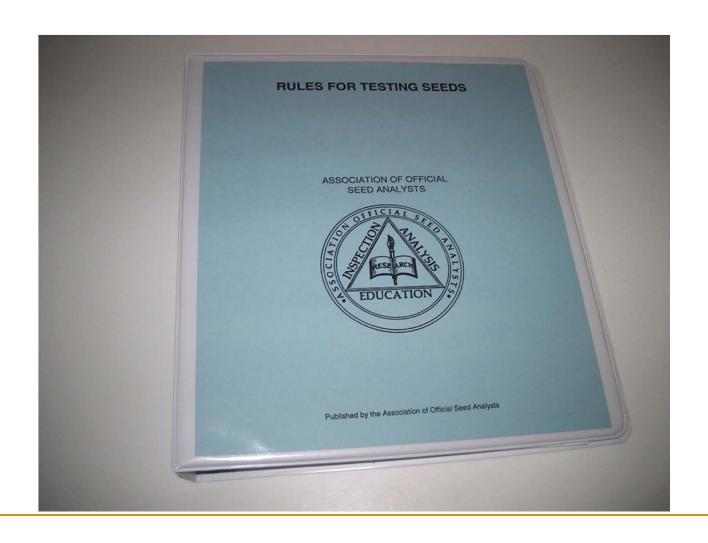
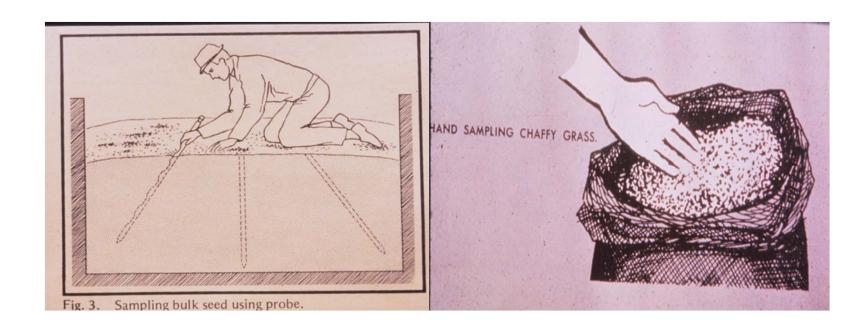
Services of the Wyoming Seed Laboratory

Presented by Gil Waibel, Seed Lab Director April 3, 2012


Wyoming Seed Analysis Lab History

Functions of Seed Laboratory

- Help Wyoming seed industry grow
- Test regulatory samples for Wyoming Dept. of Agriculture
- •Test service samples for Certified Seed Standards, Seed Growers, Seed Companies, and Consumers
- State, Regional and National Involvement
- Research New Testing Methods
- Work with University professors and students on seedrelated research projects


AOSA Rules for Testing Seed

Laboratory Personnel

- Gil Waibel R.S.T., Seed Lab Director
- R. Denny Hall R.S.T.
- Jill Rice Lab Assistant
- Crystal May Lab Assistant
- Tonya Espinosa Lab Assistant
- Debra Churchill Call-In
- Erin Johnson Call-In

Sampling

Representative Sample = Meaningful Test

Proper Handling of Sample

- Enter Sample into Computer
- Divide to Working Weights

Types of Seed Testing

- Purity
- Noxious Weed Seeds
- Germination
- Tetrazolium
- Seed Counts
- Moisture

Purity Testing

- Test about 2,500 seeds
- Separate into four component
 - Pure Seed
 - Other Crop Seed
 - Weed Seed
 - Inert Material

Purity Testing

- A purity sample can be exasperating
 - Very Chaffy
 - A Mixture
 - Contaminated by other species

Purity Testing

Correct Seed Identification is Important!

Species in the AOSA Rules

"some degree of endosperm development"

Fescues
Bluestems
Wheatgrasses
Creeping foxtail
Blue grama *
Sideoats grama *
Bluegrass*
Wildryes
Switchgrass

*Uniform blowing procedure

Purity Challenges

Big bluestem

Indiangrass

Little bluestem

Cannot look at over a diaphanoscope – light does not shine through the lemma and palea. Have to use slight pressure to detect presence of caryopsis in seed unit.

Noxious Weed Seed Exam

- 25,000 seeds tested
- Test could be for:
 - Wyoming
 - Another State
 - Regional (Western)
 - All States
 - Canadian
 - Other Countries
- Downy brome
 - Not noxious

- 400 Seed Test
- Four Reps. of 100 seeds to Sixteen Reps. of 25 seeds
- Reported as percentage
- Optimal Conditions
- Rules usually apply by Plant Family or Sometimes by species groups

- Seedlings are Classified as:
 - Normal
 - Abnormal

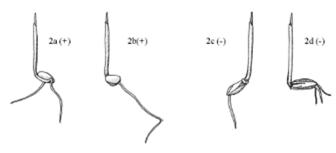
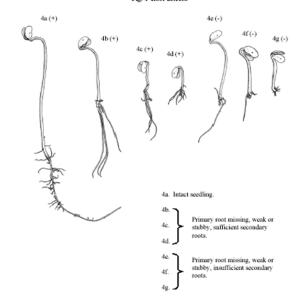



Fig. 2 Root defects.

- 2a. Two strong seminal roots.
- 2c. Less than one strong seminal root.
- 2b. One strong seminal root.
- 2d. Less than one strong seminal root.

Fig. 4 Root defects.

Dormancy Issues

- Hard Seeds
- Firm seeds that have not germinated at the end of the test.
- Use tetrazolium to determine viability
- Germination% + Hard or Dormant seeds = Total Viable Seeds

- Many different media and conditions
 - Paper Towels
 - Blotters
 - Pleated Paper
 - Sand
 - Light or Dark
 - Temperature
 - Duration

Tetrazoium (TZ) Testing

TZ tests help estimate seed viability
TZ test is a rapid method of estimating germination potential (<24 hours)

Tetrazolium tests can be useful in determining the following:

- Gives estimated value of the lot as seed
- A quick basis for buying or selling a seed lot
- Can expedite shipping while waiting for germination confirmation
- Qualitative evaluation of seeds quality (conditioning process, vigor, frost damage, etc.)
- A valuable research technique.

Tetrazolium (TZ) Testing

- TZ solution goes into seed
 - colorless
 - TZ + H+ ----> Formazan (carmine red color)
 - Diffusible will go through cell walls, membranes, and some seed coats
 - Formazan produced is non-diffusible (fixed)

Illustration of Reaction - 9 embryo cells from root tip, plumule or cotyledon (8 living, 1 dead cell)

Slide courtesy of Dr. Brent Turnipseed, South Dakota State University

H ⁺	H ⁺	H ⁺
H ⁺	Dead	H+
H+	H+	H+

Tetrazolium (TZ) Testing

ASSOCIATION OF OFFICIAL SEED ANALYSTS

2004

FAMILY: FABACEAE I

Post Staining Notes: Cut longitudinally, bisecting embryo axis to evaluate conducting tissue of radicle/ hypocotyl. Examine internal cotyledon surfaces and epicotyl.

VIABLE (NORMAL STAINING)

- entire embryo evenly stained, turgid, and unfractured
- unstained, dark red, or fractured radicle, including tip of central conducting tissue, acceptable
- superficial unstained or darkly-stained watery areas acceptable throughout embryo except at juncture of cotyledons and embryo axis (see notes)
- plumule is lightly stained or is live and unstained
- inner portions of embryo axis and cotyledons are usually unstained, but firm and white to yellow in color (greenish-white to greenish-yellow in Arachis)

NON-VIABLE (ABNORMAL OR NO STAINING)

- embryo completely unstained with flaccid tissue
- unstained, darkly-stained, fractured, or necrotic tissue at juncture of cotyledons and embryo axis
- radicle/hypocotyl unstained, dark red, or broken above tip of central conducting tissue
- unstained, darkly-stained, fractured, or necrotic tissue resulting in less than half of cotyledons remaining attached to embryo axis
- unstained, darkly-stained, fractured, or necrotic tissue in cotyledons comprising half or more of cotyledons or, on embryo axis, extending into central conducting tissue
- unstained, darkly-stained, fractured, or necrotic tissue in plumule comprising more than half of plumule area
- insect damage

OTHER TISSUE/NOTES

Bisect and examine axis to determine whether defects extend into central conducting tissue.

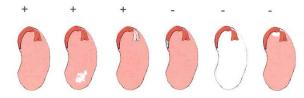
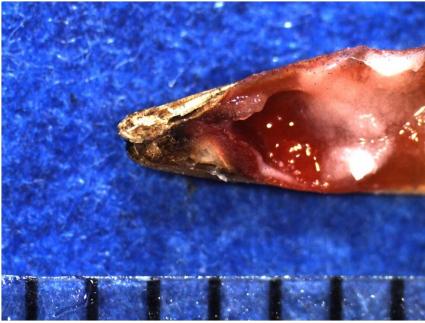


Fig 4 Seed stain evaluation


REFERENCES: 1, 2, 6, 9, 11

Tetrazolium (TZ) Testing

From TZ Test

Dormancy check at end of Germination Test

Species Not in Rules

- How do you test a species when it is not in the <u>AOSA Rules for Testing Seeds</u>?
 - Consider rules for similar species
 - Check with other seed labs
 - Experiment

Species not in the Rules

<u>Grasses</u>

Prairie sandreed Prairie cordgrass Meadow barley Tufted hairgrass Idaho fescue Black grama

Other species

Purple prairie clover

Bulrush

Leadplant

Creosote bush

Globemallow

Monkeyflower

Elderberry

Greasewood

Creosote bush <u>Larrea tridentata</u> Family: Zgophyllaceae


Winterfat

Krascheninnikovia lanata

Family: Chenopodiaceae

Tanglehead <u>Heteropogon contortus</u> Family: Poaceae

Squaw carpet *Ceanothus prostatus*Family: Rhamnaceae

Longspur lupine <u>Lupinus arbustus</u> Family: Fabaceae

Nebraska sedge <u>Carex nebrascensis</u> Cyperaceae

Greasewood Sarcobatus vermiculatus Family: Chenopodiaceae

California poppy <u>Escheholtzia californica</u> Family: Papaveraceae

Venus penstemon <u>Penstemon venustus</u> Scrophulariacea

Skunkbush sumac Rhus triobata Family: Anacardiaceae

Snowberry

Gaultheria spp.

Family: Ericaceae

Desert bitterbrush <u>Purshia glandulosa</u> Family: Rosaceae

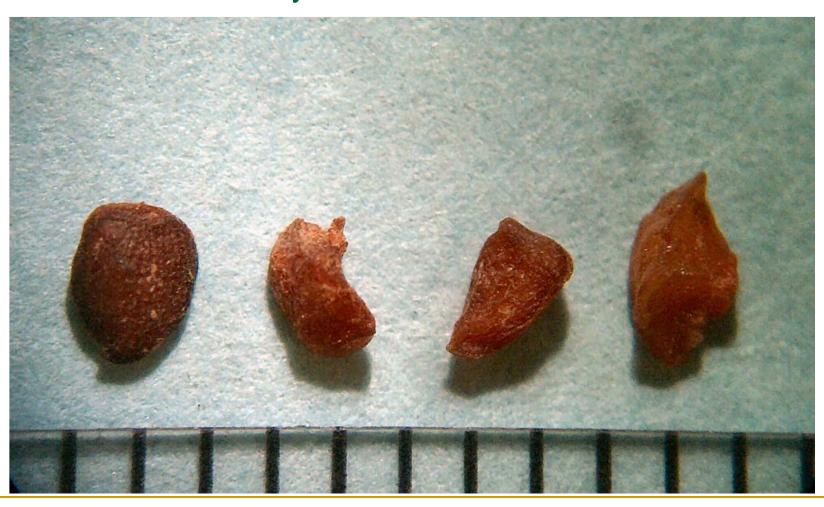
Whitethorn

Ceanothus cordulatus

Family: Rhamnaceae

Baltic rush <u>Juncus balticus</u> Family: Juncaceae

Triangle bur ragweed <u>Ambrosia deltoidea</u> Family: Asteraceae


Rubber rabbitbrush *Chrysothamnus nauseous*Family: Asteraceae

Slender cinquefoil <u>Potentilla gracilis</u> Family: Rosaceae

Wax currant Ribes cereum Family: Grossulariaceae

Blue fescue

Festuca glauca

Family: Poaceae

Oregon grape <u>Mahonia aquifolium</u> Family: Berberidaceae

Bluejoint reedgrass <u>Calamagrostis canadensis</u> Family: Poaceae

Desert olive

Forestiera shrevei

Family: Oleaceae

Goldenhills

Encelia fainose

Family: Asteraceae

Firecracker penstemon <u>Penstemon eatonii</u> Family: Scrophulariaceae

Tufted hairgrass <u>Deschampsia caespitosa</u> Family: Poaceae

Rosarypea

Abrus praecatorius

Family: Fabaceae

Come visit us!

- Learn and/or teach us about seeds
- Research opportunities
- We live way out in Powell we like company!

