complexity is due to the fact that the different bits of the next-state
signal may change at different times. Such races can lead to a next-state output
that depends on circuit delay. We defer discussion of general asynchronous
sequential circuits until Chapter 22. Until then, we restrict our attention to
synchronous sequential circuits in which clocked storage elements are used to
ensure that all state variables change state at the same time - synchronized to
a clock signal. Synchronous sequential circuits are sometimes called finite-state
machines or FSMs.

A block diagram of a synchronous sequential logic circuit is shown in Fig-
ure 14.4. The circuit is synchronous because the state feedback loop is broken
by an s-bit wide D flip-flop (where s is the number of state bits). This flip-flop
circuit, described in the next section, updates its output with the value of its
input on the rising edge of the clock signal. At all other times the output re-
mains stable. Inserting the D flip-flop into the feedback loop constrains all of
the state bits to change at the same time - eliminating the possiblity of races.
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state next state out
in=0 in=1 in=0 in=1

00 00 01 0 0
01 00 11 0 0
11 01 10 0 0
10 11 00 0 1

Table 14.2: State table for example synchronous logic circuit.

cycle state in out
0 00 0 0
1 00 1 0
2 01 1 0
3 11 0 0
4 01 1 0
5 11 1 0
6 10 0 0
7 11 1 0
8 10 1 1
9 00 0

Table 14.3: State sequence for the sequential logic circuit described by Table 14.2
on the input sequence 011011011.

Operation of a synchronous sequential circuit is illustrated in the timing
diagram of Figure 14.5. During each clock cycle, the time from one rising edge
of the clock to the next, a block of combinational logic computes the next state
and output (not shown) as a combinational function of the input and current
state. At each rising edge of the clock the current state (state) is updated with
the next state computed during the previous clock cycle.

During the first clock cycle of Figure 14.5 for example, the current state is
SB and the input changes to B before the end of the cycle. The combinational
logic then computes the next state SC = f(B, SB). At the end of the cycle the
clock rises again updating the current state to be SC. The state will be SC
until the clock rises again.

We can analyze synchronous sequential circuits on a clock-by-clock basis.
The next state and output during the a given clock cycle depend only on the
current state and input during that clock cycle. At each clock, the current state
advances to the next state.

For example, suppose our next state and output logic are as given by Ta-
ble 14.2. If our circuit starts in state 00 and has an input sequence of 011011011
for the first 9 cycles, what will its state and output be each cycle?

Operation of our example circuit is shown in Table 14.3. In cycle 0 we start
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Figure 14.6: State diagram for finite-state machine of Table 14.2. The circles
represent the four states. Each arrow represents a state transition from a current
state to a next state and is labeled input/em output - the input that causes the
transition, and the output in the current state for that input.

in state 00. The input and output are both 0 this cycle. With an input of 0 in
state 00, the next state is also 00, so in cycle 1 we remain in state 00, but now
with an input of 1. A state of 00 and an input of 1 gives us a next state of 01
for cycle 2. With the input high in state 01, we get a next state of 11 for cycle
3. The input goes low in state 11 in cycle 3, taking us back to state 01 for cycle
4. The input is high for the next two cycles taking us to 11 and 10 in cycles 5
and 6 respectively. A low input in cycle 6 takes us back to 11 for cycle 7. High
inputs for cycles 7 and 8 takes us to states 10 and 00 for cycles 8 and 9. The
output goes high in cycle 8 since the state is 10 and the input is 1.

One representation of a finite-state machine is a state table such as Table 14.2
that gives the next-state and output functions in tabular form. An equivalent
graphical representation is a state diagram as shown in Figure 14.6.

Each circle in Figure 14.6 represents one state. Its labeled with the name
of the state. Here we use the value of the state variables as the state name.
Later we will introduce symbolic state names, independent of the state coding.
The next state function is shown by the arrows. Each arrow represents a state
transition and is labeled with the input and output values during that transition.
For example, the arrow from state 00 to state 01, labeled 1/0, implies that in
state 00 when the input is 0 the next state is 01 and the output is 0. Note that
an arrow may go from a state to itself, as in the case of the input 0 transition
from state 00 to state 00. Also, a transition may go quite a distance in the
diagram, as with the input 1 transition from state 10 to state 00.

14.3 Traffic Light Controller

As a second example of a FSM, consider the problem of controlling the traffic
lights at an intersection of a north-south road with an east-west road. There
are six lights to control green, yellow, and red for the north-south road, and for
the east-west road. Our FSM will take as input signal carew that indicates that
a car is waiting on the east-west road. A second input, rst, resets the FSM to
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Figure 14.7: Controlling traffic lights at a road intersection with a FSM. Our
FSM has two inputs, a reset (rst), and a signal that indicates that a car is
waiting on the east-west road (carew). The FSM has six outputs that control
the three north-south lights (green, yellow, red), and the three east-west lights.

a known state.
We start with an English-language description of our FSM:

1. Reset to a state where the light is green in the north-south direction and
red in the east-west direction.

2. When a car is detected in the east-west direction (carew = 1) go through
a sequence that makes the light green in the east-west direction and then
return to green in the north-south direction.

3. A direction with a green light must first transition to a state where the
light is yellow before going to a state where the light goes red.

4. A direction can have a green light only if the light in the other direction
is red.

A state diagram for a FSM that meets our specification is shown in Fig-
ure 14.8. Compared to the state diagram of Figure 14.6 there are two major
differences First, the states are labeled with symbolic names. the output values
are placed under the states rather than on the transitions. This is because the
output is a function only of the state, not of the input. Second, the output val-
ues are placed under the states rather than on the transitions. This is because
the output is a function only of the state, not of the input.3

3A FSM where the output depends only on the current state and not the input is sometimes
called a Moore machine. A FSM where the output depends on both the current state and the
input is sometimes called a Mealy machine.
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Figure 14.8: State diagram for a traffic-light controller FSM. The states are
labeled with symbolic names. The outputs are given under each state (green-
yellow-red (3-bits) for north-south followed by green-yellow-red for east-west).
The reset arrows are omitted. The FSM resets to state gns.

The FSM resets to state gns (for green-north-south). In this state the output
is 100 001. The first 100 represents the north-south lights (green-yellow-red).
The 001 represents the east-west lights (also green-yellow-red). Hence the light is
green in the north-south direction and red in the east-west direction. Resetting
to this state satisfies specification number 1. The arrow labeled carew keeps us
in state gns until a car is detected in the east-west direction.

When a car is detected in the east-west direction, signal carew becomes
true, and the next rising edge of the clock causes the machine to enter state yns
(yellow north-south). In this state the output is 010 001. The 010 implies yellow
in the north-south direction, and 001 implies red in the east-west direction.
Transitioning to this state before makign east-west green satisfies specification
3 on the transition from gns to gew. The arrow out of state yns has no label.
This implies that this state transition always occurs (unless the FSM is reset).

State yns is always followed by state gew (green east-west). In this state the
output is 001 100 - red in the north-south direction and green in the east-west
direction. This state, and the sequence it is part of, satisfies specification 2.
State gew is always followed by state yew. State yew (yellow east west) has
output 001 010 - red in the north-south direction and yellow in the east-west
direction. This state statisfies specification 3 on the transition between gew and
gns.

A state table for the traffic-light controller is shown in Table 14.4. Reset is
not shown.
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state next state out
carew=0 carew=1

gns gns yns 100 001
yns gew gew 010 001
gew yew yew 001 100
yew gns gns 001 010

Table 14.4: State table for the traffic light controller FSM. The FSM resets to
state gns.

state encoding
gns 0001
yns 0010
gew 0100
yew 1000

Table 14.5: A one-hot state assignment for the traffic light controller FSM.

14.4 State Assignment

When a FSM is specified with symbolic state names as in Figure 14.8 or Ta-
ble 14.4 we need to assign actual binary values to the states before we can
implement the FSM. This process of assigning values to states is called state
assignment.

With a synchronous machine, we can assign the states to any set of values,
as long as the value for each state is unique. 4 It takes at least smin = log2(N)
bits to represent N states; however, the best state assignment is not always one
with the fewest bits. We refer to each bit of a state vector as a state variable.

A one-hot state assignment uses N bits to represent N states. Each state
gets its own bit. When the machine is in the ith state, the corresponding bit bi

of the state variable is 1. In all other states, bi is 0. A one-hot state assignment
for the traffic-light controller FSM is shown in Table 14.5. It takes four bits to
represent the four states. In any state, only one bit is set. A one-hot assignment
makes the logic design of a finite state machine particularly simple as we shall
see below.

A binary state assignment uses the minimum number of bits, smin log2(N), to
represent N states. Of the N ! possible binary state assignments (24 for 4 states),
it doesn’t really matter which one you choose. While lots of academic papers
have been written about choosing state assignments to minimize implementation
logic, in practice it doesn’t really matter. Except in very rare cases the number
of gates saved by optimizing the state assignment is unimportant. Don’t waste

4This is not true of an asynchronous machine where careful state assignment is required
to avoid races.
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state encoding
gns 00
yns 01
gew 11
yew 10

Table 14.6: A binary state assignment for the traffic light controller FSM.
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Figure 14.9: Implementation of the traffic light controller FSM using a one-hot
state encoding. Four flip-flops are used, one corresponding to each state. The
state transition arrows into a state directly translate into the logic preceding
the corresponding flip-flop.

much time on state assignment. Design time is more important than a few
gates.

One possible binary state assignment for the traffic light controller FSM is
shown in Table 14.6. This particular state assignment uses a Gray code so that
only one-bit of state changes on each state transition. This sometimes reduces
power and minimizes logic. We could just as easily have chosen a straight binary
count (gew = 10, yew = 11) and it wouldn’t make much difference.

14.5 Implementation of Finite State Machines

Given a state table (or state diagram) and a state assignment the implemen-
tation of a FSM is reduced the problem of designing two combinational logic
circuits, one for the next-state and one for the output. These combinational
logic circuits are combined with a s-bit wide D-flip-flop to update the current
state from the next state on each rising edge of the clock. A multi-bit D-flip-flop
like this is often called a register and when it is used to hold the state of an
FSM it is called the state register.

With a one-hot state assignment, the implementation of the next-state logic
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state carew next state comment
00 0 00 green north/south carew = 0
00 1 01 green north/south carew = 1
01 0 11 yellow north/south carew = 0
01 1 11 yellow north/south carew = 1
11 0 10 green east/west carew = 0
11 1 10 green east/west carew = 1
10 0 00 yellow east/west carew = 0
10 1 00 yellow east/west carew = 1

Table 14.7: Truth table for the next state function of the traffic light controller
FSM with the state assignment of Table 14.6.

is a direct translation of the state diagram as shown in Figure 14.9 for our
traffic light controller FSM. Four flip-flops correspond to the four states: gns,
yns, gew, and yew. When the first flip flop is set, the FSM is in state gns.
The logic feeding the D input of each flip-flop is an OR of the transition arrows
feeding the corresponding state in the state diagram. For states gew and yew
this is just a wire. These states always follow the preceding state. For state
yns, the input logic is an AND gate that ANDs the previous state (gns) with
the condition for a transition from gns to yns (carew). State gns is the target
of two destination arrows and hence requires an OR gate to combine them. Its
input logic is the OR of a wire from state yew, and an AND gate combining
state gns and condition carew - this corresponds to the back edge from state
gns to itself.

It is always possible to directly implement a one-hot FSM in this manner.
This made design and maintenance of FSMs very easy in the era before logic
synthesis. One would simply instantiate a flip-flop for each state, and approprate
input gates for each transition arrow. The function is immediately apparent
from the logic. Adding, deleting, or changing the condition on a transition
arrow was straightforward and affected only only the part of the logic associated
with the transition arrow. With modern logic synthesis, the advantage of this
approach is greatly diminished.

The output logic for the circuit of Figure 14.9 consists of two NOR gates.
States gns, yns, gew, and yew drive the green and yellow light outputs directly.
The red light outputs are generated by observing that for each direction, if the
yellow and green lights are off, the red light should be on: r = y ∨ g.

To implement our FSM with a binary state encoding, we proceed with logic
synthesis of each of the state variables. First, we convert our state table into
a truth table - showing each next state variables as a function of the current
state variables and all inputs. For example, a truth table for the traffic light
controller FSM with the state encoding of Table 14.6 is shown in Table 14.7.

From this state table we draw the two Kargaugh maps shown in Figure 14.5.
The left K-map shows the truth-table for the MSB of the next-state (ns1) and
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state output
00 100 001
01 010 001
11 001 100
10 001 010

Table 14.8: Truth table for the output function of the traffic light controller
FSM with the state assignment of Table 14.6.

the right K-map shows the truth table for the LSB of the next-stage (ns0).
The next state logic here is very simple. The ns1 function has a single prime
implicant, and the ns0 function has 2. All three are essential. The logic here is
very simple:

n1 = s0 (14.1)
n0 = (s0 ∨ carew) ∧ s1 (14.2)

Where n1, n0 are the next state variables and s1, s0 are the current state vari-
ables.

Now that we have the next-state function, what remains is to derive the
output function. To do this we write down the truth table for the outputs -
a function of only the current state. This is shown in Table 14.8. The logic
functions for the output variables can be derived directly from this table - a
K-map is not necessary, we get:

gns = s1 ∧ s0 (14.3)
yns = s1 ∧ s0 (14.4)
rns = s1 (14.5)
gew = s1 ∧ s0 (14.6)
yew = s1 ∧ s0 (14.7)
rew = s1 (14.8)
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Figure 14.10: Logic diagram for traffic light controller FSM implemented with
state assignmet of Table 14.6.

Combining the next-state and logic equations we get the logic diagram of
Figure 14.10.

14.6 Verilog Implementation of Finite State Ma-
chines

With Verilog, designing a FSM is a simple matter of specifying the next-state
and output functions and selecting a state assignment. Logic synthesis does all
the work of generating the next-state and output logic. A verilog description
of the traffic light controller FSM is shown in Figure 14.11. The bulk of the
logic is in a single case statement that defines both the next-state and output
functions.

There are three key points to be made about this code.

1. In implementing all sequential logic, all state variables should be explicitly
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//------------------------------------------------------
// Traffic_Light
// Inputs:
// clk - system clock
// rst - reset - high true
// carew - car east/west - true when car is waiting in east-west direction
// Outputs:
// lights - (6 bits) {gns, yns, rns, gew, yew, rew}
// Waits in state GNS until carew is true, then sequences YNS, GEW, YEW
// and back to GNS.
//------------------------------------------------------
module Traffic_Light(clk, rst, carew, lights) ;
input clk ;
input rst ; // reset
input carew ; // car present on east-west road
output [5:0] lights ; // {gns, yns, rns, gew, yew, rew}
wire [‘SWIDTH-1:0] state, next ; // current and next state
reg [‘SWIDTH-1:0] next1 ; // next state w/o reset
reg [5:0] lights ; // output - six lights 1=on

// instantiate state register
DFF #(‘SWIDTH) state_reg(clk, next, state) ;

// next state and output equations - this is combinational logic
always @(state or carew) begin
case(state)
‘GNS: {next1, lights} = {(carew ? ‘YNS : ‘GNS), ‘GNSL} ;
‘YNS: {next1, lights} = {‘GEW, ‘YNSL} ;
‘GEW: {next1, lights} = {‘YEW, ‘GEWL} ;
‘YEW: {next1, lights} = {‘GNS, ‘YEWL} ;

endcase
end
// add reset
assign next = rst ? ‘GNS : next1 ;

endmodule

Figure 14.11: Verilog description of traffic light controller FSM.
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declared as D-flip-flops. DO NOT let the Verilog compiler infer flip-flops
for you. In this code, the state flip-flops are explicitly instantiated in the
code:

// instantiate state register
DFF #(‘SWIDTH) state_reg(clk, next, state) ;

This code instantiates an ‘SWIDTH-wide D-flip-flop that is clocked by clk,
has input next and output state.

2. In designing finite state machines, use Verilog ‘define statements to de-
fine all constants. Do not hard-code any constants in the code. Constants
that should be declared this way include the width of the state vector
‘SWIDTH, the state encodings (e.g., ‘GNS), and input and output encod-
ings (e.g., ‘GNSL). In particular defining symbolic names for the state
encodings enables you to change a state assignment by just changing the
definitions. We’ll see an example of this below.

3. Make sure you reset your FSM. Here we declare two next-state vectors,
next1, and next. The case statement computes next1 as the next state
ignoring reset rst. A final assign statement overrides this next state with
the reset state ‘GNS if rst is asserted:

// add reset
assign next = rst ? ‘GNS : next1 ;

Factoring the reset out of the next state function in this manner greatly
improves readability of the code. If we didn’t do this, we’d have to repeat
the reset logic in every state - rather than doing it just once.

The Verilog definitions for the traffic light controller FSM are shown in
Figure 14.12. Using ‘define in this manner enables us to use symbolic names
in our code, improving readability, and also makes it easy to change encodings.
For example, substituting the one-hot state encodings of Figure 14.13 changes
our FSM from a binary to a one-hot state assignment without changing any
other lines of code.

The Verilog code for the DFF module is shown in Figure 14.14. The behavior
is described by the always block:

always @(posedge clk)
out = in ;

This block performs the update of the output out = in on every rising edge
(posedge) of clk.

Our test bench for the traffic-light controller is shown in Figure 14.15. To
thoroughly test an FSM, we would like to both visit every state, and traverse
every edge of the state diagram. Achieving this coverage is not particularly
difficult for our traffic light controller FSM.
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//---------------------------------------------
// define state assignment - binary
//---------------------------------------------
‘define SWIDTH 2
‘define GNS 2’b00
‘define YNS 2’b01
‘define GEW 2’b11
‘define YEW 2’b10
//---------------------------------------------
// define output codes
//---------------------------------------------
‘define GNSL 6’b100001
‘define YNSL 6’b010001
‘define GEWL 6’b001100
‘define YEWL 6’b001010

Figure 14.12: Verilog definitions for traffic-light controller state variables and
output encodings.

//----------------------------------------------------------------------
// define state assignment - one hot
//----------------------------------------------------------------------
‘define SWIDTH 4
‘define GNS 4’b1000
‘define YNS 4’b0100
‘define GEW 4’b0010
‘define YEW 4’b0001

Figure 14.13: Verilog definitions for a one-hot state assignment for the traffic
light controller FSM.

module DFF(clk, in, out) ;
parameter n = 1; // width
input clk ;
input [n-1:0] in ;
output [n-1:0] out ;
reg [n-1:0] out ;

always @(posedge clk)
out = in ;

endmodule

Figure 14.14: Verilog description of a D-flip-flop.



Copyright (c) 2002-2006 by W.J Dally, all rights reserved 251

module Test_Fsm1 ;
reg clk, rst, carew ;
wire [5:0] lights ;

Traffic_Light tl(clk, rst, carew, lights) ;

// clock with period of 10 units
initial begin
clk = 1 ; #5 clk = 0 ;
forever
begin
$display("%b %b %b %b", rst, carew, tl.state, lights ) ;
#5 clk = 1 ; #5 clk = 0 ;

end
end

// input stimuli
initial begin
rst = 0 ; carew=0 ; // start w/o reset to show x state
#15 rst = 1 ; carew = 0 ; // reset
#10 rst = 0 ; // remove reset
#20 carew = 1 ; // wait 2 cycles, then car arrives
#30 carew = 0 ; // car leaves after 3 cycles (green)
#20 carew = 1 ; // wait 2 cycles then car comes and stays
#60 // 6 more cycles
$stop ;

end
endmodule

Figure 14.15: Verilog test bench for the traffic light controller FSM.
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0 0 xx xxxxxx
1 0 xx xxxxxx
0 0 00 100001
0 0 00 100001
0 1 00 100001
0 1 01 010001
0 1 11 001100
0 0 10 001010
0 0 00 100001
0 1 00 100001
0 1 01 010001
0 1 11 001100
0 1 10 001010
0 1 00 100001
0 1 01 010001

Figure 14.16: Results of simulating the traffic light controller FSM of Fig-
ure 14.11 using the test bench of Figure 14.15. Each line shows the values
of rst, carew, state, and lights on a falling edge of the clock.

The test bench has three components. First, it instantiates a Traffic_Light
module - the unit being tested. The second component is an initial block that
performs clock generation and output. The forever block repeats its body
until the simulation terminates. In this case the repeated code displays some
variables and generates a clock with a 10 delay-unit period. The display is done
in the middle of the clock cycle - just after clk goes low. The final component
generates the inputs for the module being tested.

The inputs, and the response of the module are shown in textual form in
Figure 14.16, which shows the signals on each falling edge of the clock, and as
waveforms in Figure ??. Initially, state and next are both in an unknown state
(x in the text output, and a line midway between a 1 and 0 in the waveform).
Signal rst is asserted in the second clock cycle to reset to a known state. Next-
state signal next responds immediately, and state follows on the rising edge
of the clock. The FSM stays in state 00 until carew rises on clock 5, causing
the FSM to go to state 01 on clock 6. This starts a sequence through states
01, 11, 10, and back to 00 on clock 9. It stays in state 00 for two cycles this
time, until carew going high in clock 10 causes the FSM to start the sequence
again in clock 11. This time carew stays high and the sequence repeats until
the simulation ends.
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Figure 14.17: Waveforms from simulation of the traffic light controller of Fig-
ure 14.11 using test bench of Figure 14.15.
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14.7 Bibliographic Notes

14.8 Exercises

14–1 Homing sequences. The finite-state machine described by Table 14.2 does
not have a reset input. Explain how you can get the machine in a known
state regardless of its initial starting state by providing a fixed input se-
quence. An input sequence that always takes an FSM to the same state
is called a homing sequence.

14–2 Homing sequences. Suppose the traffic light controller FSM of Table 14.4
did not reset to state gns. Find a homing sequence for the machine that
will get it to state gns.

14–3 Finite State Machines. Modify the traffic light controller FSM of Ta-
ble 14.4 so that it makes lights go red in both directions for one cycle
before turning a light green. Show a state table and state diagram for
your new FSM.

14–4 Finite State Machines. Modify the traffic light controller FSM of Ta-
ble 14.4 so that it takes an additional input, carns, that indicates when
there is a car waiting in the north-south direction. Change the logic so
that once the light changes to east-west, it stays with east-west green until
a car is detected waiting in the north-south direction. Show a state table
and state diagram for your new FSM.

14–5 FSM Implementation. Implement the traffic light controller FSM with a
state encoding where gns = 00, yns = 01, gew = 10, and yew = 11. Show
Karnaugh maps for the next state variables and output variables and a
gate-level schematic for the FSM.

14–6 A Digital Lock Draw a state diagram and a state table for a digital lock.
The lock has two inputs a and b and one output, unlock. The output is
assered only if the sequence a, b, a, a is observed. Each element of the
sequence must last for one or more cycles, and there may be zero or more
cycles of both inputs low between the sequence elements. After unlocking,
either input going high causes unlock to go low.

14–7 Anti-Lock BrakesA FSM for an anti-lock brake system accepts two inputs
- wheel and time, and generates a single output - unlock. The wheel input
pulses high for one clock cycle each time the wheel rotates a small amount.
The time input pulses high for one clock cycle every 10ms. If the machine
detects two time pulses since the last wheel pulse, it concludes that the
wheel is locked and unlock is asserted for one clock cycle to “pump” the
brakes. After unlock goes high, the machine waits for two time pulses
before resuming normal operation. Thus, there are a minimum of four time
pulses between unlock pulses. Draw a state diagram (bubble diagram) for
this state machine.
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14–8 Direction Sensor. Draw a state diagram and state table for a direction
sensor machine. This machine has two inputs il and ir and two outputs
ol and or. The machine outputs a one cycle pulse on ol any time a high
level on il for one or more cycles is followed, after zero or more cycles, by
a high level on ir for zero or more cycles. Similarly a one cycle pulse on
or is output if a high level on ir is followed by a high level on il.
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Chapter 15

Timing Constraints

How fast will a FSM run? Could making our logic too fast cause our FSM to
fail? In this chapter, we will see how to answer these questions by analyzing the
timing of our finite state machines and the flip-flops used to build them.

Finite state machines are governed by two timing constraints - a maximum
delay constraint and a minimum delay constraint. The maximum speed at
which we can operate a FSM depends on two flip-flop parameters (the setup
time and propagation delay) along with the maximum propagation delay of the
next-state logic. On the other hand, the minimum delay constraint depends on
the other two flip-flop parameters (hold time and contamination delay) and the
minimum contamination delay of the next-state logic. We will see that if the
minimum delay constraint is not met, our FSM may indeed fail to operate at
any clock speed due to hold-time violations. Clock skew, the delay between the
clocks arriving at different flip-flops, affects both maximum and minimum delay
constraints.

15.1 Propagation and Contamination Delay

In a synchronous system, logic signals advance from the stable state at the end
of one clock cycle to a new stable state at the end of the next clock cycle.
Between these two stable states, they may go through an arbitrary number of
transitions.

In analyzing timing of a logic block we are concerned with two times. First,
we would like to know how long the output retains its initial stable value (from
the last clock cycle) after an input first changes (in the new clock cycle). We
refer to this time as the contamination delay of the block- the time it takes for
the old stable value to become contaminated by an input transition. Note that
this first change in the output value does not in general leave the output in its
new stable state.

The second time we would like to know is how long it takes the output to
reach its new stable state after the input stops changing. We refer to this time

257
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CLa b a

b

tcab tdab

(a) (b)

t1 t2 t3 t4

Figure 15.1: Propagation delay tdab and contamination delay tcab. The contam-
ination delay of a logic block is the time from when the first input signal first
changes to when the first output signal first changes. The propagation delay of
a logic block is the time from when the last input signal last changes to when
the last output signal last changes.

as the propagation delay of the block - the time it takes for the stable value of
the input to propagate to a stable value at the output.

Propagation delay and contamination delay are illustrated in Figure 15.1.
Figure 15.1(a) shows a combinational logic block with input a and output b.
Figure 15.1(b) shows how the output b responds when input a changes state.
Up to time t1, both input a and output b are in their stable state from the last
clock cycle. At time t1 input a first changes. If a is a multi-bit signal, this is the
time when the first bit of a to change state toggles - other bits may change at
later times. Whether single-bit or multi-bit, t1 is the time of the first transition
on a. A given bit of a may toggle more than once before reaching its new stable
state. At time t2, a contamination delay tdab after t1 this first change on a may
affect output b, and b may change state. Up until t2, output b was guaranteed
to have the steady-state value from the previous clock cycle. The first bit of b
to change toggles for the first time at time t2 as with a at t1, this bit of b may
toggle again before reaching a steady state, and other bits of b may change state
later.

At time t3 input a stops changing state. From t3 until at least the end of the
current clock cycle, signal a is guaranteed to be in its stable state for this clock
cycle. Time t3 represents the time at which the last bit of a to toggle toggles
for the last time. At time t4, a propagation delay tdab after t3, the last change
of input a has its final affect on output b. From this point to at least the end
of the clock cycle, output b is guaranteed to be in its stable state for this clock
cycle.

We denote a propagation (contamination) delay from a signal a to a signal b
as tdab (tcab). The d or c in the subscript denotes propagation or contamination.
The rest of the subscript gives the source signal and destination signal of the
delay. That is tdxy is the delay starting with a transition on signal x to a
transition on signal y.

Propagation and contamination delays sum up over linear paths as shown
in Figure 15.2. The timing diagram in the figure shows that when two modules
are composed in series, their delays sum:
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tcac
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tcab tdab
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c

tcbc tdbc
(a)

Figure 15.2: Propagation and contamination delay sum over a linear path. (a)
Two modules in series with input a, intermediate signal b, and output c. (b)
Timing diagram showing that tcac = tcab + tcbc and similarly for propagation
delay.
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Figure 15.3: A circuit with a hazard illustrating propagation and contamination
delay.

tcac = tcab + tcac, (15.1)
tdac = tdab + tdac. (15.2)

To handle circuits with parallel paths, we simply enumerate all possible
single-bit paths. The overall contamination delay is the minimum over all paths,
and the overall propagation delay is the maximum over all paths.

Figure 15.3(a) shows a circuit with a static-1 hazard (recall Section 6.10).
The value in each gate symbol is the delay of the gate in arbitrary time units.
(Here we assume the contamination and propagation delay of the basic gates are
the same). The timing diagram in Figure 15.3(b) illustrates the timing when
signal a falls while b = 1 and c = 0. The output changes for the first time after
two time units and for the last time after four time units. Hence, tcaf = 2 and
tdaf = 4.

We can get the same result by enumerating paths. The minimum delay path
is a-d-f with a contamination delay of 2 while the maximum path is a-e-f with
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Figure 15.4: A D-flip-flop. (a) Schematic symbol, (b) Timing diagram. The
D-flip-flop samples its input on the rising edge of the clock and updates the
output with the value sampled. For correct sampling the input must be stable
from ts before the clock rises to th after the clock rises. The output may change
as soon as tcCQ after the clock. The output takes on the correct value no later
than tpCQ after the clock.

a propagation delay of 4.
Contamination and propagation delay are independent of input state. The

contamination delay of the circuit in Figure 15.3(a) from a to f is 2 regardless
of the state of signals b and c. This delay represents the possibility that the
output may change 2 time units after a transition on a, not a guarantee that it
will change.

May people confuse contamination delay with minimum propagation delay.
They are not the same thing. The minimum propagation delay is the minimum
value (over some range of parameters: voltage, temperature, process variation,
input combinations) of the time for the correct steady-state value to appear
on the output of a circuit after a transition on the input. In contrast, the
contamination delay is the time until the output first changes from its old steady
state value after a transition on its input. These are not the same thing. The
transition that sets the contamination delay is not in general a change of the
output to its steady state value, but rather a change to some intermediate value
- for example the transition of a to 0 in the hazard of Figure 15.3.

15.2 The D Flip-Flop

The timing constraints that determine whether an FSM will operate or not, and
at what speed it will operate, are governed by the clocked storage elements used
to construct the FSM - in our case, the D flip-flop. A schematic symbol for a
D-flip-flop is shown in Figure 15.4. A multi-bit D-flip-flop is sometimes called
a register.

A D flip-flop samples its input on the rising edge of the clock signal and up-
dates its output with the value sampled. This sampling and update is illustrated
in the timing diagram of Figure 15.4(b). For the sampling to take place cor-
rectly, the input data (shown in the top waveform of the timing diagram) must
be stable for a period before and after the rising edge of the clock. Specifically,
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the data must have reached its correct value (labeled x in the figure) at least a
setup time ts before the clock reaches its 50% point, and the data must be held
stable at this value until a hold time th after the clock reaches its 50% point.1

During the gray areas in the data waveform, D can take on any value. However
it must remain stable with a value of x during the setup and hold intervals for
the flip-flop to correctly sample the value x.

If the input meets its setup and hold time constraints, the flip-flop will
update the output with the sampled value x as shown on the bottom waveform
of Figure 15.4(b). The old value (which was sampled on the previous rising edge
of the clock) will remain stable on the output until a contamination delay tcCQ

after the rising edge of the clock. The circuit may continue to rely on the old
value being stable up until this point in time. After the contamination delay
the output of the flip-flop may change, but not necessarily to the correct value.
This period where the output value is not guaranteed is labeled gray in the
figure. A propagation delay tdCQ after the rising edge of the clock, the output
is guaranteed to have the value x sampled from the input. It will then hold this
value stable until tcCQ after the next rising edge of the clock.

15.3 Setup and Hold Time Constraint

Now that we have introduced the nomenclature, the timing constraints on a
finite-state machine are quite simple. To ensure that the clock cycle tcy is long
enough for the longest path to satisfy the setup time of the D-flip-flop we must
satisfy:

tcy ≥ tdCQ + tdMax + ts. (15.3)

Where tdMax is the maximum propagation delay from the output of a D-flip-flop
to the input of a D-flip-flop.

We also must ensure that no signal is contaminated so quickly as to violate
the hold-time constraint on the input of a D-flip-flop by satisfying:

th ≤ tcCQ + tcMin. (15.4)

Where tcMin is the minimum contamination delay from the output of a D-flip-
flop to the input of a D-flip-flop.

The two constraints (15.3) and (15.4) govern system timing. Setup-time
constraint (15.3) determines performance by giving the minimum cycle time tcy
at which the circuit will operate. The hold-time constraint, on the other hand,
is a correctness constraint. If (15.4) is violated, the circuit may not meet its
hold time constraint regardless of the cycle time.

Figure 15.5 shows a simple finite-state machine that we shall use to illustrate
setup and hold constraints below. The FSM consits of two flip-flops. The

1Note that ts or th may be negative, but ts + th will always be positive.
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Figure 15.5: A simple FSM to illustrate setup and hold constraints

upper flip-flop generates state-bit a that propagates through a maximum-length
(maximum propagation delay) logic path (Max) to generate signal b. Signal b
is in turn sampled by the lower flip-flop. The lower flip-flop in turn generates
signal c which propagates through a minimum-length (minimum contamination
delay) block to generate signal d which is sampled by the upper flip-flop. Note
that the destination flip-flop of a minimum-delay path is not necessarily the
source flip-flop of a maximum-delay path (and vice versa). In general we need
to test all possible paths from all flip-flops to all flip-flops to find the minimum
and maximum paths.

The maximum-delay path from the upper flip-flop to the lower flip-flop of
Figure 15.5 stresses the setup-time of the lower flip-flop. If this path is too slow,
the next clock edge may arrive at the lower flip-flop before its input signal b
has settled at its final value for the cycle. Figure 15.6 repeats Figure 15.5 with
this path highlighed. A timing diagram corresponding to this path is shown
in Figure 15.7. Suppose the rising edge of the clock samples value x on signal
d then after a flip-flop propagation delay tdCQ flip-flop output a will take on
value x and hold this value through the remainder of the clock cycle. Signal a is
input to combinational block Max which generates signal b. After an additional
propagation delay from a to b tdab (which corresponds to tdMax in Inequality
(15.3)) signal b takes on its final value for the clock cycle f(x). Signal b must
settle at this final value at least ts before the rising edge of the next clock for
Constraint (15.3) to be satisfied. The sum of the propagation delays along the
maximum path and the setup time must be less than the cycle time. In the
timing diagram, signal b settles slightly early leaving a timing margin or slack
time of tslack. The clock cycle tcy could be reduced by tslack and the setup
constraint would still be met.

The minimum-delay path from the lower flip-flop to the upper flip-flop of
Figure 15.5 stresses the hold time of the upper flip-flop. If this path is too fast,
signal d might change before a hold time after the rising edge of the clock. Fig-
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Figure 15.6: Setup-time constraint. The maximum path from the clock on a
source flip-flop to the clock on a destination flip-flop is shaded. From the rising
edge of the clock, the signal must propagate to the Q output of the flip-flop
(tdCQ) and propagate through the maximum-delay logic path (tdab) at least a
setup time (ts) before the next clock edge. In this case the signal arrives slightly
early (tslack).

clk

a X

b f(X)

tdCQ tdab ts
tslack

tcy

Figure 15.7: Timing diagram illustrating the setup-time constraint.
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ure 15.8 shows this timing path highlighted. A timing diagram illustrating the
signals along this path is shown in Figure 15.9. A flip-flop contamination delay
tcCQ after the rising edge of the clock, signal c may first change. A contami-
nation delay of the logic block tccd (which corresponds to tcMin in Constraint
(15.4)) signal d may change. For the hold time constraint to be satisfied, this
first change on signal d is not allowed to occur until th after the rising edge of
the clock. The sum of the contamination delays along the minimum path must
be larger than the hold time. In the figure, the contamination delays exceed the
hold time by a considerable timing margin or slack time tslack.
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Figure 15.10: FSM of Figure 15.5 with clock skew.

15.4 The Effect of Clock Skew

On an ideal chip, the clock signal would change at the input of all flip-flops
at the same time. In practice, device variations and wire delays in the clock
distribution network cause the timing of the clock signal to vary slightly from
flip-flop to flip-flop. We refer to this spatial variation in clock timing as clock
skew. Clock skew adversely affects both the setup and hold timing constraints.
With a skew of tk, these two constraints become:

tcy ≥ tdCQ + tdMax + ts + tk. (15.5)

th ≤ tcCQ + tcMin − tk. (15.6)

Figure 15.10 shows the FSM of Figure 15.5 with clock skew added. A delay
line (the oval shaped block) with a delay of tk (the magnitude of the skew) is
connected between the clock input and the clock to the upper flip-flop. Hence
each edge of the clock arrives at the upper flip-flop tk later than it arrives at
the lower flip-flop. Delaying the clock to the source of the maximum-length
path causes this path to effectively get longer. In a similar manner, delaying
the clock to the destination of the minimum-length path effectively makes this
path shorter.

The effect of skew on the minimum-length path, and hence on the hold-time
constraint, is shown in Figure 15.11. The contamination delays from the clock
to c to d add as above. However, now signal d must stay stable until th after
the delayed clock clkd or th + tk after the original clock clk. The effect is the
same as increasing the hold time by tk.
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Figure 15.11: Timing diagram showing the effect of clock skew on the hold-time
constraint.
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Figure 15.12: Timing diagram showing the effect of clock skew on the setup
time constraint.
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The timing diagram of Figure 15.12 illustrates the effect of clock skew on
the setup time constraint. Delaying the clock to the upper flip-flop delays the
transition of a by tk, effectively adding tk to the maximum path.

15.5 Timing Examples

example setup and hold calculations with and without skew
find max frequency
check hold constraint
fix hold constraint

15.6 Timing and Logic Synthesis

15.7 Bibliographic Notes

15.8 Exercises

15–1 Setup time.

15–2 Hold time.

15–3 Clock skew.
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Chapter 16

Data Path Sequential Logic

In the last chapter we saw how a finite state machine can be synthesized from a
state diagram by writing down a table for the next state function and synthe-
sizing the logic that realizes this table. For many sequential functions, however,
the next state function can be more simply described by an expression rather
than by a table. Such functions are more efficiently described and realized as
datapaths where the next state is computed as a logical function, often involving
arithmetic circuits, multiplexers, and other building block circuits.

16.1 Counters

16.1.1 A Simpler Counter

Suppose you want to build a finite-state machine with the state diagram shown
in Figure 16.1. This circuit is forced to state 0 whenever input r is true. When-
ever input r is false, the machine counts through the states from 0 to 31 and then
cycles back to 0. Because of this counting behavior, we refer to this finite-state
machine as a counter.

We could design the counter employing the methodology developed in Chap-
ter 14. A Verilog description taking this approach for a three-bit counter (8
states) is shown in Figure 16.2.1 A 3-bit wide bank of flip-flops holds the cur-
rent state count and updates it from the next state next on each rising edge

1 A 5-bit counter (32 states) using this approach would require 32 lines in the state table.

0 1r' r'
2 3r' r'

31

r r r r

Figure 16.1: State diagram for a 5-bit counter.

269



270 EE108 Class Notes

module Counter1(rst,clk,count) ;
input rst, clk ; // reset and clock
output [2:0] count ;
reg [2:0] next ;

DFF #(3) count(clk, next, count) ;

always@(rst, count) begin
casex({rst,count})
4’b1xxxxx: next = 0 ;
4’d0: next = 1 ;
4’d1: next = 2 ;
4’d2: next = 3 ;
4’d3: next = 4 ;
4’d4: next = 5 ;
4’d5: next = 6 ;
4’d6: next = 7 ;
4’d7: next = 0 ;
default: next = 0 ;

endcase
end

endmodule

Figure 16.2: A three-bit counter FSM specified as a state table.
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module Counter(clk, rst, count) ;
parameter n=5 ;
input rst, clk ; // reset and clock
output [n-1:0] count ;

wire [n-1:0] next = rst? 0 : count+1 ;

DFF #(n) count(clk, next, count) ;
endmodule

Figure 16.3: An n-bit counter FSM specified with a single assign statement.

D Q
count

Mux2

1

0

rst

next
n n

+1

0
n

n

clk

Figure 16.4: Block diagram of a simple counter. The counter state is held in a
state register (flip-flops). The next state is selected by a multiplexer to be zero
if rst is asserted, or the output of an incrementer (count+1) otherwise.

of the clock. The casex statement directly captures the state table, specifying
the next state for each input and current state combination.

While this method for generating counters works, it is verbose and inefficient.
The lines of the state table are repetitive. The behavior of the machine can be
captured entirely by the single line:

assign next = rst ? 0 : count + 1 ;

This is a datapath description of the finite state machine in which we specify
the next state as a function of the current state and inputs.

A verilog description of an n-bit counter module using such a datapath
description is shown in Figure 16.3. An n-bit wide bank of flip-flops holds the
current state, count, and updates it from the next state next on each rising
edge of the clock. A single assign statement describes the next-state function.
The next state is zero if rst is high, or count+1 otherwise.

A block diagram of this counter is shown in Figure 16.4. The figure illustrates
the datapath nature of this implementation. The next state is computed by
data flowing through paths involving combinational building blocks — including
arithmetic blocks and multiplexers. In this case, the two building blocks are a
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Figure 16.5: In general, a sequential datapath circuit consists of a state register,
next-state logic, and output logic. The next-state and output modules are
described by functions rather than tables.

multiplexer, which selects between reset (0) and increment (count+1), and an
incrementer, which increments count to give count+1.

In general, a sequential datapath circuit takes the form shown in Figure 16.5.
As with any synchronous sequential logic module, the state is held in a state
register. An output logic module computes the output signals as a function of
inputs and current state. The next state is computed by a next-state module as
a function of inputs and current state. What distinguishes a datapath is that the
next-state logic and output logic are described by functions rather than tables.
For our simple counter, the output logic is just the current state, and the next
state logic is a selection between incrementing or setting to zero. We will see
more complex examples of sequential datapath circuits below. However, they
all retain this functional description of the next-state and output functions.

16.1.2 An Up/Down/Load (UDL) Counter

Our simple counter had only two choices for next state: reset or increment.
Often we require a counter with more options for the next state. A counter may
need to count down (decrement) as well as count up, there may be cases where
it needs to hold its value, and on occasion we may need to load an arbitrary
value into the counter.

Figure 16.6 shows the Verilog description of such an up/down/load (UDL)
counter. The counter has four control inputs (rst, up, down, and load, and
one n-bit wide data input in. The next-state function is described by a casex
statement. If reset (rst) is asserted ,the next state is 0. Otherwise, if up is
asserted, the next state is out+1. If down is asserted (and not up or rst) the
counter decrements by setting the next state to out-1. The counter is loaded
when load is asserted by setting the next state to in. Finally, if none of the
control inputs are asserted, the counter holds its present value by setting next
to out.

This description accurately captures the function of the UDL counter and is
adequate for most purposes. However, it is somewhat inefficient in that it will
result in the instantiation of both an incrementer (to compute out+1) and a
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module UDL_Count1(clk, rst, up, down, load, in, out) ;
parameter n = 4 ;
input clk, rst, up, down, load ;
input [n-1:0] in ;
output [n-1:0] out ;
wire [n-1:0] out ;
reg [n-1:0] next ;

DFF #(n) count(clk, next, out) ;

always@(rst, up, down, load, in, out) begin
casex({rst, up, down, load})
4’b1xxx: next = {n{1’b0}} ;
4’b01xx: next = out + 1’b1 ;
4’b001x: next = out - 1’b1 ;
4’b0001: next = in ;
default: next = out ;

endcase
end

endmodule

Figure 16.6: Verilog description of an up/down/load (UDL) counter.
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module UDL_Count2(clk, rst, up, down, load, in, out) ;
parameter n = 4 ;
input clk, rst, up, down, load ;
input [n-1:0] in ;
output [n-1:0] out ;
wire [n-1:0] out, outpm1 ;
reg [n-1:0] next ;

DFF #(n) count(clk, next, out) ;

assign outpm1 = out + {{n-1{down}},1’b1} ;

always@(rst, up, down, load, in, out, outpm1) begin
casex({rst, up, down, load})
4’b1xxx: next = {n{1’b0}} ;
4’b01xx: next = outpm1 ;
4’b001x: next = outpm1 ;
4’b0001: next = in ;
default: next = out ;

endcase
end

endmodule

Figure 16.7: Verilog description of an up/down/load (UDL) counter with a
shared incrementer/decrementer.

decrementer (to compute out-1). From our brief study of computer arithmetic
(Chapter 10) we know that these two circuits could be combined.

If we are in an operating mode where saving a few gates matters (which
is unlikely) we can describe a more economical counter circuit as shown in
Figure 16.7. This circuit factors the increment and decrement operations out
of the casex statement. Instead, it realizes them in signal outpm1 (out plus or
minus 1). This signal is generated by an assign statement that adds 1 to out if
down is false, and adds -1 to out if down is true. The code is otherwise identical
to that of Figure 16.6.

A block diagram of the UDL counter is shown in Figure 16.8. Like the sim-
ple counter of Figure 16.4, and like most datapath circuits, the UDL counter
consists of a multiplexer that selects different options for the next state. Some
of the options are created by function units. Here the multiplexer has four
inputs - to select the input (load), the output of the incrementer/decrementer
(up or down), 0 (reset), and count (hold). The single function unit is an incre-
menter/decrementer that can either add or subtract 1 from the current count.
The down line controls whether to increment or decrement. A block of combi-
national logic generates the select signals for the multiplexer by decoding the
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Figure 16.8: Block diagram of an up/down/load counter.

control inputs. Verilog code corresponding to this block diagram is shown in
Figure 16.9.

16.1.3 A Timer

In many applications, like a more involved version of our traffic-light controller,
we would like a timer that we can set with an initial time t and after t cycles
have passed, it signals us that the time is complete. This is analogous to your
kitchen timer that you set with an interval, and it signals you audibly when the
interval is complete.

A block diagram of an FSM timer is shown in Figure 16.10. It follows
our familiar theme of using a multiplexer to select the next state from among
constants, inputs, and the outputs of function units (in this case a decrementer).
What is different about this block diagram is that it includes an output function
unit. A zero checker asserts signal done when the count has reached zero.

To operate the timer, the time interval is applied to input in and control
signal load is asserted to load the interval. Each cycle after this load, the
internal state count counts down. When count reaches zero, output done is
asserted and counting stops. The reset input rst is only used to initialize the
timer on power-up.

A Verilog description of the timer is shown in Figure 16.11. The style is
similar to our simple counter and structural UDL counter with a multiplexer
and a state register. The decrementer is implemented in the argument list of
the multiplexer. To keep the timer from continuing to decrement, we select the
zero input of the multiplexer when done is asserted and load is not. The final
assign statement implements the zero checker.
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module UDL_Count3(clk, rst, up, down, load, in, out) ;
parameter n = 4 ;
input clk, rst, up, down, load ;
input [n-1:0] in ;
output [n-1:0] out ;
wire [n-1:0] out, next, outpm1 ;

DFF #(n) count(clk, next, out) ;

assign outpm1 = out + {{n-1{down}},1’b1} ;

Mux4 #(n) mux(out, in, outpm1, {n{1’b0}},
{(!rst & !up & !down & !load),
(!rst & !up & !down & load),
(!rst & (up | down)),
rst},

next) ;
endmodule

Figure 16.9: Verilog description of an up/down/load (UDL) counter using a
shared incrementer/decrementer and an explicit multiplexer.
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//----------------------------------------------------------------------
// Timer module
// Reset sets count to zero
// Load sets count to in
// Otherwise count decrements and saturates at zero (doesn’t wrap)
// Done is asserted when count is zero
//----------------------------------------------------------------------
module Timer(clk, rst, load, in, done) ;
parameter n=4 ;
input clk, rst, load ;
input [n-1:0] in ;
output done ;
wire [n-1:0] count, next_count ;

DFF #(n) cnt(clk, next_count, count) ;
Mux3 #(n) mux({n{1’b0}}, in, count-1’b1,

{!rst & !load & !done,
load & !rst,
rst | (done & !load)},

next_count) ;
wire done = !(|count) ;

endmodule
//----------------------------------------------------------------------

Figure 16.11: Verilog description of a timer.
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16.2 Shift Registers

In addition to incrementing, decrementing, and comparing, another popular
datapath function is shifting. Shifters are particularly useful in serializers and
deserializers that convert data from parallel to serial form and back again.

16.2.1 A Simple Shift Register

A block diagram of a simple shift register is shown in Figure 16.12 and a Verilog
description of this module is given in Figure 16.13. Unless the shift register is
reset, the next state is the current state shifted one-bit to the left with the sin
input providing the rightmost bit (LSB). In the Verilog implementation, the 2:1
multiplexer is performed using the select “? : ” construct, and the left shift is
performed by the expression:

{out[n-2:0], sin}

Here the concatenate operation is used to concatenate the rightmost n− 1 bits
of out with sin, effectively shifting the bits of out one position to the left and
inserting sin into the LSB.

This simple shift register could be used for example as a deserializer. A serial
input is received on input sin and every n clocks the parallel output is read
from out. A framing protocol of some type is necessary to determine where each
parallel symbol starts and stops - i.e., during which clock the parallel output
should be read.

16.2.2 Left/Right/Load (LRL) Shift Register

Analogous to our complex counter, we can make a complex shift register that
can be loaded shifts in either direction. The block diagram of this left/right/load
(LRL) shift register is shown in Figure 16.14 and the Verilog description is shown
in Figure ??. The module uses a five-input multiplexer to select between zero, a
left shift (done with concatenation), a right shift (also done with concatenation),
the input, and the output. Note that the shift expressions:
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//----------------------------------------------------------------------
// Basic shift register
// rst - sets out to zero, otherwise out shifts left - sin becomes lsb
//----------------------------------------------------------------------
module Shift_Register1(clk, rst, sin, out) ;
parameter n = 4 ;
input clk, rst, sin ;
output [n-1:0] out ;
wire [n-1:0] out, next ;

DFF #(n) cnt(clk, next, out) ;
assign next = rst ? {n{1’b0}} : {out[n-2:0], sin} ;

endmodule

Figure 16.13: Verilog description of simple shift register. If rst is asserted the
register is set to all 0s, otherwise it shifts left with input sin filling the LSB.
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Figure 16.14: Block diagram of a left-right-load shift register.
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//----------------------------------------------------------------------
// Left/Right SR with Load
//----------------------------------------------------------------------
module LRL_Shift_Register(clk, rst, left, right, load, sin, in, out) ;
parameter n = 4 ;
input clk, rst, left, right, load, sin ;
input [n-1:0] in ;
output [n-1:0] out ;
wire [n-1:0] out, next ;

DFF #(n) cnt(clk, next, out) ;
Mux5 #(n) mux({n{1’b0}}, {out[n-2:0],sin}, {sin, out[n-1:1]}, in, out,

{(!rst & !left & !right & !load),
(!rst & !left & !right & load),
(!rst & !left & right),
(!rst & left),
rst}, next) ;

endmodule

Figure 16.15: Verilog description of a left/right/load (LRL) shift register.

{out[n-2:0],sin}
{sin, out[n-1:1]}

do not actually generate any logic. This shift operation is just wiring - from sin
and the selected bits of out to the appropriate input bits of the multiplexer.

16.2.3 A Universal Shifter/Counter

If we made the LRL shift register module also increment, decrement, and check
for zero, it could serve in place of any of the modules we have discussed so
far in this section. This idea is not as far-fetched as it may seem. At first
you may think that using a full featured module when all we need is a simple
counter is wasteful. However, most synthesis systems given constant inputs
will eliminate logic that is never used (i.e., if up and down are always zero the
incrementer/decrementer will be eliminated). Thus, the unused logic shouldn’t
cost us anything in practice.2 The advantage of the universal shifter/counter is
that its a single module to remember and maintain.

Verilog for a universal shifter/counter module is shown in Figure 16.16. This
code largely combines the code of the individual modules above. It uses a seven-
input multiplexer to select between input, current state, increment, decrement,
left shift, right shift, and zero. The increment/decrement is done with an assign

2Check that this is true with your synthesis system before using this approach.
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(as with the UDL counter) and the shifts are done with concatenation (as with
the LRL shifter).

One thing that is new with the universal module is the use of an arbiter RArb
to make sure that no two select inputs to the multiplexer are asserted at the
same time. This arbitration was explicitly coded in the modules above. With
seven select inputs its easier to instantiate the arbiter module to perform this
logic. In many uses of the universal shifter/counter (or any of our other datapath
modules) we can be certain that two command inputs will not be asserted at
the same time. In these cases, we don’t need the arbitration (whether done with
a module or explicitly). However, to verify that the command inputs are in fact
one-hot, it is useful to code an assertion into the module. The assertion is a
logical expression that generates no gates but flags an error during simulation
if the expression is violated.

16.3 Control and Data Partitioning

A common theme in digital design is the separation of a module into a control
finite-state machine and a datapath as shown in Figure 16.17. The data path
computes its next state via multiplexers and function units - like the counters
and shift registers in this chapter. The control FSM, on the other hand, com-
putes its next state via a state table. The inputs to the module are separated
into control inputs - that affect the state of the control FSM, and data inputs,
that supply values to the datapath. Module outputs are partitioned in a similar
manner. The control FSM controls the operation of the datapath via a set of
command signals. The datapath communicates back to the control FSM via a
set of status signals.

The counter and shifter examples we have looked at so far in this chapter are
degenerate examples of this organization. They each consist of a datapath - with
multiplexers and function units (shifters, incrementers, and/or adders) - and a
control unit. However, their control units have been strictly combinational.
The datapath commands (e.g, multiplexer selects and add/subtract controls)
and control outputs have been functions soley of the current control inputs and
datapath status. In this section we will examine two examples of modules where
the control section includes internal state.

16.3.1 Example: Vending Machine FSM

Consider the problem of designing the controller for a soft-drink vending ma-
chine. The specification is as follows: The vending machine accepts nickels,
dimes, and quarters. Whenever a coin is deposited into the coin slot, a pulse
appears for one clock cycle on one of three lines indicating the type of coin:
nickel, dime, or quarter). The price of the item is set on an n-bit switch
internal to the machine (in units of nickels) and is input to the controller on the
n-bit signal price. When sufficient coins have been deposited to purchase a soft
drink, an status signal enough is asserted. Any time enough is asserted and the
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//----------------------------------------------------------------------
// Universal Shifter/Counter
// inputs take priority in order listed
// rst - resets state to zero
// left - shifts state to the left, sin fills LSB
// right - shifts state to the right, sin fills MSB
// up - increments state
// down - decrements state - will not decrement through zero.
// load - load from in
//
// Output done indicates when state is all zeros.
//----------------------------------------------------------------------
module UnivShCnt(clk, rst, left, right, up, down, load, sin, in, out, done) ;
parameter n = 4 ;
input clk, rst, left, right, up, down, load, sin ;
input [n-1:0] in ;
output [n-1:0] out ;
output done ;
wire [6:0] sel ; // multiplexer select, formed by arbiting the commands
wire [n-1:0] out, next, outpm1 ;

assign outpm1 = out + {{n-1{down}},1’b1} ; // incr or decr out
DFF #(n) cnt(clk, next, out) ;
RArb #(7) arb({rst, left, right, up, down & ~done, load, 1’b1}, sel) ;
Mux7 #(n) mux(out, in, outpm1, outpm1,

{sin,out[n-1:1]},{out[n-2:0],sin},{n{1’b0}}, sel, next) ;
wire done = !(|out) ;

endmodule

Figure 16.16: Verilog description of an up/down/load (UDL) counter using a
shared incrementer/decrementer and an explicit multiplexer.
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Figure 16.17: Systems are often partitioned into datapath, where the next state
is determined by function units, and control, where the next state is determined
by state tables.

user presses a dispense button, signal serve is asserted for exactly one cycle
to serve the soft-drink. After asserting serve, the FSM must wait until signal
done is asserted indicating that the mechanism has finished serving the soft
drink. After serving is done, the machine returns change (if any) to the user. It
does this one nickel at a time, asserting the signal change, for exactly one cycle
and waiting for signal done to indicate that a nickel has been dispensed before
dispensing the next nickel or returning to its original state. Any time the signal
done is asserted, we must wait for done to go low before proceeding.

To design this machine, we start by considering the control part of the ma-
chine. First, lets look at the inputs and outputs. All of the inputs except price
(rst, nickel, dime, quarter, dispense, and done) are control inputs, and all
of the outputs serve and change are control outputs. Status that we need from
the datapath includes a signal enough that indicates that enough money has
been deposited, and a signal zero that indicates that no more change is owed.
Commands to the datapath we will consider below when we look at the data
state.

Now lets consider the states of the control portion of the machine. As illus-
trated in the state diagram of Figure 16.18 operates in three main phases. 3

First, during the deposit phase (state deposit), the user deposits coins and then

3In this diagram, edges from a state to itself are omitted. If the conditions on all edges
leading out of the current state are not satisfied, the FSM stays in that state.
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Figure 16.18: State diagram for control part of a vending machine controller.
Edges from a state to itself are omitted for clarity. If none of the logic conditions
on edges out of a state are true, the machine will remain in that state.

presses dispense. When signal dispense and enough are both asserted the ma-
chine advances to the serving phase (states serve1 and serve2). In state serve1 it
waits for signal done to indicate that the soft drink has been served, and in state
serve2, it waits for done to be deasserted. We assert the output serve during
the first cycle only of state serve1. If there is no change to be dispensed, zero
is true, the FSM returns to the deposit state from serve2. However, if there
is change to be dispensed, the FSM enters the change phase (states change1
and change2). The machine cycles through these states, asserting change and
waiting for done in change1 and waiting for done to go low in change2. We
assert output change during the first cycle of each visit to state change1. Only
when all change has been dispensed do we return to the deposit state.

Now that we have the control states defined, we turn our attention to the
data state. This FSM has a single piece of data state - the amount of money
the machine currently owes the user - in units of nickels. We’ll call this state
variable amount. The different actions that affect amount are:

Reset: amount ← 0.

Deposit a coin: amount ← amount + value, where value = 1, 2, or 5 for a
nickel, dime, or quarter respectively.

Serve a drink: amount ← amount - price.

Return one nickel of change: amount ← amount - 1.

Otherwise: No change in amount.

We can now design a datapath that supports these operations. State variable
amount can either be zeroed, added to or subtracted from, or hold its value.
From these register transfers we see that we need the datapath of Figure 16.19.
The next state for amount next is selected by a 3:1 multiplexer that selects
between 0, amount, or sum, the output of an add/subtract unit that adds or
subtracts value from amount. The value is selected by a 4:1 multiplexer to be
1, 2, 5, or price. We see from the figure that the command signals needed to
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//----------------------------------------------------------------------
// VendingMachine - Top level module
// Just hooks together control and datapath
//----------------------------------------------------------------------
module VendingMachine(clk, rst, nickel, dime, quarter, dispense, done, price,

serve, change) ;
parameter n = ‘DWIDTH ;
input clk, rst, nickel, dime, quarter, dispense, done ;
input [n-1:0] price ;
output serve, change ;

wire enough, zero, sub ;
wire [3:0] selval ;
wire [2:0] selnext ;

VendingMachineControl vmc(clk, rst, nickel, dime, quarter, dispense, done,
enough, zero, serve, change, selval, selnext, sub) ;

VendingMachineData #(n) vmd(clk, selval, selnext, sub, price, enough, zero) ;
endmodule

Figure 16.20: Verilog top-level module for vending-machine controller just de-
clares the control and data modules and connects them together.
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control the datapath are the two multiplexer select signals and the add/subtract
control.

Verilog code for our vending machine controller is shown in Figures 16.20
through 16.23. The top-level module is shown in Figure 16.20. This module just
instantiates the control (VendingMachineControl) and data (VendingMachineData)
modules and connects them up. The command signals sub, selval and selnext
are declared at this level as are the status signals enough and zero.

The Verilog for the control module of our vending machine controller is split
over two figures. Figure 16.21 shows the first half of the module which includes
the logic for generating the output and command variables. A variable first is
defined which is used to distinguish the first cycle of states serve1 and change1.
After one cycle in either of these states, first goes low. This variable enables
us to only assert the outputs for one cycle on each visit to these states and to
only decrement amount once on each visit to the change1 state. Without the
first variable, we would need to expand both serve1 and change1 into two
states. The outputs serve and change are generated by ANDing first with
signals that are true in states serve1 and change1 respectively.

The datapath control signals are determined from input and state variables.
The two select signals are one-hot variables. Each bit is determined by a logic
expression. Signal selval (which selects the value input to the add/subtract
unit) selects price when in the deposit state (dep true) and dispense is pressed.
A 1 is selected if a nickel is input in the deposit state or if we are in the change
state. Inputs of 2 and 5 are selected in the deposit state if a dime or a quarter
are input respectively. Signal selnext selects the next state for the amount
variable. Zero is selected if rst is true, and the output of the add/subtract
unit is selected if variable selv is true. Otherwise the current value of amount
is selected. Variable selv is true in the deposit state if a coin is entered or if
dispense and enough are both true and in the change state if first is true. Note
that we can select price to be the value whenever dispense is asserted in the
deposit state because we only select the add/subtract output if enough is also
asserted. Finally, the add/subtract control signal is set to subtract on dispense
and change actions. Otherwise the adder adds.

The second half of the control module in Figure 16.22 shows the next state
logic. This logic is implemented as a casex statement where the case is on the
concatenation of four input bits and the current state. Most transitions encode
to a single case. For example, when the machine is in the deposit state, and
dispense and enough are both true, the first case 4’b11xx,‘DEPOSIT is active.
It takes the next two cases to encode when the machine stays in the deposit
state. A separate assignment statement is used reset the FSM to the deposit
state.

A Verilog description of the vending machine controller datapath is shown
in Figure 16.23. This code follows the datapath part of Figure ?? very closely.
A state register holds the current amount. A three-input multiplexer feeds the
state register with zero, the sum output of the add/subtract unit, or the current
value of amount. An add subtract unit adds or subtracts value to or from
amount. A four-input multiplexer selects the value to be added or subtracted.
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module VendingMachineControl(clk, rst, nickel, dime, quarter, dispense, done,
enough, zero, serve, change, selval, selnext, sub) ;
input clk, rst, nickel, dime, quarter, dispense, done, enough, zero ;
output serve, change, sub ;
output [3:0] selval ;
output [2:0] selnext ;
wire [‘SWIDTH-1:0] state, next ; // current and next state
reg [‘SWIDTH-1:0] next1 ; // next state w/o reset

// outputs
wire first ; // true during first cycle of serve1 or change1
wire serve1 = (state == ‘SERVE1) ;
wire change1 = (state == ‘CHANGE1) ;
wire serve = serve1 & first ;
wire change = change1 & first ;

// datapath controls
wire dep = (state == ‘DEPOSIT) ;
// price, 1, 2, 5
wire [3:0] selval = {(dep & dispense),

((dep & nickel)| change),
(dep & dime),
(dep & quarter)} ;

// amount, sum, 0
wire selv = (dep & (nickel | dime | quarter | (dispense & enough))) |

(change & first) ;
wire [2:0] selnext = {!(selv | rst),selv,rst} ;

// subtract
wire sub = (dep & dispense) | change ;

// only do actions on first cycle of serve1 or change1
wire nfirst = !(serve1 | change1) ;
DFF #(1) first_reg(clk, nfirst, first) ;

Figure 16.21: Verilog description of control module for vending machine con-
troller (part 1 of 2). This first half of the control module shows the output and
command variables implemented with assign statements.
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// state register
DFF #(‘SWIDTH) state_reg(clk, next, state) ;

// next state logic
always @(state or zero or dispense or done or enough) begin
casex({dispense, enough, done, zero, state})
{4’b11xx,‘DEPOSIT}: next1 = ‘SERVE1 ; // dispense & enough
{4’b0xxx,‘DEPOSIT}: next1 = ‘DEPOSIT ;
{4’bx0xx,‘DEPOSIT}: next1 = ‘DEPOSIT ;
{4’bxx1x,‘SERVE1}: next1 = ‘SERVE2 ; // done
{4’bxx0x,‘SERVE1}: next1 = ‘SERVE1 ;
{4’bxx01,‘SERVE2}: next1 = ‘DEPOSIT ; // ~done & zero
{4’bxx00,‘SERVE2}: next1 = ‘CHANGE1 ; // ~done & ~zero
{4’bxx1x,‘SERVE2}: next1 = ‘SERVE2 ; // done
{4’bxx1x,‘CHANGE1}: next1 = ‘CHANGE2 ; // done
{4’bxx0x,‘CHANGE1}: next1 = ‘CHANGE1 ; // done
{4’bxx00,‘CHANGE2}: next1 = ‘CHANGE1 ; // ~done & ~zero
{4’bxx01,‘CHANGE2}: next1 = ‘DEPOSIT ; // ~done & zero
{4’bxx1x,‘CHANGE2}: next1 = ‘CHANGE2 ; // ~done & zero

endcase
end

// reset next state
assign next = rst ? ‘DEPOSIT : next1 ;

endmodule

Figure 16.22: Verilog description of control module for vending machine con-
troller (part 2 of 2). This second half of the control module shows the next-state
function implemented with a casex statement.
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module VendingMachineData(clk, selval, selnext, sub, price, enough, zero) ;
parameter n = 6 ;
input clk, sub ;
input [3:0] selval ; // price, 1, 2, 5
input [2:0] selnext ; // amount, sum, 0
input [n-1:0] price ; // price of soft drink - in nickels
output enough ; // amount > price
output zero ; // amount = zero

wire [n-1:0] sum ; // output of add/subtract unit
wire [n-1:0] amount ; // current amount
wire [n-1:0] next ; // next amount
wire [n-1:0] value ; // value to add or subtract from amount
wire ovf ; // overflow - ignore for now

// state register holds current amount
DFF #(n) amt(clk, next, amount) ;

// select next state from 0, sum, or hold
Mux3 #(n) nsmux({n{1’b0}}, sum, amount, selnext, next) ;

// add or subtract a value from current amount
AddSub #(n) add(amount, value, sub, sum, ovf) ;

// select the value to add or subtract
Mux4 #(n) vmux(‘QUARTER, ‘DIME, ‘NICKEL, price, selval, value) ;

// comparators
wire enough = (amount >= price) ;
wire zero = (amount == 0) ;

endmodule

Figure 16.23: Datapath for vending machine controller.
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Finally, two assign statements generate the status signals enough and zero.
A testbench for the vending machine controller is shown in Figure 16.24

and waveforms from simulating the controller with this test bench are shown
in Figure 16.25. The test begins by resetting the machine. A nickel is then
deposited followed by a dime - bringing amount to 3 (15 cents). At this point,
we go one cycle with no input to make sure amount stays at 3. We then assert
dispense to make sure that trying to dispense a soft drink before enough money
has been deposited doesn’t work. Next we deposit two quarters in back-to-back
cycles bringing amount to 8 and then 13. When amount reaches 13 signal enough
goes high since we have exceeded the price (which is 11). After an idle cycle, we
again assert dispense. This time it works. The state advances to 001 (serve1)
and amount is reduced to 2 (price of 11 deducted).

In the first cycle of the serve1 state (state = 001) serve is asserted. The
machine remains in this state for one more cycle waiting for done to go high. It
spends just one cycle in state serve2 (state = 011) since done is already low and
continues into state change1 (state = 010). On the first cycle of change1, output
change is asserted (to return an nickel to the user) and amount is decremented
to 1. The machine remains in the change1 state for one more cycle waiting
for done. It then spends just one cycle in state change2 (state = 100) before
returning to change1 - because zero is not true. Again change is asserted and
amount is decremented on the first cycle of change1. This time, however amount
is decremented to zero and signal zero is asserted. After waiting a second cycle
in the change1 state, the machine transitions through change2 and back to the
deposit state - since zero is set - ready to start again.

16.3.2 Example: Combination Lock

As our second control and datapath example, consider an electronic combination
lock that accepts input from a decimal keypad. The user must enters the code as
a sequence of decimal digits and then presses an enter key. If the user entered
the correct sequence, the unlock output is asserted (presumably to actuate a
large bolt that unlocks a door). To relock the machine, the user presses enter a
second time. If the user entered an incorrect sequence, a busy output is asserted
and a timer is activated to wait a predefined period before allowing the user to
try again. The busy light should not come on until the user had entered the
entire sequence and pressed enter. If the light were to come on at the first
incorrect keypress, this gives the user information that can be used to discover
the code one digit at a time.

There are three inputs to our lock system: key, key_valid, and enter. A
four-bit code key indicates the current key being pressed and is accompanied
by a signal key_valid that indicates when a key is valid. The keyboard is
preprocessed so that every key press asserts key and valid for exactly one cycle.
In a similar manner, the enter signal is preprocessed so that it is for exactly one
cycle each time the user presses the enter key to unlock or relock the bolt. The
length of the sequence is set by an internal variable length, and the sequence
itself is stored in an internal memory.
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module testVend ;
reg clk, rst, nickel, dime, quarter, dispense, done ;
reg [3:0] price ;
wire serve, change ;

VendingMachine #(4) vm(clk, rst, nickel, dime, quarter, dispense, done, price,
serve, change) ;

// clock with period of 10 units
initial begin
clk = 1 ; #5 clk = 0 ;
forever
begin

$display("%b %h %h %b %b",
{nickel,dime,quarter,dispense}, vm.vmc.state, vm.vmd.amount, serve, change) ;
#5 clk = 1 ; #5 clk = 0 ;

end
end

// give prompt feedback
always @(posedge clk) begin
done = (serve | change) ;

end

initial begin
rst = 1 ; {nickel, dime, quarter, dispense} = 4’b0 ; price = ‘PRICE ;
#25 rst = 0 ;
#10 {nickel, dime, quarter, dispense} = 4’b1000 ; // nickel 1
#10 {nickel, dime, quarter, dispense} = 4’b0100 ; // dime 3
#10 {nickel, dime, quarter, dispense} = 4’b0000 ; // nothing
#10 {nickel, dime, quarter, dispense} = 4’b0001 ; // try to dispense early
#10 {nickel, dime, quarter, dispense} = 4’b0010 ; // quarter 8
#10 {nickel, dime, quarter, dispense} = 4’b0010 ; // quarter 13
#10 {nickel, dime, quarter, dispense} = 4’b0000 ; // nothing
#10 {nickel, dime, quarter, dispense} = 4’b0001 ; // dispense 2
#10 dispense = 0 ;
#100 $stop ;

end
endmodule

Figure 16.24: Verilog testbench for vending machine controller.
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Figure 16.25: Waveforms from simulating the vending machine controller with
the test bench of Figure 16.24
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Figure 16.26: State diagram for control portion of combination lock.

A state diagram describing the control portion of our combination lock ma-
chine is shown in Figure 16.26. The machine resets to the enter state. In this
state the machine accepts input. Each time a key is pressed, it is checked against
the expected digit. If its correct (kmatch) the machine stays in the enter state,
if not (valid ∧ kmatch) the machine transitions to the wait1 state. The ma-
chine waits in the wait1 state until enter is pressed, and then enters the wait2
state. The machine starts a timer in the wait2 state and remains in this state,
asserting busy until the timer signals done.

When the entire code has been entered correctly, the machine will still be in
the enter state - an incorrect digit would have taken it to wait1 - and lmatch will
be true - the length of the code entered matches the internal length variable. If
enter is pressed at this point, the machine transitions to the open state (enter
∧ lmatch) and the bolt is unlocked. A second enter in the open state returns
to the reset. If in the enter state, the enter key is pressed when the length does
not match (either too few or too many digits in the codeword) (enter ∧lmatch)
the machine goes to the wait2 state.

A block diagram of the datapath portion of our combination lock is shown
in Figure 16.27. The datapath has two distinct sections. The upper section
compares the length and value of the code entered. The lower section times the
wait period when an incorrect code is entered. This section consists of a single
timer module that loads the timer interval twait when control signal load is
asserted. The timer then counts down. When it reaches zero, status signal done
is asserted.

The upper half of the datapath consists of a counter, a ROM, and two
comparators. The counter keeps track of which digit of the code we are on. It
is reset to zero before entering the enter state and then counts up as each key
is pressed. The counter output, index, selects the digit to be compared next.



Copyright (c) 2002-2006 by W.J Dally, all rights reserved 295

co
un

te
r

index
ROM

=

n 4
code

rst

inc

key

=
length

kmatch

lmatch

tim
er

4

twait
m

load

done

Figure 16.27: Block diagram of datapath portion of combination lock.

Signal index is compared to length to generate status signal lmatch. It is also
used as an address for the ROM containing the code. The current digit of the
code is read from the ROM, signal code, and compared to the key entered by
the user to generate status signal kmatch.

Figures 16.28 and 16.29 show a Verilog implementation of our combination
lock. Here we have put both the control and datapath in a single module. This
eliminates the code that is otherwise required to wire together the control and
data sections, but for a large module can result in an unweildy piece of code.

The datapath portion of the module is shown in Figure 16.28. The Ver-
ilog follows directly from the block diagram of Figure 16.27. An up/down/load
counter (Section 16.1.2) is used for the counter. Only the rst and up control
inputs are used. The load and down are zero. The synthesizer will take advan-
tage of these zero control inputs when synthesizing the counter and eliminate
the unused logic. The timer module of Section 16.1.3 is used to count down
in the wait2 state. The two comparators are implemented with assignment
statements.

Figure 16.29 shows the control portion of the Verilog description of the com-
bination lock module. The top portion of the code generates the output and
next state variables. Outputs busy and unlock are generated by decoding the
state variable state since these outputs are true whenever the machine is in
the wait2 and open states respectively. The enter and wait1 states are decoded
as well for use in the command equations. The rstctr command signal is set
to reset the digit counter on reset or in states that transition to the enter state
(wait2 and open) so the counter is zeroed and ready to sequence digits in the
enter state. Similarly the load signal loads the timer in states that transition
to the wait2 state (enter and wait1) so it can count down in wait2. The inc
signal increments the counter in the enter state each time a key is pressed.

The next-state function is implemented with a casex statement with a sep-
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//----------------------------------------------------------------------
// CombLock
// Inputs:
// key - (4-bit) accepts a code digit each time key_valid is true
// key_valid - signals when a new code digits is on key
// enter - signals when entire code has been entered
// Outputs:
// busy - asserted after incorrect code word entered during timeout
// unlock - asserted after correct codeword is entered until enter
// is pressed again.
//----------------------------------------------------------------------
module CombLock(clk, rst, key, key_valid, enter, busy, unlock) ;
parameter n = 4 ; // bits of code length
parameter m = 4 ; // bits of timer
input clk, rst, key_valid, enter ;
input [3:0] key ;
output busy, unlock ;

//--- datapath ----------------------------------------
wire rstctr ; // reset the digit counter
wire inc ; // increment the digit counter
wire load ; // load the timer
wire done ; // timer done
wire [n-1:0] index ;
wire [3:0] code ;
UDL_Count #(n) ctr(clk, rstctr, inc, 1’b0, 1’b0, 4’b0, index) ; // counter
ROM #(n,4) rom(index, code) ; // ROM storing the code
Timer #(m) tim(clk, rst, load, ‘TWAIT, done) ; // wait timer
wire kmatch = (code == key) ; // key comparator
wire lmatch = (index == ‘LENGTH) ; // length comparator

Figure 16.28: Verilog description of the combination lock (part 1 of 2). This
section describes the datapath and closely follows Figure 16.27.
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//--- control ----------------------------------------
wire [‘SWIDTH-1:0] state, next ; // current and next state
reg [‘SWIDTH-1:0] next1 ; // for reset
wire senter = (state == ‘ENTER) ; // decode state
wire unlock = (state == ‘OPEN) ;
wire busy = (state == ‘WAIT2) ;
wire swait1 = (state == ‘WAIT1) ;
assign rstctr = rst | unlock | busy ; // reset before returning to enter
assign inc = senter & key_valid ; // increment on each key entry
assign load = senter | swait1 ; // load before entering wait2

DFF #(‘SWIDTH) sr(clk, next, state) ; // state register

always @(enter or lmatch or key_valid or kmatch or done or state) begin
casex({enter, lmatch, key_valid, kmatch, done,state})
{5’bxx10x,‘ENTER}: next1 = ‘WAIT1 ; // valid & ~kmatch
{5’b0x11x,‘ENTER}: next1 = ‘ENTER ; // valid & kmatch
{5’b110xx,‘ENTER}: next1 = ‘OPEN ; // enter & lmatch
{5’b10xxx,‘ENTER}: next1 = ‘WAIT2 ; // enter & ~lmatch
{5’b0x0xx,‘ENTER}: next1 = ‘ENTER ; // ~enter & ~valid

{5’b1xxxx,‘OPEN}: next1 = ‘ENTER ; // enter
{5’b0xxxx,‘OPEN}: next1 = ‘OPEN ; // ~enter

{5’b1xxxx,‘WAIT1}: next1 = ‘WAIT2 ; // enter
{5’b0xxxx,‘WAIT1}: next1 = ‘WAIT1 ; // ~enter

{5’bxxxx1,‘WAIT2}: next1 = ‘ENTER ; // done
{5’bxxxx0,‘WAIT2}: next1 = ‘WAIT2 ; // ~done

endcase
end
assign next = rst ? ‘ENTER : next1 ; // reset

endmodule

Figure 16.29: Verilog description of the combination lock (part 2 of 2). This
section describes the control. Assign statements generate the command and
output signals. A casex statement computes the next-state function.
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arate assign statement to reset to the enter state. The case variable is a con-
catenation of the five input and status signals that affect the next state function
with the current state.

Waveforms from simulating the combination lock module on a sequence of
test inputs are shown in Figure 16.30. The test visits all states and traverses
all edges of the state diagram of Figure 16.26. This is done with three attempts
to unlock the lock. One correct attempt and two failures. After reset, the test
first enters the correct sequence with a pause after the 1 and after the 7. On
the cycle after entering the final 8, enter is pressed and the next cycle unlock
goes high and the machine enters the open state (state = 1. After one cycle
low, enter goes high again returning the machine to the enter state.

The second attempt to unlock the lock involves entering an invalid code. As
soon as the first key is entered incorrectly (7 instead of 8) the machine transits
to the wait1 state (state = 2). It stays in this state until enter is pressed at
which time it goes to the wait2 state (state = 3). In the wait2 state the busy
output is asserted and the timer starts counting down from 4.4

The third attempt to unlock the lock involves entering a code of the wrong
length. After the first digit is entered correctly, enter is asserted. Because the
correct length code has not yet been entered (lmatch =0), the machine transits
to the wait2 state and starts counting down the timer.

16.4 Bibliographic Notes

16.5 Exercises

16–1 - design a counter that can count up, count down, load and that saturates
counting up (at a programmable max count) and counting down (at zero).

16–2 - design a datapath circuit to compute Fibonacci numbers. Each cycle
the circuit should output the next Fibonacci number (starting with 0 on
the first cycle). The circuit should have parameterized width and should
signal when the next number is too large to be represented at this width.

16–3 - redesign the fibonacci number circuit of Exercise 16–2 to be 32-bits wide
but use only an 8-bit adder.

16–4 - vending machine with extended coin pulse.

16–5 - vending machine with saturating add

16–6 - combination lock with multiple users - first digit selects one of 8 codes.

16–7 - combination lock that forgives one error. optional, calculate probability
of guessing

4In practice we would use a much longer timeout. However using a short timeout greatly
reduces simulation time and results in an easier to read set of waveforms.
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Figure 16.30: Waveforms from simulating the combination lock module of Fig-
ures 16.28 and 16.29.


