Series Circuits

Topics Covered in Chapter 4
4-1: Why / Is the Same in All Parts of a Series Circuit 4-2: Total R Equals the Sum of All Series Resistances 4-3: Series IR Voltage Drops
4-4: Kirchhoff's Voltage Law (KVL)
4-5: Polarity of IR Voltage Drops

Topics Covered in Chapter 4

- 4-6: Total Power in a Series Circuit
- 4-7: Series-Aiding and Series-Opposing Voltages
- 4-8: Analyzing Series Circuits with Random Unknowns
- 4-9: Ground Connections in Electrical and Electronic Systems
- 4-10: Troubleshooting: Opens and Shorts in Series Circuits

4-1: Why I Is the Same in All Parts of a Series Circuit

- Characteristics of a Series Circuit
- The current is the same everywhere in a series circuit.
- The total resistance is equal to the sum of the individual resistance values.
- The total voltage is equal to the sum of the $I R$ voltage drops across the individual resistances.
- The total power is equal to the sum of the power dissipated by each resistance.

4-1: Why I Is the Same in All Parts of a Series Circuit

- Current is the movement of electric charge between two points, produced by the applied voltage.
- The free electrons moving away from one point are continuously replaced by free electrons flowing from an adjacent point in the series circuit.
- All electrons have the same speed as those leaving the voltage source.
- Therefore, / is the same in all parts of a series circuit.

4-1: Why I Is the Same in All Parts of a Series Circuit

(a)

(b)

Fig. 4-2: There is only one current through R_{1}, R_{2}, and R_{3} in series. (a) Electron drift is the same in all parts of a series circuit. (b) Current lis the same at all points in a series circuit.

4-1: Why I Is the Same in All Parts of a Series Circuit

- Series Current Formulas
- Total current is the same as the individual currents in the series string:

$$
I_{T}=I_{1}=I_{2}=I_{3}=\ldots=\text { etc. }
$$

- Total current is equal to total voltage divided by total resistance:

$$
I_{T}=\frac{V_{T}}{R_{T}}
$$

4-2: Total R Equals the Sum of All Series Resistances

- When a series circuit is connected across a voltage source, the free electrons must drift through all the series resistances.
- There is only one path for free electrons to follow.
- If there are two or more resistances in the same current path, the total resistance across the voltage source is the sum of all the resistances.

4-2: Total R Equals the Sum of All Series Resistances

Fig. 4-4: Series resistances are added for the total R_{T}. (a) R_{1} alone is 3Ω. (b) R_{1} and R_{2} in series together total 5Ω. (c) The R_{T} of 5Ω is the same as one resistance of 5Ω between points A and B.

4-2: Total R Equals the Sum of All Series Resistances

- Series Resistance Formulas
- The total resistance is the sum of the individual resistances.

$$
R_{T}=R_{1}+R_{2}+R_{3}+R_{4}+R_{5}
$$

4-2: Total R Equals the Sum of All Series Resistances

- Series Resistance Formulas
- Total resistance is equal to total voltage divided by the circuit current:

$$
R_{T}=\frac{V_{T}}{I_{T}}
$$

4-2: Total R Equals the Sum of All Series Resistances

- Determining the Total Resistance

4-3: Series IR Voltage Drops

- By Ohm's Law, the voltage across a resistance equals $1 \times R$.
- In a series circuit, the IR voltage across each resistance is called an IR drop or voltage drop, because it reduces the potential difference available for the remaining resistances in the circuit.

4-3: Series IR Voltage Drops

Fig. 4-5: An example of $I R$ voltage drops V_{1} and V_{2} in a series circuit.

4-4: Kirchhoff's Voltage Law (KVL)

The total voltage is equal to the sum of the drops.

This is known as
Kirchhoff's voltage law (KVL).

4-4: Kirchhoff's Voltage Law (KVL)

The $I R$ drops must add to equal the applied voltage (KVL).

$$
\begin{aligned}
& V_{T}=V_{1}+V_{2}+V_{3}+V_{4}+V_{5} \\
& V_{T}=I R_{1}+I R_{2}+I R_{3}+I R_{4}+I R_{5} \\
& V_{T}=0.1 \times 10+0.1 \times 15+0.1 \times 20+0.1 \times 30+0.1 \times 25 \\
& V_{T}=1 \mathrm{~V}+1.5 \mathrm{~V}+2 \mathrm{~V}+3 \mathrm{~V}+2.5 \mathrm{~V}=10 \mathrm{~V}
\end{aligned}
$$

4-5: Polarity of IR Voltage Drops

- When current flows through a resistor, a voltage equal to $I R$ is dropped across the resistor. The polarity of this $I R$ voltage drop is:
- Negative at the end where the electrons enter the resistor.
- Positive at the end where the electrons leave the resistor.

4-5: Polarity of IR Voltage Drops

- The rule is reversed when considering conventional current: positive charges move into the positive side of the $I R$ voltage.
- The polarity of the IR drop is the same, regardless of whether we consider electron flow or conventional current.

4-5: Polarity of IR Voltage Drops

(a)

(b)

Fig. 4-8: Polarity of $I R$ voltage drops. (a) Electrons flow into the negative side of V_{1} across R_{1}. (b) Same polarity of V_{1} with positive charges into the positive side.

4-6: Total Power in a Series Circuit

- The power needed to produce current in each series resistor is used up in the form of heat.
- The total power used in the circuit is equal to the sum of the individual powers dissipated in each part of the circuit.
- Total power can also be calculated as $V_{T} \times I$

Fig. 4-10: The sum of the individual powers P_{1} and P_{2} used in each resistance equals the total power P_{T} produced by the source.

4-6: Total Power in a Series Circuit

Finding Total Power

$$
\begin{aligned}
& P_{5} \quad P_{4} \\
& P_{T}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5} \\
& P_{T}=I^{2} R_{1}+I^{2} R_{2}+I^{2} R_{3}+I^{2} R_{4}+I^{2} R_{5} \\
& P_{T}=0.1 \mathrm{~W}+0.15 \mathrm{~W}+0.2 \mathrm{~W}+0.3 \mathrm{~W}+0.25 \mathrm{~W}=1 \mathrm{~W} \\
& \text { Check: } P_{T}=V_{T} \times I=10 \mathrm{~V} \times 0.1 \mathrm{~A}=1 \mathrm{~W}
\end{aligned}
$$

4-7: Series-Aiding and Series-Opposing Voltages

- Series-aiding voltages are connected with polarities that allow current in the same direction:
- The positive terminal of one is connected to the negative terminal of the next.
- They can be added for the total voltage.

4-7: Series-Aiding and Series-Opposing Voltages

- Series-opposing voltages are the opposite: They are connected to produce opposing directions of current flow.
- The positive terminal of one is connected to the positive terminal of another.
- To obtain the total voltage, subtract the smaller voltage from the larger.
- Two equal series-opposing voltage sources have a net voltage of zero.

4-7: Series-Aiding and Series-Opposing Voltages

(a)

(b)

Fig. 4-11: Example of voltage sources V_{1} and V_{2} in series. (a) Note the connections for seriesaiding polarities. Here $8 \mathrm{~V}+6 \mathrm{~V}=14 \mathrm{~V}$ for the total V_{T}. (b) Connections for series-opposing polarities. Now $8 \mathrm{~V}-6 \mathrm{~V}=2 \mathrm{~V}$ for V_{T}.

4-8: Analyzing Series Circuits with Random Unknowns

- When trying to analyze a series circuit, keep the following principles in mind:

1. If $/$ is known for one component, use this value in all components. The current is the same in all parts of a series circuit.
2. If / is unknown, it may be calculated in one of two ways:

- Divide V_{T} by R_{T}
- Divide an individual $I R$ drop by its R.
- Remember not to mix a total value for an entire circuit with an individual value for part of the circuit.

4-8: Analyzing Series Circuits with Random Unknowns

3. If all individual voltage drops are known, add them to determine the applied V_{T}.

- A known voltage drop may be subtracted from V_{T} to find a remaining voltage drop.

4-9: Ground Connections in Electrical and Electronic Systems

- In most electrical and electronic systems, one side of the voltage source is connected to ground.
- The reason for doing this is to reduce the possibility of electric shock.

4-9: Ground Connections in Electrical and Electronic Systems

- Figure 4-16 shows several schematic ground symbols:

- Ground is assumed to have a potential of 0 V regardless of the schematic symbol shown.
- These symbols are sometimes used inconsistently with their definitions. However, these symbols always represent a common return path for current in a given circuit.

4-9: Ground Connections in Electrical and Electronic Systems

- Voltages Measured with Respect to Ground
- When a circuit has a ground as a common return, measure the voltages with respect to this ground.

4-9: Ground Connections in Electrical and Electronic Systems

(b)

(d)

Fig. 4-18: An example of how to calculate dc voltages measured with respect to ground. (b) Negative side of V_{T} grounded to make all voltages positive with respect to ground. (d) Positive side of V_{T} grounded, all voltages are negative to ground.

4-10: Troubleshooting: Opens and Shorts in Series Circuits

- The Effect of an Open in a Series Circuit
- An open circuit is a circuit with a break in the current path. When a series circuit is open, the current is zero in all parts of the circuit.
- The total resistance of an open circuit is infinite ohms.
- When a series circuit is open, the applied voltage appears across the open points.

4-10: Troubleshooting: Opens and Shorts in Series Circuits

- The Effect of an Open in a Series Circuit

(b)

Fig. 4-19: Effect of an open in a series circuit. (b) Open path between points P1 and P2 results in zero current in all parts of the circuit.

4-10: Troubleshooting: Opens and Shorts in Series Circuits

- Applied voltage V_{T} is still present, even with zero current.
- The voltage source still has its same potential difference across its positive and negative terminals.
- Example: The 120-V potential difference is always available from the terminals of a wall outlet.
- If an appliance is connected, current will flow.
- If you touch the metal terminals when nothing else is connected, you will receive a shock.

4-10: Troubleshooting: Opens and Shorts in Series Circuits

- The Effect of a Short in a Series Circuit
- When part of a series circuit is shorted, the current flow increases.
- When part of a series circuit is shorted, the voltage drops across the non-shorted elements increase.
- The voltage drop across the shorted component drops to 0 V .

4-10: Troubleshooting: Opens and Shorts in Series Circuits

- The Effect of a Short in a Series Circuit

Fig. 4-21: Series circuit of Fig. 4-18 with R_{2} shorted.

4-10: Troubleshooting: Opens and Shorts in Series Circuits

- When troubleshooting a series circuit containing three or more resistors, remember:
- The component whose voltage changes in the opposite direction of the other components is the defective component.

