
© Rutgers University
Authored by P. Sannuti

Latest revision: December 16, 2005, 2004
by P. Panayotatos

School of Engineering
Department of Electrical and Computer Engineering

332:224 Principles of Electrical Engineering II Laboratory

Experiment 1

Series and Parallel Resonance

1 Introduction

Objectives • To introduce frequency response by studying the
characteristics of two resonant circuits on either side of
resonance

Overview

In this experiment, the general topic of frequency response is introduced by studying the
frequency-selectivity characteristics of two specific circuit structures. The first is referred to
as the series-resonant circuit and the second as the parallel-resonant circuit.
The relevant equations and characteristic bell-shaped curves of the frequency response
around resonance are given in section 2.
Prelab exercises are designed to enhance understanding of the concepts and calculate
anticipated values subsequently measured in the lab.
Current and voltage are then measured in the two resonant circuits as functions of frequency
and characteristic frequencies (resonance and 3-dB points) are experimentally determined.
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2 Theory

2.1 Frequency Domain Analysis
In electrical engineering and elsewhere, frequency domain analysis or otherwise known as
Fourier analysis has been predominantly used ever since the work of French physicist Jean
Baptiste Joseph  Fourier in the early 19th century. The pioneering work of Fourier  led to
what are now known as  Fourier Series representations of periodic signals and Fourier
Transform  representations of  periodic signals. A periodic signal of interest in engineering
can be represented in terms of  a Fourier Series1 which is a weighted linear combination of
sinusoids of harmonically related frequencies. Each frequency  among harmonically related
frequencies is an integer multiple of a particular frequency known as the fundamental
frequency.  The number of harmonically related  sinusoids present in the Fourier Series
representation of a periodic signal could be finite or countably infinite.  Since a  periodic
signal can be viewed as being composed of a   number of  sinusoids, in order to specify  a
periodic signal, one could equivalently specify  the  amplitude and phase of each sinusoid
present in the signal.  Such a specification constitutes the frequency domain description of a
periodic signal. Similarly, in Fourier Transform representation, under some natural
conditions, an aperiodic signal or a signal which is not necessarily periodic can be viewed as
being composed of uncountably infinite number of sinusoids or a continuum of sinusoids. In
this case, instead of being a weighted sum of harmonically related sinusoids, an aperiodic
signal is a weighted integral of  sinusoids of frequencies which are all not harmonically
related.  Again, instead of specifying an aperiodic signal in terms of the time variable t, one
can equivalently specify the  amplitude and phase density of each sinusoid of frequency !
contained in the signal. Such a description obviously uses the frequency variable !     as an
independent variable, and thus it is said to be the frequency domain or !"domain description
of the given time domain signal. In this way, a time domain signal is transformed to a
frequency domain signal. Of course, once the frequency domain description of a signal is
known, one can compose all the sinusoids present in the signal to form its time domain
description.  However, it is important to recognize that the frequency domain description is
simply a mathematical tool. In engineering, signals exist in a physically meaningful domain
such as time domain. The frequency domain description only serves to help for the better
understanding of certain signal characteristics.

                                                  
1 A more detailed treatment can be found in the text starting with section 16.1.
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2.2 Series Resonance
The basic series-resonant circuit is shown in fig. 1. Of  interest here in how the steady state
amplitude and the phase angle of the current vary with the frequency of the sinusoidal
voltage source. As the frequency of the source changes, the maximum amplitude of the
source voltage (Vm) is held constant.
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Vs = Vmcos(!t)                                i = Imcos(!t + #)

The frequency at which the reactances of the inductance and the capacitance cancel each
other  is the resonant frequency (or the unity power factor frequency) of this circuit. This
occurs at
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Since i = VR /R, then the current i can be studied by studying the voltage across the resistor.
The current i has the expression
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The bandwidth of the series circuit is defined as the range of frequencies in which the
amplitude of the current is equal to or greater than 1 / 2 = 2 / 2( )  times its maximum

amplitude, as shown in fig. 2. This yields the bandwidth       B = !2-!1= R/L

Fig. 1    The Series
Resonant Circuit
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!2,1 are called the half power frequencies or the 3 dB frequencies, i.e the frequencies at which
the value of Im equals the maximum possible value divided by 2 = 1.414 .

The quality factor      Q =
!o
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Then the maximum value of :
1- VR occurs at ! = !o   (5A)

2- VL occurs at 
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3- VC occurs at  !o 1" R2C
2L  (5C)
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Fig. 2    Frequency Response of a Series - Resonant Circuit
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2.3 Parallel Resonance
The basic parallel-resonant circuit is shown in fig. 3. Of  interest here in how the steady state
amplitude and the phase angle of the output voltage V0 vary with the frequency of the
sinusoidal voltage source.
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The resonant frequency is    !o =
1
LC
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The bandwidth                    B = !2 - !1 = 1/RC.

The quality factor                Q =
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Fig. 3 The Parallel
Resonant circuit
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Fig. 4    Frequency Response of the Parallel - Resonant Circuit

2.4 A More Realistic Parallel Resonance Circuit
A more realistic parallel-resonant circuit is shown in fig. 5. It is a more realistic model
because it accounts for the losses in the inductor through its d.c. resistance RL.
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                            Z(!o ) =
RL

RLRC + L (10)

and

Fig. 5 A More Realistic
Parallel - Resonant Circuit
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            Vo(!o ) = Is (!o )
RL

RLRC + L  (11)

An analysis of the amplitude of  the output voltage as a function of frequency reveals that the
amplitude is not maximum at !0. It can be derived that |V0| is maximum when

! = !m = (x - y)1/2                     (12)

where                                   x = (a + b)1/2
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This analysis can be followed by first expressing Vo as a function of !, differentiating this
expression with respect to ! and then finding the value of ! that makes the derivative zero.

3 Prelab Exercises
3.1 Derive equations 1, 2, 3, and 4 for the series-resonant circuit in fig. 1.

3.2 Derive equations: 5A, 5B, and 5C for the series-resonant circuit in fig. 1.
HINT: | VR |=| I | R where I = Im is given by equation 2A. So VR is maximum when
Im R is maximum i.e., Im is maximum (since R is constant). Similarly solve for
VL = | I | ZL and VC = | I | ZC .      

                           
3.3 For the series-resonant circuit shown in fig. 6, use equations: 5A, 5B, and 5C to determine

the frequencies at which VR, VC, and VL+RL are maximum.
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4 Experiments

Suggested Equipment:
Tektronix FG 501A 2MHz Function Generator2

Tektronix 504A Counter - Timer
HP 54600A or Agilent 54622A Oscilloscope
Protek Model B-845 Digital Multimeter
LS-400A Inductance Substituter Box
620 Ω Resistor
0.1 µF Capacitor
Breadboard
Other circuit elements to be determined by the students.

4.1 Series Resonance

Any function generator used has internal resistance. Also, the inductor has internal resistance.
Both need to be determined since all resistances affect the behavior of the circuit.

Function generator resistance

The internal  resistance of the function generator will affect the damping of an RLC circuit to
which it is connected. Check the resistance in the following way:

a- With a sine wave output, set the open circuit voltage to some convenient value, say 1V.

b- Connect a pure variable resistance load (potentiometer) thus forming a voltage divider.
Adjust R until the terminal voltage falls to one-half the open circuit value. At this point the
two resistances of the voltage divider have to be equal. Therefore, the resistance of the
potentiometer should now be equal to the internal resistance of the function generator.
Disconnect the potentiometer from the circuit and measure its resistance.

Inductor internal resistance

Use the digital ohmmeter to measure the internal resistance of the inductor used.

Measure Rs and RL.

Rs =                         Ω. RL=                         Ω.

                                                  
2 NOTE: The oscillator is designed to work for a very wide range of frequencies but may not be stable at very low
frequencies, say in the order of 100 Hz or 200Hz. To start with it is a good idea to have the circuit working at some
mid-range frequency, say in the order of 1K Hz or 2K Hz, and then change the frequency  slowly as needed.
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Build the circuit shown in fig. 6 using R = 620 Ω, L = 100 mH, and C = 0.1 µF.
Apply a sinusoidal input to the circuit and display both input and output on the screen of the
oscilloscope.
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With the frequency varied from 600 Hz to 2,500 Hz in increments of 100 Hz (using the
frequency counter), measure the rms values of VR, VL+RL, and VC using the DVM and the
phase angle from the scope (take the phase angle of Vs as the reference). Download the
scope trace for your report.

The phase angle between two sinusoidal signals of the same frequency can be determined as
follows: Trace both signals on two different channels with the same horizontal sensitivities
(the same  horizontal scale). To calibrate the horizontal scale in terms of degrees, one can
use the fact that the angular difference between the two successive zero crossing points of a
sinusoidal signal is 180 degrees. Thus, by measuring the distance between the successive
zero crossing points of either sinusoidal signal, one can calibrate the  horizontal scale in
terms of degrees.  To determine the phase difference between the two sinusoidal signals,
determine the distance between the zero crossing point of one signal to a similar zero
crossing point of another signal and convert it into degrees.

Also, to save tedious calculations later, set the rms values of  Vs to 1.00 volt before each
reading. Make sure that you use the frequency counter for all frequency measurements, and
to note the exact frequencies at which VR, VC, and VL+RL are maximum.

Once the maximum output voltage (V0 = VR) is known, vary the frequency and find the 3 dB
(the half power) frequencies, f1,2.

Before dismantling the equipment, check your results against those obtained from the
theoretical relationships in eqs 3 & 5. (Make sure to account for the internal resistance of the
function generator and the d.c. resistance RL of the inductor L in all calculations.)

Fig. 6    A Series -
Resonant Circuit
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f nominal f (Hz) VR VL+RL VC $
600
700
800
900

1,000
1,100
1,200
1,300
1,400
1,500
1,600
1,700
1,800
1,900
2,000
2,100
2,200
2,300
2,400
2,500

4.2 Parallel Resonance

Using source transformation, the parallel - resonant circuit in fig. 5 can be represented as
shown in fig. 7 where Rs is the internal resistance of the function generator.
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Build the circuit of fig. 7 using R = 620 Ω, L = 100 mH, and C = 0.1 µF.

Apply a sinusoidal input to the circuit and display both input and output on the scope. Set the
rms value of  Vs = 1.00 volts.

Fig. 7    A Parallel
- Resonant Circuit
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With the frequency of the source varied from 600 Hz to 2,500 Hz in increments of 100 Hz
(using the frequency counter), measure V0 using the DVM, and the phase angle using the
scope. Download the scope trace for your report.

Make sure to note the exact frequency, fm, at which V0 is maximum.

Once the maximum output voltage is known,, increase the frequency from 200 Hz and find
the 3 dB frequencies, f1,2.

Before dismantling the equipment, check the measured  fm against the theoretical one
obtained from eq. 12.

f nominal f (Hz) Vo $
600
700
800
900

1,000
1,100
1,200
1,300
1,400
1,500
1,600
1,700
1,800
1,900
2,000
2,100
2,200
2,300
2,400
2,500
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5 Report

5.1 In pre-lab exercise 3.3, by using equations: 5A, 5B, and 5C, the frequencies were
determined at which VR, VC, and VL+RL are maximum.  Compare them with those
experimentally observed.

5.2 Tabulate the frequency f, VR, VC, and VL+RL and the phase angle measured in Section 4.1.
Print out the scope trace and show how the phase angle was measured.

5.3 Plot VR, VC, VL+RL vs frequency on the same graph paper with rectangular coordinates.
       Circle, on the plot, the resonant frequency and the 3 dB frequencies.

5.4  Use eqs. 1 & 3 to determine the theoretical resonant frequency, the 3 dB frequencies, and
       the bandwidth. Compare with the experimental ones.

5.5  Tabulate f, V0 and the phase angle measure in Section 4.2. Print out the scope trace and
show how the phase angle was measured.

5.6 Using eqs. 9 & 12, determine the theoretical f0, and fm for the resonant circuit shown
        in fig. 7. Compare with the experimental ones.

5.7 Plot V0 vs f on a graph paper with rectangular coordinates. Circle, on the plot, f0, fm,
         and the 3 dB frequencies, f1,2.

5.8 Simulate the series-resonant circuit of fig. 6 in PSpice, and plot VR, VC, and VL+RL vs
         frequency. Vary the frequency from 600 Hz to 2,500 Hz in increments of 100 Hz.
         Compare with the experimental plot.

5.9 Simulate the parallel-resonant circuit of fig. 7 in PSpice, and plot V0 vs frequency. Vary
the frequency from 600 Hz to 2,500 Hz in increments of 100 Hz. Compare with the
experimental plot.

5.10 Prepare a summary.


