


Series M. C. F. K - Geared Motors Kit Assembly Instructions











with you at every turn

ENG-07-01-013 Rev.10

### **REVISION HISTORY**

| ing size 8                               |
|------------------------------------------|
| /, X & Y                                 |
|                                          |
|                                          |
| dded, ST000028 was                       |
| oling number ST000144<br>on was reversed |
|                                          |
|                                          |
|                                          |
|                                          |
| ?                                        |
|                                          |
|                                          |

### **CONTENTS**

| TITLE                                                    | PRODUCT  | PAGES |
|----------------------------------------------------------|----------|-------|
| Section 1 – General Notes                                | All      | 1-3   |
| Section 2 – Primary Wheel Fitting                        | All      | 4     |
| Section 3 – Primary Pinion Fitting                       | All      | 5-8   |
| Section 4 – Motor Key Fitting                            | All      | 9     |
| Section 5 – Motor Adaptor Fitting                        | All      | 9     |
| Section 6 – Triple assembly M01-M07 & F02-F07            | M&F      | 10    |
| Section 7 – Triple assembly M08                          | M        | 11-16 |
| Section 8 – Triple assembly F08                          | F        | 17-22 |
| Section 9 – Triple assembly M09 & M10                    | M        | 23-24 |
| Section 10 – Triple assembly M13 & M14                   | M        | 25-26 |
| Section 11 – Inline Housing With Backstop Assembly       | All      | 27-28 |
| Section 12 – Motorised Backstop Module Assembly          | All      | 29    |
| Section 13 – Fitting instructions for Ancillary Items    | All      | 30    |
| Section 14 – Assembly of Quadruple and Quintuple Units   | All      | 31    |
| Section 15 – Assembly of Output shaft into Hollow Sleeve | C, F & K | 32    |
| Section 16 – Instructions for fitting double oil seals   | All      | 33-37 |
| Section 17 – Lubrication - Oil Grades                    | All      | 38-40 |
| Lubrication & Mounting Positions – Series C              | С        | 41-42 |
| Lubrication & Mounting Positions – Series F              | F        | 43-44 |
| Lubrication & Mounting Positions – Series K              | K        | 45-46 |
| Lubrication & Mounting Positions – Series M              | M        | 47-48 |
|                                                          |          |       |
|                                                          |          |       |
|                                                          |          |       |

ENG-07-01-013 Revision 10.0

### 1. GENERAL NOTES

### 1.1. WORKING AREA

1.1.1. The working area to be kept clean at all times.

### 1.2. BEARINGS

- 1.2.1. Bearing mounting tackle to be kept scrupulously clean at all times.
- 1.2.2. Bearings to be unwrapped just prior to mounting.
- 1.2.3. Bearings may be cleaned using suitable solvent (e.g. Lowtox) but should be re-lubricated with Shell Ensis Engine Oil 30.

NOTE:- Shielded bearings must never be washed. Suspect shielded bearings to be placed in the material non-conformity area for investigation / disposal.

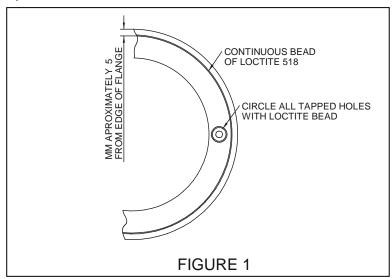
Bearings are supplied grease packed however should it require to grease pack a bearing i.e. in the case of a special lubricant being used, then the volume of grease used should be equal to 33% to 50% of the free volume space of the bearing.

1.2.4. Mounting of bearing to be carried out using designated tooling only.

NOTE:-On no account should they be struck directly with a hammer or drift.

### 1.3. PRESSING COMPONENTS

1.3.1. The force to press gears and/or bearings into position should be noted and compared to ensure that it is above the minimum specified. (Values given in the appropriate section).


### 1.4. HAND FITTING COMPONENTS

- 1.4.1. When fitting any component part and it fails to meet requirements i.e. keys cannot be tapped into keyways, wheel gears will not push onto shafts, they should be placed in the material non-conformity area for investigation / disposal.
- 1.4.2. Rectification of component parts using files, hand grinders etc. is strictly forbidden. Such tools are to be excluded totally from the assembly area.
- 1.4.3. Care should be taken when fitting circlips to ensure that these are not over strained. NOTE: Usage of hammers is restricted to the dead blow type (Nylon) for the fitting of oilseals using a guide and the tapping of keys into keyways.

### 1.5. SEALING

1.5.1. Liquid gasket material must be applied to clean faces. Any doubt then the face must be cleaned with a suitable solvent (Lowtox or Loctite 7063 Superclean).

The liquid gasket material must be applied to faces in an area outside of any possible leakage path in a continuous bead circlip the fastener holes (see Figure 1).



Copper washers should be inserted under the cap head screws on motor adaptors and when called for.

1.5.2. Oilseals should be fitted using the guides called for in the procedure and tapped into position using a dead blow type (Nylon) hammer.

### 1.6. LUBRICANT

1.6.1. Lubricant quantities for the mounting position requested must be strictly adhered to.

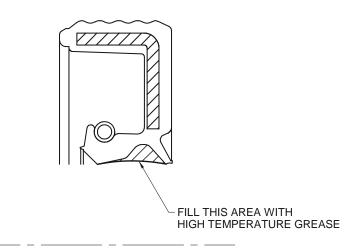
### 1.7. ALTERNATIVE MATERIALS

1.7.1. Throughout the following instructions the sealants, adhesives etc in current use at the time of writing are specified. However, alternative materials are available. See the approved suppliers list for further information.

### 1.8. PROTECTION

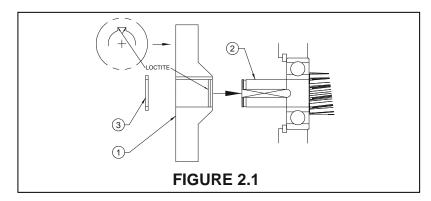
1.8.1. Reference must be made to Process Spec RP.05.02 for standard protection procedures for gear units, loose gears, and components for storage and/or dispatch.

### 1.9. TIGHTENING TORQUES


1.9.1. Unless stated otherwise, all fasteners must be tightened to the following torque values.

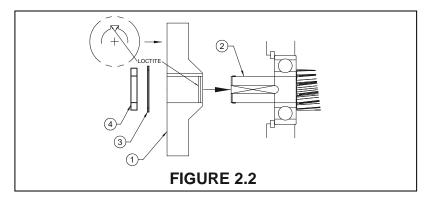
| BOLT SIZE | TIGHTENING | G TORQUES |
|-----------|------------|-----------|
| BOLT SIZE | Nm         | Lbs.ins   |
| M6        | 10         | 90        |
| M8        | 25         | 220       |
| M10       | 50         | 440       |
| M12       | 85         | 750       |
| M16       | 200        | 1770      |
| M20       | 350        | 3098      |

| TIGHTENING TORQUES         |           |  |  |  |  |
|----------------------------|-----------|--|--|--|--|
| FOR DR                     | AIN PLUGS |  |  |  |  |
| PLUG SIZE Specified Torque |           |  |  |  |  |
| M10                        | 12 Nm     |  |  |  |  |
| M12                        | 20 Nm     |  |  |  |  |
| M14                        | 26 Nm     |  |  |  |  |
| M16                        | 34 Nm     |  |  |  |  |
| M22                        | 65 Nm     |  |  |  |  |


### 1.10. OIL SEAL FITTING

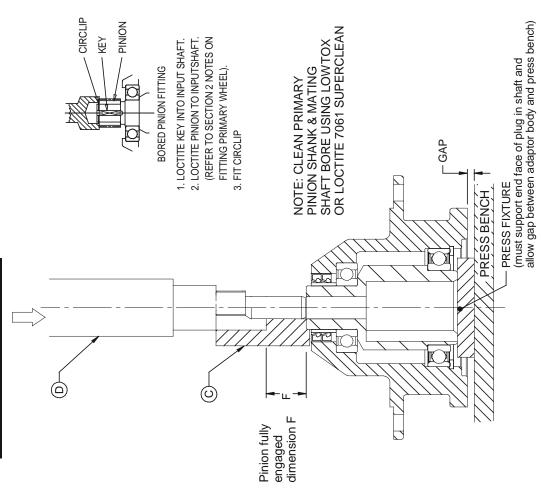
1.10.1.Oil seals must be lubricated with an approved high temperature grease (see lubrication catalogue).Particular attention must be made to lubricating the seal lip as detailed below.




### 2. PRIMARY WHEEL FITTING (ALL UNITS)

### 2.1. For units with circlip:




- 2.1.1. Clean the primary wheel bore (1) & mating shaft (2) thoroughly using Lowtox or Loctite 7063 superclean.
- 2.1.2. Apply Loctite 648 as shown in Figure 2.1 to the wheel bore (boss end) and to the keyway roots.
- 2.1.3. Fit wheel to shaft, and clean away any excess adhesive, then fit circlip (3). It is imperative that any excess Loctite is cleaned away, and not allowed to enter into the bearings etc.

### 2.2. For units with locknut:



- 2.2.1. Clean the primary wheel bore (1) & mating shaft (2) thoroughly using Lowtox or Loctite 7063 superclean.
- 2.2.2. Apply Loctite 648 as shown in Figure 2.2 to the wheel bore (boss end) and to the keyway roots, then fit wheel to shaft.
- 2.2.3. Clean away any excess adhesive then fit lockwasher (3) and locknut (4). It is imperative that any excess Loctite is cleaned away, and not allowed to enter into the bearings etc.
- 2.2.4. Anchor shaft to stop it rotating & tighten locknut (4) to torque value (140 Nm). Turn down lockwasher tab into locknut cut out.

## 3. PRIMARY PINION FITTING



For Gear Units Up to & Including Size 8

### **IEC MOTORS and CONNECTING KITS**

| Motor | Adaptor Kit Number       | Assemb   | Assembly Tooling  | Dimen    | Dimension 'F   | Min Press | Min Press Lb Force |
|-------|--------------------------|----------|-------------------|----------|----------------|-----------|--------------------|
| Sze   |                          | 0        |                   | mm       | Inches         | Tomes     | JQT                |
| S     | MD1F                     | ST000027 | ST000028          | * 15/17  | 29/65          | 1.1       | 2426               |
| 3     | V90V                     |          | 157228ST          | 24       | 0.94           | 1.7       | 3749               |
| 7     | MD1G MO1H                | ST000027 | ST000028          | * 15/17  | 29/65          | 1.1       | 2426               |
| -     | MD6D                     | -        | 157228ST          | 24       | 0.94           | 1.7       | 3749               |
|       | OCND1-03-10 OCND1-03-10N | ST000027 |                   | * 15/ 17 | .59/67         | 1.1       | 2426               |
|       |                          | ST000027 | ST000028          | * 15/17  | <i>1</i> 97/65 | 1.1       | 2426               |
|       | MD1A MD1J                | ST000027 | ST000028          | * 15/ 17 | <i>1</i> 97/65 | 1.1       | 2426               |
| Q     | MD5G                     | -        | 157228ST          | 24       | 0.94           | 1.7       | 3749               |
| 8     | MDGF                     | 157235ST | 157228ST          | 24       | 0.94           | 1.7       | 3749               |
|       | MPGW                     | -        | 157226ST          | 24       | 0.94           | 2.0       | 4410               |
|       | MD7F/1 M07G/1            | -        | 157226ST          | 29       | 1.14           | 2.6       | £2/S               |
|       | MD8D                     | -        | 157226ST          | 36       | 1.42           | 2.6       | £2/S               |
|       | CON03-05-15 CON03-05-15N | 157235ST | 157228ST          | 24       | 0.94           | 1.7       | 3749               |
|       | CON03-07-18 CON03-07-18N |          | 157226ST          | 83       | 1.14           | 2.6       | 5733               |
|       | 804<br>2                 |          | 157226ST          | 36       | 1.42           | 2.6       | £2/S               |
|       | M01D M01R                | ST000027 | ST000028          | * 15/17  | <i>1</i> 97/65 | 1.1       | 2426               |
| 8     |                          | ST000027 | ST000028          | * 15/17  | .59/67         | 1.1       | 2426               |
|       | MDSJ MOSH                | 157235ST | 157228ST          | 24       | 0.94           | 1.7       | 3749               |
|       | MDGY MOGZ                |          | 157226ST          | 24       | 0.94           | 2.0       | 4410               |
|       | MD7H71 MD7J/1            | -        | 157226ST          | 29       | 1.14           | 2.6       | £2/S               |
|       | MD8E                     | •        | 157226ST          | 36       | 1.42           | 2.6       | 5733               |
|       |                          | ST000027 | ST000028          | * 15/17  | .59/67         | 1.1       | 2426               |
|       |                          |          | 157226ST          | 24       | 0.94           | 2.0       | 4410               |
| 10    | MOSK MOSL                | 161433ST | 157228ST          | 24       | 0.94           | 1.7       | 3749               |
| 3 5   |                          | Poose    | Loose Pinion      |          | -              |           | -                  |
| 7     | MD7K/1 MD7L/1            |          | 157226ST          | 83       | 1.14           | 2.6       | 5733               |
|       | MD8A                     | Loose    | Loose Pinion      |          | -              |           | -                  |
|       | M08F                     | 157327ST | 157226ST          | 36       | 1.42           | 2.6       | 5733               |
|       | MDGN/1                   |          | 157226ST          | 24       | 0.94           | 2.0       | 4410               |
|       | MD6P/1                   | 157227ST | 157228ST          | 24       | 16.0           | 1.7       | 3749               |
|       | MD7C M07D/1              | Poose    |                   | -        | -              |           | -                  |
| 32    |                          | 157225ST |                   | 23       | 1.14           | 2.6       | 5733               |
|       | MOTAV MOTAV1             | 161434ST | 157226ST          | 83       | 1.14           | 2.6       | 5733               |
|       | MD8B                     | Loose    | .oose Pinion      |          |                |           |                    |
|       | MD8G                     | 157327ST | 157226ST          | 36       | 1.42           | 2.6       | 5733               |
|       | M07E                     | essor    | Locse Pinion      |          | -              |           | -                  |
| 8     | M07P                     | 157225ST | 157225ST 157226ST | 36       | 1.42           | 2.6       | £2/S               |
| 3     | MD8C                     | Poose    | Loose Pinian      | -        |                | -         |                    |
|       | H8QN                     | 157327ST | 157327ST 157226ST | 98       | 1.42           | 2.6       | £2/S               |

\* Dimension F dependant on primary gearing size. 36 Centres 15mm, and 47 Centres 17mm

ENG-07-01-013 Page 5 Issue 10.0

### **NEWA MOTORS**

PINION SHANK & MATING SHAFT BORE USING LOWTOX OR LOCTITE 7061 SUPERCLEAN

NOTE: CLEAN PRIMARY

CIRCLIP

- PINION

ΚΕΥ

(b)

| Motor       | Adaptor   | Adaptor Kit Number | Assembl   | Assembly Tooling | Dimen          | Dimension'F                   | Mn Press | Mn Press Up Force |
|-------------|-----------|--------------------|-----------|------------------|----------------|-------------------------------|----------|-------------------|
| Sze         |           |                    | 0         | Q                | шш             | saupul                        | Tonnes   | ΙΦ                |
|             | MD1T      | MD1U               | ZZ00001S  | 8Z00001S         | <b>41/91</b>   | <i>1</i> 9′/65′ <sub>*</sub>  | 1.1      | 2426              |
| 797         | MDEQ      |                    | 15255721  | 15822731         | 54             | 0.94                          | 1.7      | 3749              |
| 3           | M07Q/1    |                    | 15622721  | 15322721         | 67             | 1.14                          | 26       | 2233              |
|             | M8M       |                    | 15725751  | 15352731         | 98             | 1.42                          | 26       | 5733              |
|             | MD1V      | MO1W               | ZZ00001S  | 8Z00001S         | 4 15/17        | <i>19</i> ' /65' <sub>*</sub> | 1.1      | 2426              |
| 143/        | MOSR      |                    | 157235ST  | 157228ST         | 24             | 0.94                          | 1.7      | 3749              |
| 145TC       | M07R/1    |                    | -         | 15352731         | 62             | 1.14                          | 26       | 2233              |
|             | WBW       |                    | -         | 15352731         | 98             | 1.42                          | 26       | 2233              |
|             | ND3/04X/1 |                    | ZZ00001S  | 8Z00001S         | <b>21/91</b> * | <i>19</i> ′/65′ <sub>*</sub>  | 1.1      | 2426              |
|             | MDES      |                    | -         | 15352721         | 54             | 0.94                          | 20       | 4410              |
| /82/        | MOST      |                    | 157227ST  | 15822731         | 54             | 0.94                          | 1.7      | 3749              |
| 3 6         | M07S/1    |                    | esco<br>T | Lase Finian      |                |                               |          |                   |
| 2           | MD7T/1    |                    | 15522721  | 15352731         | 82             | 1.14                          | 26       | 2233              |
|             | MDBJ      |                    | esco<br>T | Lase Anian       | -              | -                             | -        |                   |
|             | M08P      |                    | 1572578T  | 15352721         | 98             | 1.42                          | 26       | 2233              |
|             | ∩90W      |                    | 15522721  | 15322731         | 54             | 0.94                          | 20       | 4410              |
| 213/        | MD7U1     |                    | esco<br>T | Lase Anian       | -              | -                             | -        |                   |
| 7 5         | MD7V//1   |                    | 152252T   | 15322721         | 62             | 1.14                          | 26       | 5733              |
|             | WD8K      |                    | esco<br>T | Lase Anian       | -              | -                             | -        |                   |
|             | M08Q      |                    | 157257ST  | 15322721         | 98             | 1.42                          | 26       | 5733              |
| 124         | WD7W      |                    | esco<br>T | Lase Anian       | -              | -                             | -        |                   |
|             | MD8L      |                    | esco<br>T | Loose Pinion     | -              | -                             | -        |                   |
| 2001 C MPRI | MDBLJ     |                    | 1572575T  | TS822721         | 92             | 1.42                          | 26       | 2/33              |

engaged dimension F

BORED PINION FITTING
1. LOCTITE KEY INTO INPUT SHAFT.
2. LOCTITE PINION TO INPUTSHAFT.
(REFER TO SECTION 2 NOTES ON FITTING PRIMARY WHEEL).
3. FIT CIRCLIP

 $\odot$ 

Pinion fully engaged dimension F

Pinion fully

### **INLINE HOUSINGS**

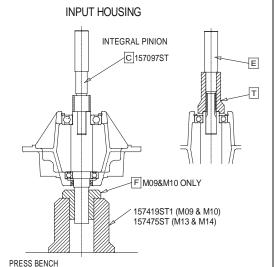
| 41                    |                         | _         |                | _        |                   |          |                  | <b>1</b> |                   |                 |                   | _       |           |                   |                   |
|-----------------------|-------------------------|-----------|----------------|----------|-------------------|----------|------------------|----------|-------------------|-----------------|-------------------|---------|-----------|-------------------|-------------------|
| : Up Force            | ΓΡÆ                     | 30/0      | 67<br>14<br>10 | 777      | ₹                 | 0770     | 9,70             |          |                   | 5722            | 3                 |         |           | 6223              | 3                 |
| Mn Press Up Force     | Tonnes                  | 7         | 3              | 00       | 0.7               | 17       | ):               |          |                   | 30              | 0,7               |         |           | 30                | 07                |
| ion'F                 | Indres                  | 79'. /65' |                | 200      | †<br>5            | 700      | ‡<br>5           |          |                   | 147             | <u>t</u>          |         |           | 1 10              | <u> </u>          |
| Dimens                | Dimension'F<br>mm Indhe |           | *              |          | ţ                 | č        | ₹                |          |                   | 8               | 3                 |         |           | 30                | 8                 |
| ja<br>Bi              | H<br>ST000028           |           | 157770CT       | 1002/10  | 4E770CT           | 15027/51 | Jujon            | 2        | 1570AACT          | 2447            | Z.ich             | 5       | 15777CCT  | 12027/2           |                   |
| Assembly Tooling<br>G |                         |           |                |          |                   | 1570CCT  | 10007/01         | l cocci  |                   | 1E7MECT 1E7MACT | 242               | L cocc  |           | 167277CT 16777CCT | 5/5/5             |
| As                    | E<br>157138ST           |           | 157070CT       | 100/2/01 | 157070CT          | 150/7/61 | 157070CT         | 2000     | 157070CT          | 2000            | 4574 ADCT         | 1034    | 1574 ADCT | 2                 |                   |
|                       |                         | MO122-U   | M0122-Y        | MC522-X  | 10522-TB M0522-XB | MD622-Y  | D522-UB MD522-YB | M0720-X  | 70720-TB N0720-XB | M0720-Y         | 70720-UB M0720-YB | M0820-X | M0820-XB  | M0820-X           | MD820-XB          |
|                       |                         | MD122-T   | M0122-X        | M0622-T  | M0522-TB          | MD622-U  | M0622-UB         | M0720-T  | M0720-TB          | M0720-U         | M0720-UB          | M0820-T | M0820-TB  | M0820-T           | MD820-TB MD820-XB |
|                       |                         |           | J              | ЭC       | ıш                | nŅ       | 1 1 !            | lК       | วิน               | isr             | 아                 | 1       |           |                   |                   |

\* Dimension F dependant on primary graning size: 36 Centres 15mm, and 47 Centres 17mm

For Gear Units Up to & Including Size 8

ENG-07-01-013 Page 6 Issue 10.0

- PRESS FIXTURE E


PRESS FIXTURE (must support end face of plug in shaft and allow gap between adaptor body and press bench)

PRESS BENCH

PRESS BENCH

## MOTOR ADAPTOR INTEGRAL PINION C157097ST E PRESS BENCH TOOLING A157415ST

NOTE - CLEAN PRIMARY PINION SHANK & MATING SHAFT BORE USING LOWTOX OR LOCTITE 7061 SUPERCLEAN



**IEC MOTORS** 

| Kit No.                                     | Assemb   | ly tooling | Min Press Up Force |       |  |
|---------------------------------------------|----------|------------|--------------------|-------|--|
|                                             | Item D   | Item E     | Tonnes             | Lb/ft |  |
| CON05-09-26<br>CON05-09-26N                 | 157386ST | 157364ST   | 4.0                | 8816  |  |
| M93L M93M<br>M93N                           | 157385ST | 157364ST   | 4.0                | 8816  |  |
| M09E M09F<br>M09G M09H                      | 157386ST | 157364ST   | 4.0                | 8816  |  |
| M09J M09K<br>M09L M09M                      | 157417ST | 157364ST   | 4.0                | 8816  |  |
| CON07-10-26<br>CON07-10-26N                 | 157386ST | 157364ST   | 5.3                | 11681 |  |
| M10E M10F                                   | 157386ST | 157364ST   | 5.3                | 11681 |  |
| M10G M10H<br>M10J M10K                      | 157417ST | 157364ST   | 5.3                | 11681 |  |
| ALL M13 KITS<br>EXCEPT WITH<br>LOOSE PINION | 157471ST | N/A        | 8.1                | 17852 |  |
| ALL M14 KITS<br>EXCEPT WITH<br>LOOSE PINION | 157472ST | N/A        | 8.1                | 17852 |  |

B 157416ST
CIRCLIP
KEY
PINION

### BORED PINION FITTING 1. LOCTITE KEY INTO INPUT SHAFT.

- LOCTITE KEY INTO INPUT SHAFT.
   LOCTITE PINION TO INPUTSHAFT.
   (REFER TO SECTION 2 NOTES ON FITTING PRIMARY WHEEL).
- 3. FIT CIRCLIP

THE FOLLOWING KITS USE THIS METHOD

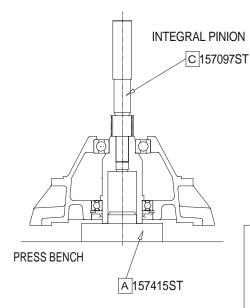
M09A M09B M09C M09D M10A M10B M10C M10D M1320GA M1330GA M1320GB M1330GB M1320GC M1330GC M1320GD M1330GD M1320GE M1320GD M1330GF M1320GF M1420GA M1430GA M1420GB M1430GB M1420GC M1430GC M1420GD M1430GD M1420GE M1430GE M1420GF M1430GF

| TOOL F<br>(NOT USED ON M13 & M14) | TO SUIT UNIT        |
|-----------------------------------|---------------------|
| 157419ST2                         | M09 TRIPLE          |
| 157419ST3                         | M09 AM TR           |
| 157419ST4                         | M09 STD, M10 STD TR |
| 157419ST5                         | M09 AM, M10 AM TR   |
| 157419ST6                         | M10 STD             |
| 157419ST7                         | M10 AM              |

INPUT HOUSING KIT FITTING PRIMARY PINION

### TOOLING

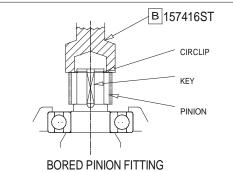
| UNIT SIZE | Т        | Е        |
|-----------|----------|----------|
| M0920     | 157417ST | 157364ST |
| M0930     | 157386ST | 157364ST |
| M1020     | 157417ST | 157364ST |
| M1030     | 157417ST | 157364ST |
| M1320     | 157471ST | N/A      |
| M1330     | 157471ST | N/A      |
| M1420     | 157472ST | N/A      |
| M1430     | 157472ST | N/A      |
|           |          |          |


### MINIMUM PRESS FORCE (tonne) (INTEGRAL PINION)

| M09 | M10 | M13 | M14 |  |
|-----|-----|-----|-----|--|
| 4.0 | 5.3 | 8.1 | 8.1 |  |

1 tonne = 2204.62 lbs

For Gear Units Size 9 & Above


### **MOTOR ADAPTOR**



**NOTE - CLEAN PRIMARY** PINION SHANK & MATING SHAFT BORE USING LOWTOX OR LOCTITE 7061 SUPERCLEAN

### **NEMA MOTORS**

| Kit No.      |        | Assemb   | ly tooling | Min Press | Up Force |
|--------------|--------|----------|------------|-----------|----------|
|              |        | Item D   | Item E     | Tonnes    | Lb/ft    |
| M09X         | M09Y   | 157385ST | 157364ST   | 4.0       | 8816     |
| M09Z         |        | 15/50551 | 15750451   | 4.0       | 0010     |
| M09S         | M09T   | 157386ST | 157364ST   | 4.0       | 8816     |
| M10P         | M10Q   | 157386ST | 157364ST   | 5.3       | 11681    |
| M09U         | M09V   | 157417ST | 157364ST   | 4.0       | 8816     |
| M09W         |        | 13/41/31 | 13/30431   | 4.0       | 0010     |
| M10R         | M10S   | 157417ST | 157364ST   | 5.3       | 11681    |
| M10T         |        | 15/41/51 | 15/30451   | 5.5       | 11001    |
| ALL M13 KITS |        |          |            |           |          |
| EXCEPT       | W∏H    | 157471ST | N/A        | 8.1       | 17852    |
| LOOSE PINION |        |          |            |           |          |
| ALL M14 KITS |        |          |            | ·         |          |
| EXCEPT       | WITH   | 157472ST | N/A        | 8.1       | 17852    |
| LOOSE F      | PINION |          |            |           |          |



E

D

- 1. LOCTITE KEY INTO INPUT SHAFT.
- 2. LOCTITE PINION TO INPUTSHAFT. (REFER TO SECTION 2 NOTES ON FITTING PRIMARY WHEEL).
- 3. FIT CIRCLIP

### THE FOLLOWING KITS USE THIS METHOD

| M09P    | M09Q    | M09R    |
|---------|---------|---------|
| M10L    | M10M    | M10N    |
| M1320AF | M1330AF | M1320AG |
| M1330AG | M1320AH | M1330AH |
| M1320AJ | M1330AJ | M1320AK |
| M1330AK |         |         |
| M1420AE | M1430AF | M1420AF |
| M1430AG | M1420AG | M1430AJ |
| M1420AJ | M1430AK | M1420AH |
| M1430AH |         |         |

For Gear Units Size 9 & Above

### 4. FITTING ELECTRIC MOTOR DRIVING KEY.

### 4.1. For motors using Nylon sleeve:

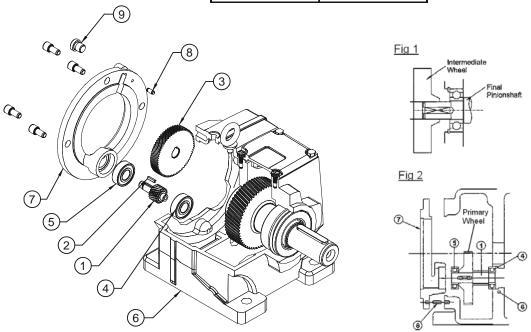
- 4.1.1. Ensure the key supplied with the motor is fitted correctly.
- 4.1.2. Spray motor shaft with Rocol DFSM prior to assembly.

### 4.2. For motors using Carbon Fibre Key:

- 4.2.1. Remove and discard the metal key provided with the motor.
- 4.2.2. Shorten the Carbon Fibre Key to maximum length to suit the motor keyway. (The discarded key can be used as a length measure).
- 4.2.3. Secure the Carbon Fibre Key in the motor shaft keyway using Loctite Prism 454.

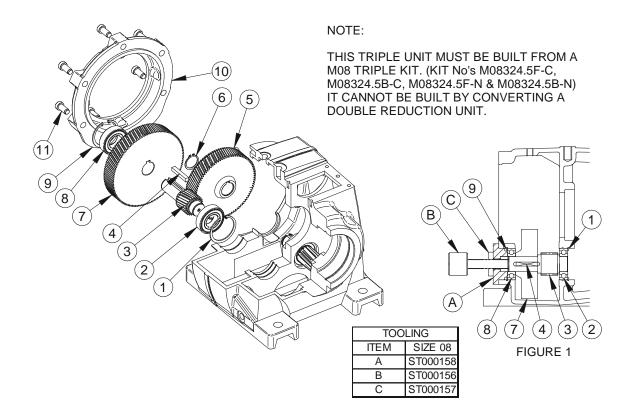
### 5. FITTING MOTOR ADAPTOR / INPUT HSG. TO GEAR UNIT.

- 5.1. Apply liquid gasket material (Loctite 518) to the gearhead flange face as detailed in section 1.5.
- 5.2. Engage the primary pinion into the primary wheel, and then secure the adaptor / housing to the gearhead with the fasteners provided. For M0732 units use studs & nuts to secure the adaptor / housing to the unit. Torque tighten to the specified values.
- 5.3. Fit the motor adaptor flange (if supplied) to the motor adaptor and secure with the setscrews provided. Torque tighten to the specified values.


### If motorized:

- 5.4. Spray plug-in shaft bore with Rocol DFSM.
- 5.5. Fit the electric motor to motor adaptor using fasteners provided. Torque tighten to the specified values.

| BOLT SIZE | TIGHTENING TORQUES |         |  |
|-----------|--------------------|---------|--|
| BOLT SIZE | Nm                 | Lbs.ins |  |
| M6        | 10                 | 90      |  |
| M8        | 25                 | 220     |  |
| M10       | 50                 | 440     |  |
| M12       | 85                 | 750     |  |
| M16       | 200                | 1770    |  |
| M20       | 350                | 3098    |  |


### 6. ASSEMBLY OF M01-M07 and F02-F07 TRIPLE REDUCTION UNIT

| TIGHTENING TORQUES FOR DRAIN PLUGS |                  |  |
|------------------------------------|------------------|--|
| Size of Unit                       | Specified Torque |  |
| M04/M05/M06                        | 15 Nm            |  |
| M07                                | 32 Nm            |  |



- 6.1. Fit the intermediate wheel (3) onto final pinionshaft (use Loctite 648 see section 2 'Fitting Primary Wheel'). Slide wheel only partway on shaft (see Fig 1).
- 6.2. Apply Loctite 648 to roots of intermediate pinionshaft keyway (1) & fit key (2).
- 6.3. Press primary wheel and bearings (4&5) onto intermediate pinion shaft (1). (Ensure wheel is assembled with boss towards bearing. See Fig 2)
- 6.4. Fit intermediate pinion shaft, wheel and bearings assembly into housing (6). Carefully mesh pinion with intermediate wheel, rotate the wheel to line up bearing (4) with bore in housing (6). Carefully slide intermediate pinionshaft assembly and intermediate wheel into its working position. Wipe off excess Loctite from intermediate wheel and fit circlip to final pinionshaft.
- 6.5. IMPORTANT fit dowel (8) into flange facing.
- 6.6. Apply liquid gasket (Loctite 518) to mating flange facings (see Fig 2). Align triple housing (7) bearing bore with bearing (5). Slide housing (7) into position. Check dowel (8) locates with hole in gearcase housing (6).
- 6.7. Secure to gear case housing (6) with fasteners provided and torque tighten. For M07 use studs & nuts to secure the motor adaptor/reducer housing to the unit.
- 6.8. M0432, M0532, M0632 & M0732 only: fit plug (9) or ventilator for mounting position 5.

### 7. ASSEMBLY OF M08 TRIPLE REDUCTION UNIT



- 7.1.1. Clean the intermediate pinion shaft keyway (3) and key (4) using Lowtox or Loctite 7063 superclean and then apply adhesive (Loctite 648) to roots of intermediate pinionshaft keyway (3) & fit key (4). Clean away any excess adhesive.
- 7.1.2. Press bearing (2) onto intermediate pinion shaft (3), then slide this sub-assembly through the intermediate shaft bores into the output end of the gearcase.
- 7.1.3. Fit the intermediate wheel (5) on the final pinionshaft. (Use Loctite 648 see section 2 'Fitting Primary Wheel') and secure with circlip (6).
- 7.1.4. Fit bearing (8) and circlip (9) into case bore, then secure thrust block (A) to gear case.
- 7.1.5. Position primary wheel (7) in gearcase. Screw jacking screw (B) into the intermediate pinion, then turn the jacking nut (C), to draw the intermediate pinion shaft sub assembly into position. Take care to align the primary wheel keyway with intermediate pinion shaft key (4) and also that the intermediate pinion and wheel 'mesh'. Rotate the intermediate wheel if necessary.
- 7.1.6. Fit circlip (1) into case bore to secure the intermediate pinion line.

### 7.2. OUTPUT SHAFT SUB-ASSEMBLY

- 7.2.1. Preheat bearing (6) in the bearing heater. **WARNING!** Bearings <u>must not</u> be heated above 100°C. If grease is seen weeping from the bearings, then they **must be discarded.**
- 7.2.2. Position the bearing (6) on the output shaft (3) when ready as shown in Figure 7.2 and leave to cool in position.

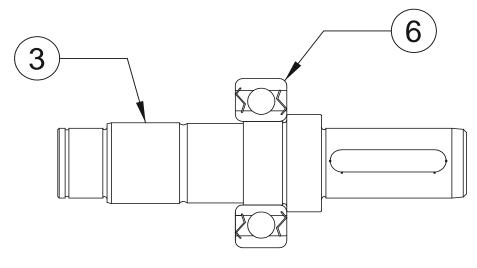
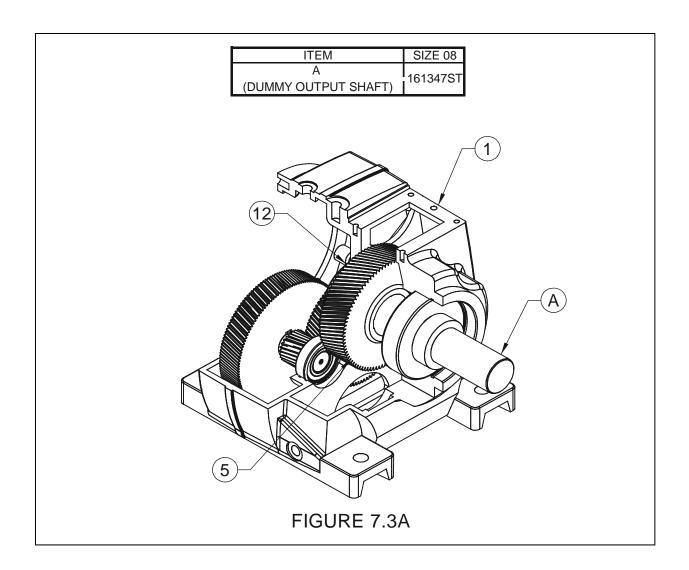




FIGURE 7.2

7.2.3. Ensure output shaft sub-assembly is put in a clean location until required.

### 7.3. ASSEMBLY OF OUTPUT SHAFT SUB-ASSEMBLY INTO THE GEAR UNIT

- 7.3.1. Attach the tooling listed in Figure 7.3B to the gearhead, and then lift gear unit and turn through 90° and place on the press so that the dummy shaft is pointing upwards (see Figure 7.3B).
- 7.3.2. Position bearing (12) in inner central housing (see Figure 7.3A).
  - NOTE:- Clean the final wheel bore (5) the mating portion of the output shaft (3) and dummy output shaft (A) using Lowtox or Loctite 7063 Superclean.
- 7.3.3. Post the final wheel (5) through the inspection cover opening, and carefully mesh with the final pinion shaft (10), see Figure 7.3A. Simultaneously introduce the dummy output shaft (A) through the output bore housing locating the final wheel and the inner bearing.
- 7.3.4. Carefully withdraw the dummy output shaft.



- 7.3.5. Place distance piece (4) on the output shaft sub-assembly and also apply Loctite 645 adhesive to the root of output shaft keyway (18) and apply activator to key (18) and locate key in output shaft.
- 7.3.6. Place mounting dolly on the output shaft (3) and press into position through final wheel (5) and bearing (12).

NOTE:- Align shaft key (18) and wheel keyway prior to pressing.

| ITEM | SIZE 08  |
|------|----------|
| Α    | ST000144 |
| В    | ST000145 |

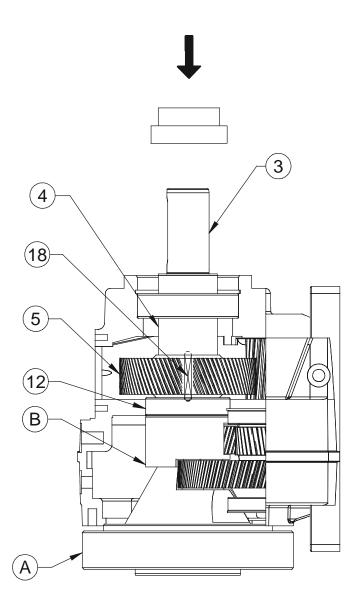
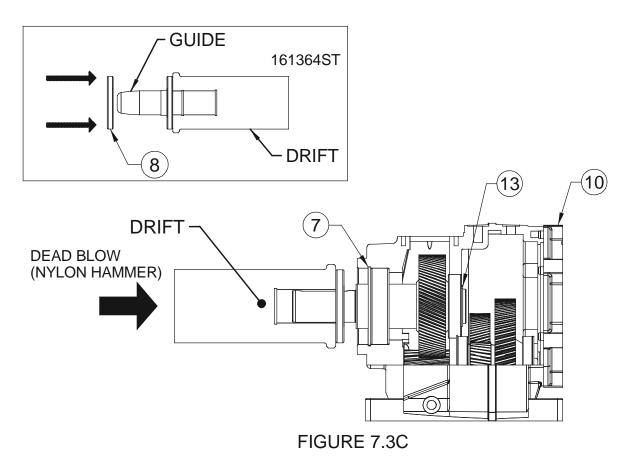
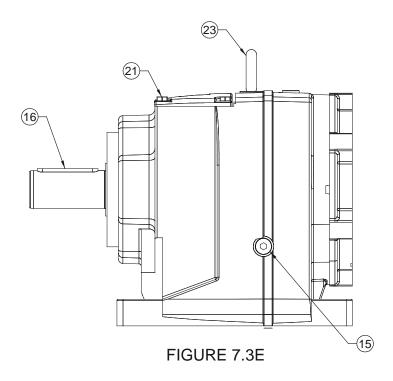




FIGURE 7.3B

- 7.3.7. Remove dolly and fit circlip (7) see figure 7.3C.
- 7.3.8. Remove gear unit from press fixture and with the unit horizontal fit circlip (13), see Figure 7.3C



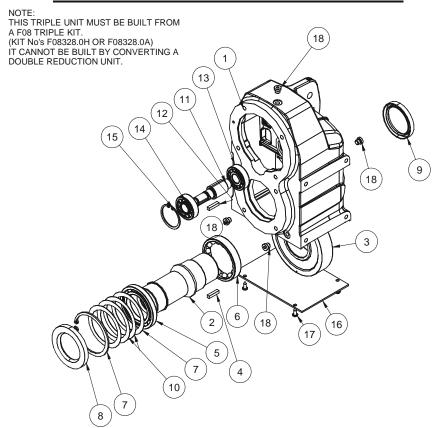

- 7.3.9. Clean the mating faces of the triple housing (10) and the gearcase using Lowtox or Loctite 7063 Superclean. Apply liquid gasket Loctite 518 to mating flange faces. Fit triple housing (10) to gearcase and secure with fasteners provided and torque tighten.
- 7.3.10. Smear the inner lip of the oil seal with grease (Shell Albida R2 or other approved grease – see lubrication catalogue) and position the oil seal and the drift using the guide, see Figure 3.5C. Remove guide and fit oil seal, see Figure 9.0C.

NOTE:- Double oil seal arrangement may be required, check order details.

- 7.3.11. Tap output shaft extension key (16) into keyway.
- 7.3.12. Fit inspection cover to gear case. Seal with Loctite 518 and torque tighten fasteners (21) according to table in Figure 7.3D.

| BOLT SIZE    | TIGHTENING TORQUES |         |  |
|--------------|--------------------|---------|--|
| BOLT SIZE    | Nm                 | Lbs.ins |  |
| M6           | 10                 | 90      |  |
| M8           | 25                 | 220     |  |
| M10          | 50                 | 440     |  |
| M12          | 85                 | 750     |  |
| M16          | 200                | 1770    |  |
| M20          | 350                | 3098    |  |
|              | DRAIN PLUGS        |         |  |
| Size of Unit | Specified Torque   |         |  |
| M08          | 45 Nm              |         |  |

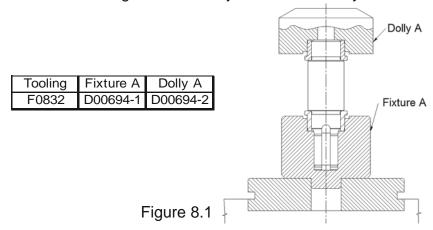
FIGURE 7.3D




- 7.3.13. Fit eye bolt (23) where applicable.
- 7.3.14. Fit drain plugs (15) in all positions and torque tighten drain plugs according to table in figure 7.3D
- 7.3.15. Secure adhesive pad (22) in recess.
- 7.3.16. Periodically inspect to check that the axial shaft end floats of the gearhead are in accordance with the table below.

|               | FINAL PINION | OUTPUT       |
|---------------|--------------|--------------|
| SIZE OF UNIT  |              | SHAFT END    |
| 0.22 01 01411 | FLOAT        | FLOAT        |
| M08           | 0.08 / 0.7MM | 0.08 / 0.4MM |

7.3.17. The triple assembly is now complete.


### 8. ASSEMBLY OF F08 TRIPLE REDUCTION UNIT



Basic layout of unit (triple gearing not shown - see section 8.2 for arrangement)

### 8.1 FINAL PINION SHAFT SUB-ASSEMBLY

- 8.1.1. Press the inner rings of the bearings (13) and (14) onto the final pinion shaft (11)Note shoulder end of bearing rings must be adjacent to the shaft shoulder (see figure 8.1)
- 8.1.2. Clean the final pinion shaft keyway (11) and key (12) using Lowtox or Loctite 7063 superclean and then apply adhesive (Loctite 648) to roots of final pinionshaft keyway (11) & fit key (12). Clean away any excess adhesive. Ensure the bearings run smoothly and clean off any excess adhesive.



ENG-07-01-013 Page 17 Issue 10.0 8.1.3. Fit the bearing outer ring (13) into the case lower bearing bore. Locate the final pinion shaft assembly (11) inner bearing into the outer ring (13) and then fit the top bearing outer ring (14) into the case. Secure the pinion shaft by means of circlip (15) (see figure 8.2).

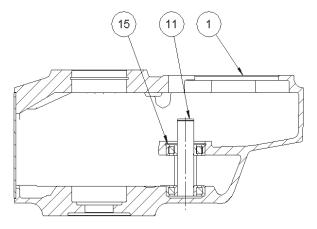



Figure 8.2

### 8.2. TRIPLE REDUCTION GEARING ASSEMBLY



Figure 8.3

8.2.1. Clean the intermediate pinion shaft keyway (T3) and key (T4) using Lowtox or Loctite 7063 superclean and then apply adhesive (Loctite 648) to roots of intermediate pinionshaft keyway (T3) & fit key (T4). Clean away any excess adhesive.

- 8.2.2. Press bearing (T2) onto intermediate pinion shaft (T3), then slide this subassembly through the intermediate shaft bores into the output end of the gearcase.
- 8.2.3. Fit the intermediate wheel (T5) on the final pinionshaft. (Use Loctite 648 see section 2 'Fitting Primary Wheel') and secure with circlip (T6).
- 8.2.4. Fit bearing (T8) and circlip (T9) into case bore, then secure thrust block (A) to gear case.
- 8.2.5. Position primary wheel (T7) in gearcase. Screw jacking screw (B) into the intermediate pinion, then turn the jacking nut (C), to draw the intermediate pinion shaft sub assembly into position. Take care to align the primary wheel keyway with intermediate pinion shaft key (T4) and also that the intermediate pinion and wheel 'mesh'. Rotate the intermediate wheel if necessary.
- 8.2.6. Fit circlip (T1) into case bore to secure the intermediate pinion line.

### 8.3. HOLLOW SHAFT ASSEMBLY

- 8.3.1. Clean the hollow shaft keyway (2) and key (4) using Lowtox or Loctite 7063 superclean and then apply adhesive (Loctite 648) to roots of hollow shaft keyway (2) & fit key (4). Clean away any excess adhesive.
- 8.3.2. Assemble the bearing (6) into position in gear housing.
- 8.3.3. Clean the gear wheel bore (3) with suitable approved solvent.

  Place the wheel (3) into the gear case with the groove on the wheel facing downwards, position the wheel so that it meshes with the pinion shaft (11) and the wheel bore aligns with the bearing bore (6)
- 8.3.4. Clean the gear wheel seating on the hollow shaft (2) with suitable approved solvent. Apply a thin band of Loctite 648 around the hollow shaft as shown on figure 8.4. Clean away any excess Loctite.

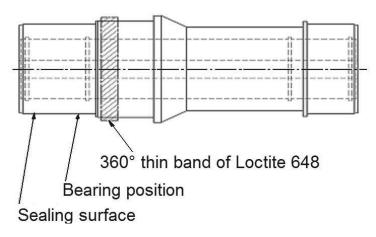



Figure 8.4 How to apply adhesive to the hollow shaft

- 8.3.5. Place the hollow shaft in position through the wheel. Ensure shaft key (4) is aligned with the keyway in the wheel. Avoid damage to, or any contact with the adhesive on the sealing surface.
- 8.3.6. Press the hollow shaft (2) into the gear wheel (3) and lower bearing (6) using the tooling shown in figure 8.5 (Dolly B).
- 8.3.7. Position the upper bearing inner ring (5) on to the hollow shaft (2).
- 8.3.8. Press upper bearing inner ring (5) into position using the tooling shown in figure 8.5 (Dolly C)
- 8.3.9. Place the bearing outer ring and support ring (10) into the bearing bore, rotate shaft to seat the bearings and secure with into the housing with circlip, (7)
- 8.3.10. Check and adjust axial clearance setting with shims as detailed in section 8.4

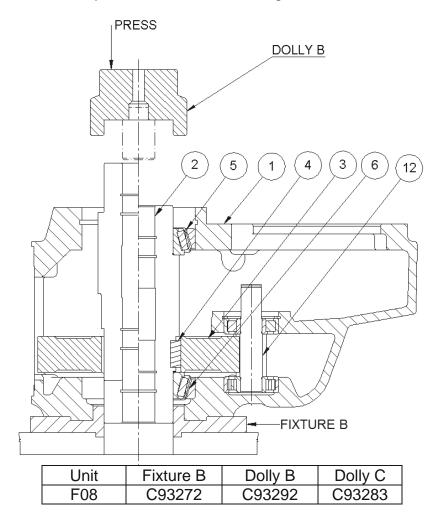



Figure 8.5

### **8.4. AXIAL CLEARANCE ADJUSTMENT**

- 8.4.1. Place a dial gauge to the hollow shaft facing and set to zero (see figure 8.6) Lift the hollow shaft and note the axial play.
- 8.4.2. Remove the circlip (7) and support ring (10) Fit appropriate a shims between the bearing (5) and the support ring (10) to reduce the float to between: **0.03** and **0.06** mm.
- 8.4.3. Refit the support ring and circlip. Re-Check the axial float, re-adjust if necessary.

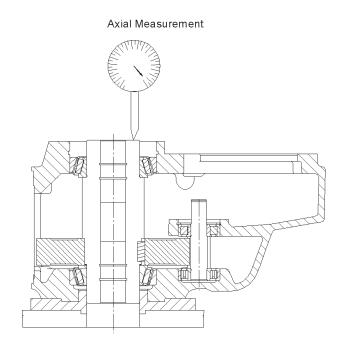
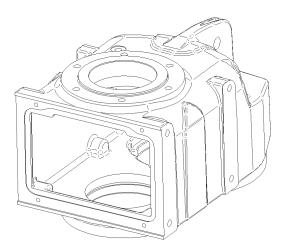



Figure 8.6

### 8.5. OIL SEAL ASSEMBLY (PRIMARY FLANGE SIDE)

8.5.1. Smear the seal ring lip (8) with bearing grease (Shell Albida R2 or equivalent).


Fit the oil seal ring into the upper (primary flange) side of the housing using the seal assembly tooling as listed below:

|      | Primary side (Motor side) |        |        |        |
|------|---------------------------|--------|--------|--------|
| Unit | Standard                  | Kibo   | Inch   | TA     |
| F08  | D00594                    | D00614 | D00594 | D00634 |

8.5.2. Position the bearing (6) on the output shaft (3) when ready as shown in Figure 7.2 and leave to cool in position.

### 8.6. BASE COVER / TRIPLE HOUSING ASSEMBLY

- 8.6.1. Clean the mating faces of the base cover plate (16) and the gearcase using Lowtox or Loctite 7063 Superclean. Apply Loctite 518 to the machined surface at the base of the unit.
- 8.6.2. Fit the base cover plate (16) secure with the cover fasteners (17) and torque tighten (see figure 8.7)



| BOLT SIZE    | TIGHTENING TORQUES                 |         |  |
|--------------|------------------------------------|---------|--|
| BOLT SIZE    | Nm                                 | Lbs.ins |  |
| M6           | 10                                 | 90      |  |
| M8           | 25                                 | 220     |  |
| M10          | 50                                 | 440     |  |
| M12          | 85                                 | 750     |  |
| M16          | 200                                | 1770    |  |
| M20          | 350                                | 3098    |  |
|              | DRAIN PLUGS Specified Torque 45 Nm |         |  |
| Size of Unit |                                    |         |  |
| F08          |                                    |         |  |

FIGURE 8.7

- 8.6.3. Clean the mating faces of the triple housing (T10) and the gearcase using Lowtox or Loctite 7063 Superclean. Apply liquid gasket Loctite 518 to mating flange faces.
- 8.6.4. Fit triple housing (T10) to gearcase and secure with fasteners (T11) and torque tighten.

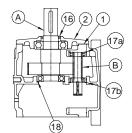
### 8.7. FINAL OILSEAL AND PLUG ASSEMBLY

8.7.1. Smear the seal ring lip (9) with bearing grease (Shell Albida R2 or equivalent). Fit the oil seal ring into the upper (primary flange) side of the housing using the seal assembly tooling as listed below:

|      | Secondary side (Machine side) |        |        |              |
|------|-------------------------------|--------|--------|--------------|
| Unit | Standard                      | Kibo   | Inch   | TA           |
| F08  | D00604                        | D00624 | D00604 | D00644-1, -2 |

8.7.2. Fit all drain plugs (18) where applicable, and torque tighten, see figure 8.7; do not over tighten as this can damage the plug seal.

### 9. ASSEMBLY OF M09 & M10 TRIPLE REDUCTION UNIT


Follow the instructions shown to convert either a double reduction unit into a triple reduction unit, or to build a triple unit from a triple gearhead sub assembly.

1

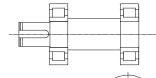
REMOVE BEARING HOUSING (2) FROM GEARCASE.

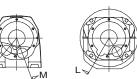
REMOVE OUTPUT SHAFT ASSEMBLY (A). USE HOIST. REMOVE SHIM (18)

IF CONVERTING A DOUBLE TO A TRIPLE GEARHEAD: REMOVE CIRCLIPS (17a) AND (17b) REMOVE FINAL PINION SHAFT ASSEMBLY (B) (BASEMOUNT UNIT ONLY, FLANGE MOUNT IS OK)



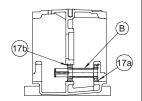
CLEAN GASKET FROM BEARING HOUSING FACE (2) & GEAR CASE FLANGE FACE (1). (USE LOCTITE 'CHISEL' GASKET REMOVER)


REMOVE OIL SEAL (16) FROM BEARING HOUSING (2)


2

IF FINAL PINION SHAFT WAS REMOVED IN STEP 1 THEN: FIT FINAL PINION SHAFT ASSEMBLY (B) INTO CASE BORE AS SHOWN. (BASE MOUNT ONLY)

|        | FLANGE | BASE |
|--------|--------|------|
| DOUBLE | L      | Н    |
| TRIPLE | L      | M    |

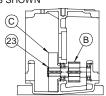

LOCATE WITH CIRCLIPS (17a & 17b)

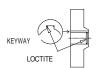




BASE TYPE

NOTE: ROLLER BEARINGS. ENSURE THAT BEARINGS ARE ASSEMBLED CORRECTLY. (ie SHOULDER TO GEAR FACE)





3

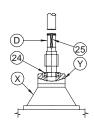
CLEAN GEAR WHEEL BORE & MATING SHAFT END (USE LOWTOX, OR LOCTITE 7061 SUPERCLEAN).

APPLY BEAD OF LOCTITE 648 AS SHOWN

(IN WHEEL BORE BOSS END & KEYWAY ROOTS) FI INTERMEDIATE WHEEL (C) TO FINAL PINION SHAFT (B) WIPE OFF EXCESS LOCTITE, RETAIN WITH CIRCLIP (23)






PRESS BEARING (24) ONTO INTERMEDIATE PINION SHAFT (D). LOCTITE KEY (25) INTO INTERMEDIATE PINION SHAFT (D).

FLANGE TYPE

| TOOLING | TOOLING  |          |  |  |
|---------|----------|----------|--|--|
| UNIT    | M09      | M10      |  |  |
| Х       | 157336ST | 157336ST |  |  |
| Υ       | 157382ST | 157383ST |  |  |

### KEY FITTING

CLEAN KEYWAY & KEY (LOWTOX, OR LOCTITE 7061 SUPERCLEAN).
APPLY ADHESIVE (LOCTITE 648) IN ROOT OF KEYWAY (USE PLENTY, MUST RUN UP SIDES OF KEY WHEN FIITTED).
APPLY ACTIVATOR TO KEY
TAP THE KEY INTO THE KEYWAY (CLEAN OFF ANY EXCESS ADHESIVE).
CHECK FOR PROPER KEY SEATING WITH A DUMMY WHEEL.



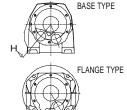


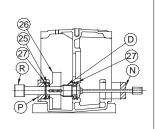
Cont/

5

FIT BEARING (25) IN CASE BORE, BORE 'H' FOR BASE MOUNT OR BORE 'K' FOR FLANGE MOUNT.

FIT REACTION BUSH (P) & FIX TO CASE. (2 SCREWS)


POSITION PRIMARY WHEEL (26), LOCATE WITH GUIDE SHAFT (R).


PASS INTERMEDIATE PINION SHAFT (D) THROUGH CASE BORE & LOCATE IN PRIMARY WHEEL. (ALIGN KEY WITH KEYWAY).

FIX THRUST BLOCK (N) TO CASE. (2 SCREWS)

TURN THRUST SCREW TO PRESS ASSEMBLY TOGETHER.

REMOVE TOOLS AND FIT CIRCLIPS (27)





**TOOLING** 

| UNIT | M09      | M10      |  |
|------|----------|----------|--|
| Р    | 157411ST | 157413ST |  |
| N    | 157370ST | 157378ST |  |
| R    | 157412ST | 157414ST |  |

6

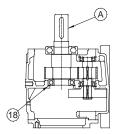
APPLY LIQUID GASKET MATERIAL (LOCTITE 518) TO THE FLANGE OF THE GEARCASE (1a)

FIT THE TRIPLE ADAPTOR (28) AND SECURE TO UNIT WITH THE FASTENERS PROVIDED.

TORQUE TIGHTEN TO THE SPECIFIED VALUES.



TIGHTEN SCREWS TO:-

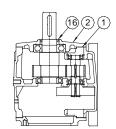

| SCREW SIZE | TORQUE | Nm  | (LB.INS) |
|------------|--------|-----|----------|
| M10        |        | 50  | (440)    |
| M12        |        | 85  | (750)    |
| M16        |        | 200 | (1770)   |
|            |        |     |          |

7

POSITION GEAR CASE IN VERTICAL ATTITUDE

FIT SHIM (18) INTO BEARING BORE.

LOWER OUTPUT SHAFT ASSEMBLY (A) INTO POSITION. (USE HOIST)




8

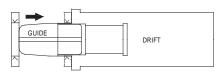
APPLY LIQUID GASKET MATERIAL (LOCTITE 518) TO THE FLANGE FACE OF THE GEARCASE (1)

FIT THE BEARING HOUSING (2) TO THE GEARCASE AND SECURE WITH THE FASTENERS PROVIDED.

TORQUE TIGHTEN TO THE SPECIFIED VALUES.



TIGHTEN SCREWS TO :-


| SCREW SIZE | TORQUE | Nm  | (LB.INS) |
|------------|--------|-----|----------|
| M10        |        | 50  | (440)    |
| M12        |        | 85  | (750)    |
| M16        |        | 200 | (1770)   |
|            |        |     |          |

9

PACK OIL SEAL WITH GREASE (SHELL ALBIDA R2) OR APPROVED GREASE FROM LUBRICATION CATALOGUE POSITION OIL SEAL ON THE DRIFT USING THE GUIDE:-

| M09      | M10      |
|----------|----------|
| 157392ST | 157393ST |

FIT OIL SEAL (16) USING DRIFT TOOL, INTO BEARING HOUSING (2)



FOR DOUBLE OUTPUT SEALS REPEAT OPERATION

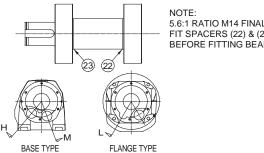
### 10. ASSEMBLY OF M13 & M14 TRIPLE REDUCTION UNIT


Follow the instructions shown to convert either a double reduction unit into a triple reduction unit, or to build a triple unit from a triple gearhead sub assembly.

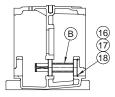
REMOVE BEARING HOUSING (2) FROM GEARCASE.

REMOVE OUTPUT SHAFT ASSEMBLY (A), USE HOIST.

IF CONVERTING A DOUBLE TO A TRIPLE GEARHEAD: REMOVE CIRCLIP (16), SUPPORT WASHER (17) & **SHIMS (18)** 


REMOVE FINAL PINION SHAFT ASSEMBLY (B) (BASEMOUNT UNIT ONLY, FLANGE MOUNT IS OK)

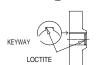



IF FINAL PINION SHAFT WAS REMOVED IN FIT FINAL PINION SHAFT ASSEMBLY (B) INTO CASE BORE AS SHOWN. (BASE MOUNT ONLY)

|         | FLANGE | BASE |
|---------|--------|------|
| DOUBLE  | L      | Н    |
| TRIPI F | 1 1    | М    |

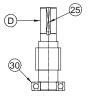
REFIT SHIMS SUPPORT WASHER AND CIRCLIP. (ITEMS (16), (17) & (18)




5.6:1 RATIO M14 FINAL PINION. FIT SPACERS (22) & (23) BEFORE FITTING BEARINGS.



CLEAN GEAR WHEEL BORE & MATING SHAFT END (USE LOWTOX, OR LOCTITE 7061 SUPERCLEAN). APPLY BEAD OF LOCTITE 648 AS SHOWN (IN WHEEL BORE BOSS END & KEYWAY ROOTS).


FIT SPACER (9) FIT INTERMEDÍATE WHEEL (C) 2829 TO FINAL PINION SHAFT (B) WIPE OFF EXCESS LOCTITE FIT TAB WASHER (28), THEN FIT LOCKNUT (29) AND TIGHTEN. TURN DOWN COUPLE OF TABS INTO NEAREST SLOT.

LOCKNUT TORQUE 140 Nm



B

FIT BEARING (30) ONTO INTERMEDIATE PINION SHAFT (D) (USE BEARING HEATER). LOCTITE KEY (25) INTO INTERMEDIATE PINION SHAFT (D).



### KEY FITTING

CLEAN KEYWAY & KEY (LOWTOX, OR LOCTITE 7061 SUPERCLEAN). APPLY ADHESIVE (LOCTITE 648) IN ROOT OF KEYWAY (USE PLENTY, MUST RUN UP SIDES OF KEY WHEN FITTED). APPLY ACTIVATOR TO KEY TAP THE KEY INTO THE KEYWAY (CLEAN OFF ANY EXCESS ADHESIVE). CHECK FOR PROPER KÉY SEATING WITH A DUMMY WHEEL.

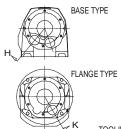


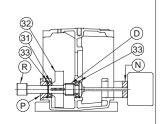
Cont/

5

FIT BEARING (31) IN CASE BORE, BORE 'H' FOR BASE MOUNT OR BORE 'K' FOR FLANGE MOUNT.

FIT REACTION BUSH (P) & FIX TO CASE. (2 SCREWS)


POSITION PRIMARY WHEEL (32), LOCATE WITH GUIDE SHAFT (R).


PASS INTERMEDIATE PINION SHAFT (D) THROUGH CASE BORE & LOCATE IN PRIMARY WHEEL. (ALIGN KEY WITH KEYWAY).

FIX THRUST BLOCK (N) TO CASE. (2 SCREWS)

WITH HYDRAULIC CYLINDER & HAND PUMP PUSH SHAFT (D) THROUGH WHEEL (32).

REMOVE TOOLS AND FIT CIRCLIPS (33)





TOOLING

| TOOLING |          |          |
|---------|----------|----------|
| UNIT    | UNIT M13 |          |
| Р       | 157489ST | 157492ST |
| N       | 157488ST | 157491ST |
| R       | 157490ST | 157493ST |

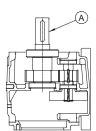


APPLY LIQUID GASKET MATERIAL (LOCTITE 518) TO THE FLANGE OF THE GEARCASE (1a)

FIT THE TRIPLE ADAPTOR (28) AND SECURE TO UNIT WITH THE FASTENERS PROVIDED.

TORQUE TIGHTEN TO THE SPECIFIED VALUES.




TIGHTEN SCREWS TO:-

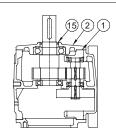
| SCREW SIZE | TORQUE | Nm  | (LB.INS) |
|------------|--------|-----|----------|
| M10        |        | 50  | (440)    |
| M12        |        | 85  | (750)    |
| M16        |        | 200 | (1770)   |
| M20        |        | 350 | (3098)   |

7

POSITION GEAR CASE IN VERTICAL ATTITUDE

LOWER OUTPUT SHAFT ASSEMBLY (A) INTO POSITION. (USE HOIST)




8

APPLY LIQUID GASKET MATERIAL (LOCTITE 518) TO THE FLANGE FACE OF THE GEARCASE (1)

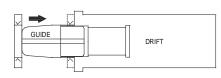
FIT THE BEARING HOUSING (2) TO THE GEARCASE AND SECURE WITH THE FASTENERS PROVIDED.

TORQUE TIGHTEN TO THE SPECIFIED VALUES. CHECK ENDFLOAT.

ENDFLOAT 0.16/0.21mm (0.006"/0.008")



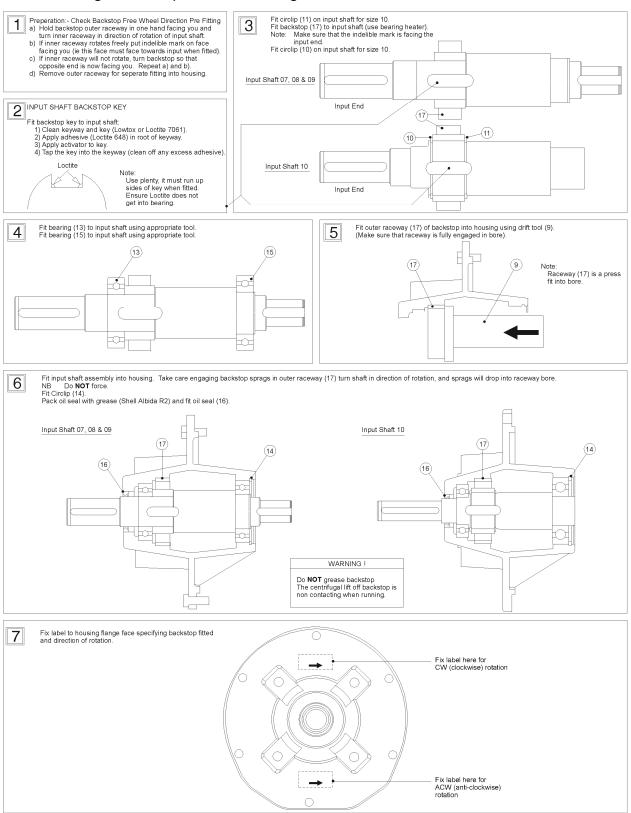
TIGHTEN SCREWS TO :-


| SCREW SIZE | TORQUE | Nm  | (LB.INS) |
|------------|--------|-----|----------|
| M10        |        | 50  | (440)    |
| M12        |        | 85  | (750)    |
| M16        |        | 200 | (1770)   |
| M20        |        | 350 | (3098)   |

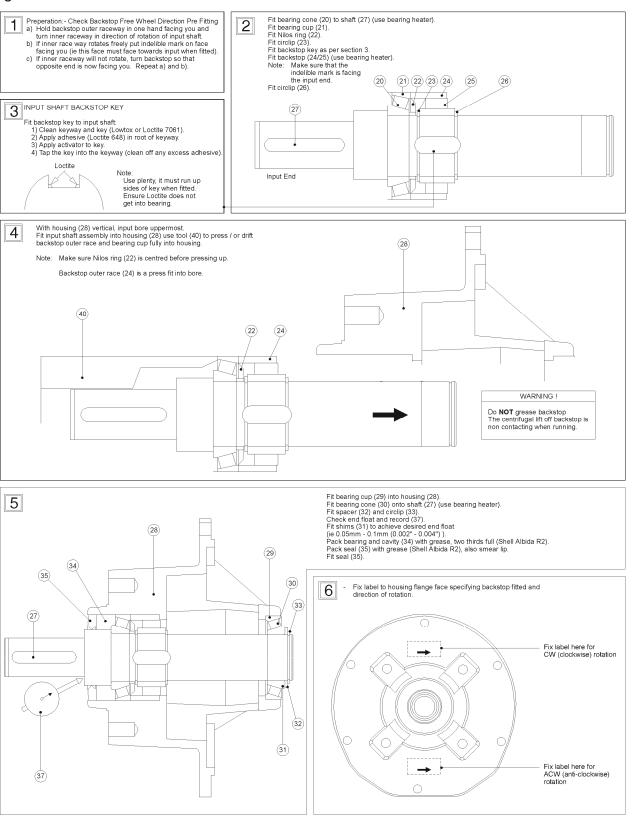
9

PACK OIL SEAL WITH GREASE (SHELL ALBIDA R2) OR APPROVED GREASE FROM LUBRICATION CATALOGUE POSITION OIL SEAL ON THE DRIFT USING THE GUIDE:-

| M13      | M14      |
|----------|----------|
| 157468ST | 157469ST |

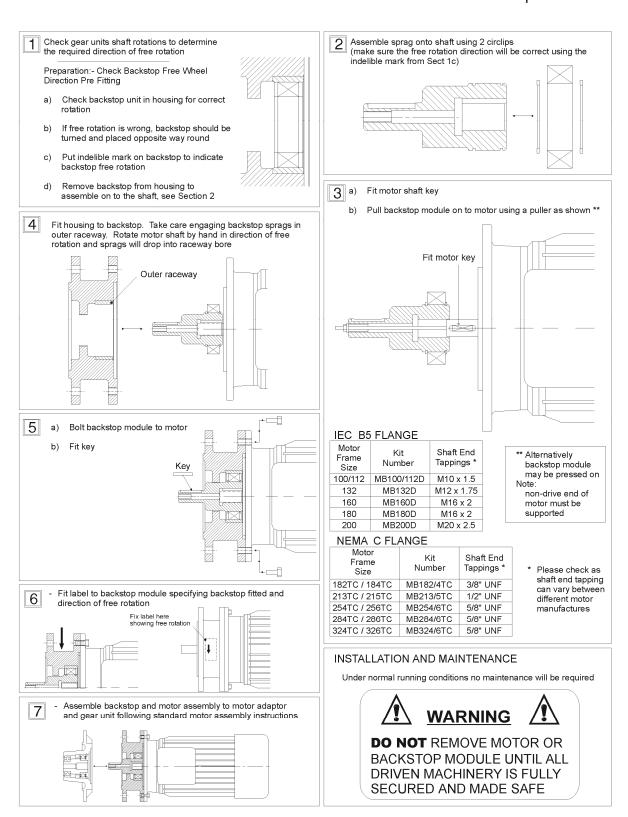

FIT OIL SEAL (15) USING DRIFT TOOL, INTO BEARING HOUSING (2)




FOR DOUBLE OUTPUT SEALS REPEAT OPERATION

### 11. ASSEMBLY OF INLINE REDUCER HOUSING FITTED WITH BACKSTOP.

Follow the instructions shown to assemble an inline reducer housing with backstop, for gearunits up to and including size 10.




Follow the instructions shown to assemble an inline reducer housing with backstop, for gearunits from size 12 to size 14.

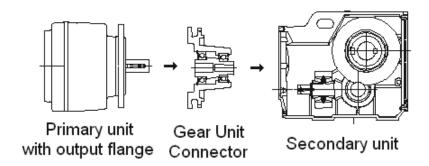


### 12. ASSEMBLY OF MOTORISED BACKSTOP MODULE.

Follow the instructions shown to assemble the motorised backstop module.



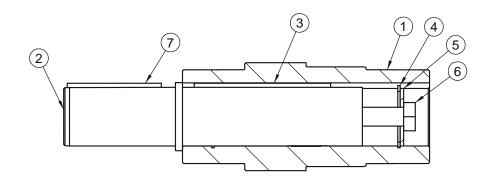
### 13. FITTING INSTRUCTIONS FOR 'ANCILLARY' ITEMS.


This section covers the following items:

- 1. Series M bolt on feet kit (Sizes M05-M07 single reduction)
- 2. Series M output flange kit.
- 3. Series K output flange kit.
- 4. Series K torque arm bracket.
- 5. Series C output flange kit.
- 6. Series C torque arm bracket.
- 7. Series F output flange kit.
  - 13.1. Thoroughly clean the mating faces of the gear unit and the ancillary item to be fitted, using Lowtox or Loctite 7063 Superclean.
  - 13.2. Allow the components to dry prior to assembly.
  - 13.3. Fit to the gearcase with the fasteners provided, and torque tighten to the values in the table below.

| BOLT SIZE | TIGHTENING TORQUES |         |  |  |
|-----------|--------------------|---------|--|--|
| BOLT SIZE | Nm                 | Lbs.ins |  |  |
| M6        | 10                 | 90      |  |  |
| M8        | 25                 | 220     |  |  |
| M10       | 50                 | 440     |  |  |
| M12       | 85                 | 750     |  |  |
| M16       | 200                | 1770    |  |  |
| M20       | 350                | 3098    |  |  |

### 14. ASSEMBLY OF QUADRUPLE & QUINTUPLE UNITS.


- 14.1. Fit the primary wheel to the secondary unit as described in Section 2.
- 14.2. Fit the primary pinion into the gear unit connector, refer to Section 3 for fitting method and assembly tooling
- 14.3. Clean the mating flange faces of the secondary unit, and the gear unit connector using Lowtox or Loctite 7063 Superclean.
- 14.4. Apply liquid gasket material (Loctite 518) to the secondary unit flange face as detailed in section 1.5.
- 14.5. Engage the primary pinion into the primary wheel, and then secure the gear unit connector to the secondary unit with the fasteners provided. Torque tighten to the specified values.
- 14.6. Clean the mating flange faces of the primary unit, and the output flange using Lowtox or Loctite 7063 Superclean.
- 14.7. Fit the output flange to the primary unit and secure with the fasteners provided. Torque tighten to the specified values.
- 14.8. Spray plug-in shaft bore and primary unit output shaft with Rocol DFSM.
- 14.9. Fit the primary unit sub-assembly to the gear unit connector, taking care to line up the primary unit output shaft key, with the keyway in the gear unit connector.
- 14.10. Secure with the fasteners provided and torque tighten to the specified values.



| BOLT SIZE | TIGHTENING TORQUES |         |  |
|-----------|--------------------|---------|--|
| BOLT SIZE | Nm                 | Lbs.ins |  |
| M6        | 10                 | 90      |  |
| M8        | 25                 | 220     |  |
| M10       | 50                 | 440     |  |
| M12       | 85                 | 750     |  |
| M16       | 200                | 1770    |  |
| M20       | 350                | 3098    |  |

ENG-07-01-013 Page 31 Issue 10.0

### 15. ASSEMBLY OF OUTPUTSHAFT INTO THE OUTPUT SLEEVE.



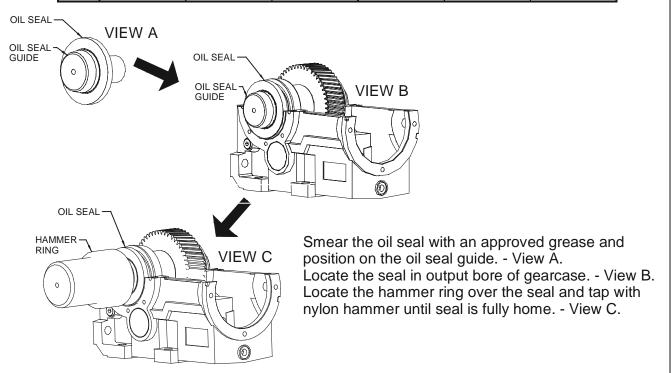
15.1. Spray the hollow shaft bore and mating diameter of output shaft with Rocol DFSM

### 15.2. For single extension shaft:

- 15.2.1. Fit the shaft to hollow bore location key (3) in position in the output shaft.
- 15.2.2. Fit the circlip (4) into the output sleeve.
- 15.2.3. Fit the output shaft into the output sleeve, taking care to line the key up with the keyway in the sleeve.
- 15.2.4. Secure in place with the washer (5) and bolt (6). Torque tighten to the values stated below.
- 15.2.5. Fit the output shaft extension key (7).

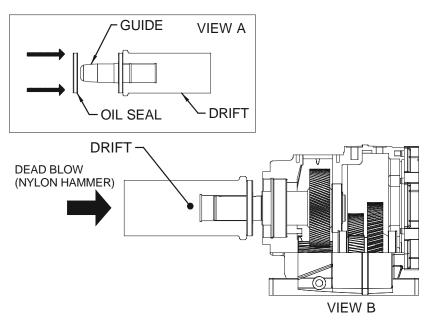
### 15.3. For double extension shaft:

- 15.3.1. Fit the shaft to hollow bore location key (3) in position in the output shaft.
- 15.3.2. Fit the output shaft into the output sleeve, taking care to line the key up with the keyway in the sleeve.
- 15.3.3. Fit the circlip to secure the output sleeve into the output sleeve.
- 15.3.4. Fit the output shaft extension keys (7).


| BOLT SIZE | TIGHTENING TORQUES | BOLT SIZE | TIGHTENING TORQUES |
|-----------|--------------------|-----------|--------------------|
|           | Nm                 |           | Lbs.ft             |
| M10       | 15                 | 3/8"UNF   | 12                 |
| M12       | 20                 | 1/2"UNF   | 15                 |
| M16       | 45                 | 5/8"UNF   | 35                 |
| M20       | 85                 | 3/4"UNF   | 60                 |
| M24       | 200                | 1"UNF     | 160                |

### 16. FITTING DOUBLE OIL SEALS.

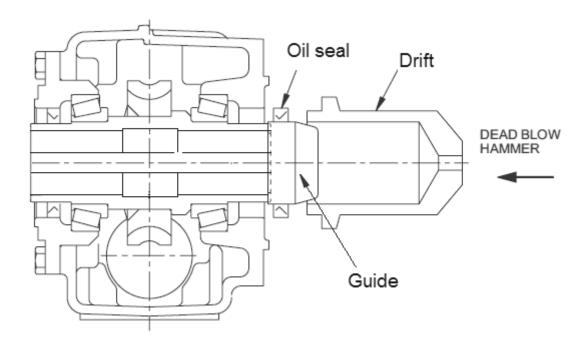
- 16.1. If the seal in the oil seal kit is of the single lip type, then the seal in the gearhead must be pushed deeper into it's housing, before fitting the secondary seal, by using the tooling listed in the following sections.
- 16.2. If the seal in the oil seal kit is of the double lip type, then the seals in the gearhead must be removed prior to fitting, and the new seal fitted by using the tooling listed in the following sections.
- 16.3. For input adaptors, the seal in the adaptor housing must be pushed deeper into the housing before fitting the secondary seal. Where a gamma seal is also fitted this must be removed prior to fitting the secondary seal, and then refitted once the secondary seal is in place. The secondary seal must be fitted by using the tooling listed at 15.8


### 16.4. Series K Oil Seal Tooling:

| UNIT |             | HAMMER RING |          |             | GUIDE       |          |
|------|-------------|-------------|----------|-------------|-------------|----------|
| UNIT | METRIC      | INCH        | KIBO     | METRIC      | INCH        | KIBO     |
| K03  | AP40489ST-1 | AP40491ST-1 | N/A      | AP40488ST-1 | AP40490ST-1 | N/A      |
| K04  | AP40489ST-2 | AP40491ST-2 | N/A      | AP40488ST-2 | AP40490ST-2 | N/A      |
| K05  | AP40489ST-3 | AP40491ST-3 | N/A      | AP40488ST-3 | AP40490ST-3 | N/A      |
| K06  | AP40489ST-4 | AP40491ST-4 | N/A      | AP40488ST-4 | AP40490ST-4 | N/A      |
| K07  | AP40489ST-5 | AP40491ST-5 | N/A      | AP40488ST-5 | AP40490ST-5 | N/A      |
| K08  | A37484ST    | A37484ST    | A37484ST | A37484ST    | A37484ST    | A37484ST |
| K09  | A37485ST    | A37485ST    | A37485ST | B37478ST    | B37478ST    | B37478ST |
| K10  | A37486ST    | A37486ST    | A37486ST | B37480ST    | B37480ST    | B37480ST |
| K12  | A37487ST    | A37487ST    | A37487ST | B37482ST    | B37482ST    | B37482ST |



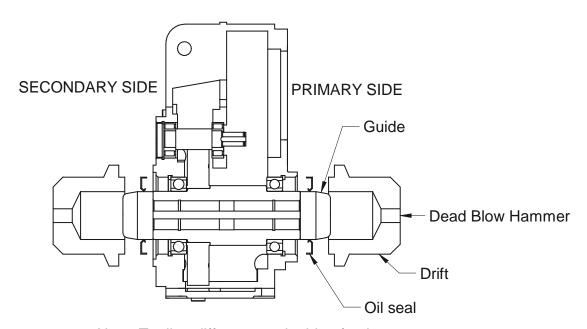
### 16.5. Series M Oil Seal Tooling:


| ITEM                     | M01      | M02 / M03 | M04 / M05 | M06 / M07 | M08      | M09      | M10      | M13      | M14      |
|--------------------------|----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|
| <b>GUIDE &amp; DRIFT</b> | 161367ST | 161368ST  | 161369ST  | 161370ST  | 161364ST | 157392ST | 157393ST | 157468ST | 157469ST |



Smear the oil seal with an approved grease and position on the drift using the oil seal guide. - View A. Remove the guide and fit the oil seal in output bore of gearcase. - View B.

### 16.6. Series C Oil Seal Tooling:

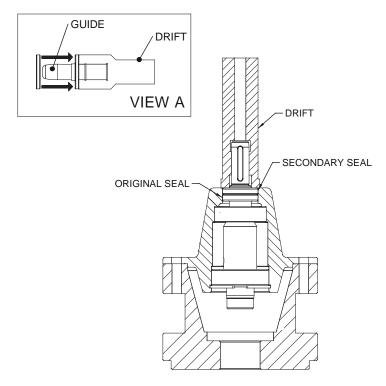

| UNIT      | C03         | AC03        | C04          | AC04        | C05         | AC05        | C06         | AC06        |
|-----------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
| GUIDE     | B36509ST/1A | B36509ST/2A | B36509ST/3A  | B36509ST/4A | B36509ST/5A | B36509ST/5A | B36509ST/6A | B36509ST/6A |
| DRIFT     | B36509ST/1B | B36509ST/2B | B36509ST/3B  | B36509ST/4B | B36509ST/5B | B36509ST/5B | B36509ST/6B | B36509ST/7B |
| BORE SIZE | 20mm        | 3/4"        | 30mm         | 1.1/4"      | 35mm        | 1.3/8"      | 45mm        | 1.1/2"      |
|           |             |             | 222          |             |             |             | 0.10        | 1010        |
| UNIT      | C07         | AC07        | C08          | AC08        | C09         | AC09        | C10         | AC10        |
| GUIDE     | A36818ST    | A36819ST    | A36820ST     | A36821ST    | A26822ST    | A36823ST    | A36824ST    | A36825ST    |
| DRIFT     | A368        | 30ST        | A368         | 31ST        | A368        | 32ST        | A368        | 33ST        |
| BORE SIZE | 60mm        | 2.0"        | 70mm         | 2.3/8"      | 90mm        | 2.3/4"      | 100mm       | 3.1/4"      |
|           |             |             |              |             |             |             |             |             |
| UNIT      | C04Z        | C05Z        | C06Z         | C07Z        | C08Z        | C09Z        | C10Z        |             |
| GUIDE     | B37523ST/8B | B37524ST/9B | B37525ST/10B | A40183ST    | A40345ST    | A40346ST    | A40347ST    |             |
| DRIFT     | B37523ST/8B | B37524ST/9B | B37525ST/10B | A36830ST    | A36831ST    | A36832ST    | A36833ST    |             |
| BORE SIZE | 25mm        | 30mm        | 40mm         | 50mm        | 60mm        | 70mm        | 80mm        |             |



Smear the oil seal with an approved grease and position on the oil seal guide. Fit the seal into the bore by using the guide in conjunction with the drift as shown.

### 16.7. Series F Oil Seal Tooling

| UNIT                     | F02         | F03      | F04         | F05         | F06         | F07         | F08         | F09      | F10      |
|--------------------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|----------|----------|
| PRIMARY SIDE TOOLING     | D00254      | D00274   | D00314      | D00374      | D00454      | D00534      | D00594      | B37321ST | B37323ST |
| THING HET OBE TOOLING    | D0020+      | DOOZIT   | D00014      | D00014      | D00101      | D00001      | D00004      | B37317ST | B37318ST |
| SECONDARY SIDE TOOLING   | D00264      | D00284   | D00324      | D00384      | D00464      | D00544      | D00604      | B37320ST | B37322ST |
|                          |             |          |             | D00001      | D00101      | D00011      | D00001      | B37317ST | B37318ST |
| BORE SIZE                | 25mm        | 30mm     | 35mm        | 40mm        | 40mm        | 50mm        | 60mm        | 70mm     | 80mm     |
| UNIT                     | F02 Inch    | F03 Inch | F04 Inch    | F05 Inch    | F06 Inch    | F07 Inch    | F08 Inch    | F09 Inch | F10 Inch |
| ONIT                     | 1 02 111011 | 103 1101 | 1 04 111011 | 1 03 111011 | 1 00 111011 | 1 07 IIIGII | 1 00 IIICII |          |          |
| PRIMARY SIDE TOOLING     | D00254      | D00294   | D00314      | D00394      | D00474      | D00534      | D00594      | B37478ST | B37480ST |
|                          |             |          |             |             |             |             |             | B37317ST | B37318ST |
| SECONDARY SIDE TOOLING   | D00264      | D00304   | D00324      | D00404      | D00484      | D00544      | D00604      | B37478ST | B37480ST |
| SECONDAIL SIDE 16 OEI140 | D00204      | D00304   | D00324      | D00404      | D00707      | D00077      | D00004      | B37317ST | B37318ST |
| BORE SIZE                | 1.00"       | 1.1/4"   | 1.3/8"      | 1.1/2"      | 1.1/2"      | 2.00"       | 2.3/8"      | 2.7/8"   | 3.5/8"   |
| LINIT                    | E04 Kiba    | FOE Kiba | EOC I/iba   | FOZ I/iha   | FOO Kiba    | F00 Kiba    | E40 Kiba    | 1        |          |
| UNIT                     | F04 Kibo    | F05 Kibo | F06 Kibo    | F07 Kibo    | F08 Kibo    | F09 Kibo    | F10 Kibo    |          |          |
| PRIMARY SIDE TOOLING     | D00334      | D00414   | D00494      | D00554      | D00614      | B37478ST    | B37480ST    |          |          |
| TRIMART SIDE TOOLING     | D00004      | D00414   | D00434      | D00004      | D00014      | B37317ST    | B37318ST    |          |          |
| SECONDARY SIDE TOOLING   | D00344      | D00424   | D00504      | D00564      | D00624      | B37478ST    | B37480ST    |          |          |
| SECONDAINT SIDE TOOLING  | D00344      | D00424   | D00304      | D00304      | D00024      | B37317ST    | B37318ST    |          |          |




Note: Tooling differs at each side of unit

Smear the oil seal with an approved grease and position on the oil seal guide. Fit the seal into the bore by using the guide in conjunction with the drift as shown.

### 16.8. Input Housings

| KIT No.       | M0122-T, M0122-U<br>M0122-X, M0122-Y | M0522-T, M0522-U<br>M0522-X, M0522-Y               | M0720-T, M0720-U<br>M0720-X, M0720-Y |
|---------------|--------------------------------------|----------------------------------------------------|--------------------------------------|
| DRIFT & GUIDE | 157111ST                             | 157285ST                                           | 157248ST                             |
| KIT No.       | M0820-T, M0820-U<br>M0820-X, M0820-Y | M0920-T, M0920-U<br>M0920-X, M0920-Y               | M1020-T, M1020-U<br>M1020-X, M1020-Y |
| DRIFT & GUIDE | 157330ST                             | 157376ST                                           | 157375ST                             |
| KIT No.       | ,                                    | ·U, M1320-W, M1320-X, N<br>·U, M1420-W, M1420-X, N | ,                                    |
| DRIFT & GUIDE |                                      | 157476ST                                           |                                      |



Smear the oil seal with an approved grease and position on the drift using the oil seal guide. - View A. Remove the guide and fit the oil seal in housing bore.

## **Section 17 - Lubrication**

## **Approved Lubrication.**

Type E Mineral oil containing industrial EP additives. These have a high load carrying capacity.

| SUPPLIER                       | LUBRICANT TYPE             | 5E          | 6E            | 7E         |
|--------------------------------|----------------------------|-------------|---------------|------------|
| Batoyle Freedom Group          | Remus                      | 220 (-2)    | 320 (-2)      | 460 (-2)   |
| Boxer Services / Millers Oils  | Indus                      | 220 (-10)   | 320 (-10)     | 460 (-10)  |
| BP Oil International Limited   | Energol GR-XF              | 220 (-16)   | 320 (-13)     | 460 (-1)   |
|                                | Energol GR-XP              | 220 (-15)   | 320 (-10)     | 460 (-7)   |
| Caltex                         | Meropa                     | 220 (-4)    | 320 (-4)      | 460 (-4)   |
|                                | RPM Borate EP Lubricant    | 220 (-7)    | 320 (-4)      | 460 (-7)   |
| Carl Bechem GmbH               | Berugear GS BM             | 220 (-20)   | 320 (-13)     | 460 (-10)  |
|                                | Staroil G                  | 220 (-13)   | 320 (-13)     | 460 (-10)  |
| Castrol International          | Alpha Max                  | 220 (-19)   | 320 (-13)     | 460 (-10)  |
|                                | Alpha SP                   | 220 (-16)   | 320 (-16)     | 460 (-1)   |
| Chevron International Oil      | Gear Comp EP (USA ver)     | 220 (-16)   | 320 (-13)     | 460 (-10)  |
| Company Limited                | Gear Comp EP (Eastern ver) | 220 (-13)   | 320 (-13)     | 460 (-13)  |
|                                | Ultra Gear                 | 220 (-10)   | 320 (-7)      | 460 (-7)   |
| Eko-Elda Abee                  | Eko Gearlub                | 220 (-13)   | 320 (-10)     | 460 (-1)   |
| Engen Petroleum Limited        | Gengear                    | 220 (-15)   | 320 (-12)     | 460 (-3)   |
| Esso/Exxon                     | Spartan EP                 | 220 (-12)   | 320 (-12)     | 460 (-4)   |
| Fuchs Lubricants               | Powergear                  | ,           | P/Gear (-16)  | M460 (-4)  |
|                                | Renogear V                 | 220EP (-13) | 320EP (-4)    | 460EP (-4) |
|                                | Renogear WE                | 220 (-7)    | 320 (-4)      | 400 (-4)   |
|                                | Renolin CLPF Super         | 6 (-13)     | 8 (-10)       | 10 (-10)   |
| Klüber Lubrication             | Klüberoil GEM1             | 220 (-5)    | 320 (-5)      | 460 (-5)   |
| Kuwait Petroleum International | Q8 Goya                    | 220 (-16)   | 320 (-13)     | 460 (-10)  |
| Lubrication Engineers Inc.     | Almasol Vari-Purpose Gear  | 607 (-18)   | 605 (-13)     | 608 (-10)  |
| Mobil Oil Company Limited      | Mobil gear 600 series      | 630 (-13)   | 632 (-13)     | 634 (-1)   |
|                                | Mobil gear XMP             | 220 (-19)   | 320 (-13)     | 460 (-7)   |
| Omega Manufacturing Division   | Omega 690                  |             | 85w/140 (-15) |            |
| Optimal Ölwerke GmbH           | Optigear BM                | 220 (-11)   | 320 (-10)     | 460 (-7)   |
|                                | Optigear                   | 220 (-18)   | 320 (-9)      | 460 (-7)   |
| Pertamina (Indonesia)          | Masri                      | 220 (-4)    | 320 (-4)      | 460 (-7)   |
| Petro-Canada                   | Ultima EP                  | 220 (-22)   | 320 (-16)     | 460 (-10)  |
| Rocol                          | Sapphire Hi-Torque         | 220 (-13)   | 320 (-13)     | 460 (-13)  |
| Sasol Oil (Pty) Limited        | Cobalt                     | 220 (-4)    | 320 (-1)      | 460 (-4)   |
|                                | Hemat                      | 220 (-10)   | 320 (-7)      | 460 (-4)   |
| Saudi Arabian Lubr. Oil Co.    | Gear Lube EP               | EP220 (-1)  | EP320 (0)     | EP460 (0)  |
| Shell Oils                     | Omala                      | 220 (-4)    | 320 (-4)      | 460 (-4)   |
|                                | Omala F                    | 220 (-13)   | 320 (-10)     | 460 (-4)   |
| Texaco Limited                 | Meropa                     | 220 (-16)   | 320 (-16)     | 460 (-10)  |
|                                | Meropa WM                  | 220 (-19)   | 320 (-16)     | 460 (-11)  |
| Total                          | Carter EP                  | 220 (-7)    | 320 (-7)      | 460 (-4)   |
|                                | CarterVP/CS                | 220 (-16)   | 320 (-13)     | 460 (-7)   |
| Tribol GmbH                    | Molub-Alloy Gear Oil       | 90 (-18)    | 690 (-16)     | 140 (-13)  |
|                                | Tribol 1100                | 220 (-20)   | 320 (-18)     | 460 (-16)  |

DANGER: Numbers in brackets indicate the minimum pour point temperature of the specified oil in °C

THE UNIT MUST NOT BE RUN BELOW THIS TEMPERATURE

### **Approved Lubrication.**

**Type G** Polyglycol based synthetic lubricants with Anti-Wear or EP additives. These have a medium to high load carrying capacity. (see +)

| SUPPLIER                       | LUBRICANT TYPE                             | 5G          | 6G          | 7G          | 8G        | 9G         |
|--------------------------------|--------------------------------------------|-------------|-------------|-------------|-----------|------------|
| Boxer Services / Millers Oils  | Boxergear W                                | 220 (-31)   | 320 (-31)   | 460 (-28)   |           |            |
| BP Oil International Limited   | Enersyn SG-XP                              | 220 (-31)   |             | 460 (-34)   | 680 (-28) |            |
| Caltex                         | Synlube CLP                                | 220 (-34)   | 320 (-31)   | 460 (-28)   | 680 (-31) |            |
| Carl Bechem GmbH               | Berusynth EP                               | 220 (-25)   | 320 (-25)   | 460 (-25)   | 680 (-28) | 1000 (-28) |
| Castrol International          | Alphasyn PG                                | 220 (-34)   | 320 (-31)   | 460 (-28)   |           |            |
| Esso/Exxon                     | Glycolube                                  | 220 (-25)   | 320 (-25)   | 460 (-23)   |           |            |
| Fuchs Lubricants               | Renolin PG                                 | 220 (-34)   | 320 (-34)   | 460 (-34)   | 680 (-28) | 1000 (-28) |
| Klüber Lubrication             | Klübersynth GH6                            | 220 (-25)   | 320 (-25)   | 460 (-20)   | 680 (-20) | 1000 (-28) |
|                                | Klübersynth UH1 6                          | 220 (-30)   | 320 (-25)   | 460 (-25)   |           |            |
| Kuwait Petroleum International | Q8 Gade                                    | 220 (-22)   | 320 (-22)   | 460 (-22)   |           |            |
| Laporte Performance Chemicals  | Berox Industrial Lubricant SW              | 220 (-25)   | 320 (-25)   | 460 (-23)   | 680 (-20) | 1000 (-28) |
| Limited                        | Berox SL Range                             | 220 (-40)   | 320 (-37)   | 460 (-23)   |           |            |
|                                | Berox Oil Soluble Industrial Lube <b>x</b> | 220 (-23)   |             |             |           |            |
| Mobil Oil Company Limited      | Glygoyle                                   | HE220 (-22) | HE320 (-37) | HE460 (-35) |           |            |
| Optimal Ölwerke GmbH           | Optiflex A +                               | 220 (-28)   | 320 (-28)   | 460 (-28)   | 680 (-28) | 1000 (-25) |
| Shell Oils                     | Tivela                                     | SB (-25)    | SC (-25)    | SD (-23)    |           |            |
|                                | Tivela S                                   | 220 (-34)   | 320 (-34)   | 460 (-34)   |           |            |
| Texaco Limited                 | Synlube CLP                                | 220 (-34)   | 320 (-31)   | 460 (-10)   | 680 (-31) |            |
| Total                          | Carter SY                                  | 220 (-25)   | 320 (-28)   | 460 (-22)   |           |            |
| Tribol GmbH                    | Tribol 800                                 | 220 (-27)   | 320 (-25)   | 460 (-25)   | 680 (-25) | 1000 (-23) |

+ NOT SUITABLE FOR APPLICATIONS REQUIRING INDUSTRIAL EP ADDITIVES

NOTE: TYPE G LUBRICANTS WILL AFFECT CERTAIN GEARCASE PAINTS AND SHRINK CERTAIN SEALS, CONTACT OUR SALES OFFICE BEFORE USE.

**DANGER:** Numbers in brackets indicate the minimum pour point temperature of the specified oil in °C THE UNIT MUST NOT BE RUN BELOW THIS TEMPERATURE.

x THIS PARTICULAR LUBRICANT IS COMPATIBLE WITH TYPES M, A, E, AND H

### **Approved Lubrication.**

**Type H** Polyalphaolefin based synthetic lubricants with Anti-Wear or EP additives. These have a medium to high load carrying capacity.

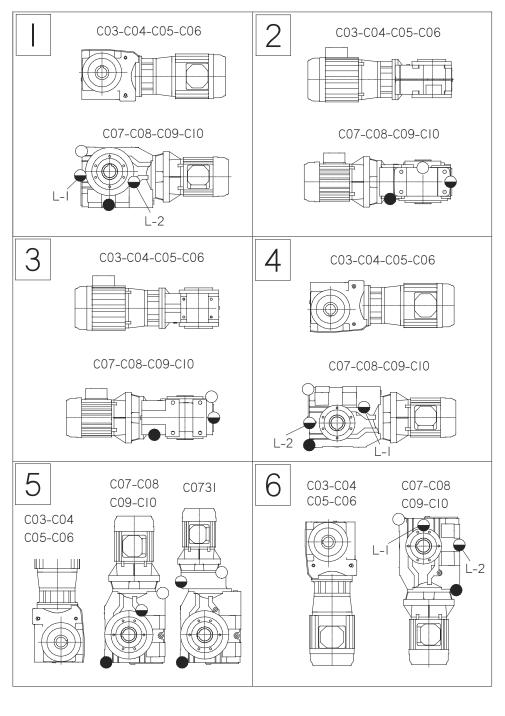
| SUPPLIER                       | LUBRICANT TYPE         | 5H        | 6H        |
|--------------------------------|------------------------|-----------|-----------|
| Batoyle Freedom Group          | Titan                  | 220 (-31) | 320 (-28) |
| Boxer Services / Millers Oils  | Silkgear               | 220 (-35) | 320 (-35) |
| BP Oil International Limited   | Enersyn EPX            | -         | 320 (-28) |
| Caltex                         | Pinnacle EP            | 220 (-43) | 320 (-43) |
| Carl Bechem GmbH               | Berusynth GP           | 220 (-38) | 320 (-35) |
| Castrol International          | Alphasyn EP            | 220 (-37) | 320 (-31) |
|                                | Alphasyn T             | 220 (-31) | 320 (-28) |
| Chevron International Oil Co   | Tegra                  | 220 (-46) | 320 (-33) |
| Esso/Exxon                     | Spartan Synthetic EP   | 220 (-46) | 320 (-43) |
| Fuchs Lubricants               | Renogear SG            | 220 (-32) | 320 (-30) |
|                                | Renolin Unisyn CLP     | 220 (-37) | 320 (-34) |
| Klüber Lubrication             | Klübersynth GEM4       | 220 (-30) | 320 (-25) |
| Kuwait Petroleum International | Q8 El Greco            | 220 (-22) | 320 (-19) |
| Lubrication Engineers Inc.     | Synolec Gear Lubricant | 220 (-40) | -         |
| Mobil Oil Company Limited      | Mobilgear SHC          | 220 (-40) | 320 (-37) |
|                                | Mobil gear XMP         | 220 (-40) | 320 (-33) |
| Optimal Ölwerke GmbH           | Optigear Synthetic A   | 220 (-31) | 320 (-31) |
| Petro-Canada                   | Super Gear Fluid       | 220 (-43) | 320 (-37) |
| Shell Oils                     | Omala HD               | 220 (-43) | 320 (-40) |
| Texaco Limited                 | Pinnacle EP            | 220 (-43) | 320 (-43) |
|                                | Pinnacle WM            | 220 (-43) | 320 (-40) |
| Total                          | Carter EP/HT           | 220 (-34) | 320 (-31) |
| Tribol GmbH                    | Tribol 1510            | 220 (-36) | 320 (-33) |

**DANGER:** Numbers in brackets indicate the minimum pour point temperature of the specified oil in °C THE UNIT MUST NOT BE RUN BELOW THIS TEMPERATURE.

### **Series C Lubrication**

- 1. **C03 to C06** are supplied factory filled with a quantity of polyglycol synthetic oil (Grade 6G) appropriate to the mounting position If the gear unit is drained for any reason it must be re-filled with the correct grade and quantity of lubricant as shown in the table below.
- 2. **C07 to C10** are supplied without lubricant and must be filled via the ventilator position with polyglycol synthetic oil (Grade 6G) until the oil escapes through the level plug hole see table below for approximate lubricant quantity,
- 3. **C07 to C10** Oil levels for some units are dependant on mounting position and speed of operation. Level 1 (L-1) for output speeds below 100 rpm Level 2 (L-2) for output speeds 100 rpm and above

#### 4. Maintenance:


- Oil levels for C07 to C10 can be checked and maintained by filling via the ventilator position until oil escapes through the level plug hole,
- C03 to C06 these units must be fully drained and re-filled with the correct quantity of lubricant

| _    |       |       |       |       |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Posn | Level | C0321 | C0421 | C0521 | C0621 | C0721 | C0821 | C0921 | C1021 |
| 1    | L-1   | 0.3   | 0.4   | 0.7   | 1.5   | 4.5   | 7.1   | 17    | 28    |
| ı    | L-2   | 1     | -     | -     | -     | 3.0   | 5.9   | 11    | 17    |
| 2    | -     | 0.5   | 0.7   | 1.0   | 2.3   | 3.5   | 6.2   | 12    | 21    |
| 3    | -     | 0.5   | 0.7   | 1.0   | 2.3   | 3.5   | 6.2   | 12    | 21    |
| 4    | L-1   | 0.7   | 1.0   | 1.4   | 3.1   | 5.1   | 9.5   | 17    | 26    |
| 4    | L-2   | 1     | -     | -     | -     | 3.0   | 4.8   | 8.3   | 14    |
| 5    | -     | 0.6   | 0.9   | 1.4   | 3.0   | 5.6   | 9.6   | 18    | 31    |
| 6    | L-1   | 0.7   | 1.0   | 1.4   | 3.2   | 7.4   | 12    | 25    | 42    |
| 0    | L-2   | -     | -     | -     | -     | 5.1   | 9.5   | 17    | 28    |

| Posn | Level | C0331 | C0431 | C0531 | C0631 | C0731 |
|------|-------|-------|-------|-------|-------|-------|
| 1    | L-1   | 0.4   | 0.5   | 0.9   | 2.1   | 4.8   |
| l I  | L-2   | 1     | -     | -     | -     | 3.8   |
| 2    | -     | 0.8   | 0.9   | 1.4   | 2.5   | 3.7   |
| 3    | -     | 0.8   | 0.9   | 1.4   | 2.5   | 3.7   |
| 4    | L-1   | 1.2   | 1.5   | 2.1   | 4.0   | 5.9   |
| 4    | L-2   | -     | -     | -     | -     | 3.6   |
| 5    | -     | 1.0   | 1.3   | 2.0   | 4.6   | 6.6   |
| 6    | L-1   | 1.2   | 1.5   | 1.9   | 4.0   | 9.2   |
| 0    | L-2   | -     | -     | -     | -     | 6.9   |

- 5. **C07 to C10** Fit the ventilator plug in the position appropriate to the mounting position. **C03 to C06** do <u>not</u> require a ventilator
- 6. **Quadruple Reduction Units** consist of a Series M primary unit flange mounted onto the Series C unit, see Series M lubrication data for details appropriate to the primary unit, both units should checked for oil type and quantity.

## **Series C Mounting Positions and Lubrication fill levels**



DRAIN POSITION

LEVEL POSITION

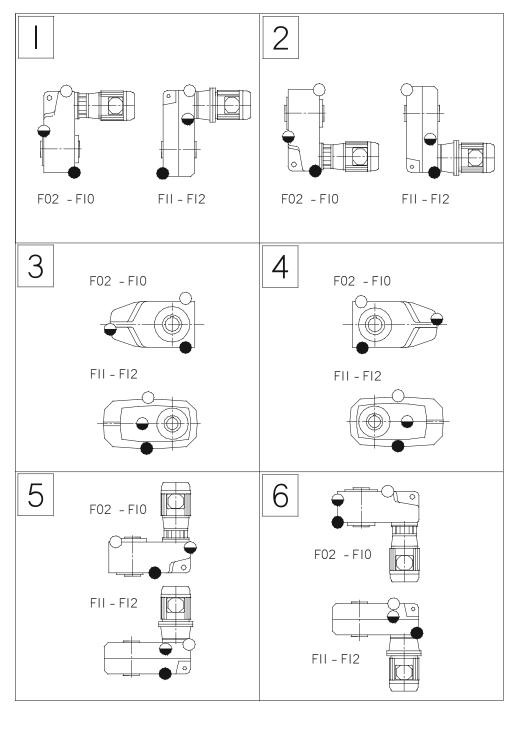
VENTILATOR POSITION

ENG-07-01-013 Page 42 Issue 10.0

### **Series F Lubrication**

- 1. **F02 to F07** are supplied factory filled with a quantity of EP mineral oil (Grade 6E) appropriate to the mounting position. If the gear unit is drained for any reason it must be re-filled with the correct grade and quantity of lubricant as shown in the table below.
- 2. **F08 to F12** are supplied without lubricant and must be filled via the ventilator position with EP mineral oil (Grade 6E) until oil escapes through the level plug hole see table below for approximate quantity of lubricant.

#### 3. Maintenance:


- Oil levels for F05 to F12 can be checked and maintained by filling via the ventilator position until oil escapes through the level plug hole,
- F02, F03 and F04 These units must be fully drained and re-filled with the correct quantity of lubricant.

| Posn | F0222 | F0322 | F0422 | F0522 | F0622 | F0722 | F0822 | F0921 | F1021 | F1121 | F1221 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 0.8   | 1.3   | 1.3   | 2.1   | 3.5   | 6.3   | 10.7  | 19    | 34    | 28    | 47    |
| 2    | 0.4   | 0.8   | 0.8   | 1.4   | 2.3   | 3.5   | 7.1   | 13    | 22    | 17    | 27    |
| 3    | 0.4   | 1.1   | 1.1   | 1.4   | 2.3   | 3.4   | 8.8   | 17    | 28    | 22    | 36    |
| 4    | 0.5   | 0.8   | 0.8   | 1.8   | 3.0   | 5.0   | 4.7   | 15    | 27    | 24    | 40    |
| 5    | 1.1   | 1.2   | 1.2   | 2.8   | 4.5   | 8.0   | 9.7   | 24    | 43    | 34    | 56    |
| 6    | 1.3   | 2.0   | 2.0   | 3.2   | 5.2   | 9.0   | 17.2  | 25    | 43    | 30    | 50    |

| Posn | F0232 | F0332 | F0432 | F0532 | F0632 | F0732 | F0832 | F0931 | F1031 | F1131 | F1231 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 0.8   | 1.2   | 1.2   | 2.1   | 3.5   | 6.3   | 10.4  | 19    | 34    | 27    | 45    |
| 2    | 0.4   | 0.8   | 0.8   | 1.4   | 2.3   | 3.5   | 7.3   | 15    | 24    | 16    | 25    |
| 3    | 0.4   | 1.1   | 1.1   | 1.4   | 2.3   | 3.4   | 9.2   | 17    | 28    | 21    | 34    |
| 4    | 0.5   | 0.8   | 0.8   | 1.8   | 3.0   | 5.0   | 5.3   | 16    | 27    | 23    | 38    |
| 5    | 1.1   | 1.2   | 1.2   | 2.8   | 4.5   | 8.0   | 9.7   | 24    | 43    | 33    | 53    |
| 6    | 1.3   | 2.0   | 2.0   | 3.2   | 5.2   | 9.0   | 17.4  | 25    | 43    | 29    | 48    |

- 4. **F09 to F12** units only, fit the ventilator plug in the position appropriate to the mounting position. **F02 to F08** units do <u>not</u> require a ventilator
- 5. **Quadruple Reduction Units** consist of a Series M primary unit flange mounted onto the Series F unit, see Series M lubrication data for details appropriate to the primary unit, both units should checked for oil type and quantity.

## <u>Series F – Mounting Positions and Lubrication Fill Levels</u>



DRAIN POSITION

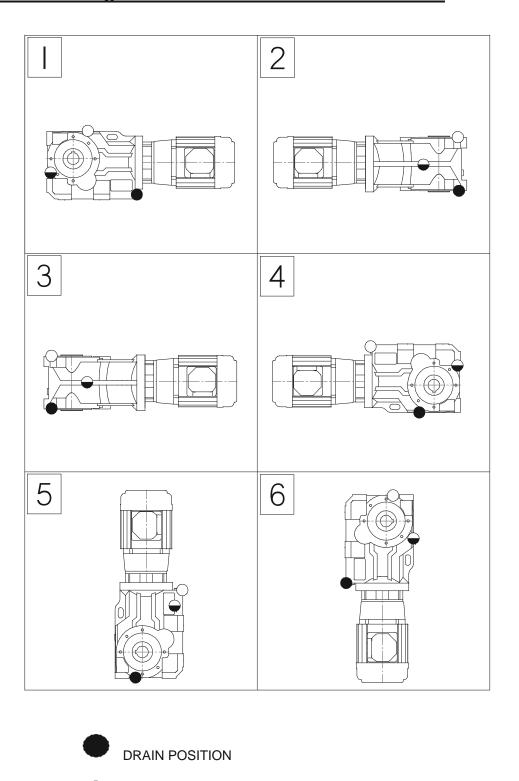
LEVEL POSITION

VENTILATOR POSITION

ENG-07-01-013 Page 44 Issue 10.0

### **Series K Lubrication**

- 1. **K03 to K07** are supplied factory filled with a quantity of EP mineral oil (Grade 6E) appropriate to the mounting position If the gear unit is drained for any reason it must be re-filled with the correct grade and quantity of lubricant as shown in the table below.
- 2. K08 to K12 are supplied without lubricant and must be filled via the ventilator position with EP mineral oil (Grade 6E) until oil escapes through the level plug hole see table below for approximate lubricant quantity,


#### 3. Maintenance:

- Oil levels for K06 to K12 can be checked and maintained by filling via the ventilator position until oil escapes through the level plug hole,
- K03, K04 and K05 These units must be fully drained and re-filled with the correct quantity of lubricant.

| Posn | K0332 | K0432 | K0532 | K0632 | K0732 | K0832 | K0931 | K1031 | K1231 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 0.5   | 0.7   | 1.1   | 1.5   | 2.7   | 4.4   | 9.3   | 15    | 23    |
| 2    | 0.7   | 0.9   | 1.5   | 1.8   | 3.6   | 3.7   | 8.3   | 15    | 27    |
| 3    | 0.8   | 1.1   | 1.7   | 2.8   | 4.0   | 7.6   | 18    | 28    | 33    |
| 4    | 1.0   | 1.3   | 1.9   | 2.7   | 4.5   | 7.5   | 17    | 30    | 39    |
| 5    | 1.2   | 1.7   | 2.5   | 3.6   | 5.7   | 9.6   | 21    | 34    | 50    |
| 6    | 0.9   | 1.2   | 2.0   | 2.6   | 4.5   | 7.6   | 16    | 25    | 35    |

- **4. K06 to K12** units only, fit the ventilator plug in the position appropriate to the mounting position. **K03 to K05** units do <u>not</u> require a ventilator.
- **5. Quintuple Reduction Units** consist of a Series M primary unit flange mounted onto the Series K unit, see Series M lubrication data for details appropriate to the primary unit, both units should checked for oil type and quantity.

## **Series K – Mounting Positions and Lubrication Fill Levels**



VENTILATOR POSITION

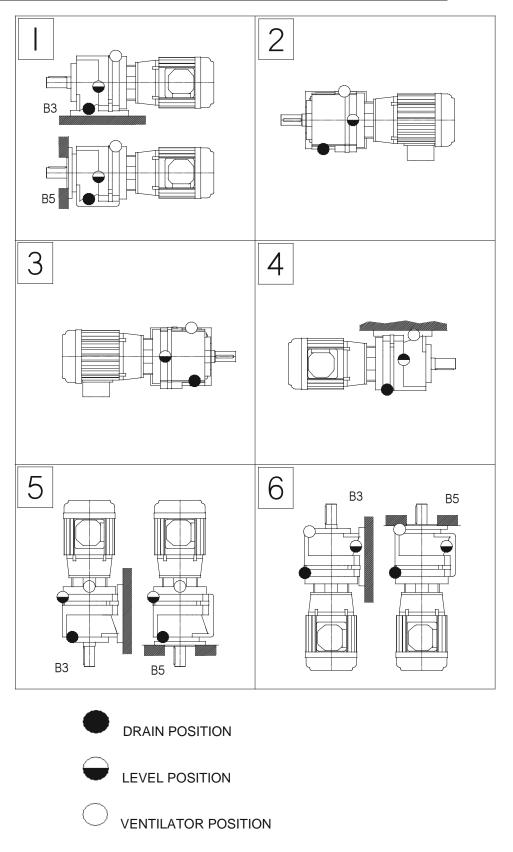
LEVEL POSITION

ENG-07-01-013 Page 46 Issue 10.0

### **Series M Lubrication**

- 1. **M01 to M07** are supplied factory filled with a quantity of EP mineral oil (Grade 6E) appropriate to the mounting position If the gear unit is drained for any reason it must be re-filled with the correct grade and quantity of lubricant as shown in the table below.
- 2. M08 to M14 are supplied without lubricant and must be filled via the ventilator position with EP mineral oil (Grade 6E) until oil escapes through the level plug hole see table below for approximate lubricant quantity,

#### 3. Maintenance:


- a. Oil levels for M04 to M14 can be checked and maintained by filling via the ventilator position until oil escapes through the level plug hole,
- These units M01, M02 and M03 must be fully drained and re-filled with the correct quantity of lubricant.

| Posn | M0122 | M0222 | M0322 | M0422 | M0522 | M0622 | M0722 | M0822 | M0921 | M1021 | M1321 | M1421 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 0.5   | 0.8   | 0.8   | 1.5   | 1.5   | 2.0   | 2.6   | 4.2   | 10.5  | 14    | 17    | 24    |
| 2    | 0.8   | 1.2   | 1.2   | 1.8   | 1.8   | 2.0   | 2.9   | 6.3   | 12.0  | 22    | 31    | 49    |
| 3    | 0.6   | 0.7   | 0.7   | 1.6   | 1.6   | 1.9   | 2.7   | 5.4   | 12.0  | 22    | 31    | 49    |
| 4    | 0.8   | 1.2   | 1.2   | 1.8   | 1.8   | 1.7   | 3.0   | 7.3   | 12.0  | 19    | 28    | 41    |
| 5    | 0.7   | 1.1   | 1.1   | 2.0   | 2.0   | 2.2   | 3.2   | 6.8   | 16.8  | 32    | 47    | 72    |
| 6    | 1.0   | 1.4   | 1.4   | 2.6   | 2.6   | 2.8   | 4.7   | 9.3   | 16.4  | 26    | 38    | 65    |

| Posn | M0132 | M0232 | M0332 | M0432 | M0532 | M0632 | M0732 | M0832 | M0931 | M1031 | M1331 | M1431 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 0.6   | 0.8   | 0.8   | 1.6   | 1.6   | 2.1   | 2.7   | 4.4   | 11.5  | 14    | 18    | 25    |
| 2    | 0.9   | 1.3   | 1.3   | 1.9   | 1.9   | 2.1   | 3.0   | 6.5   | 12.0  | 24    | 33    | 50    |
| 3    | 0.7   | 0.7   | 0.7   | 1.7   | 1.7   | 2.0   | 2.8   | 5.6   | 12.0  | 24    | 33    | 50    |
| 4    | 0.9   | 1.2   | 1.2   | 1.9   | 1.9   | 1.8   | 3.1   | 7.5   | 12.0  | 21    | 30    | 43    |
| 5    | 0.7   | 1.1   | 1.1   | 2.1   | 2.1   | 2.3   | 3.3   | 6.8   | 16.8  | 32    | 47    | 72    |
| 6    | 1.1   | 1.6   | 1.6   | 2.7   | 2.7   | 2.9   | 4.8   | 9.7   | 16.5  | 28    | 40    | 67    |

- **6. M04 to M14** units only, fit the ventilator plug in the position appropriate to the mounting position. **M01 to M03** units do <u>not</u> require a ventilator.
- 7. Quintuple Reduction Units consist of a smaller Series M primary unit flange mounted onto the main Series M gear unit, both units should checked for oil type and quantity.

## <u>Series M – Mounting Positions and Lubrication Fill Levels</u>



ENG-07-01-013 Page 48 Issue 10.0