
© 2020, Amazon Web Services, Inc. or its Affiliates. © 2020, Amazon Web Services, Inc. or its Affiliates.

Rob Sutter – AWS Serverless

Twitch: /robsutter

Twitter: @rts_rob

Serverless application

security

© 2020, Amazon Web Services, Inc. or its Affiliates.

Session agenda

• How is serverless application security different?

• Similarities to traditional application security

• Service-specific security resources

• Applying security principles to Fresh Tracks

© 2020, Amazon Web Services, Inc. or its Affiliates. © 2020, Amazon Web Services, Inc. or its Affiliates.

Differences

Serverless application security

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Shared Responsibility Model

A
W

S

A
W

S
 I

d
e

n
ti

ty
 a

n
d

 A
cc

e
ss

 M
a

n
a

g
e

m
e

n
t

Platform

management

Network traffic

Firewall config
Code encryption

Operating system and network configuration

Compute

Edge locations

NetworkingDatabaseStorage

Regions

Availability zones

C
u

st
o

m
e

r Customer data, application identity and access management

Data encryption

Data integrity

Authentication

Application

Management

Internet access

Monitoring

Logging

AWS Global

Infrastructure

Responsible

for security

“in” the cloud

Responsible

for security

“of” the cloud

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Shared Responsibility Model

Platform

management

Network traffic

Firewall config
Code encryption

Operating system and network configuration

AWS assumes responsibility for these components of serverless applications

© 2020, Amazon Web Services, Inc. or its Affiliates.

Finer-grained control gives you better security

In a monolithic application (even in a container!), every line of code is exposed to

every vulnerability in every dependency and has access to every resource.

Attack surface area = Σ(cf) * Σ(df) where:

• cf = each function’s computational complexity

• df = each function’s dependencies

Potential impact = a * r where:

• a = attack surface area (see above)

• r = total number of accessible resources

© 2020, Amazon Web Services, Inc. or its Affiliates.

Finer-grained control gives you better security

In a well-architected serverless application, each unit of code is exposed only to

the vulnerabilities in its specific logic and dependencies, and has access only to

its own resources.

Potential impact = Σ(cf * df * rf) where:

• cf = each function’s complexity

• df = each function’s dependencies

• rf = each function’s resources

© 2020, Amazon Web Services, Inc. or its Affiliates.

Finer-grained control gives you better security

In plain language, the potential security risk of a serverless application is lower,

but still present!

© 2020, Amazon Web Services, Inc. or its Affiliates. © 2020, Amazon Web Services, Inc. or its Affiliates.

Similarities

Serverless application security

© 2020, Amazon Web Services, Inc. or its Affiliates.

Serverless application security similarities

Security is not “free” with serverless. It still takes work!

• Application layer security

• Authentication and authorization

• Data encryption and integrity

• Monitoring and logging

C
u

st
o

m
e

r Customer data, application identity and access management

Data encryption

Data integrity

Authentication

Application

Management

Internet access

Monitoring

Logging

Responsible

for security

“in” the cloud

© 2020, Amazon Web Services, Inc. or its Affiliates.

OWASP Serverless Top Ten

S1:2017 Injection

S2:2017 Broken Authentication

S3:2017 Sensitive Data Exposure

S4:2017 XML External Entities (XXE)

S5:2017 Broken Access Control

S6:2017 Security Misconfiguration

S7:2017 Cross-Site Scripting (XSS)

S8:2017 Insecure Deserialization

S9:2017 Using Components with Known Vulnerabilities

S10:2017 Insufficient Logging and Monitoring

© 2020, Amazon Web Services, Inc. or its Affiliates.

• Applications have different use cases and risk tolerances

• AWS empowers customers to build according to their needs

• A security vulnerability in one application can be indistinguishable from a

critical feature in another

• Example: a B2C platform startup enables cross-origin resource sharing

(CORS) globally, whereas a financial institution restricts it entirely

Application layer security (S1, S3, S4, S5, S6, S7, S8:2017)

© 2020, Amazon Web Services, Inc. or its Affiliates.

Authentication and authorization (S2, S5, S6:2017)

• Use available tooling

• Amazon offers Amazon Cognito

• Partners such as Auth0

• Don’t write your own!

• AWS Identity and Access

Management (IAM) ties all the pieces

together
AWS Identity and Access

Management

© 2020, Amazon Web Services, Inc. or its Affiliates.

Data encryption and integrity – S3:2017

• Identify and classify sensitive data

• Minimize storage of sensitive data to only what is absolutely necessary

• Protect data at rest

• Use infrastructure provider services for key management and encryption of

stored data, secrets, and environment variables

AWS Secrets ManagerAWS Key Management

Service

© 2020, Amazon Web Services, Inc. or its Affiliates.

Monitoring and logging (S10:2017)

• Use monitoring tools provided by the

service provider to identify and report

unwanted behavior

• Wrong credentials

• Unauthorized access to

resources

• Excessive execution of

functions

• Unusually long execution time

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon Partner Network

Aqua Security

• Dev-to-prod security across your

entire CI/CD pipeline and runtime

environments

• www.aquasec.com

Snyk

• Proactively finds and fixes

vulnerabilities and license violations

in open source dependencies

• www.snyk.io

© 2020, Amazon Web Services, Inc. or its Affiliates. © 2020, Amazon Web Services, Inc. or its Affiliates.

Service-specific resources

Serverless application security

© 2020, Amazon Web Services, Inc. or its Affiliates.

InternetMobile/Web

apps

?
Backend

?
DatabaseAWS Amplify

Exploring a traditional web application technology stack

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Amplify Console

The AWS Amplify Console properly configures an S3 bucket and Amazon

CloudFront distribution for you, and can configure authentication for your app.

The key focus for customers is restricting deployments with AWS IAM.

• CreateBranch, CreateDeployment, CreateWebHook

• DeleteApp, DeleteBranch, DeleteWebHook

• StartDeployment, StartJob

• StopJob

• UpdateWebHook

AWS Amplify

© 2020, Amazon Web Services, Inc. or its Affiliates.

InternetMobile/Web

apps

?
DatabaseAWS Amplify AWS Lambda

?
Invocation?

Exploring a traditional web application technology stack

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Lambda

Function policies:

• “Actions on bucket X can

invoke Lambda function Z"

• Resource policies allow for

cross account access

• Used for sync and async

invocations

Execution role:

• “Lambda function A can read

from DynamoDB table users”

• Define what AWS

resources/API calls can this

function access via IAM

• Used in streaming invocations

Event source ServicesFunction

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Lambda – Function policy

Created implicitly by AWS SAM when you attach events.

The SAM template shown here allows

Amazon API Gateway to invoke the

saveToFreshTracksDatabaseTable

Lambda function

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Lambda – Execution role

Created explicitly by you when you define your function.

The SAM template shown here allows

the saveToFreshTracksDatabaseTable

Lambda function to read from and

write to the FreshTracksDatabaseTable

Amazon DynamoDB table.

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS SAM policy templates

• Included in the AWS Serverless Application Model (SAM)

• Help you quickly scope permissions to the resources used by your application

• Applications that use policy templates don’t require acknowledgements to

deploy from the AWS Serverless Application Repository

• Open Source: submit pull requests and issues at:

• github.com/awslabs/serverless-application-model/

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS SAM policy templates

For more information and a complete list see: rbsttr.tv/sampolicy

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS SAM policy templates

These two lines: Become this complete policy:

© 2020, Amazon Web Services, Inc. or its Affiliates.

InternetMobile/Web

apps

?
DatabaseAWS Amplify AWS LambdaAmazon

API Gateway

Exploring a traditional web application technology stack

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon API Gateway

IAM permissions

• Use IAM policies and AWS credentials to grant access

Lambda Authorizers

• Use a Lambda function to validate a bearer token, e.g., OAuth or SAML

Cognito User Pools

• Create a completely managed user management system

Resource Policies

• Can restrict based on IP, VPC, AWS Account ID

Amazon API Gateway

© 2020, Amazon Web Services, Inc. or its Affiliates.

InternetMobile/Web

apps
AWS Amplify AWS LambdaAmazon

API Gateway

Amazon

DynamoDB

Exploring a traditional web application technology stack

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon DynamoDB

Start with the AWS SAM policy templates:

• DynamoDBReadPolicy for read-only

• DynamoDBWritePolicy for creates and updates

• DynamoDBStreamReadPolicy to attach to streams

• Avoid DynamoDBCrudPolicy whenever possible

• Command-query responsibility separation (CQRS)

Allows for extremely fine-grained access via the IAM condition

dynamodb:LeadingKeys

Amazon DynamoDB

© 2020, Amazon Web Services, Inc. or its Affiliates.

Exploring a serverless web application technology stack

Amazon API

Gateway

Client/browser

AWS Cloud

Access StorageCompute

AWS Amplify

Console

getActivitiesF

orUser

[GET] /Activities

getActivity

[GET] /Activity

getSignedUrl

S3

[POST] /SignUrl

Custom Authorizer

Amazon

DynamoDB

FreshTracks

S3Bucket

Upload .gpx file with signed URL

S3 for static file storage

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon S3

S3 buckets are not public by default

In general you should not change this!

Again, take advantage of AWS SAM policy templates:

• S3ReadPolicy for retrieving data

• S3WritePolicy for storing data

• Avoid using S3CrudPolicy and S3FullAccessPolicy whenever possible

Use S3 Access Points for even greater control over access to your buckets

Amazon Simple Storage

Service

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon API

Gateway

Client/browser

AWS Cloud

Access StorageCompute

AWS Amplify

Console

getActivitiesF

orUser

[GET] /Activities

getActivity

[GET] /Activity

getSignedUrl

S3

[POST] /SignUrl

Custom Authorizer

Amazon

DynamoDB

FreshTracks

S3 bucket

Upload .gpx file with signed URL

Exploring a serverless web application technology stack

AWS IoT Core

Amazon

EventBridge

Messaging

Messaging services for data exchange

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon EventBridge

AWS IAM offers permissions for inbound and outbound operations

Inbound operations determine

what principals can place events

onto event buses and define rules

and targets:

• events:PutEvents

• events:PutRule

• events:PutTargets

Custom

event bus

Lambda function

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon EventBridge

AWS IAM offers permissions for inbound and outbound operations

Outbound permissions are

determined by the receiving

resource.

Amazon EventBridge AWS Express Workflows

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS IoT Core

AWS IAM policies and AWS IoT Core policies

AWS IAM also provides a set of IAM managed policies

• AWSIoTDataAccess

• AWSIoTEventsReadOnlyAccess

• AWSIoTLogging

For more information and a complete list see: rbsttr.tv/iotiam

AWS IoT Core

© 2020, Amazon Web Services, Inc. or its Affiliates.

Exploring a serverless web application technology stack

Amazon API

Gateway

Client/browser

AWS Cloud

Access StorageCompute

AWS Amplify

Console

getActivitiesF

orUser

[GET] /Activities

getActivity

[GET] /Activity

getSignedUrl

S3

[POST] /SignUrl

Custom Authorizer

Amazon

DynamoDB

FreshTracks

S3 bucket

Upload .gpx file with signed URL

AWS IoT Core

Amazon

EventBridge

Messaging

[Message] Workflow Complete

AWS Step Functions

Express Workflow

Process GPX

File

Save meta to

DB

Publish to IoT

Orchestration

Event driven orchestration

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Step Functions

• Data in AWS Step Functions is encrypted at rest

• All data that passes between Step Functions and integrated services is

encrypted using Transport Layer Security (TLS)

AWS IAM governs Step Functions executions and invocations

• Special consideration for service integrations

• Run a Job (.sync)

• Wait for Callback (.waitForTaskToken)

Standard Workflows Express Workflows

© 2020, Amazon Web Services, Inc. or its Affiliates.

Compliance

• Compliance-ready for SOC, PCI, FedRAMP, HIPAA, and others

Learn more at https://aws.amazon.com/compliance/services-in-scope/

Service SOC PCI ISO FedRAMP HIPAA

AWS Amplify Console ✅ ✅ ✅ ✅

AWS Lambda ✅ ✅ ✅ ✅ ✅

Amazon API Gateway ✅ ✅ ✅ ✅ ✅

Amazon DynamoDB ✅ ✅ ✅ ✅ ✅

Amazon S3 ✅ ✅ ✅ ✅ ✅

Amazon EventBridge ✅ ✅ ✅ ✅ ✅

AWS IoT Core ✅ ✅ ✅ ✅ ✅

AWS Step Functions ✅ ✅ ✅ ✅ ✅

© 2020, Amazon Web Services, Inc. or its Affiliates. © 2020, Amazon Web Services, Inc. or its Affiliates.

Securing Fresh Tracks

Serverless application security

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon API

Gateway

AWS Cloud

Access StorageCompute

getActivitiesF

orUser

[GET] /Activities

getActivity

[GET] /Activity

getSignedUrl

S3

[POST] /SignUrl

Custom Authorizer

Amazon

DynamoDB

FreshTracks

S3 bucket

Upload .gpx file with signed URL

AWS IoT Core

Amazon

EventBridge

Messaging

[Message] Workflow Complete

AWS Step Functions

Express Workflow

Process GPX

File

Save meta to

DB

Publish to IoT

Orchestration

Client/browser

AWS Amplify

Console

© 2020, Amazon Web Services, Inc. or its Affiliates.

Optimization best practices are also security best

practices

Avoid monolithic functions

• Reduces complexity

• Reduces number of resources

• Both reduce potential impact

Optimize dependencies (and imports)

• Reduces complexity

• Reduces the attack surface

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Lambda

Function Policies

CreateZendeskArticle AWSLambdaBasicExecutionRole

GetFullZendeskTicket AWSLambdaBasicExecutionRole

GetFullZendeskUser AWSLambdaBasicExecutionRole

publishToIoT Inline - Action: iot:*, Resource: *

SaveAuth0EventToS3 S3CrudPolicy

saveToFreshTracksDatabaseTable DynamoDBCrudPolicy

getActivitiesForUser DynamoDBCrudPolicy

getActivity DynamoDBCrudPolicy, S3CrudPolicy

parseGPX DynamoDBCrudPolicy, S3CrudPolicy

getSignedUrlS3 S3CrudPolicy

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Lambda

Our publishToIoT function uses an overly broad inline policy.

How can we improve this?

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Lambda

We have two IOT API calls in our code: describeEndpoint and publish

• describeEndpoint does not take any Resource arguments

• publish accepts the ARN of an IoT topic as a Resource argument

• FreshTracksRealtime is the IoT topic defined in our SAM template

• We use !GetAtt to obtain the ARN of the topic

© 2020, Amazon Web Services, Inc. or its Affiliates.

AWS Lambda

Now our function is restricted to:

• only the API calls it needs to execute

successfully (describeEndpoint and

publish)

• only performing those API calls

against the required resources (the

FreshTracksRealtime IoT topic)

AWS SAM per-function IAM roles

enable tight scoping of permissions.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon API Gateway

Our API Gateway CORS policy is open to the world.

How can we improve this?

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon API Gateway

Our domain name is myfreshtracks.com

We can instruct API Gateway to only allow traffic originating from our domain.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon API Gateway

We also enable a custom authorizer to

restrict traffic to protected routes.

A custom authorizer is a Lambda

function that inspects claims in a token

and determines whether to permit or

reject the request.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon DynamoDB

Function Policies

saveToFreshTracksDatabaseTable DynamoDBCrudPolicy

getActivitiesForUser DynamoDBCrudPolicy

getActivity DynamoDBCrudPolicy, S3CrudPolicy

parseGPX DynamoDBCrudPolicy, S3CrudPolicy

We have four functions that access our DynamoDB table.

They all use the DynamoDBCrudPolicy. How can we improve this?

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon DynamoDB

Function DynamoDB API Calls

saveToFreshTracksDatabaseTable dynamodb.put

getActivitiesForUser dynamodb.query

getActivity dynamodb.getItem

parseGPX <none>

Inspect the code for actual API calls.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon DynamoDB

Function API Call Policies

saveToFreshTracksDatabaseTable dynamodb.put DynamoDBWritePolicy

getActivitiesForUser dynamodb.query DynamoDBReadPolicy

getActivity dynamodb.getItem DynamoDBReadPolicy

parseGPX <none> <none>

Provide the proper AWS SAM policy template

© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon DynamoDB

Provide the proper AWS SAM policy template

© 2020, Amazon Web Services, Inc. or its Affiliates.

Summary

Serverless application security is:

• balanced toward the application, not

the infrastructure

• more fine-grained

• not to be taken for granted!

This is only a start! AWS provides a

number of solutions to secure your

applications. For more, see:

https://aws.amazon.com/security/

© 2020, Amazon Web Services, Inc. or its Affiliates.

Q&A
Rob Sutter – AWS Serverless

Twitch: /robsutter

Twitter: @rts_rob

© 2020, Amazon Web Services, Inc. or its Affiliates.

Rob Sutter – AWS Serverless

Twitch: /robsutter

Twitter: @rts_rob

Thank you!

