
1

1/17/2008IE565 Spring 2008Page 1

Service-oriented Architectures:
A Review

B. Ramamurthy

1/17/2008IE565 Spring 2008Page 2

Introduction
• CSE507: SOA and WS, we studied

– services,
– Web Services standard,
– business process alignment to IT service,
– service-oriented architecture basics.

• We will
– review CSE507 material
– Discuss plans for IE565

• We implemented a simple mash-up application in CSE507:
– We will extend it and complete it in this course.

• Focus of IE565:
– Service-enabling approaches for a variety of organizations

and applications (see your textbook)
– Study associated concepts and technologies (semantic web,

ontology development and use, web2.0)

1/17/2008IE565 Spring 2008Page 3

About the textbook
• It is one in a series of textbook in this area.
• Though it approaches service-enabling from semantic web point

of view the industries discussed are quite diverse and very
relevant to what we are working on.
– Financial: data and information management
– Government: access to municipal services
– Healthcare: biomedical research and medical records management
– Education: Course management systems
– Business: data integration and business process collaboration
– Enterprise management: knowledge management in steel industry

• Technologies such as OWL (Web Ontology Language), RQL,
RDQL, SOARQL, and SWRL

1/17/2008IE565 Spring 2008Page 4

What did we do in CSE507?

• Text book: Enterprise SOA: Service-
oriented Architecture Best Practices, D.
Krafzig, K. Banke and D. Slama,
Prentice-Hall Inc., 2007.

• WS and SOA

1/17/2008IE565 Spring 2008Page 5

SOA and WS
• A Service-Oriented Architecture (SOA) is

a design model for linking
computational resources, data and
applications to perform services and
deliver results to service consumers.

• Web Service (WS) standard provides a
platform-independent method for
messaging-based interaction of
applications.

1/17/2008IE565 Spring 2008Page 6

SOA Principles
• Loosely coupled (service provider and service

consumer are loosely coupled: why?)
• Large scale: complex system with high level of

heterogeneity and redundancies.
• Decoupling of functionality and technology
• Service contract and agreements
• Discoverability
• On demand composability of services: composite

services concept
• Agility: respond to changes quickly
• Statelessness
• Inherent interoperability
• Standards
• Reusability

2

1/17/2008IE565 Spring 2008Page 7

Evolution of the service
concept

• A service is a
meaningful activity that
a computer program
performs on request of
another computer
program.

• Technical definition: A
service a remotely
accessible, self-
contained application
module.
-- From IBM

Service

Component

Object/
Class

1/17/2008IE565 Spring 2008Page 8

Business Computing
• File systems to main frames
• Emergence of new paradigms such as Enterprise

Resource Planning (ERP) and Supply Chain
Management (SCM) placed complex requirements on
the computing machines and applications.

• This was followed by huge compute (IT) demands for
Enterprise Application Integration (EAI) and
Enterprise Data Integration (EDI).

• An appealing characteristic of SOA is that it aligns
these business entities by directly mapping them to
services, thus enabling an enterprise integration on
the business level, not on the technical level.

1/17/2008IE565 Spring 2008Page 9

On to more fundamental
concepts: Synchrony

• Synchronous and asynchronous communications
• Synchronous:

– immediate response of communicating partners
– Server process/thread blocks until response is completed
– Follows request/response pattern
– Used when servers are available all the time
– Typically communicating partners are tightly coupled
– Examples:

• request from web client to a web browser for “search” or for
“information”

• CORBA procedure invocation
• Java RMI (remote method invocation)
• Traditional remote procedure call (RPC)

1/17/2008IE565 Spring 2008Page 10

Asynchronous communication

• Communicating partners are decoupled
• Message driven:

– sender creates a message and delivers it to a mediator who
then sends it to “a” recipient

– Server need not be available all the time
– Sender and receiver loosely coupled
– Can facilitate high-performance message-based system
– Example:

• Any event-driven system
• Any messaging system (instant messenger)
• Publish-subscribe mode communications

1/17/2008IE565 Spring 2008Page 11

Interface vs Payload Semantics

• Typically interaction between a client and a
server results in the execution of an activity
(ot transaction)

• Request needs to be specified by the request.
– Interface semantics: Requested activity can be

encoded in the operation signature in the server’s
“interface” or

– Payload semantics: It can be embedded in the
message itself

1/17/2008IE565 Spring 2008Page 12

Interface Semantics
Process1 Process2

getCustomer()

retrieveCustomerData()

returnResult()

Semantics of the activity is explicitly stated in the message/method call

3

1/17/2008IE565 Spring 2008Page 13

Payload Semantics

Process 1 Process 2

Envelop
With

message

Requested transaction/activity is embedded in the message
Details of the activity not explicit; the semantics are embedded in the message

1/17/2008IE565 Spring 2008Page 14

Payload Semantics

onMessage()

QueueClient Server

createMessage()

sendMessage()

receiveMessage()

executeMessage()

1/17/2008IE565 Spring 2008Page 15

Payload semantics is generic

String transferMoney (amt: decimal,
accTo: String)

{ …}

String executeService (message: String)
{ …}

1/17/2008IE565 Spring 2008Page 16

Tight vs. Loose Coupling

• An important characteristics of an SOA that is a
loosely coupled system.

• On the technology front this is driven by dynamic
discovery and binding enabled by Universal
Description, Discovery and Integration (UDDI)

• On the business front loose coupling addresses the
growing need for companies to be flexible and agile
with respect changes in their own processes and
those of their partners

• How does loose coupling help in improving agility,
flexibility and performance?

1/17/2008IE565 Spring 2008Page 17

Tight vs. Loose coupling

OS- and programming
language dependent

Strong OS and programming
language dependencies

Platform
dependencies

Dynamically bound
services

Statically bound servicesService discovery
and binding

Distributed logic
components

Central control of process logic Control of process
logic

Data-centric, self-contained
messages

OO-style navigation of complex
object trees

Interaction pattern

Weak type system
(payload semantics)

Strongly typed (interface
semantics)

Type system

asynchronoussynchronousCommunication
style

Physical intermediaryDirect physical link requiredPhysical coupling

Loose couplingTight couplingLevel

1/17/2008IE565 Spring 2008Page 18

Service-oriented architecture (1)

• From “The new language of business : SOA and Web 2.0” by S. Carter,
IBM Press, 2007

• Service-oriented architecture is a business driven IT architectural
approach that supports integrating a business as linked, repeatable
business tasks or services.

• It helps
– innovation by assuring IT systems can adapt quickly.
– increase flexibility of business processes
– strengthen underlying IT architecture
– reuse their existing IT investments by creating connections among

disparate applications and information sources
• The above in turn help address increasing complexity, need for

lowering development, integration and maintenance cost and obtain
sustainable competitive edge through technology.

• SOA begins with a service that could be a simple business task such a
checking the credit rating of a potential customer.

4

1/17/2008IE565 Spring 2008Page 19

Service-oriented Architecture (2)

• From “Service-oriented architecture: A planning and
implementation guide for business and technology”, by E.A.
Marks, and M. Bell, Wiley & sons, 2006.

• SOA is a conceptual business architecture where business
functionality, or application logic, is made available to SOA users
or consumers, as shared, reusable services on an IT network.

• Services in an SOA are modules of business or application
functionality with exposed interfaces, and are invoked by
messages.

• Essential ingredients of an SOA are: services, enabling
technology, SOA governance and policies, SOA metrics,
organizational and behavior model (culture).

1/17/2008IE565 Spring 2008Page 20

Service-oriented Architecture (3)
• From “ Service-oriented architecture: concepts,

technology and design”. By T. Erl, Prentice-Hall Inc.,
2005.

• Service-oriented architecture is a term that
represents a model in which automation logic is
decomposed in to smaller, distinct units of logic
called services.
– Collectively these units comprise a larger piece of

business automation logic. These pieces can be
distributed.

– Services are autonomous units; messages are
used for communication among these.

• Principles of SOA: loose coupling, service contract,
autonomy, abstraction, reusability, composability,
statelessness, discoverability

1/17/2008IE565 Spring 2008Page 21

Service-oriented architecture (4)

• From “Service-oriented Architecture (SOA) compass: business
value, planning and enterprise roadmap”. N. Bernstein, S. Bose,
M. Fiammante, K. Jones and R. Shaw, IBM press, 2006.

• A service-oriented architecture is a framework for integrating
business processes and supporting IT infrastructure as secure,
standardized components– services– that can be reused and
combined to address changing business priorities.

• Loose coupling, reuse, interoperability between systems.
• SOA is a synonym for solution architectures making use of Web

service technologies such as SOAP, WSDL, and UDDI. Any
product and project conforming to the WC3 Web services
architecture (WSA).

• SOA is a set of business, process, organizational, governance
and technical methods to enable an agile, business-driven IT
environment for greater competitive advantage.

1/17/2008IE565 Spring 2008Page 22

Service-oriented architecture (5)
• From “Service-oriented architecture for dummies”, by J. Hurwitz, R. Bloor, C. Baroudi, M.

Kaufman, Wiley & sons., 2007.
• Architecture implies thoughtful planning according to set of guidelines or rules. Ex: a house,

a mall, Taj Mahal or Noah’s ark
• Software architecture describes the overall design and structure of a computer system.
• In a service oriented architecture, business services interact with each other in ways similar

to how various services of the restaurant interact.
• Basic architecture of an order processing system and an SOA of a the same. Lets analyze

this further.

Architecture 1:
Internet Browser Web Server Order Processing Database server Database

Architecture 2: SOA?
Internet Browser Web Server Order Processing Database server Database

Credit checking service

1/17/2008IE565 Spring 2008Page 23

Service-oriented architecture (6)

• From “Enterprise SOA: Service-oriented architecture
best practices” by D. Krafzig, K. Banke, and D.
Slama, Prentice-Hall Inc., 2007.

• A software architecture describes software
components of a system and assigns the functionality
of the system to these components. (p.56)
– It describes the technical structure, constraints, and

characteristics of the components and the interfaces
between them.

– The architecture is the blueprint for the system and
therefore high-level plan for its construction.

– Lets look at example: web architecture

1/17/2008IE565 Spring 2008Page 24

SOA

Application
Frontend Service Service

repository Service bus

Contract Interface Implementation

Data

Business logic

agreement

legal

Monitoring

operations

Elements of SOA

5

1/17/2008IE565 Spring 2008Page 25

Elements of SOA
1. Application frontends: are active elements of the SOA, delivering the value of SOA to the

end users.
• They initiate and control all activity of the enterprise system.
• Web application, application with GUI, or a batch application.

2. Service: a software component that encapsulates a high level business concept.
3. Contract: provides a specification of the purpose, functionality, constraints, and usage of

services.
4. Interface: functionality of the service exposed by the service to the clients that are

connected to the service.
5. Implementation: the service implementation provides the required business logic and

appropriate data. It contains one or more of the artifacts: programs, configuration, data
and databases.

6. Business logic: business process represented by the service.
7. Data: data represented in the service/ used by the service.
8. Service repository: it registers the services and their attributes to facilitate the discovery

of services; operation, access rights, owner, qualities, etc.
9. (Enterprise) Service Bus (ESB): A flexible infrastructure for integrating applications and

services by : routing messages, transforming protocols between requestor and service,
handling business events and delivering them, providing QoS, mediation and security,
and managing the interaction among services.

10. Open standards: publicly available implementable standards

1/17/2008IE565 Spring 2008Page 26

Our view of SOA
SOA

Application
Frontend Service Service

repository Service bus

Contract Interface Implementation

Data

Business logic

agreement

legal

Monitoring

operations

name

Input/output

Faults/exceptions

Component/containers

name attributes routing mediation security Events, notification,
Loose coupling

1/17/2008IE565 Spring 2008Page 27

Service and Service Types

Service

Interface 1

Interface 2

Service contract

Implementation

Business
logic

Data

Business
logic

Data

1/17/2008IE565 Spring 2008Page 28

Types of services

1. Application frontend: GUI
2. Basic services: data and logic
3. Intermediary services: gateway, adapters
4. Process centric services: business operations
5. Public enterprise services: cross-enterprise:

decoupling, security, governance

2 : horizontal services
4 : vertical services (domain-specific)
3 + 5: realized using ESB?

1/17/2008IE565 Spring 2008Page 29

Enterprise Services layers

Enterprise layer

Process layer

Intermediary layer

Basic layer

1/17/2008IE565 Spring 2008Page 30

The architectural roadmap: The
stages in development

• Fundamental SOA
– Design fundamental services

• Networked SOA
– Add intermediary services

• Process-enabled SOA
– Add process-centric services, front-ends

• These three stages reach maturity at different rates,
services gain more responsibility as the system
matures.

• Advantages of using service-orientation will be
apparent as the stages evolve independently of each
other

6

1/17/2008IE565 Spring 2008Page 31

Fundamental SOA

• Excellent starting point for introduction
SOA in an organization

• A fundamental SOA consists of two
layers:
– Enterprise layer that consists of front-ends,

and
– The basic layers that consists of basic

services

1/17/2008IE565 Spring 2008Page 32

Airline Enterprise

Enterprise Layer

Basic layer

Airline
Web site

Airline
Web site

FlightFlight
CustomerCustomer BookingBooking BillingBilling

1/17/2008IE565 Spring 2008Page 33

Expanded Airline Enterprise

Enterprise Layer

Basic layer

Airline
Web site

Airline
Web site

Billing
Application

Billing
Application

FlightFlight
CustomerCustomer BookingBooking BillingBilling

1/17/2008IE565 Spring 2008Page 34

Fundamental SOA: Summary

• Base on which future expansion can
take place

• Simple to implement
• Complex front-end
• Increased maintainability
• Shared services can make data

replication largely obsolete
• Good starting point/entry point to SOA

1/17/2008IE565 Spring 2008Page 35

Networked SOA

• It deals with backend complexity in addition to
technical and conceptual integration.

• If offers flexibility in integrating software assets of an
enterprise.

• Enables loose coupling
• Addition of intermediary layer with services that

handle
– distributed transactions,
– bridge technology gaps,
– database integration,
– Add new functionality,
– Wrap legacy applications/service

1/17/2008IE565 Spring 2008Page 36

Networked SOA

Enterprise Layer

Airline
Web site

Airline
Web site

Basic layer

FlightFlight
CustomerCustomer BookingBooking BillingBilling

Intermediary layer

BookAnd
Bill

BookAnd
Bill

7

1/17/2008IE565 Spring 2008Page 37

Process-enabled SOA

• The key feature is the maintenance of a process
state in process-centric services.

• Stateful services (server-side state)
• Encapsulates complexity of processes (Ex:

runExperiment in a complex scientific lab experiment)
• Possibility of sharing states between clients (Ex:

research whiteboard)
• Handling long-living processes (Ex: auction

framework)
• Enables the IT and business alignment

1/17/2008IE565 Spring 2008Page 38

Process-enabled SOA
Enterprise Layer

Airline
Web site

Airline
Web site

Basic layer

FlightFlight
CustomerCustomer BookingBooking BillingBilling

Intermediary layer

BookAnd
Bill

BookAnd
Bill

Business (Process) Layer
Booking
Process

Booking
Process

1/17/2008IE565 Spring 2008Page 39

Process-enabled SOA (contd.)
Enterprise Layer

Airline
Web site

Airline
Web site

Basic layer

FlightFlight
CustomerCustomer BookingBooking BillingBilling

Intermediary layer

BookAnd
Bill

BookAnd
Bill

Business Layer
mobile
process

mobile
process

Booking
Process

Booking
Process

B2B
process

B2B
process

1/17/2008IE565 Spring 2008Page 40

Process-enabled SOA (contd.)
Enterprise Layer

Airline
Web site

Airline
Web site

Basic layer
Email
& SMS

Email
& SMS FlightFlight

CustomerCustomer BookingBooking BillingBilling

Business Layer
Mobile
process

Mobile
process Booking

Process

Booking
Process

cancellation
process

cancellation
process

WaitlistingWaitlisting

1/17/2008IE565 Spring 2008Page 41

Process-enabled SOA summary

• Enables light-weight frontends (handles only
user interaction)

• Encapsulates complexities of business
processes

• Abstracts complexities of backend systems
• Enables separation of business logic from

technology complexities
• Is required for integration of independent

organizations and implementation of complex
processes

1/17/2008IE565 Spring 2008Page 42

Business Process Management
(BPM)

• BPM generally focuses on the strategic and
operational aspects of process orientation in a
given business area.

• Mapping BPM model to an enterprise IT
landscape is a challenging task.
– Business side of BPM are the keywords such as

ISO 9000 and Six Sigma
– IT side of BPM is accompanied by keywords such

a process modeling and workflow management

8

1/17/2008IE565 Spring 2008Page 43

IT Organization Business Organization

EAI

Workflow
management

ERP

B2Bi

Rules
EngineWeb

Service
Six Sigma

Value Chain

Activity based
costing

Continuous
Process
improvement

1/17/2008IE565 Spring 2008Page 44

Business Process Management
System (BPMS)

• BPMS provides the technical platform for realizing
BPM management initiatives.
– BPM engine, facilities for BPM monitoring, design tools, and

facilities for simulation.
– “BPM encompasses the discovery, design, and deployment

of business processes, as well as executive, administrative
and supervisory control over them to ensure that they
remain compliant with business objectives” [SF03]

– A BPM software product should enable business analysts,
software developers, and system administrators to model
and deploy business processes (at development time) and
to interact with, monitor and analyze process instances 9at
run time).

– Lets discuss Modeling and execution architecture of BPMS.

1/17/2008IE565 Spring 2008Page 45

BPM System Architecture

Pr
oc

es
s

M
an

ag
er

Process
Definition
Repository

Process
Instance
repository

Transaction
manager

Connector
framework

Process engine
Interprets VPML, BPEL4WS

Backend applications

Middleware

Design tool

Deploy &
configure

Monitor &
manage

1/17/2008IE565 Spring 2008Page 46

BPM vision

• BPM vision is strong one
– Instead of hard coding business processes

into applications, it facilitates modeling,
modifications, reconfigurations, and
optimization of process definitions with
graphical tools that can be used by less
technology-oriented business analysts.

1/17/2008IE565 Spring 2008Page 47

BPM Alignment to SOA

Basic layer

Intermediary layer

Enterprise
Processes

BPML

Process
layer

BPMS

1/17/2008IE565 Spring 2008Page 48

Web Services
• Web Services is a technology that allows for applications to

communicate with each other in a standard format.
• A Web Service exposes an interface that can be accessed through

messaging.
• Deployable unit.
• A Web service uses protocol to describe an operation and the data

exchange with another web service. Ex: SOAP
• Platform independent, say, through WSDL.
• Publishable, discoverable, searchable, queryable
• Scalability issues: A group of web services collaborating accomplish the

tasks of a large-scale application.
• Web services can be used to realize the “services” in an SOA.
• Your task in the first week is to review WS concepts,
• Try a simple implementation of a WS and get familiarized with WS

framework (XML, SOAP, REST, WSDL etc.), if you have not done so.

9

1/17/2008IE565 Spring 2008Page 49

Amazon.com and SOA

• “SOA creates order out of chaos @ Amazon” by Rich
Seely (June 23, 2006) based on Werner Vogels’ talk
“Order in the Chaos: Building the Amazon.com Platform."

• 1995: Started out with a single web service on a single server.
Today amazon has about 150 web services on its homepage
alone.

• 1 million merchant partners; 60 million customers
• One server of customers and inventory grew into two servers;

more database servers were added as the business expanded
• 1999: A mistep during this exponential growth period was

moving to mainframe from distributed server. Failed to meet
scalability, reliability and performance; it was scratched in 2000.

1/17/2008IE565 Spring 2008Page 50

Amazon (contd.)
• Robustness: Shopping cart is tested for 20000 items by a single

customer, for example!
• Amazon’s secret sauce is “operating relaibly at scale”.
• After “the denial of service” debacle in 1999, they decided to use Web

services to insulate the databases from being overwhelmed by direct
interaction with online applications.

• Each web service is the responsibility of a team of developers:
– “And they are not just responsible for writing the service and then

tossing it over the wall for testing and eventual entry into
production where some poor maintenance geek has to look after it.

– The Amazon CTO tells his Web services team members: "You build
it. You own it."

– That means the team is responsible for its Web service's on-going
operation. If a Web service stops working in the middle of the
night, team members are called to fix it.”

• Web services are kept simple: complexity is the notorious
enemy of reliability

• No attachment to one technology or standard: what ever
customer wants, give it. (Ex: REST and SOAP)

