
www.studymafia.org

A

Seminar report

On

Service Oriented Architecture

Submitted in partial fulfillment of the requirement for the award of degree

Of Computer Science

SUBMITTED TO: SUBMITTED BY:

www.studymafia.org www.studymafia.org

www.studymafia.org

Preface

I have made this report file on the topic Service Oriented Architecture (SOA), I have
tried my best to elucidate all the relevant detail to the topic to be included in the report.
While in the beginning I have tried to give a general view about this topic.

My efforts and wholehearted co-corporation of each and everyone has ended on a

successful note. I express my sincere gratitude to …………..who assisting me throughout

the preparation of this topic. I thank him for providing me the reinforcement, confidence

and most importantly the track for the topic whenever I needed it.

www.studymafia.org

Content

 Introduction

 Requirements

 Principles

 Attributes of a SOA

 SOA and Web service protocols

 SOA and network management architecture

 Benefits

 References

www.studymafia.org

Introduction

SOA implementations rely on a mesh (Mesh consists of semi-permeable barrier made of

connected strands of metal, fiber, or other flexible/ductile material. Mesh is similar to

web or net in that it has many attached or woven strands.)Of software services. Services

comprise unassociated, loosely coupled units of functionality that have no calls to each

other embedded in them.

Each service implements one action, such as filling out an online application for an

account, or viewing an online bank-statement, or placing an online booking or airline

ticket order.

Instead of services embedding calls to each other in their source code they use defined

protocols that describe how services pass and parse messages, using

description metadata.

SOA developers associate individual SOA objects by using orchestration (Orchestration

describes the automated arrangement, coordination, and management of complex

computer systems, middleware, and services.). In the process of orchestration the

developer associates software functionality (the services) in a non-hierarchical

arrangement (in contrast to a class hierarchy) using a software tool that contains a

complete list of all available services, their characteristics, and the means to build an

application utilizing these sources.

Underlying and enabling all of this requires metadata in sufficient detail to describe not

only the characteristics of these services, but also the data that drives

them. Programmers have made extensive use of XML in SOA to structure data that they

wrap in a nearly exhaustive description-container.

Analogously, the Web Services Description Language (WSDL) typically describes the

services themselves, while theSOAP protocol describes the communications protocols.

Whether these description languages are the best possible for the job, and whether

they will become/remain the favorites in the future, remain open questions. As of

2008 SOA depends on data and services that are described by metadata that should

meet the following two criteria:

www.studymafia.org

1. The metadata should come in a form that software systems can use to configure

dynamically by discovery and incorporation of defined services, and also to maintain

coherence and integrity.

2. The metadata should come in a form that system designers can understand and

manage with a reasonable expenditure of cost and effort.

SOA aims to allow users to string together fairly large chunks of functionality to form ad

hoc applications that are built almost entirely from existing software services. The larger

the chunks, the fewer the interface points required to implement any given set of

functionality; however, very large chunks of functionality may not prove sufficiently

granular for easy reuse. Each interface brings with it some amount of processing

overhead, so there is a performance consideration in choosing the granularity of

services.

 The great promise of SOA suggests that the marginal cost of creating the n-th

application is low, as all of the software required already exists to satisfy the

requirements of other applications. Ideally, one requires only orchestration to produce a

new application.

www.studymafia.org

For this to operate, no interactions must exist between the chunks specified or within

the chunks themselves. Instead, humans specify the interaction of services (all of them

unassociated peers) in a relatively ad hoc way with the intent driven by newly emergent

requirements.

Thus the need for services as much larger units of functionality than traditional

functions or classes, lest the sheer complexity of thousands of such granular objects

overwhelm the application designer. Programmers develop the services themselves

using traditional languages like Java, C,C++, C# or COBOL.

SOA services feature loose coupling, in contrast to the functions that a linker binds

together to form an executable, to a dynamically linked library or to an assembly. SOA

services also run in "safe" wrappers (such as Java or .NET) and in other programming

languages that manage memory allocation and reclamation, allow ad hoc and late

binding, and provide some degree of indeterminate data typing.

As of 2008, increasing numbers of third-party software companies offer software

services for a fee. In the future, SOA systems may consist of such third-party services

combined with others created in-house.

 This has the potential to spread costs over many customers and customer uses, and

promotes standardization both in and across industries. In particular, the travel industry

now has a well-defined and documented set of both services and data, sufficient to

allow any reasonably competent software engineer to create travel-agency software

using entirely off-the-shelf software services.

 Other industries, such as the finance industry, have also started making significant

progress in this direction.

SOA as an architecture relies on service-orientation as its fundamental design-principle.

If a service presents a simple interface that abstracts away its underlying complexity,

www.studymafia.org

users can access independent services without knowledge of the service's platform

implementation.

Requirements

In order to efficiently use a SOA, one must meet the following requirements:

 Interoperability between different systems and programming languages that provides the

basis for integration between applications on different platforms through a

communication protocol. One example of such communication depends on the concept

of messages. Using messages across defined message channels decreases the

complexity of the end application, thereby allowing the developer of the application to

focus on true application functionality instead of the intricate needs of a communication

protocol.

 Desire to create a federation of resources. Establish and maintain data flow to a Federated

database system(A federated database system is a type of meta-database management

system (DBMS) which transparently integrates multiple autonomous database systems

into a single federated database). This allows new functionality developed to reference

a common business format for each data element.

www.studymafia.org

Principles

The following guiding principles define the ground rules for development, maintenance,

and usage of the SOA:

 Reuse, granularity, modularity, compensability, componentization and interoperability.

 Standards-compliance (both common and industry-specific).

 Services identification and categorization, provisioning and delivery, and monitoring and

tracking.

The following specific architectural principles for design and service definition focus on

specific themes that influence the intrinsic behavior of a system and the style of its

design:

www.studymafia.org

Attributes of a SOA

 Service encapsulation – Many web services are consolidated for use under the SOA. Often

such services were not planned to be under SOA.

 Service loose coupling – Services maintain a relationship that minimizes dependencies

and only requires that they maintain an awareness of each other.

 Service contract – Services adhere to a communications agreement, as defined collectively

by one or more service-description documents.

 Service abstraction – Beyond descriptions in the service contract, services hide logic from

the outside world.

 Service reusability – Logic is divided into services with the intention of promoting reuse.

 Service compensability – Collections of services can be coordinated and assembled to

form composite services.

 Service autonomy – Services have control over the logic they encapsulate.

 Service optimization – All else equal, high-quality services are generally preferable to low-

quality ones.

 Service discoverability – Services are designed to be outwardly descriptive so that they

can be found and assessed via available discovery mechanisms.

 Service relevance – Functionality is presented at a granularity recognized by the user as a

meaningful service.

www.studymafia.org

The following references provide additional considerations for defining a SOA

implementation:

 SOA Reference Architecture provides a working design of an enterprise-wide SOA

implementation with detailed architecture diagrams, component descriptions, detailed

requirements, design patterns, opinions about standards, patterns on regulation

compliance, standards templates etc..

 Life cycle management SOA Practitioners Guide Part 3: Introduction to Services

Lifecycle introduces the services lifecycle and provides a detailed process for services

management through the service lifecycle, from inception to retirement or repurposing

of the services.

 It also contains an appendix that includes organization and governance best-practices,

templates, comments on key SOA standards, and recommended links for more

information.

www.studymafia.org

Conceptual model of a SOA architectural style

In addition, one might take the following factors into account when defining a SOA

implementation:

 Efficient use of system resources

 service maturity and performance

 EAI (Enterprise Application Integration (EAI) is defined as the use of software and

computer systems architectural principles to integrate a set of enterprise computer

applications.)

Web services approach

Web services can implement a service-oriented architecture. Web services make

functional building-blocks accessible over standard Internet protocols independent of

platforms and programming languages. These services can represent either new

applications or just wrappers around existing legacy systems to make them network-

enabled.

Each SOA building block can play one or both of two roles:

1. Service Provider

The service provider creates a web service and possibly publishes its interface and

access information to the service registry. Each provider must decide which services to

expose, how to make trade-offs between security and easy availability, how to price the

services, or (if no charges apply) how/whether to exploit them for other value. The

provider also has to decide what category the service should be listed in for a given

broker service and what sort of trading partner agreements are required to use the

www.studymafia.org

service. It registers what services are available within it, and lists all the potential service

recipients.

The implementer of the broker then decides the scope of the broker. Public brokers are

available through the Internet, while private brokers are only accessible to a limited

audience, for example, users of a company intranet. Furthermore, the amount of the

offered information has to be decided. Some brokers specialize in many listings.

 Others offer high levels of trust in the listed services. Some cover a broad landscape of

services and others focus within an industry. Some brokers catalog other brokers.

Depending on the business model, brokers can attempt to maximize look-up requests,

number of listings or accuracy of the listings.

The Universal Description Discovery and Integration (UDDI) specification defines a way to

publish and discover information about Web services. Other service broker technologies

include (for example) ebXML (Electronic Business using extensible Markup Language)

and those based on the ISO/IEC 11179 Metadata Registry (MDR) standard.

2. Service consumer

the service consumer or web service client locates entries in the broker registry using

various find operations and then binds to the service provider in order to invoke one of

its web services. Whichever service the service-consumers need, they have to take it

into the brokers, then bind it with respective service and then use it. They can access

multiple services if the service provides multiple services.

www.studymafia.org

SOA and Web service protocols

Implementers commonly build SOAs using web services standards (for example, SOAP)

that have gained broad industry acceptance. These standards (also referred to as Web

Service specifications) also provide greater interoperability and some protection from

lock-in to proprietary vendor software. One can, however, implement SOA using any

service-based technology, such as Jini, CORBA or REST.

Other SOA concepts

Architectures can operate independently of specific technologies. Designers can

implement SOA using a wide range of technologies, including:

 SOAP, RPC

 REST

 DCOM

 CORBA

 Web Services

 WCF (Microsoft's implementation of Web service forms a part of WCF)

Implementations can use one or more of these protocols and, for example, might use a

file-system mechanism to communicate data conforming to a defined interface-

specification between processes conforming to the SOA concept. The key is

independent services with defined interfaces that can be called to perform their tasks in

a standard way, without a service having foreknowledge of the calling application, and

without the application having or needing knowledge of how the service actually

performs its tasks.[weasel words]Many implementers of SOA have begun to adopt an

evolution of SOA concepts into a more advanced architecture called SOA 2.0.

Service-Oriented Modeling Framework (SOMF) Version 2.0

www.studymafia.org

SOA enables the development of applications that are built by combining loosely

coupled and interoperable services.

These services inter-operate based on a formal definition (or contract, e. g., WSDL) that

is independent of the underlying platform and programming language. The interface

definition hides of the language-specific service. SOA-based systems can therefore

function independently of development technologies and platforms (such as Java,.NET,

etc). Services written in C# running on .NET platforms and services written in Java

running on Java EE platforms, for example, can both be consumed by a common

composite application (or client).

 Applications running on either platform can also consume services running on the other

as web services that facilitate reuse. Managed environments can also wrap COBOL

legacy systems and present them as software services. This has extended the useful life

of many core legacy systems indefinitely, no matter what language they originally used.

SOA can support integration and consolidation activities within

complex enterprise systems, but SOA does not specify or provide a methodology

or framework for documenting capabilities or services.

High-level languages such as BPEL and specifications such as WS-CDL and WS-

Coordination extend the service concept by providing a method of defining and

supporting orchestration of fine-grained services into more coarse-grained business

services, which architects can in turn incorporate into workflows and business processes

implemented in composite applications or portals

As of 2008 researchers have started investigating the use of Service Component

Architecture (SCA) to implement SOA.

Service-oriented modeling is a SOA framework that identifies the various disciplines

that guide SOA practitioners to conceptualize, analyze, design, and architect their

service-oriented assets. The Service-oriented modeling framework (SOMF) offers a

www.studymafia.org

modeling language and a work structure or "map" depicting the various components

that contribute to a successful service-oriented modeling approach.

 It illustrates the major elements that identify the “what to do” aspects of a service

development scheme. The model enables practitioners to craft a project plan and to

identify the milestones of a service-oriented initiative. SOMF also provides a common

modeling notation to address alignment between business and IT organizations.

SOMF addresses the following principles:

 business traceability

 architectural best-practices traceability

 technological traceability

 SOA value proposition

 software assets reuse

 SOA integration strategies

 technological abstraction and generalization

 architectural components abstraction

www.studymafia.org

SOA and network management architecture

As of 2008 the principles of SOA are being applied to the field of network management.

Examples of service-oriented network management architectures include TS 188

001 NGN Management OSS Architecture from ETSI, and M.3060 Principles for the

Management Of Next Generation Networks recommendation from the ITU-T.

Tools for managing SOA infrastructure include:

 HP Software & Solutions

 HyPerformix IPS Performance Optimizer

 IBM Tivoli Framework

www.studymafia.org

Benefits

Some enterprise architects believe that SOA can help businesses respond more quickly

and cost-effectively to changing market-conditions. This style of architecture promotes

reuse at the macro (service) level rather than micro (classes) level. It can also simplify

interconnection to – and usage of – existing IT (legacy) assets.

In some respects, one can regard SOA as an architectural evolution rather than as a

revolution. It captures many of the best practices of previous software architectures. In

communications systems, for example, little development has taken place of solutions

that use truly static bindings to talk to other equipment in the network. By formally

embracing a SOA approach, such systems can position themselves to stress the

importance of well-defined, highly inter-operable interfaces.

Some have questioned whether SOA simply revives concepts like modular programming

(1970s), event-oriented design (1980s) or interface/component-based design (1990s).

SOA promotes the goal of separating users (consumers) from the service

implementations. Services can therefore be run on various distributed platforms and be

accessed across networks. This can also maximize reuse of services

SOA is an architectural and design discipline conceived to achieve the goals of increased

interoperability (information exchange, reusability, and composability), increased

federation (uniting resources and applications while maintaining their individual

autonomy and self-governance), and increased business and technology domain

alignment.

Service-Oriented Architecture (SOA) is an architectural approach (or style) for

constructing complex software-intensive systems from a set of universally

interconnected and interdependent building blocks, called services.

SOA realizes its business and IT benefits through utilizing an analysis and design

methodology when creating services. This methodology ensures that services remain

consistent with the architectural vision and roadmap, and that they adhere to principles

www.studymafia.org

of service-orientation. Arguments supporting the business and management aspects

from SOA are outlined in various publications.

A service comprises a stand-alone unit of functionality available only via a formally

defined interface. Services can be some kind of "nano-enterprises" that are easy to

produce and improve. Also services can be "mega-corporations" constructed as the

coordinated work of sub-ordinate services.

Services generally adhere to the following principles of service-orientation:

 Abstraction

 Autonomy

 Compos ability

 Discoverability

 Formal contract

 loose coupling

 Reusability

 Statelessness

A mature rollout of SOA effectively defines the API of an organization.

Reasons for treating the implementation of services as separate projects from larger

projects include:

1. Separation promotes the concept to the business that services can be delivered quickly

and independently from the larger and slower-moving projects common in the

organization. The business starts understanding systems and simplified user interfaces

calling on services. This advocates agility.

www.studymafia.org

2. Separation promotes the decoupling of services from consuming projects. This

encourages good design insofar as the service is designed without knowing who its

consumers are.

3. Documentation and test artifacts of the service are not embedded within the detail of

the larger project. This is important when the service needs to be reused later.

An indirect benefit of SOA involves dramatically simplified testing. Services are

autonomous, stateless, with fully documented interfaces, and separate from the cross-

cutting concerns of the implementation. The industry has never been exposed to this

circumstance before.

If an organization possesses appropriate defined test data, then when a service is

being built, a corresponding stub is built that reacts to the test data. A full set of

regression tests, scripts, data, and responses is also captured for the service. The service

can be tested as a 'black box' using existing stubs corresponding to the services it calls.

Test environments can be constructed where the primitive and out-of-scope services

are stubs, while the remainders of the mesh are test deployments of full services.

As each interface is fully documented, with its own full set of regression test

documentation, it becomes simple to identify problems in test services. Testing evolves

to merely validating that the test service operates according to its documentation, and

in finding gaps in documentation and test cases of all services within the environment.

Managing the data state of idempotent services is the only complexity.

Examples may prove useful to aid in documenting a service to the level where it

becomes useful. The documentation of some APIs within the Java Community Process

provide good examples. As these are exhaustive, staff would typically use only

important subsets. The 'ossjsa.pdf' file within JSR-89 exemplifies such a file.

www.studymafia.org

References

www.studymafia.org

www.google.com

www.wikipedia.com

http://www.studymafia.org/
http://www.google.com/
http://www.wikipedia.com/

