WEAR AND MAINTENANCE FREE.

LINE SHAFTS

SERIES ZA / ZAE | 10 - 4,000 Nm EZ2 / EZV | 10 - 2,150 Nm

THE ULTIMATE COUPLING FROM 10 - 4,000 Nm

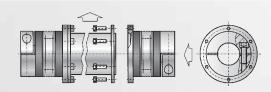
TORSION RESISTANT LINE SHAFTS

Application Examples:

Spanning of larger axial distances

- Palletizers
- Screw jack systems
- Multi-axis linear modules
- Printing machinery
- Paper pulp machinery
- Packaging machinery
- Conveyor systems
- Textile machinery
- Crane gantry systems
- Automated assembly systems
- Woodworking machinery
- Food processing machinery

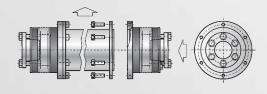
MODEL


PROPERTIES

APPLICATION EXAMPLES

from 10 – 800 Nm

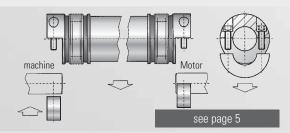
- Mounting + dismounting without moving the aligned shafts
- Standard lengths up to 6 m (19.68 ft.)
- No intermediate support bearing required



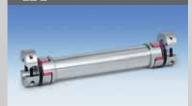
see page 3

from 1500 - 4,000 Nm

- Mounting + dismounting without moving the aligned shafts
- Standard lengths up to 3 m (9.84 ft.)
- No intermediate support bearing required

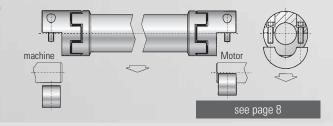


see page 4



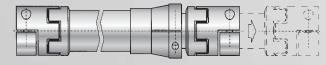
from 10 - 800 Nm

- Coupling radially removable
- easy mounting and dismounting with split hubs
- Standard lengths up to 6 m (19.68 ft.)
- No intermediate support bearing required



line shaft with split clamping hub

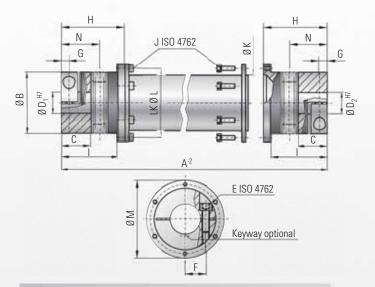
- vibration damping
- easy mounting and dismounting with split hubs
- length up to 4 m (13.12 ft.)
- no intermediate support bearing necessary
- radial mounting due to split hubs

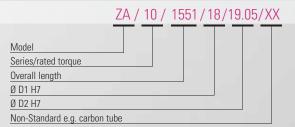


EZV

from 10 - 800 Nm

- continuously adjustable length
- vibration damping
- easy mounting and dismounting with split hubs
- length up to 4 m (13.12 ft.)
- no intermediate support bearing necessary
- radial mounting due to split hubs


see page 9


MODEL **ZA 10-800 Nm**

with clamping hub

BACKLASH FREE LINE SHAFTS

Ordering example

All data is subject to change without notice.

Properties:

Material:

- Compensation for misalignment
- Backlash-free and torsionally rigid
- Able to span long distances
- Standard lengths up to 6 m (19.68 ft.)
- No intermediate support bearing required
- Intermediate tube removable for easy mounting
- Bellows made of flexible high grade stainless
- Aluminum intermediate tube section through size 200, size 300 and up steel **Optional composite CFK tube**
- Clamping hubs through size 60 Aluminum, size
- 150 and up steel Design: Balanced clamping hubs with one radial screw
 - per ISO 4762 Intermediate tube section supported by gimbals within the clamping hub
 - Mounting and dismounting accomplished through the removal of the intermediate tube

Temperature range:

-30 to +100° C (-22° F to 212° F)

Speed: Service life: Depending on length A, please contact R+W

These couplings have an infinite life and are maintenance-free if the technical ratings are not exceeded.

Backlash:

Absolutely backlash-free due to frictional clamp

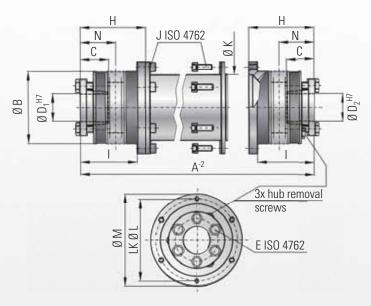
connection

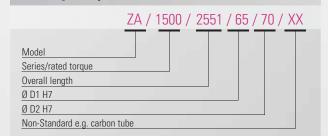
Fit tolerance:

Shaft/hub connection 0.01 to 0.05 mm

Madal 70.40	DOO N					Sei	ries			
Model ZA 10 - 8	SUU N	m	10	30	60	150	200	300	500	800
Rated torque	(Nm)	T _{KN}	10	30	60	150	200	300	500	800
Overall length min. to max.	(mm)	A	110 to 6,000	140 to 6,000	170 to 6,000	190 to 6,000	210 to 6,000	250 to 6,000	260 to 6,000	260 to 6,000
Outer diameter clamping hub	(mm)	В	40	55	66	81	90	110	123	134
Fit length	(mm)	С	16	27	31	35.5	40.5	43	50	48
Inner diamter from Ø to Ø H7	(mm)	D _{1/2}	5 to 20	10 to 28	12 to 32	19 to 42	22 to 45	30 to 60	35 to 60	40 to 72
With keyway max. Ø H7	(mm)	D _{1/2}	17	23	29	36	45	60	60	66
ISO 4762 clamping screw			M4	M6	M8	M10	M12	M12	M16	2x M16
Tightening torque	(Nm)		5	15	40	70	110	130	200	250
Distance between centers	(mm)	F	15	19	23	27	31	39	41	48
Distance	(mm)	G	5	7.5	9.5	11	12.5	13	17	18
Length bellows body	(mm)	Н	44.5	57.5	71	78	86	94	110	101
Distance	(mm)		38.5	51	61	69	75.5	81	96	89
ISO 4762 screw			4x M4	6x M4	6x M5	8x M6	8x M6	8x M8	8x M8	10x M8
Tightening torque of the assembly screws	(Nm)		3	4	7	10	12	30	30	40
Outer diamter tube section	(mm)	K	35	50	60	76	90	100	110	120
Bolt hole circle Ø	(mm)	L	45	62.5	71.5	88	100	120	132	138
Outer diamter flange	(mm)	М	52	70	80	98	110	135	148	153
Shaft average value	(mm)	N	25	34	41	47	52	56	66	64

1Nm = 8.85 in lbs max. permissible misalignment page 6


www.rw-america.com


MODEL **ZA 1500-4000 Nm**

with tapered conical sleeves

BACKLASH FREE LINE SHAFTS

Ordering example

All data is subject to change without notice.

Model ZA 1500 -	/nnn	Nlm	Ser	ies
Widuel ZA 1500 -	1 000	IVIII	1500	4000
Rated torque	(Nm)	T _{KN}	1500	4000
Overall length min. to max.	(mm)	Α	280 to 6,000	280 to 6,000
Quter diameter	(mm)	В	157	200
Fit length	(mm)	С	61	80,5
Inner diameter from Ø to Ø H7	(mm)	D _{1/2}	35 to 70	40 to 100
ISO 4017 clamping screws	6x	Е	M12	M16
Tightening torque	(Nm)	E	70	120
Length bellows body	(mm)	Н	98	103,5
Distance	(mm)		82	84
ISO 4762 screw			10x M10	12x M12
Tightening torque of the assembly screws	(Nm)		70	120
Outer diameter tube section	(mm)	K	150	160
Bolt hole circle Ø	(mm)	L	168	193
Outer diameter flange	(mm)	М	184	213
Shaft average value	(mm)	N	56	61

max. permissible misalignment page 6

Properties:

- Compensation for misalignment
- Backlash-free and torsionally rigid
- Able to span longer distances
- Standard lengths up to 3 m (9.84 ft)
- No intermediate support bearing required
- Intermediate tube removable for easy mounting
- Material:
- Bellows made of flexible high grade stainless steel
- Intermediate tube section: steel, optional composite CFK tube
- Clamping hubs: steel

Design:

- With tapered conical sleeves and captive jack
- Intermediate tube section supported by gimbals within the clamping hub.
- Lateral mounting and dismounting accomplished through the removal of the intermediate tube section.

Temperature

range:

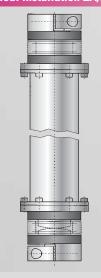
-30 to +100° C (-22° F to 212° F)

Speed:

Depending on length A, please contact R+W

Service life:

These couplings have an infinite life and are maintenance-free if the technical ratings are not exceeded


Backlash:

Absolutely backlash-free due to frictional clamp

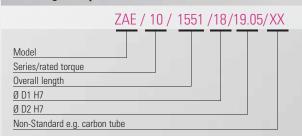
Fit tolerance:

Shaft/hub connection 0.01 to 0.05 mm

Vertical installation ZA/ZAE

- When mounting vertically additional support of the lower bellows body is necessary.
- A special bellows body for vertical mounting is available upon request.
- Please note "vertical mounting" when ordering.

R+W


MODEL ZAE 10-800 Nm

with split hub

BACKLASH FREE LINE SHAFTS

A² H N G F F F O C E ISO 4762 Keyway optional

Ordering example

All data is subject to change without notice.

Properties:

- Compensation for misalignment
- Backlash-free and torsionally rigid
- Able to span longer distances
- Standard lengths up to 6 m (19.68 ft)
- No intermediate support bearing required
- Split hubs for easy mounting and dismounting
- Material:
- Bellows made of flexible high grade stainless

 at al.
- Aluminum intermediate tube section through size 150, size 300 and up steel optional composite CFK tube
- Clamping hubs through size 60 Aluminum, size 150 and up steel
- Design:
- Balanced split clamping hubs with two radial clamping screws ISO 4762
- Intermediate tube section supported by gimbals within the bellows
- Lateral mounting and dismounting accomplished due to split hubs

Temperature

range:

-30 to +100 $^{\circ}$ C (-22 $^{\circ}$ F to 212 $^{\circ}$ F)

Speed:

Depending on length A, please contact R+W

Service life:

These couplings have an infinite life and are maintenance-free if the technical ratings are not exceeded.

Backlash:

Absolutely backlash-free through frictional clamp

connection

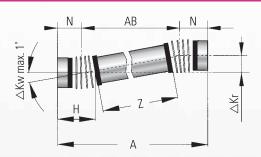
Fit tolerance:

Shaft/hub connection 0.01 to 0.05 mm

Maria 1705 40	000 N					Series			
Model ZAE 10 - 8	RUU IN	m	10	30	60	150	300	500	800
Rated torque	(Nm)	T _{KN}	10	30	60	150	300	500	800
Overall length min. to max.	(mm)	Α	100 to 6,000	130 to 6,000	160 to 6,000	180 to 6,000	240 to 6,000	250 to 6,000	250 to 6,000
Outer diameter clamping hub	(mm)	В	40	55	66	81	110	123	133
Fit length	(mm)	С	16	27	31	34.5	42	50	47
Inner diamter from Ø to Ø H7	(mm)	D _{1/2}	5 to 20	10 to 28	12 to 32	19 to 42	30 to 60	35 to 60	40 to 72
Max.inner diameter clamping hub	(mm)	D _{max}	24	30	32	42	60	60	75
with keyway - max Ø H7	(mm)	D _{1/2}	17	23	29	36	60	60	66
ISO 4762 clamping screws		Е	M4	M6	M8	M10	M12	M16	M16
Tightening torque	(Nm)	_ E	5	15	40	70	130	200	250
Distance between centers	(mm)	F	15	19	23	27	39	41	48
Distance	(mm)	G	5	7.5	9.5	12	14	17	19
Length bellows body	(mm)	Н	39.5	52	64	72	83	96	95
Clamping length	(mm)	1	10	15	19	22	28	33.5	37.5
Outer diameter tube section	(mm)	K	35	50	60	76	100	110	120
Length	(mm)	0	11.5	17	21	24	30	35	40
Shaft average value	(mm)	N	25	34	41	47	56	66	65

1Nm = 8.85 in lbs

max. permissible misalignment page 6


www.rw-america.com R+W S

NOTES

SELECTION PROCESS FOR LINE SHAFTS MODELS ZA / ZAE

Series	Torsional stiffness of both bellows bodies combined	Torsional stiffness per 1m tube	Length of bellows body ZA	Length of bellows body ZAE	Distance between center lines	max. axial misalignment
T _{KN} (Nm)	C _T ^B (Nm/rad)	C _T ^{ZWR} (Nm ² /rad)	H (mm)	H (mm)	N (mm)	△ Ka (mm)
10	4,525	1,530	44.5	39.5	25	2
30	19,500	6,632	57.5	52	34	2
60	38,000	11,810	71	64	41	3
150	87,500	20,230	78	72	47	4
200	95,500	65,340	86	-	52	4
300	250,500	222,700	94	83	56	4
500	255,000	292,800	110	96	66	5
800	475,00	392,800	101	89	64	6
1500	1,400,000	728,800	92	-	56	4
4000	4,850,000	1,171,000	102	-	61	4

Α	Overall length ZA	mm
AB	AB = (A - 2xN)	mm
Z	Tube length $Z = (A - 2xH)$	mm

H Length of the bellows body mm
N Distance between mm

N Distance between mm center lines

M_{max} Max. torque Nm

 $\begin{array}{lll} \phi & \text{Angle of twist} & \text{degree} \\ C_T^B & \text{Torsional stiffness of} & \text{Nm/rad} \\ & \text{both bellows bodys} \end{array}$

 C_T^{ZWR} Torsional stiffness of Nm/rad tube per meter

C_TZA Torsional stiffness of Nm/rad entire coupling

 $C_{r^{ZA}}$ = $\frac{87500 \text{ Nm/rad x } (20230 \text{ Nm/rad } / 1.344 \text{ m})}{87500 \text{ Nm/rad + } (20230 \text{ Nm/rad } / 1.344 \text{ m})}$ = 12842.8 [Nm/rad]

 $\varphi = \frac{180 \times 150 \text{ Nm}}{\pi \times 12842.8 \text{ Nm/rad}} = 0.669^{\circ}$

The result with a max. torque of 150 Nm is an angle of twist of 0.669°.

Torsional stiffness:

$$(C_T^{ZA}) = \frac{C_T^B \times (C_T^{ZWR}/Z)}{C_T^B + (C_T^{ZWR}/Z)}$$
 [Nm/rad]

Torsional deflection (twist)

$$\phi = \frac{180 \text{ x T}_{AS}}{\pi \text{ x C}_{T}^{ZA}} \text{ [degree]}$$

Example: Line shaft ZA 150 $T_{KN} = 150 \text{ Nm}$ Wanted: Deflection at max. rated torque T_{KN}

Length (A) of the shaft = 1.5 mLength (Z) of the tube = A - (2xH) = 1.344m

Max. possible misalignment

$$\triangle$$
 Kr = tan x AB
AB = A - 2 x N

Axial misalignment △ Ka

see Table 1

R+W calculation programm for critical resonant speeds

With specially developed software R+W can calculate the critical resonant speeds for each application. The critical speed can be altered by changing the tube material and/or other parameters.

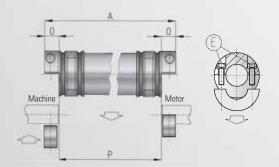
Results of a calculation are shown on the right

Critical resonant speed Torsional stiffness tube ZA/ZAE Total stiffness ZA/ZAE Angle of twist Weight of total axes Mass moment of inertia Permissible lateral misalignment

 $\begin{array}{rcl} n_k &=& 1/\text{min.} \\ C_T^{ZWR} &=& Nm/\text{rad} \\ C_T^{ZA} &=& Nm/\text{rad} \\ \phi &=& \text{degree-min-sec} \\ m &=& kg \\ J &=& kgm^2 \\ \triangle \ Kr &=& mm \end{array}$


ASSEMBLY INSTRUCTIONS

Alignment


R+W ZA and ZAE line shaft couplings are available in lengths up to 6 meters (19.7 feet) without intermediate support bearings. Proper alignment is necessary to ensure maximum life. We recommend laser alignment whenever possible. Other alignment techniques are also appropriate as long as the maximum permissible misalignment values listed on page 6 are not exceeded.

Clamping hub

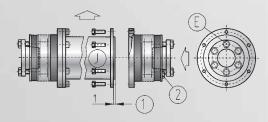
Model ZA (series 10 - 800 Nm)

Model ZAE (series 10 - 800 Nm)

Mounting: Loosen screw E and slide the metal bellows coupling segments onto each shaft end. Now insert the intermediate tube and assemble onto both metal bellows coupling segments using the assembly screws J. Tighten the assembly screws J to the correct torque indicated in the specification table. Center the entire line shaft coupling onto the shaft ends and tighten screw E by using a torque wrench to ensure the correct torque as indicated in the specification table.

Dismounting: Loosen screw E on one end of the line shaft coupling. Remove assembly screws J on both ends of the line shaft and remove the intermediate tube. Be sure to support the intermediate tube during removal. Depending on length this may require two people. Loosen screw E on the second metal bellows coupling segment and slide both segments off.

Mounting: First ensure that the distance between shaft ends exceeds the dimension P.


Length
$$P = \text{length A} - 2 \times 0 \text{ [mm]}$$

Insert the line shaft coupling and assemble the split hubs with assembly scews E. Using a torque wrench to tighten screws E to the correct torque indicated in the specification table.

Dismounting: Remove the split hubs by removing the assembly screws E. Lift the line shaft coupling off the shaft ends.

Conical sleeve

Model ZA (series 1500 - 4000 Nm)

Mounting: Loosen screws E (Do not remove!) and slide the metal bellows coupling segments onto each shaft end. Now insert the intermediate tube and assemble onto both metal bellows coupling segments by using the assembly screws J. Tighten the assembly screws J to the correct torque which is indicated in the specification table. Center the entire line shaft coupling onto the shaft ends and evenly tighten screws E while using a torque wrench. Ensure the correct torque is applied as indicated in the specification table. Even tightening of screws E is critical to ensure that the shaft and metal bellows coupling segment are parallel.

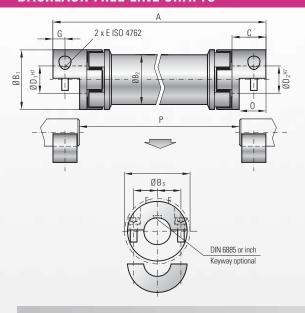
CAUTION! An over tightening of the screws E may destroy the tapered bushing connection. Do not exceed the tightening torque listed in the specification table.

Dismounting: Loosen the scews E on one side of the line shaft coupling. Using the three jack screws F to loosen the tapered segment so that it slides freely on the shaft. Remove the assembly screws J from both sides of the coupling and remove the intermediate tube. Be careful to support the tube during removal. Depending on the length of the tube this may require two people. Repeat the earlier procedure to remove the second metal bellows coupling segment.

CAUTION! Be sure to lower the jack screws F before reassembly.

Maintenence

R+W line shafts are maintenance free. During routine maintenance the line shafts should be visibly inspected.


www.rw-america.com

MODEL EZ2

with split clamping hubs

BACKLASH FREE LINE SHAFTS

Properties:

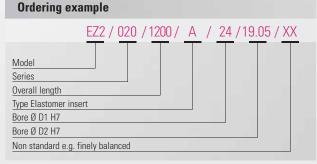
Material:

Torsional

- Radial mounting possible with split hubs
- Spans distances of up to 4 m (13.12 ft)
- No intermediate support bearing required
- Low moment of inertia
- Damps vibration
- Press-fit design
- Backlash-free

Clamping hub: up to series 450 high strength aluminum, from series 800 and up steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer Intermediate tube: precision machined aluminum tube; steel and composite tubes are also available

Design: Two coupling hubs are concentrically machined with concave driving jaws


Elastomer inserts are available in type A or B The two coupling elements are connected with a precise and concentrically machined aluminum tube

Speed: Please advise the application speed when ordering or inquiring about EZ Line shafts

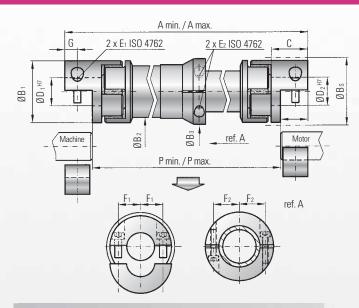
Tolerance: On the hub/shaft connection 0.01 to 0.05 mm

stiffness: To optimize the application different elastomer inserts with different Shore hardnesses are

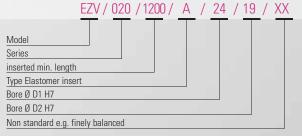
available

All data is subject to change without notice

Model EZ 2									Sei	ries						
Model EZ Z			1	0	2	0	6	0	1!	50	30	00	4!	50	80	00
Type (Elastomer insert)			А	В	А	В	А	В	А	В	А	В	Α	В	А	В
Rated torque	(Nm)	T _{KN}	12,5	16	17	21	60	75	160	200	325	405	530	660	950	1100
Max. torque**	(Nm)	T _{Kmax}	25	32	34	42	120	150	320	400	650	810	1060	1350	1900	2150
Overall length	(mm)	Α	95 - 4	1,000	130 -	4,000	175 -	4,000	200 -	4,000	245 -	4,000	280 -	4,000	320 -	4,000
Outer diameter hub	(mm)	В,	3	2	4	2	5	6	66	6.5	8	2	11	02	13	6.5
Outer diameter tube	(mm)	B ₂	2	8	3	5	5	0	6	0	7	6	9	0	12	20
Outer diameter with screwhead	(mm)	B _s	3	2	44	.5	5	7	6	8	8	5	11	05	13	39
Fit length	(mm)	С	2	0	2	5	4	.0	4	.7	5	5	6	5	7	9
Inner diameter range from Ø to Ø H7	(mm)	D _{1/2}	5 -	16	8 -	25	14	- 32	19	- 36	19	- 45	24	- 60	35	- 80
Mounting screw (ISO 4762/12.9)			N	14	N	15	N.	16	N	18	M	10	M	12	M	116
Tightening torque of the mounting screw	(Nm)	E	Į.	1	8	3	1	5	3	5	7	0	1:	20	29	90
Distance between centers	(mm)	F	10	1.5	15	i.5	2	1	2	4	2	9	3	8	50	0.5
Distance	(mm)	G	7	.5	8.	5	1	5	17	7.5	2	0	2	5	3	80
Mounting length	(mm)	0	16	i.6	18	1.6	3	2	3	7	4	2	5	2	6	32
Moment of inertia per hub half (10^{-3}	f inertia per hub half (10^{-3} kgm²) J_1/J_2 0.01		01	0.0	02	0.15		0.21		1.02		2.3		17		
Inertia of tube per meter (10 ⁻³	kgm²)	J,	0.0	175	0.1	83	0.	66	1.	18	2.	48	10	0.6	3	88


^{**} Max. transferable torque of the clamping hub see table 3 (page 10)

8 R+W www.rw-america.com



MODEL EZV

BACKLASH FREE LINE SHAFTS

Ordering example

All data is subject to change without notice.

variable length

Properties:

- Lateral mounting due to split hubs
- Spans distances of up to 4 m (13.12 ft)
- Low moment of inertia
- Vibration damping
- Press fit designs
- Backlash free Line Shaft

Material:

Clamping hub: high strength aluminum.

Elastomer insert: precision molded wear
resistant, and thermally stable polymer.

Intermediate tubes: precision machined
aluminum tube, steel or composite tube

are available upon request.

Two split coupling hubs are concentrically machined with concave driving jaws.

Both coupling bodies are rigidly mounted to tubes with high concentricity. After loosening the tube clamping, a length variation is possible within the

given range. Elastomer inserts are available in

type A or B.

Speed: To find out about the critical resonant speed please

advise the application speed when ordering or

inquiring about EZV line shafts.

Tolerance: On the hub/shaft connection 0.01 to 0.05 mm.

Torsional stiffness:

Design:

To optimize the application different elastomer inserts with different Shore values are

available

NA 1 1 571/								Se	ries							
Model EZV			1	0	2	0	6	50	15	50	3	00	4!	50		
Type (Elastomer insert)			А	В	А	В	А	В	А	В	А	В	А	В		
Rated torque	(Nm)	T _{KN}	12.5	16	17 21 60 75		160	200	325	405	530	660				
Max. torque**	(Nm)	T _{Kmax}	25	32	34	42	120	150	320	400	650	810	1060	1200		
Inserted min. length from - to	(mm)	A _{min}	150 to	150 to 2,055 200 to 2		2,075	250 to 2, 095		300 to	2,115	350 to	2,130	400 to 2, 150			
Extended over all length from - to	(mm)	A _{max}	190 to	4000	250 to	4000	310 to	4000	370 to	4000	440 t	o 4000	500 to	4000		
Outer diameter hub	(mm)	B ₁	3	2	4	2		56	66	3.5		B2	10	02		
Outer diameter tube	(mm)	B ₂	2	8	3	35		50		60		80		0		
Outer diameter with screwhead	(mm)	B _s	3	2	44	44.5		57		68		85		05		
Fit length	(mm)	С	2	0	2	5	40		47		55		6	5		
Inner diameter possible from Ø to Ø H7	(mm)	D _{1/2}	5 to	16	8 to	25	14 to 32		19 to 35		19 to 45		24 to 60			
Screw (ISO 4762/12.9)		_	N	14	N	15	N	<i>1</i> 6	N	M8		110	M12			
Tighting torque of the mounting scr	rew(Nm)	E,	4	1	8	3	1	15	3	35		70	120			
Distance between centers	(mm)	F,	10).5	15	i.5	2	21		21		24		29	38	
Distance between centers	(mm)	F,	1	5	1	8	2	26	3	1		41	4	5		
Distance	(mm)	G	7	.5	8	.5	1	15	17	7.5		20	2	5		
Mounting length	(mm)	0	16	6.6	18.6		3	32	3	7		42	5	2		
Moment of inertia coupling half (1	0-3 kgm²)	J ₁ /J ₂	0.	0.01 0.02		02	0.	.15	0.21		1.02		2.3			
Inertia of tube per meter (10	⁻³ kgm²)	J_3	0.0	175	0.183		0.	0.66		1.18		2.48		10.6		
Measurement	(mm)	X1+X2	1	10	15	50	1	90	23	30	2	.70	30	00		

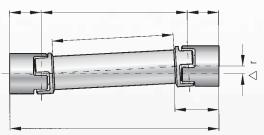
^{**} Max. transferable torque of the clamping hub see table 3 (page 10)

NOTES

TECHNICAL SPECIFICATIONS

Series	Torsional stiffness of both coupling parts elastomer insert A	Torsional stiffness of both coupling parts elastomer insert B	Torsional stiffness per 1 m tube	Length of the coupling EZ	Distance between center lines	Max. axial misalignment
T _{KN} (Nm)	C _T ^B (Nm/rad)	C _T ^B (Nm/rad)	C _T ^{ZWR} (Nm/rad)	H (mm)	N (mm)	△ Ka (mm)
10	270	825	321	34	26	2
20	1270	2220	1530	46	33	4
60	3970	5950	6632	63	49	4
150	6700	14650	11810	73	57	4
300	11850	20200	20230	86	67	4
450	27700	40600	65340	99	78	4
800	41300	90000	392800	125	94	4

Torsional stiffness


$$(C_{Tdyn}^{EZ}) = \begin{array}{c} \frac{C_{Tdyn}^{E} x \ (C_{T}^{ZWR}/Z)}{C_{Tdyn}^{E} + (C_{T}^{ZWR}/Z)} \end{array} [Nm/rad]$$

Angle of twist

$$\phi = \frac{180 \text{ x T}_{AS}}{\pi \text{ x C}_{Tdyn}^{EZ}} \text{ [degree]}$$

Example: Line shaft EZ2, series 150 $T_{AS} = 160 \text{ Nm}$ To search: Angle of twist at maximal rated torque T_{AS}

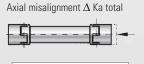
Length (A) of the shaft = 1.5 m Length (Z) of the tube = A - (2xH) = 1.354 m

Overall length m AB Length AB = (A - 2xN)m Tube length m Z = (A - 2xH)Length of the coupling mm Ν Distance between center lines mm Max. torque Nm Angle of twist degree Torsional stiffness of both elastomer inserts Nm/rad Torsional stiffness of tube Nm/rad per meter $C_{\text{Tdyn}}^{\quad \text{EZ}}$ Torsional stiffness of entire coupling Nm/rad

6700 Nm/rad x (11810 Nm/rad / 1.354 m) = 3789 [Nm/rad] 6700 Nm/rad + (11810 Nm/rad / 1.354 m)

$$\varphi = \frac{180 \times 160 \text{ Nm}}{\pi \times 3789 \text{ Nm/rad}} = 2.42^{\circ}$$

The result with a max. torque of 160 Nm in an angle of twist of 2.42 $\!\!^\circ$


Max. possible misalignment

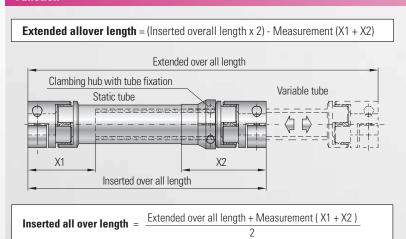
AB = A - 2xN

$$\Delta \text{ Kw}_{\text{max}} = \text{ca. 2}^{\circ}$$

See table 2

Series	Ø5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
10	4	12	32													
20		30	40	50	65											
60			65	120	150	180	200									
150				180	240	270	300	330								
300				300	340	450	520	570	630							
450						630	720	770	900	1120	1180	1350				
800								1050	1125	1200	1300	1400	1450	1500	1550	1600

Temperature factor S in ° Celsius


Temperature (v)	Sh 98 A	Sh 64 D
> -30° to -10°	1.5	1.7
> -10° to +30°	1.0	1.0
> +30° to +40°	1.2	1.1
> +40° to +60°	1.4	1.3
> +60° to +80°	1.7	1.5
> +80° to +100°	2.0	1.8
>+100° to +120°	-	2.4

Please note for every design (see brochure EK).

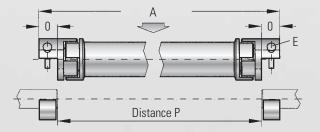
ASSEMBLY INSTRUCTIONS

Function

The extended overall length and the inserted over all length are related. Depending on the requirements, the coupling length can be calculated using the two formulas shown here to receive the extended or the inserted overall length.

Alignment

To ensure maximum life proper alignment is necessary. We recommend laser alignment whenever possible. Other alignment techniques are also appropriate as long as the maximum permissible misalignment values listed on table 2 (page 10) are not exceeded.


Specification of the elastomer inserts

Туре	Shore hardness	Shore hardness Color		Relative damping (ψ)	Temperature range	Features
А	98 Sh A	red	TPU	0.4 - 0.5	-30°C to +100°C	high damping
В	64 Sh D	green	TPU	0.3 - 0.45	-30°C to +120°C	high torsional stiffness

The values of the relative damping were determined at 10 Hz and +20° C.

Clamping hub

Model EZ2 / EZV

The total length of the axis is defined by the distance $P + 2 \times 0$.

Mounting: First ensure that the distance between shaft ends exceeds dimension P.

Distance
$$P = \text{Length A} - 2 \times 0 \text{ [mm]}$$

Insert the line shaft coupling and assemble the split hubs with assembly screws E. Using a torque wrench to tighten screws E to the correct torque indicated in the specification table.

Dismounting: Remove the split hubs by removing the assembly screws E.

Lift the line shaft coupling off the shaft ends.

Maintenance

R+W line shafts are maintenance free. During routine maintenance the line shafts should be visibly inspected.

www.rw-america.com R+W | 1

R+W_®

Experience and Know-how for your special requirements.

R+W America 1120 Tower Lane Bensenville, IL 60106

Phone: 630-521-9911 Fax: 630-521-0366

info@rw-america.com www.rw-america.com

QUALITY MANAGEMENT We are certified according to ISO 9001-2008

TGA-ZM-05-91-00 Registration No. 40503432/2

The information mentioned in this document is based on our present knowledge and experiences and does not exclude the manufacturer's own substantial testing of the equipment. So this is no obligatry assurance even with regard to protection rights of Third Parties. The sale of our products is subject to our General Conditions of Sale and Delivery.

THE R+W-PRODUCT RANGE

TORQUE LIMITERS Series SK + ST

From 0.1 – 160,000 Nm, Bore diameters 3 – 290 mm Available as a single position, multi-position, load holding, or full disengagement version Single piece or press-fit design

BELLOWS COUPLINGS Series BK

From 2 – 10,000 Nm Bore diameters 10 – 180 mm Single piece or press-fit design

LINE SHAFTS Series ZA/ZAE

From 10 – 4,000 Nm Bore diameters 10 – 100 mm Available up to 6 m length


MINIATURE BELLOWS COUPLINGS Series MK

From 0.05 - 10 NmBore diameters 1 - 28 mmSingle piece or press-fit design

SERVOMAX® ELASTOMER COUPLINGS Series EK

From 2 - 2,000 Nm, Shaft diameters 3 - 80 mm backlash-free, press-fit design

ECOLIGHT® ELASTOMER COUPLINGS Series TX 1

From $2-810~\mathrm{Nm}$ Shaft diameters $3-45~\mathrm{mm}$

LINEAR COUPLINGS Series LK

From 70 – 2,000 N Thread M5 – M16

POLYAMIDE COUPLINGS MICROFLEX Series FK 1

Rated torque 1 Ncm Bore diameters 1 – 1.5 mm