SESSION 2

PROJECTION OF LINES

S1 ME 2017

Downloaded from Ktunotes.in

Orthographic Projections Means Fv \& Tv of Line AB are shown below, with their apparent Inclinations $\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV $a^{\prime} b^{\prime}$ is not showing True Length \& True Inclination with Hp.

Note the procedure
When Fv \& Tv known,
How to find True Length. (Views are rotated to determine True Length \& it's inclinations with Hp \& Vp).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding
FV a' b_{1} 'Is showing
True Length
\&
True Inclination with Hp. Downloaded from Ktunotes.in

Note the procedure
When True Length is known, How to locate Fv \& Tv.

of TL $a b_{2}$ gives length of Fv.
Hence it is brought Up to Locus of a' and further rotated to get point b^{\prime}. $a^{\prime} b^{\prime}$ will be Fv.

Similarly drawing component of other TL($a^{\prime} b_{1}{ }^{\prime}$) Tv can be drawn.

The most important diagram showing graphical relationd True Length (TL) - a' b_{1}^{\prime} \& a b_{2}
among all important parameters of this topic. Study and memorize it as a CIRCUIT DIAGRAM And use in solving various problems.

2) Angle of $T L$ with Hp -
3) Angle of $T L$ with $V p-$
4) Angle of $F V$ with $x y-$
5) Angle of TV with $x y$ -

Important TEN parameters to be remembered with Notations used here onward
6) LFV (length of FV) - Component $\left(a^{\prime}-b_{2}{ }^{\prime}\right)$
7) LTV (length of TV) - Component ($a-b_{1}$)
8) Position of A- Distances of a \& a' from $x y$
9) Position of B- Distances of b \& b' from $x y$
10) Distance between End Projectors

Also Rēmember
is drawn \& it is further rotated to locate view.
${ }^{-}$Views are always rotated, made horizontal \& further extended to locate $T L$

GENERAL CASES OF THE LINE INCLINED TO BOTH HP \& VP (based on 10 parameters).

PROBLEM 1)

Line $A B$ is 75 mm long and it is 30° \& 40° Inclined to Hp \& Vp respectively.
End A is 12 mm above Hp and 10 mm in front of Vp .
Draw projections. Line is in $1^{\text {st }}$ quadrant.

SOLUTION STEPS:

1) Draw $x y$ line and one projector.
2) Locate a' 12 mm above $x y$ line
\& a 10 mm below xy line.
3) Take 30° angle from a' \& 40° from a and mark TL I.e. 75 mm on both lines. Name those points $b_{1}{ }^{\prime}$ and b_{1} respectively.
4) Join both points with a' and a resp.
5) Draw horizontal lines (Locus) from both points.
6) Draw horizontal component of TL $a b_{1}$ from point b_{1} and name it 1. (the length a-1 gives length of Fv as we have seen already.)
7) Extend it up to locus of a' and rotating a ' as center locate b' as shown. Join a' b' as Fv.

8) From b' drop a projector down ward \& get point b. Join a \& \& bwnloaded from Ktunotes.in

PROBLEM 2:

Line AB 75 mm long makes 45° inclination with Vp while it's Fv makes 55°.
End A is 10 mm above Hp and 15 mm in front of Vp . If line is in $1^{\text {st }}$ quadrant draw it's projections and find it's inclination with Hp.

Solution Steps:-

1.Draw $x-y$ line.
2. Draw one projector for a' \& a
3.Locate a' 10 mm above $\mathrm{x}-\mathrm{y}$ \&

Tv a 15 mm below xy .
4. Draw a line 45° inclined to xy from point a and cut TL 75 mm on it and name that point b_{1} Draw locus from point b_{1}
5.Take 55° angle from a^{\prime} for Fv above xy line.
6. Draw a vertical line from b_{1} up to locus of a and name it 1 . It is horizontal component of TL \& is LFV.
7.Continue it to locus of a' and rotate upward up to the line of Fv and name it b^{\prime}.This $a^{\prime} b^{\prime}$ line is Fv .
8. Drop a projector from b' on locus from point b_{1} and name intersecting point b. Line $a b$ is Tv of line AB.
9. Draw locus from b ' and from a^{\prime} with TL distance cut point $b_{1}{ }^{\text {' }}$ 10.Join $a^{\prime} b_{1}$ ' as TL and measure it's angle at a^{\prime}.
It will be true angle of line with HP. Downloaded from Ktunotes.in

PROBLEM 3:

of line $A B$ is 50° inclined to $x y$ and measures 55 mm long while it's Tv is 60° inclined to xy line. If end A is 10 mm above Hp and 15 mm in front of Vp , draw it's projections, find TL, inclinations of line with Hp \& V p.

SOLUTION STEPS:

1.Draw $x y$ line and one projector.
2.Locate a' 10 mm above xy and a 15 mm below $x y$ line.
3.Draw locus from these points.
4.Draw Fv 50° to xy from a' and mark b' Cutting 55 mm on it.
5. Similarly draw Tv 60° to xy from a \& drawing projector from b' Locate point b and join $a b$.
6. Then rotating views as shown, locate True Lengths $a b_{1} \& a^{\prime} b_{1}{ }^{\prime}$ and their angles with Hp and Vp .

Downloaded from Ktunotes.in

PROBLEM 4 :-

Line $A B$ is 75 mm long . It's Fv and Tv measure $50 \mathrm{~mm} \& 60 \mathrm{~mm}$ long respectively. End A is 10 mm above Hp and 15 mm in front of Vp. Draw projections of line $A B$ if end B is in first quadrant. Find angle with Hp and Vp.

SOLUTION STEPS:

1.Draw $x y$ line and one projector.
2.Locate a' 10 mm above xy and a 15 mm below $x y$ line.
3.Draw locus from these points.
4.Cut 60 mm distance on locus of a' \& mark 1' on it as it is LTV.
5.Similarly Similarly cut 50 mm on
locus of a and mark point 1 as it is LFV.
6.From 1' draw a vertical line upward and from a' taking TL (75 mm) in compass, mark b' ${ }_{1}$ point on it.
Join a' b' ${ }_{1}$ points.
7. Draw locus from b' ${ }_{1}$
8. With same steps below get b_{1} point and draw also locus from it.
9. Now rotating one of the components I.e. a-1 locate b' and join a' with it to get Fv.
10. Locate ty similady and measure Angles

Downloaded from Ktunotes.in

PROBLEM 5 :-

T.V. of a 75 mm long Line CD, measures 50 mm .

End C is in Hp and 50 mm in front of Vp .
End D is 15 mm in front of Vp and it is above Hp .
Draw projections of CD and find angles with Hp and V p.

SOLUTION STEPS:

1.Draw xy line and one projector.
2.Locate c' on xy and
c 50 mm below xy line.
3.Draw locus from these points.
4.Draw locus of d 15 mm below xy 5.Cut 50 mm \& 75 mm distances on locus of d from c and mark points $d \& d_{1}$ as these are Tv and line CD lengths resp.\& join both with c.
6.From d_{1} draw a vertical line upward up to xy I.e. up to locus of c' and draw an arc as shown.
7 Then draw one projector from d to meet this arc in d' point \& join c' d'
8. Draw locus of d' and cut 75 mm on it from c' as TL
9.Measure Angles θ \& Φ

TRACES OF THE LINE:-

THESE ARE THE POINTS OF INTERSECTIONS OF A LINE (OR IT'S EXTENSION) WITH RESPECTIVE REFFERENCE PLANES.

```
A LINE ITSELF OR IT'S EXTENSION, WHERE EVER TOUCHES H.P.,
THAT POINT IS CALLED TRACE OF THE LINE ON H.P.( IT IS CALLED H.T.)
```

THAT POINT IS CALLED TRACE OF THE LINE ON V.P.(IT IS CALLED V.T.)
V.T.:- It is a point on $\mathbf{V p}$.
Hence it is called $\boldsymbol{F v}$ of a point in V p.
Hence it's Tv comes on XY line.(Here onward named as V)
H.T.:- It is a point on Hp.
Hence it is called $\boldsymbol{T} \boldsymbol{v}$ of a point in Hp .
Hence it's Fv comes on XY line. (Here onward named as 'h')

Downloaded from Ktunotes.in

Downloaded from Ktunotes.in

STEPS TO LOCATE HT.

 (WHEN PROJECTIONS ARE GIVEN.)1. Begin with FV. Extend FV up to XY line.
2. Name this point \mathbf{h}^{\prime}
(as it is a Fv of a point in $\mathbf{H p}$)
3. Draw one projector from h^{\prime}.
4. Now extend Tv to meet this projector. This point is HT

STEPS TO LOCATE VT. (WHEN PROJECTIONS ARE GIVEN.)

1. Begin with TV. Extend TV up to XY line.
2. Name this point \mathbf{V} (as it is a Tv of a point in $\mathbf{V p}$)
3. Draw one projector from \mathbf{v}.
4. Now extend Fv to meet this projector. This point is VT

PROBLEM 6 :- Fv of line AB makes 45° angle with XY line and measures 60 mm .
Line's Tv makes 30° with XY line. End A is 15 mm above Hp and it's VT is 10 mm below Hp. Draw projections of line AB, determine inclinations with Hp \& Vp and locate HT, VT.

SOLUTION STEPS:-

Draw xy line, one projector and locate fv a' 15 mm above xy . Take 45° angle from a' and marking 60 mm on it locate point b'.

Draw locus of VT, 10 mm below xy \& extending Fv to this locus locate VT. as fv-h'-vt' lie on one st.line.
Draw projector from vt, locate v on $x y$.
From v take 30° angle downward as
Tv and it's inclination can begin with v.
Draw projector from b' and locate b I.e.Tv point.
Now rotating views as usual TL and
it's inclinations can be found.
Name extension of Fv, touching xy as h' and below it, on extension of Tv, locate HT.

PROBLEM 7:

One end of line $A B$ is 10 mm above Hp and other end is 100 mm in-front of Vp .
It's Fv is 45° inclined to $x y$ while it's HT \& VT are 45 mm and 30 mm below xy respectively.
Draw projections and find TL with it's inclinations with Hp \& VP.

SOLUTION STEPS:-

Draw xy line, one projector and locate a' 10 mm above xy .
Draw locus 100 mm below xy for points $\mathrm{b} \& \mathrm{~b}_{1}$ Draw loci for VT and HT, 30 mm \& 45 mm below xy respectively.
Take 45° angle from a' and extend that line backward to locate h ' and VT , \& Locate v on xy above VT .
Locate HT below h' as shown.
Then join $v-H T$ - and extend to get top view end b.
Draw projector upward and locate b' Make a b \& a'b' dark.

Now as usual rotating views find TL and it's inclinations.
Downloaded from Ktunotes.in

PROBLEM 8 :- Projectors drawn from HT and VT of a line AB are 80 mm apart and those drawn from it's ends are 50 mm apart.
End A is 10 mm above Hp , VT is 35 mm below Hp while it's HT is 45 mm in front of Vp. Draw projections, locate traces and find TL of line \& inclinations with Hp and Vp.

SOLUTION STEPS:-

1.Draw $x y$ line and two projectors, 80 mm apart and locate HT \& VT, 35 mm below xy and 55 mm above xy respectively on these projectors. 2. Locate h ' and v on $x y$ as usual.
3.Now just like previous two problems, Extending certain lines complete Fv \& Tv And as usual find TL and it's inclinations.

LINE IN A PROFILE PLANE (MEANS IN A PLANE PERPENDICULAR TO BOTH HP \& VP)

OBSERVE CAREFULLY ABOVE GIVEN ILLUSTRATION AND $2^{\text {nd }}$ SOLVED PROBLEM.
Downloaded from Ktunotes.in

PROBLEM 13 :- A line $\mathrm{AB}, 75 \mathrm{~mm}$ long, has one end A in $V p$. Other end B is 15 mm above Hp and 50 mm in front of Vp . Draw the projections of the line when sum of it's Inclinations with HP \& Vp is 90°, means it is lying in a profile plane.
Find true angles with ref.planes and it's traces.

SOLUTION STEPS:-

After drawing xy line and one projector Locate top view of A l.e point a on $x y$ as It is in Vp ,
Locate Fv of B i.e.b'15 mm above xy as it is above Hp.and Tv of B i.e. b, 50 mm below xy asit is 50 mm in front of Vp Draw side view structure of Vp and Hp and locate S.V. of point B i.e. b" From this point cut 75 mm distance on Vp and Mark a" as A is in Vp. (This is also VT of line.) From this point draw locus to left \& get a' Extend SV up to Hp. It will be HT. As it is a Tv
 Rotate it and bring it on projector of b. Now as discussed earlier SV gives TL of line and at the same time on extension up to Hp \& Vp gives inclinations with those panes.

Downloaded from Ktunotes.in

PROBLEM NO. 24

T.V. of a 75 mm long Line CD, measures 50 mm .

SOME CASES OF THE LINE

 IN DIFFERENT QUADRANTS.
REMEMBER:

BELOW HP- Means- Fv below xy BEHIND V p- Means- Tv above xy.

End C is 15 mm below Hp and 50 mm in front of Vp .
End D is 15 mm in front of Vp and it is above Hp.
Draw projections of CD and find angles with Hp and Vp .

Downloaded from Ktunotes.in

PROBLEM NO. 25

End A of line AB is in Hp and 25 mm behind Vp.
End B in Vp.and 50mm above Hp.
Distance between projectors is 70 mm .
Draw projections and find it's inclinations with Ht, Vt.

Downloaded from Ktunotes.in

PROBLEM NO. 26

End A of a line AB is 25 mm below Hp and 35 mm behind Vp.
Line is 300 inclined to Hp .
There is a point P on AB contained by both HP \& VP.
Draw projections, find inclination with Vp and traces.

Downloaded from Ktunotes.in

PROBLEM NO. 27

End A of a line AB is 25 mm above Hp and end B is 55 mm behind V .
The distance between end projectors is 75 mm .
If both it's HT \& VT coincide on xy in a point, 35 mm from projector of A and within two projectors, Draw projections, find TL and angles and HT, VT.

Rotating Plane or Trapezoidal method

(13) The front view of the line AB of length 70 mm is inclined at 30° to $x y$ line and measures 45 mm . The end A is 20 mm above HP and 25 mm in front of VP. Draw the projections of the line and find the inclinations with HP and VP by i) rotating line method and ii) trapezoidal method.

Fig. 7.5.7 Example 7.8

END OF SESSION 2

NEXT SESSION
APPLICATION PROBLEMS OF PROJECTION OF LINES

Downloaded from Ktunotes.in

