
Copyright © 2019 - Open Networking Foundation

SESSION 1
P4 and P4Runtime basics

Copyright © 2019 - Open Networking Foundation

Overview

● P4
○ Data plane programming language

● P4Runtime
○ API for runtime control for P4-defined data planes

● Hands-on lab (exercise 1)

Copyright © 2019 - Open Networking Foundation

Data plane pipeline

ASIC, FPGA, NPU, or CPU

Pipeline of match-action tables

Copyright © 2019 - Open Networking Foundation

P4 - Data Plane Programming Language

● Domain-specific language to formally define the data plane pipeline
○ Describe protocol headers, lookup tables, actions, counters, etc.
○ Can describe fast pipelines (e.g ASIC, FPGA) as well as a slower ones (e.g. SW switch)

● Good for programmable switches, as well as fixed-function ones
○ Defines “contract” between the control plane and data plane for runtime control

30

Table {
 match
 actions
}

Programmable or fixed-function
pipeline

Compiler (provided by switch vendor)

mypipeline.p4

Copyright © 2019 - Open Networking Foundation

Evolution of the language

● P414
○ Original version of the language
○ Assumed specific device capabilities
○ Good only for a subset of programmable switch/targets

● P416
○ More mature and stable language definition
○ Does not assume device capabilities, which instead are defined by target

manufacturer via external libraries/architecture definition
○ Good for many targets, e.g. switches and NICS, programmable or

fixed-function
○ Focus of this tutorial

Copyright © 2019 - Open Networking Foundation

Architecture of a programmable switch 32

PISA: Protocol-Independent Switch Architecture

Copyright © 2019 - Open Networking Foundation

Compiling P4 on a programmable switch (PISA) 33

P4 compiler
Allocate resources to
realize the pipeline

Copyright © 2019 - Open Networking Foundation

Compiling P4 on a programmable switch (PISA) 34

P4 compiler
Allocate resources to
realize the pipeline

Large

Small

Small

Copyright © 2019 - Open Networking Foundation

Role of P4 for fixed-function chips

● P4 program tailored to apps / role - does not describe the hardware
● Switch maps program to fixed-function ASIC
● Enables portability of the control plane

ASIC 1 ASIC 2

Logical

Physical

Control

Mapping
Manual or

via compiler

Slide courtesy: Google

Copyright © 2019 - Open Networking Foundation

P4 architectures
my_program.p4

Written against a specific architecture
Defines the implementation of each block

architecture.p4
Provided by switch vendor

Defines which blocks are
available, the interfaces of each
block, and their capabilities

36

Fixed function

Traffic manager

Copyright © 2019 - Open Networking Foundation

V1Model P4 Switch Architecture (from P4_14)

● Parser/deparser
● Checksum verification/update
● Ingress Pipeline
● Egress Pipeline

○ Match on egress port
● Traffic Manager

○ Queueing, Replication (multicast), scheduling

→ P4 programmable
→ P4 programmable

→ Fixed function

Traffic manager

→ P4 programmable

Ingress match+action pipeline
/ checksum verification

Egress match+action pipeline
/ checksum update

Parser Deparser

→ P4 programmable

37

Traffic manager

Copyright © 2019 - Open Networking Foundation

PSA - Portable Switch Architecture

● Community-developed architecture (P4.org Arch WG)
○ https://github.com/p4lang/p4-spec/tree/master/p4-16/psa

● Describes common capabilities of a network switch

● 6 programmable P4 blocks + 2 fixed-function blocks

● Defines capabilities beyond match+action tables
○ Counters, meters, stateful registers, hash functions, etc.

38

https://github.com/p4lang/p4-spec/tree/master/p4-16/psa

Copyright © 2019 - Open Networking Foundation

Other P4 architectures

● FlexSAI
○ Hybrid programmable/fixed-function switch based on SAI
○ https://github.com/opencomputeproject/SAI/tree/master/flexsai/p4

● Portable NIC Architecture (PNA)
○ Work in progress by the P4.org Architecture WG

● Proprietary architectures
○ E.g., Tofino Native Architecture (TNA)

Fixed function Programmable Hybrid

https://github.com/opencomputeproject/SAI/tree/master/flexsai/p4Describes

Copyright © 2019 - Open Networking Foundation

Preliminary takeaways

● Can I implement/describe this or that function with P4?
○ The P4 language aims at being flexible enough to express almost any

behavior based on match-action tables
○ But, specific capabilities depend on the architecture

■ e.g. ternary match vs. longest-prefix match vs. exact match, ECMP-like action
selectors, stateful memories, etc.

● Can I execute my P4 program on a switch X from vendor Y?
○ Yes, if vendor provides you with a P4 compiler for the specific arch

Architectures enable portability of P4 programs
across different HW and SW targets

Copyright © 2019 - Open Networking Foundation

P4 program template (V1Model architecture) 41

Copyright © 2019 - Open Networking Foundation

P4 program example: simple_router.p4 42

header ethernet_t {

 bit<48> dst_addr;

 bit<48> src_addr;

 bit<16> eth_type;

}

header ipv4_t {

 bit<4> version;

 bit<4> ihl;

 bit<8> diffserv;

 …

}

parser parser_impl(packet_in pkt, out headers_t hdr) {

 /* Parser state machine to extract header fields */

}

action set_next_hop(bit<48> dst_addr) {

 ethernet.dst_addr = dst_addr;

 ipv4.ttl = ipv4.ttl - 1;

}

...

table ipv4_routing_table {

 key = { ipv4.dst_addr : LPM; // longest-prefix match }

 actions = { set_next_hop(); drop(); }

 size = 4096; // table entries

}

...

apply {

 if (ipv4.isValid()) {

 ipv4_routing_table.apply();

 }

}

...

Ingress pipeline implementation:

Copyright © 2019 - Open Networking Foundation

Simple router example action ipv4_forward(bit<48> dst_addr, bit<9> port) {
 ethernet.dst_addr = dst_addr;
 standard_metadata.egress_spec = port;
 ipv4.ttl = ipv4.ttl - 1;
}
table ipv4_routing_table {
 key = {

ipv4.dst_addr : LPM; // longest-prefix match
 }
 actions = {

ipv4_forward();
drop();

 }
}

Control plane populates table entries

43

● Data plane (P4) program
○ Defines the match-action tables
○ Performs the lookup
○ Executes the chosen action

● Control plane
○ Populates table entries with specific

information
■ Based on configuration, automatic discovery,

protocol calculations

Copyright © 2019 - Open Networking Foundation

P4 workflow summary 44

P4 Program

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary

Control Plane

Data PlaneTables Extern
objectsLoad

Vendor supplied

User supplied

Add/remove
table entries

CPU port

Packet-in/outExtern
control

P4Runtime

Copyright © 2019 - Open Networking Foundation

P4Runtime
Runtime control API for P4-defined data planes

Copyright © 2019 - Open Networking Foundation

P4Runtime v1.0

● Released on Jan 2019

● Open source specification
○ Started by Google and Barefoot in mid-2016
○ Contributions by many industry professionals
○ Use GitHub issues / PR for discussions

● Based on continuous implementation
feedbacks from Google and ONF
○ First ONF demo in Oct 2017

https://p4.org/p4-spec/
https://github.com/p4lang/p4runtime

https://p4.org/p4-spec/
https://github.com/p4lang/p4runtime

Copyright © 2019 - Open Networking Foundation

P4Runtime overview

● Protobuf-based API definition
○ Efficient wire format
○ Automatically generate code to serialize/deserialize

messages for many languages

● gRPC-based transport
○ Automatically generate high-performance client/server

code in many languages
○ Pluggable authentication and security
○ Bi-directional stream channels

● P4-program independent
○ Allow pushing new P4 programs to reconfigure the

pipeline at runtime

● Equally good for remote or local control plane
○ With or without gRPC

47

p4runtime.proto

P4 target

Copyright © 2019 - Open Networking Foundation

P4Runtime main features

● Batched read/writes
○ Table entries, action groups, counters, registers, etc.

● Master-slave arbitration
○ For control plane high-availability and fault-tolerance

● Multiple master controllers via role partitioning
○ E.g. local control plane for L2, remote one for L3

● Flexible and efficient packet I/O
○ OpenFlow-like packet-in/out with arbitrary metadata
○ Digests, i.e. batched notification to controller with subset of packet headers

● Designed around P4 PSA architecture
○ But can be extended to others via Protobuf “Any” messages
○ Works well with V1Model

Copyright © 2019 - Open Networking Foundation

P4 compiler workflow 49

test.p4

test.json

p4c-bm2-ss
(compiler)

P4 compiler generates 2 outputs:

1. Target-specific binaries
○ Used to realize switch pipeline

(e.g. binary config for ASIC, BMv2 JSON, etc.)

2. P4Info file
○ “Schema” of pipeline for runtime control

■ Captures P4 program attributes such as tables,
actions, parameters, etc.

○ Protobuf-based format
○ Target-independent compiler output

■ Same P4Info for SW switch, ASIC, etc.

test.p4info

Full P4Info protobuf specification:
https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

Copyright © 2019 - Open Networking Foundation

P4Info example 50

...

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 eth.dstAddr = dstAddr;
 metadata.egress_spec = port;
 ipv4.ttl = ipv4.ttl - 1;
}

...

table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

basic_router.p4
actions {
 id: 16786453
 name: "ipv4_forward"
 params {
 id: 1
 name: "dstAddr"
 bitwidth: 48
 ...
 id: 2
 name: "port"
 bitwidth: 9
 }
}
...
tables {
 id: 33581985
 name: "ipv4_lpm"
 match_fields {
 id: 1
 name: "hdr.ipv4.dstAddr"
 bitwidth: 32
 match_type: LPM
 }
 action_ref_id: 16786453
}

basic_router.p4info

P4 compiler

Protobuf
message

text format

Copyright © 2019 - Open Networking Foundation

P4Runtime table entry WriteRequest example 51

device_id: 1
election_id { … }
updates {
 type: INSERT
 entity {
 table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\n\000\001\001"
 prefix_len: 32
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\000\000\000\000\n"
 }
 params {
 param_id: 2
 value: "\000\007"
 …

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 /* Action implementation */
}
table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

hdr.ipv4.dstAddr=10.0.1.1/32
-> ipv4_forward(00:00:00:00:00:10, 7)

basic_router.p4

Logical view of table entry

WriteRequest message

Control plane
generates

Protobuf
message

text format

Copyright © 2019 - Open Networking Foundation

P4Runtime SetPipelineConfig

message SetForwardingPipelineConfigRequest {
 enum Action {
 UNSPECIFIED = 0;
 VERIFY = 1;
 VERIFY_AND_SAVE = 2;
 VERIFY_AND_COMMIT = 3;
 COMMIT = 4;
 RECONCILE_AND_COMMIT = 5;
 }
 uint64 device_id = 1;
 uint64 role_id = 2;
 Uint128 election_id = 3;
 Action action = 4;
 ForwardingPipelineConfig config = 5;
}

52

message ForwardingPipelineConfig {
 config.P4Info p4info = 1;
 // Target-specific P4 configuration.
 bytes p4_device_config = 2;
}

test.p4

bin

p4c
(compiler)

p4info

Pipeline config

Pipeline config bits

SetPipelineConfig()

Copyright © 2019 - Open Networking Foundation

P4Runtime summary

● P4Runtime is an improvement over previous data plane APIs
○ Realize the vision of OpenFlow 2.0
○ Provides protocol and pipeline-independence
○ Protocols supported and pipeline are formally specified using P4

● Based on protobuf and gRPC
○ Makes it easy to implement a P4Runtime client/server by auto-generating

code for different languages

● P4Info as a contract between control and data plane
○ Generated by P4 compiler
○ Needed by the control plane to format the body of P4Runtime messages

(e.g. to add table entry)

Copyright © 2019 - Open Networking Foundation

Exercise 1 overview

Copyright © 2019 - Open Networking Foundation

Exercise 1: Steps

1. Look at given P4 program

2. Answer questions about the implementation

3. Compile it for BMv2, obtain bmv2.json and p4info.txt

4. Start stratum_bmv2 in Mininet

5. Use P4Runtime Shell to push pipeline config and write table
entries in the bridging table

6. Test connectivity via ping

Copyright © 2019 - Open Networking Foundation

Exercise 1: Tools

Docker container 1: opennetworking/mn-stratum
● Provides Mininet with stratum_bmv2
● Allow execution of custom topology scripts (2x2 fabric in our case)

Docker container 2: opennetworking/p4c
● Containerized version of the open source P4_16 compiler

Docker container 3: p4lang/p4runtime-sh
● Interactive P4Runtime Shell (based on IPython)

Docker container 4: onosproject/onos:2.2.0
● ONOS, not used in this exercise
● We’ll leave it running to use in next exercises

Copyright © 2019 - Open Networking Foundation

Starter P4 program

● Goal: build an IPv6-based leaf-spine data center fabric

● Each switch acts as a (simplified) IPv6 router:
○ L2 bridging for hosts in the same subnet

■ Forward based on MAC dest with host learning
○ IPv6 routing for hosts in different subnets
○ ECMP to load balance traffic across multiple spines
○ Controller packet-in/packet-out

■ For link and host discovery

● Same P4 code used for leaves and spines (p4src/main.p4)
○ Well commented, easy to understand even with little or no P4 experience

Copyright © 2019 - Open Networking Foundation

p4c

● Open-source frontend compiler
○ https://github.com/p4lang/p4c

● Generates P4Info
● Support multiple backends (vendor-supplied)

○ Generate code for ASICs, NICs, FPGAs, software switches and other targets

● Some backends are open-source (BMv2, eBPF)

https://github.com/p4lang/p4c

Copyright © 2019 - Open Networking Foundation

BMv2 – Reference P4 software switch

● Open-source user-space implementation
○ https://github.com/p4lang/behavioral-model

● BMv2 = Behavioral-Model version 2
● Aimed at being 100% conformant to the P4 specification

○ Performance is non-goal, i.e. low throughput

● Architecture-independent
○ Mostly generic code which can be used to implement any P4 architecture

● We use the “simple_switch” with Stratum support
○ Implementation of V1Model architecture with Stratum APIs over gRPC

https://github.com/p4lang/behavioral-model

Copyright © 2019 - Open Networking Foundation

BMv2’s simple_switch target

my_program.p4 my_program.json
p4c compiler with

simple_switch back-end

v1model.p4 architecture

Copyright © 2019 - Open Networking Foundation

stratum_bmv2

kernel

user
Common (HW agnostic)
Chip specific
Platform specific
Chip and Platform specific

P4Runtime gNMI gNOI

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chassis
Manager

Chip Abstraction Managers Platform
Manager

Remote or Local Controller(s)

 BMv2 simple_switch

p4lang/PI

St
ra

tu
m

 s
w

itc
h

ag
en

t

veth vethveth ...

Copyright © 2019 - Open Networking Foundation

Exercise 1: Get Started

Open lab README on GitHub:
http://bit.ly/ngsdn-tutorial-lab
Or open in text editor:
~/ngsdn-tutorial/README.md

~/ngsdn-tutorial/EXERCISE-1.md

You can work on your own using the instructions.
You have time until 11.15 - coffee and snacks are outside.

These slides:
http://bit.ly/ngsdn-tutorial-slides

Before starting!
Update tutorial repo
(requires Internet access)
cd ~/ngsdn-tutorial
git pull origin master
make pull-deps

P4 language cheat sheet:
http://bit.ly/p4-cs

http://bit.ly/ngsdn-tutorial-lab

